
Internet Engineering Task Force (IETF) K. Wierenga
Request for Comments: 6595 Cisco Systems, Inc.
Category: Standards Track E. Lear
ISSN: 2070-1721 Cisco Systems GmbH
 S. Josefsson
 SJD AB
 April 2012

A Simple Authentication and Security Layer (SASL) and GSS-API Mechanism
 for the Security Assertion Markup Language (SAML)

Abstract

 The Security Assertion Markup Language (SAML) has found its usage on
 the Internet for Web Single Sign-On. The Simple Authentication and
 Security Layer (SASL) and the Generic Security Service Application
 Program Interface (GSS-API) are application frameworks to generalize
 authentication. This memo specifies a SASL mechanism and a GSS-API
 mechanism for SAML 2.0 that allows the integration of existing SAML
 Identity Providers with applications using SASL and GSS-API.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6595.

Wierenga, et al. Standards Track [Page 1]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..4
 1.2. Applicability ..4
 2. Authentication Flow ...5
 3. SAML SASL Mechanism Specification7
 3.1. Initial Response ...8
 3.2. Authentication Request8
 3.3. Outcome and Parameters9
 4. SAML GSS-API Mechanism Specification10
 4.1. GSS-API Principal Name Types for SAML11
 5. Examples ...11
 5.1. XMPP ..11
 5.2. IMAP ..15
 6. Security Considerations ..17
 6.1. Man-in-the-Middle and Tunneling Attacks17
 6.2. Binding SAML Subject Identifiers to Authorization
 Identities ..17
 6.3. User Privacy ..18
 6.4. Collusion between RPs18
 6.5. Security Considerations Specific to GSS-API18
 7. IANA Considerations ..18
 7.1. IANA Mech-Profile ...18
 7.2. IANA OID ..19
 8. References ...19
 8.1. Normative References19
 8.2. Informative References21
 Appendix A. Acknowledgments22

Wierenga, et al. Standards Track [Page 2]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

1. Introduction

 Security Assertion Markup Language (SAML) 2.0 [OASIS-SAMLv2-CORE] is
 a set of specifications that provide various means for a user to be
 identified to a Relying Party (RP) through the exchange of (typically
 signed) assertions issued by an Identity Provider (IdP). It includes
 a number of protocols, protocol bindings [OASIS-SAMLv2-BIND], and
 interoperability profiles [OASIS-SAMLv2-PROF] designed for different
 use cases.

 The Simple Authentication and Security Layer (SASL) [RFC4422] is a
 generalized mechanism for identifying and authenticating a user and
 for optionally negotiating a security layer for subsequent protocol
 interactions. SASL is used by application protocols like IMAP
 [RFC3501], the Post Office Protocol (POP) [RFC1939], and the
 Extensible Message and Presence Protocol (XMPP) [RFC6120]. The
 effect is to make modular authentication, so that newer
 authentication mechanisms can be added as needed. This memo
 specifies just such a mechanism.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for applications to support multiple
 authentication mechanisms through a unified programming interface.
 This document defines a pure SASL mechanism for SAML, but it conforms
 to the new bridge between SASL and the GSS-API called GS2 [RFC5801].
 This means that this document defines both a SASL mechanism and a
 GSS-API mechanism. The GSS-API interface is OPTIONAL for SASL
 implementers, and the GSS-API considerations can be avoided in
 environments that use SASL directly without GSS-API.

 As currently envisioned, this mechanism enables interworking between
 SASL and SAML in order to assert the identity of the user and other
 attributes to RPs. As such, while servers (as RPs) will advertise
 SASL mechanisms (including SAML), clients will select the SAML SASL
 mechanism as their SASL mechanism of choice.

 The SAML mechanism described in this memo aims to reuse the Web
 Browser Single Sign-On (SSO) profile defined in Section 4.1 of the
 SAML 2.0 profiles specification [OASIS-SAMLv2-PROF] to the maximum
 extent and therefore does not establish a separate authentication,
 integrity, and confidentiality mechanism. The mechanism assumes that
 a security layer, such as Transport Layer Security (TLS) [RFC5246],
 will continue to be used. This specification is appropriate for use
 when a browser instance is available. In the absence of a browser
 instance, SAML profiles that don’t require a browser, such as the
 Enhanced Client or Proxy profile (as defined in Section 4.2 of
 [OASIS-SAMLv2-PROF], may be used, but that is outside the scope of
 this specification.

Wierenga, et al. Standards Track [Page 3]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Figure 1 describes the interworking between SAML and SASL: this
 document requires enhancements to the RP (the SASL server) and to the
 client, as the two SASL communication end points, but no changes to
 the SAML IdP are necessary. To accomplish this goal, some indirect
 messaging is tunneled within SASL, and some use of external methods
 is made.

 +-----------+
 | |
 >| Relying |
 / | Party |
 // | |
 // +-----------+
 SAML/ // ^
 HTTPS // +--|--+
 // | S| |
 / S | A| |
 // A | M| |
 // S | L| |
 // L | | |
 // | | |
 </ +--|--+
 +------------+ v
 | | +----------+
 | SAML | HTTPS | |
 | Identity |<--------------->| Client |
 | Provider | | |
 +------------+ +----------+

 Figure 1: Interworking Architecture

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The reader is assumed to be familiar with the terms used in the
 SAML 2.0 core specification [OASIS-SAMLv2-CORE].

1.2. Applicability

 Because this mechanism transports information that should not be
 controlled by an attacker, the SAML mechanism MUST only be used over
 channels protected by TLS, or over similar integrity-protected and
 authenticated channels. In addition, when TLS is used, the client
 MUST successfully validate the server’s certificate ([RFC5280],
 [RFC6125]).

Wierenga, et al. Standards Track [Page 4]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Note: An Intranet does not constitute such an integrity-protected and
 authenticated channel!

2. Authentication Flow

 While SAML itself is merely a markup language, its common use case
 these days is with HTTP [RFC2616] or HTTPS [RFC2818] and HTML
 [W3C-REC-HTML401]. What follows is a typical flow:

 1. The browser requests a resource of an RP (via an HTTP request).

 2. The RP redirects the browser via an HTTP redirect (as described
 in Section 10.3 of [RFC2616]) to the IdP or an IdP discovery
 service. When it does so, it includes the following parameters:
 (1) an authentication request that contains the name of the
 resource being requested, (2) a browser cookie, and (3) a return
 URL as specified in Section 3.1 of [OASIS-SAMLv2-PROF].

 3. The user authenticates to the IdP and perhaps authorizes the
 release of user attributes to the RP.

 4. In its authentication response, the IdP redirects (via an HTTP
 redirect) the browser back to the RP with an authentication
 assertion (stating that the IdP vouches that the subject has
 successfully authenticated), optionally along with some
 additional attributes.

 5. The RP now has sufficient identity information to approve access
 to the resource or not, and acts accordingly. The authentication
 is concluded.

 When considering this flow in the context of SASL, we note that while
 the RP and the client both must change their code to implement this
 SASL mechanism, the IdP can remain untouched. The RP already has
 some sort of session (probably a TCP connection) established with the
 client. However, it may be necessary to redirect a SASL client to
 another application or handler. The steps are as follows:

 1. The SASL server (RP) advertises support for the SASL SAML20
 mechanism to the client.

 2. The client initiates a SASL authentication with SAML20 and sends
 a domain name that allows the SASL server to determine the
 appropriate IdP.

Wierenga, et al. Standards Track [Page 5]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 3. The SASL server transmits an authentication request encoded using
 a Uniform Resource Identifier (URI) as described in RFC 3986
 [RFC3986] and an HTTP redirect to the IdP corresponding to the
 domain.

 4. The SASL client now sends a response consisting of "=".
 Authentication continues via the normal SAML flow, and the SASL
 server will receive the answer to the challenge out of band from
 the SASL conversation.

 5. At this point, the SASL client MUST construct a URL containing
 the content received in the previous message from the SASL
 server. This URL is transmitted to the IdP either by the SASL
 client application or an appropriate handler, such as a browser.

 6. Next, the user authenticates to the IdP. The manner in which the
 end user is authenticated to the IdP, and any policies
 surrounding such authentication, are out of scope for SAML and
 hence for this document. This step happens out of band from
 SASL.

 7. The IdP will convey information about the success or failure of
 the authentication back to the SASL server (RP) in the form of an
 authentication statement or failure, using an indirect response
 via the client browser or the handler (and with an external
 browser, client control should be passed back to the SASL
 client). This step happens out of band from SASL.

 8. The SASL server sends an appropriate SASL response to the client.

 Please note: What is described here is the case in which the client
 has not previously authenticated. It is possible that the client
 already holds a valid SAML authentication token so that the user does
 not need to be involved in the process anymore, but that would still
 be external to SASL. This is classic Web Single Sign-On, in which
 the Web Browser client presents the authentication token (cookie) to
 the RP without renewed user authentication at the IdP.

Wierenga, et al. Standards Track [Page 6]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 With all of this in mind, the flow appears as follows in Figure 2:

 SASL Serv. Client IdP
 |>-----(1)----->| | Advertisement
 | | |
 |<-----(2)-----<| | Initiation
 | | |
 |>-----(3)----->| | Authentication Request
 | | |
 |<-----(4)-----<| | Response of "="
 | | |
 | |<- -(5,6) - ->| Client<>IdP
 | | | Authentication
 | | |
 |<- - - - - - - - - - -(7)- - -| Authentication Statement
 | | |
 |>-----(8)----->| | SASL Completion with
 | | | Status
 | | |

 ----- = SASL
 - - - = HTTP or HTTPS (external to SASL)

 Figure 2: Authentication Flow

3. SAML SASL Mechanism Specification

 This section specifies the details of the SAML SASL mechanism. See
 Section 5 of [RFC4422] for additional details.

 The name of this mechanism is "SAML20". The mechanism is capable of
 transferring an authorization identity (via the "gs2-header"). The
 mechanism does not offer a security layer.

 The mechanism is client-first. The first mechanism message from the
 client to the server is the "initial-response". As described in
 [RFC4422], if the application protocol does not support sending a
 client response together with the authentication request, the server
 will send an empty server challenge to let the client begin. The
 second mechanism message is from the server to the client, containing
 the SAML "authentication-request". The third mechanism message is
 from the client to the server and is the fixed message consisting of
 "=". The fourth mechanism message is from the server to the client,
 indicating the SASL mechanism outcome.

Wierenga, et al. Standards Track [Page 7]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

3.1. Initial Response

 A client initiates a SAML20 authentication with SASL by sending the
 GS2 header followed by the Identity Provider identifier (message 2 in
 Figure 2) and is defined using ABNF [RFC5234] as follows:

 initial-response = gs2-header IdP-Identifier
 IdP-Identifier = domain ; domain name with corresponding IdP

 The gs2-header is used as follows:

 - The "gs2-nonstd-flag" MUST NOT be present.

 - The "gs2-cb-flag" MUST be set to "n" because channel-binding
 [RFC5056] data cannot be integrity protected by the SAML
 negotiation. (Note: In theory, channel-binding data could be
 inserted in the SAML flow by the client and verified by the
 server, but that is currently not supported in SAML.)

 - The "gs2-authzid" carries the optional authorization identity as
 specified in [RFC5801] (not to be confused with the
 IdP-Identifier).

 A domain name is either a "traditional domain name" as described in
 [RFC1035] or an "internationalized domain name" as described in
 [RFC5890]. Clients and servers MUST treat the IdP-Identifier as a
 domain name slot [RFC5890]. They also SHOULD support
 internationalized domain names (IDNs) in the IdP-Identifier field; if
 they do so, all of the domain name’s labels MUST be A-labels or
 NR-LDH labels [RFC5890]. If necessary, internationalized labels MUST
 be converted from U-labels to A-labels by using the Punycode encoding
 [RFC3492] for A-labels prior to sending them to the SASL server, as
 described in the protocol specification for Internationalized Domain
 Names in Applications [RFC5891].

3.2. Authentication Request

 The SASL server transmits to the SASL client a URI that redirects the
 SAML client to the IdP (corresponding to the domain that the user
 provided), with a SAML authentication request as one of the
 parameters (message 3 in Figure 2) using the following ABNF:

 authentication-request = URI

 The URI is specified in [RFC3986] and is encoded according to
 Section 3.4 ("HTTP Redirect Binding") of the SAML 2.0 bindings
 specification [OASIS-SAMLv2-BIND]. The SAML authentication request
 is encoded according to Section 3.4 ("Authentication Request

Wierenga, et al. Standards Track [Page 8]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Protocol") of [OASIS-SAMLv2-CORE]. Should the client support
 Internationalized Resource Identifiers (IRIs) [RFC3987], it MUST
 first map the IRI to a URI before transmitting it to the server, as
 defined in Section 3.1 of [RFC3987].

 Note: The SASL server may have a static mapping of domain to
 corresponding IdP or, alternatively, a DNS-lookup mechanism could be
 envisioned, but that is out of scope for this document.

 Note: While the SASL client MAY sanity-check the URI it received,
 ultimately it is the SAML IdP that will be validated by the SAML
 client; this topic is out of scope for this document.

 The client then sends the authentication request via an HTTP GET
 (sent over a server-authenticated TLS channel) to the IdP, as if
 redirected to do so from an HTTP server and in accordance with the
 Web Browser SSO profile, as described in Section 4.1 of
 [OASIS-SAMLv2-PROF] (messages 5 and 6 in Figure 2).

 The client handles both user authentication to the IdP and
 confirmation or rejection of the authentication of the RP (out of
 scope for this document).

 After all authentication has been completed by the IdP, the IdP will
 send a redirect message to the client in the form of a URI
 corresponding to the RP as specified in the authentication request
 ("AssertionConsumerServiceURL") and with the SAML response as one of
 the parameters (message 7 in Figure 2).

 Please note: This means that the SASL server needs to implement a
 SAML RP. Also, the SASL server needs to correlate the session it has
 with the SASL client with the appropriate SAML authentication result.
 It can do so by comparing the ID of the SAML authentication request
 it has issued with the one it receives in the SAML authentication
 statement.

3.3. Outcome and Parameters

 The SASL server (in its capacity as a SAML RP) now validates the SAML
 authentication response it received from the SAML client via HTTP or
 HTTPS.

 The outcome of that validation by the SASL server constitutes a SASL
 mechanism outcome and therefore (as stated in [RFC4422]) SHALL be
 used to set state in the server accordingly, and it SHALL be used by
 the server to report that state to the SASL client, as described in
 [RFC4422], Section 3.6 (message 8 in Figure 2).

Wierenga, et al. Standards Track [Page 9]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

4. SAML GSS-API Mechanism Specification

 This section and its sub-sections are not required for SASL
 implementors, but this section MUST be observed to implement the
 GSS-API mechanism discussed below.

 This section specifies a GSS-API mechanism that, when used via the
 GS2 bridge to SASL, behaves like the SASL mechanism defined in this
 document. Thus, it can loosely be said that the SAML SASL mechanism
 is also a GSS-API mechanism. The SAML user takes the role of the
 GSS-API Initiator, and the SAML RP takes the role of the GSS-API
 Acceptor. The SAML IdP does not have a role in GSS-API and is
 considered an internal matter for the SAML mechanism. The messages
 are the same, but

 a) the GS2 header on the client’s first message and channel-binding
 data are excluded when SAML is used as a GSS-API mechanism, and

 b) the initial context token header (Section 3.1 of [RFC2743]) is
 prefixed to the client’s first authentication message (context
 token).

 The GSS-API mechanism OID for SAML is 1.3.6.1.5.5.17 (see Section 7.2
 for more information). The DER encoding of the OID is
 0x2b 0x06 0x01 0x05 0x05 0x11.

 SAML20 security contexts MUST have the mutual_state flag
 (GSS_C_MUTUAL_FLAG) set to TRUE. SAML does not support credential
 delegation; therefore, SAML security contexts MUST have the
 deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

 The mutual authentication property of this mechanism relies on
 successfully comparing the TLS server’s identity with the negotiated
 target name. Since the TLS channel is managed by the application
 outside of the GSS-API mechanism, the mechanism itself is unable to
 confirm the name, while the application is able to perform this
 comparison for the mechanism. For this reason, applications MUST
 match the TLS server’s identity with the target name, as discussed in
 [RFC6125]. More precisely, to pass identity validation, the client
 uses the securely negotiated targ_name as the reference identifier
 and matches it to the DNS-ID of the server’s certificate, and it MUST
 reject the connection if there is a mismatch. For compatibility with
 deployed certificate hierarchies, the client MAY also perform a
 comparison with the Common Name ID (CN-ID) when there is no DNS-ID
 present. Wildcard matching is permitted. The targ_name reference
 identifier is a "traditional domain names"; thus, the comparison is
 made using case-insensitive ASCII comparison.

Wierenga, et al. Standards Track [Page 10]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 The SAML mechanism does not support per-message tokens or the
 GSS_Pseudo_random() function [RFC4401].

4.1. GSS-API Principal Name Types for SAML

 SAML supports standard generic name syntaxes for acceptors such as
 GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). SAML
 supports only a single name type for initiators: GSS_C_NT_USER_NAME.
 GSS_C_NT_USER_NAME is the default name type for SAML. The query,
 display, and exported name syntaxes for SAML principal names are all
 the same. There are no SAML-specific name syntaxes -- applications
 should use generic GSS-API name types, such as GSS_C_NT_USER_NAME and
 GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743] Section 4). The exported
 name token, of course, conforms to [RFC2743], Section 3.2.

5. Examples

5.1. XMPP

 Suppose the user has an identity at the SAML IdP saml.example.org and
 a Jabber Identifier (JID) "somenode@example.com" and wishes to
 authenticate his XMPP [RFC6120] connection to xmpp.example.com. The
 authentication on the wire would then look something like the
 following:

 Step 1: Client initiates stream to server:

 <stream:stream xmlns=’jabber:client’
 xmlns:stream=’http://etherx.jabber.org/streams’
 to=’example.com’ version=’1.0’>

 Step 2: Server responds with a stream tag sent to client:

 <stream:stream
 xmlns=’jabber:client’ xmlns:stream=’http://etherx.jabber.org/streams’
 id=’some_id’ from=’example.com’ version=’1.0’>

 Step 3: Server informs client of available authentication mechanisms:

 <stream:features>
 <mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>SAML20</mechanism>
 </mechanisms>
 </stream:features>

Wierenga, et al. Standards Track [Page 11]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Step 4: Client selects an authentication mechanism and provides the
 initial client response -- containing the gs2-header and domain --
 that has been encoded in base64 according to Section 4 of [RFC4648]:

 <auth xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’ mechanism=’SAML20’>
 biwsZXhhbXBsZS5vcmc=</auth>

 The decoded string is

 n,,example.org

 Step 5: Server sends a base64-encoded challenge to client in the form
 of an HTTP redirect to the SAML IdP corresponding to example.org
 (https://saml.example.org) with the SAML authentication request as
 specified in the redirection URL:

 aHR0cHM6Ly9zYW1sLmV4YW1wbGUub3JnL1NBTUwvQnJvd3Nlcj9TQU1MUmVx
 dWVzdD1QSE5oYld4d09rRjFkR2h1VW1WeGRXVnpkQ0I0Yld4dWN6cHpZVzFz
 Y0QwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnli
 M1J2WTI5c0lnMEtJQ0FnSUVsRVBTSmZZbVZqTkRJMFptRTFNVEF6TkRJNE9U
 QTVZVE13Wm1ZeFpUTXhNVFk0TXpJM1pqYzVORGMwT1RnMElpQldaWEp6YVc5
 dVBTSXlMakFpRFFvZ0lDQWdTWE56ZFdWSmJuTjBZVzUwUFNJeU1EQTNMVEV5
 TFRFd1ZERXhPak01T2pNMFdpSWdSbTl5WTJWQmRYUm9iajBpWm1Gc2MyVWlE
 UW9nSUNBZ1NYTlFZWE56YVhabFBTSm1ZV3h6WlNJTkNpQWdJQ0JRY205MGIy
 TnZiRUpwYm1ScGJtYzlJblZ5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUx
 TU9qSXVNRHBpYVc1a2FXNW5jenBJVkZSUUxWQlBVMVFpRFFvZ0lDQWdRWE56
 WlhKMGFXOXVRMjl1YzNWdFpYSlRaWEoyYVdObFZWSk1QUTBLSUNBZ0lDQWdJ
 Q0FpYUhSMGNITTZMeTk0YlhCd0xtVjRZVzF3YkdVdVkyOXRMMU5CVFV3dlFY
 TnpaWEowYVc5dVEyOXVjM1Z0WlhKVFpYSjJhV05sSWo0TkNpQThjMkZ0YkRw
 SmMzTjFaWElnZUcxc2JuTTZjMkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6
 T25Sak9sTkJUVXc2TWk0d09tRnpjMlZ5ZEdsdmJpSStEUW9nSUNBZ0lHaDBk
 SEJ6T2k4dmVHMXdjQzVsZUdGdGNHeGxMbU52YlEwS0lEd3ZjMkZ0YkRwSmMz
 TjFaWEkrRFFvZ1BITmhiV3h3T2s1aGJXVkpSRkJ2YkdsamVTQjRiV3h1Y3pw
 ellXMXNjRDBpZFhKdU9tOWhjMmx6T201aGJXVnpPblJqT2xOQlRVdzZNaTR3
 T25CeWIzUnZZMjlzSWcwS0lDQWdJQ0JHYjNKdFlYUTlJblZ5YmpwdllYTnBj
 enB1WVcxbGN6cDBZenBUUVUxTU9qSXVNRHB1WVcxbGFXUXRabTl5YldGME9u
 Qmxjbk5wYzNSbGJuUWlEUW9nSUNBZ0lGTlFUbUZ0WlZGMVlXeHBabWxsY2ow
 aWVHMXdjQzVsZUdGdGNHeGxMbU52YlNJZ1FXeHNiM2REY21WaGRHVTlJblJ5
 ZFdVaUlDOCtEUW9nUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxZEdodVEyOXVk
 R1Y0ZEEwS0lDQWdJQ0I0Yld4dWN6cHpZVzFzY0QwaWRYSnVPbTloYzJsek9t
 NWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnliM1J2WTI5c0lpQU5DaUFnSUNB
 Z0lDQWdRMjl0Y0dGeWFYTnZiajBpWlhoaFkzUWlQZzBLSUNBOGMyRnRiRHBC
 ZFhSb2JrTnZiblJsZUhSRGJHRnpjMUpsWmcwS0lDQWdJQ0FnZUcxc2JuTTZj
 MkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09t
 RnpjMlZ5ZEdsdmJpSStEUW9nb0NBZ0lDQjFjbTQ2YjJGemFYTTZibUZ0WlhN
 NmRHTTZVMEZOVERveUxqQTZZV002WTJ4aGMzTmxjenBRWVhOemQyOXlaRkJ5
 YjNSbFkzUmxaRlJ5WVc1emNHOXlkQTBLSUNBOEwzTmhiV3c2UVhWMGFHNURi

Wierenga, et al. Standards Track [Page 12]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 MjUwWlhoMFEyeGhjM05TWldZK0RRb2dQQzl6WVcxc2NEcFNaWEYxWlhOMFpX
 UkJkWFJvYmtOdmJuUmxlSFErSUEwS1BDOXpZVzFzY0RwQmRYUm9ibEpsY1hW
 bGMzUSs=

 The decoded challenge is as follows:

 https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOk
 F1dGhuUmVxdWVzdCB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWVzOnRjOl
 NBTUw6Mi4wOnByb3RvY29sIg0KICAgIElEPSJfYmVjNDI0ZmE1MTAzNDI4OT
 A5YTMwZmYxZTMxMTY4MzI3Zjc5NDc0OTg0IiBWZXJzaW9uPSIyLjAiDQogIC
 AgSXNzdWVJbnN0YW50PSIyMDA3LTEyLTEwVDExOjM5OjM0WiIgRm9yY2VBdX
 Robj0iZmFsc2UiDQogICAgSXNQYXNzaXZlPSJmYWxzZSINCiAgICBQcm90b2
 NvbEJpbmRpbmc9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDpiaW5kaW
 5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0aW9uQ29uc3VtZXJTZXJ2aWNlVV
 JMPQ0KICAgICAgICAiaHR0cHM6Ly94bXBwLmV4YW1wbGUuY29tL1NBTUwvQX
 NzZXJ0aW9uQ29uc3VtZXJTZXJ2aWNlIj4NCiA8c2FtbDpJc3N1ZXIgeG1sbn
 M6c2FtbD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmFzc2VydGlvbi
 I+DQogICAgIGh0dHBzOi8veG1wcC5leGFtcGxlLmNvbQ0KIDwvc2FtbDpJc3
 N1ZXI+DQogPHNhbWxwOk5hbWVJRFBvbGljeSB4bWxuczpzYW1scD0idXJuOm
 9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIg0KICAgICBGb3JtYX
 Q9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDpuYW1laWQtZm9ybWF0On
 BlcnNpc3RlbnQiDQogICAgIFNQTmFtZVF1YWxpZmllcj0ieG1wcC5leGFtcG
 xlLmNvbSIgQWxsb3dDcmVhdGU9InRydWUiIC8+DQogPHNhbWxwOlJlcXVlc3
 RlZEF1dGhuQ29udGV4dA0KICAgICB4bWxuczpzYW1scD0idXJuOm9hc2lzOm
 5hbWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIiANCiAgICAgICAgQ29tcGFyaX
 Nvbj0iZXhhY3QiPg0KICA8c2FtbDpBdXRobkNvbnRleHRDbGFzc1JlZg0KIC
 AgICAgeG1sbnM6c2FtbD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOm
 Fzc2VydGlvbiI+DQogICAgICAgICAgIHVybjpvYXNpczpuYW1lczp0YzpTQU
 1MOjIuMDphYzpjbGFzc2VzOlBhc3N3b3JkUHJvdGVjdGVkVHJhbnNwb3J0DQ
 ogIDwvc2FtbDpBdXRobkNvbnRleHRDbGFzc1JlZj4NCiA8L3NhbWxwOlJlcX
 Vlc3RlZEF1dGhuQ29udGV4dD4gDQo8L3NhbWxwOkF1dGhuUmVxdWVzdD4=

 Where the decoded SAMLRequest looks like the following:

 <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
 IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
 IsPassive="false"
 ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 AssertionConsumerServiceURL=
 "https://xmpp.example.com/SAML/AssertionConsumerService">
 <saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 https://xmpp.example.com
 </saml:Issuer>
 <samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
 SPNameQualifier="xmpp.example.com" AllowCreate="true" />
 <samlp:RequestedAuthnContext

Wierenga, et al. Standards Track [Page 13]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 Comparison="exact">
 <saml:AuthnContextClassRef
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
 </saml:AuthnContextClassRef>
 </samlp:RequestedAuthnContext>
 </samlp:AuthnRequest>

 Note: The server can use the request ID
 ("_bec424fa5103428909a30ff1e31168327f79474984") to correlate the SASL
 session with the SAML authentication.

 Step 5 (alternative): Server returns error to client if no SAML
 authentication request can be constructed:

 <failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <temporary-auth-failure/>
 </failure>
 </stream:stream>

 Step 6: Client sends the "=" response (base64-encoded) to the
 challenge:

 <response xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 PQ==
 </response>

 The following steps between brackets are out of scope for this
 document but are included to better illustrate the entire flow:

 [The client now sends the URL to a browser instance for processing.
 The browser engages in a normal SAML authentication flow (external to
 SASL), like redirection to the IdP (https://saml.example.org); the
 user logs into https://saml.example.org and agrees to authenticate to
 xmpp.example.com. A redirect is passed back to the client browser.
 The client browser in turn sends the AuthN response, which contains
 the subject-identifier as an attribute, to the server. If the AuthN
 response doesn’t contain the JID, the server maps the subject-
 identifier received from the IdP to a JID.]

 Step 7: Server informs client of successful authentication:

 <success xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’/>

Wierenga, et al. Standards Track [Page 14]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Step 7 (alternative): Server informs client of failed authentication:

 <failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <not-authorized/>
 </failure>
 </stream:stream>

 Please note: Line breaks were added to the base64 data for clarity.

5.2. IMAP

 The following sequence describes an IMAP exchange. Lines beginning
 with ’S:’ indicate data sent by the server, and lines starting with
 ’C:’ indicate data sent by the client. Long lines are wrapped for
 readability.

 S: * OK IMAP4rev1
 C: . CAPABILITY
 S: * CAPABILITY IMAP4rev1 STARTTLS
 S: . OK CAPABILITY Completed
 C: . STARTTLS
 S: . OK Begin TLS negotiation now
 C: . CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=SAML20
 S: . OK CAPABILITY Completed
 C: . AUTHENTICATE SAML20
 S: +
 C: biwsZXhhbXBsZS5vcmc=
 S: + aHR0cHM6Ly9zYW1sLmV4YW1wbGUub3JnL1NBTUwvQnJvd3Nlcj9TQU1M
 UmVxdWVzdD1QSE5oYld4d09rRg0KMWRHaHVVbVZ4ZFdWemRDQjRiV3h1Y3pwe
 llXMXNjRDBpZFhKdU9tOWhjMmx6T201aGJXVnpPblJqT2xOQg0KVFV3Nk1pNH
 dPbkJ5YjNSdlkyOXNJZzBLSUNBZ0lFbEVQU0pmWW1Wak5ESTBabUUxTVRBek5
 ESTRPVEE1WQ0KVE13Wm1ZeFpUTXhNVFk0TXpJM1pqYzVORGMwT1RnMElpQlda
 WEp6YVc5dVBTSXlMakFpRFFvZ0lDQWdTWA0KTnpkV1ZKYm5OMFlXNTBQU0l5T
 URBM0xURXlMVEV3VkRFeE9qTTVPak0wV2lJZ1JtOXlZMlZCZFhSb2JqMA0KaV
 ptRnNjMlVpRFFvZ0lDQWdTWE5RWVhOemFYWmxQU0ptWVd4elpTSU5DaUFnSUN
 CUWNtOTBiMk52YkVKcA0KYm1ScGJtYzlJblZ5YmpwdllYTnBjenB1WVcxbGN6
 cDBZenBUUVUxTU9qSXVNRHBpYVc1a2FXNW5jenBJVg0KRlJRTFZCUFUxUWlEU
 W9nSUNBZ1FYTnpaWEowYVc5dVEyOXVjM1Z0WlhKVFpYSjJhV05sVlZKTVBRME
 tJQw0KQWdJQ0FnSUNBaWFIUjBjSE02THk5dFlXbHNMbVY0WVcxd2JHVXVZMjl
 0TDFOQlRVd3ZRWE56WlhKMGFXOQ0KdVEyOXVjM1Z0WlhKVFpYSjJhV05sSWo0
 TkNpQThjMkZ0YkRwSmMzTjFaWElnZUcxc2JuTTZjMkZ0YkQwaQ0KZFhKdU9tO
 WhjMmx6T201aGJXVnpPblJqT2xOQlRVdzZNaTR3T21GemMyVnlkR2x2YmlJK0
 RRb2dJQ0FnSQ0KR2gwZEhCek9pOHZlRzF3Y0M1bGVHRnRjR3hsTG1OdmJRMEt
 JRHd2YzJGdGJEcEpjM04xWlhJK0RRb2dQSA0KTmhiV3h3T2s1aGJXVkpSRkJ2
 YkdsamVTQjRiV3h1Y3pwellXMXNjRDBpZFhKdU9tOWhjMmx6T201aGJXVg0Ke
 k9uUmpPbE5CVFV3Nk1pNHdPbkJ5YjNSdlkyOXNJZzBLSUNBZ0lDQkdiM0p0WV

Wierenga, et al. Standards Track [Page 15]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 hROUluVnlianB2WVhOcA0KY3pwdVlXMWxjenAwWXpwVFFVMU1Pakl1TURwdVl
 XMWxhV1F0Wm05eWJXRjBPbkJsY25OcGMzUmxiblFpRA0KUW9nSUNBZ0lGTlFU
 bUZ0WlZGMVlXeHBabWxsY2owaWVHMXdjQzVsZUdGdGNHeGxMbU52YlNJZ1FXe
 HNiMw0KZERjbVZoZEdVOUluUnlkV1VpSUM4K0RRb2dQSE5oYld4d09sSmxjWF
 ZsYzNSbFpFRjFkR2h1UTI5dWRHVg0KNGRBMEtJQ0FnSUNCNGJXeHVjenB6WVc
 xc2NEMGlkWEp1T205aGMybHpPbTVoYldWek9uUmpPbE5CVFV3Ng0KTWk0d09u
 QnliM1J2WTI5c0lpQU5DaUFnSUNBZ0lDQWdRMjl0Y0dGeWFYTnZiajBpWlhoa
 FkzUWlQZzBLSQ0KQ0E4YzJGdGJEcEJkWFJvYmtOdmJuUmxlSFJEYkdGemMxSm
 xaZzBLSUNBZ0lDQWdlRzFzYm5NNmMyRnRiRA0KMGlkWEp1T205aGMybHpPbTV
 oYldWek9uUmpPbE5CVFV3Nk1pNHdPbUZ6YzJWeWRHbHZiaUkrRFFvZ0lDQQ0K
 Z0lDQjFjbTQ2YjJGemFYTTZibUZ0WlhNNmRHTTZVMEZOVERveUxqQTZZV002W
 TJ4aGMzTmxjenBRWVhOeg0KZDI5eVpGQnliM1JsWTNSbFpGUnlZVzV6Y0c5eW
 RBMEtJQ0E4TDNOaGJXdzZRWFYwYUc1RGIyNTBaWGgwUQ0KMnhoYzNOU1pXWSt
 EUW9nUEM5ellXMXNjRHBTWlhGMVpYTjBaV1JCZFhSb2JrTnZiblJsZUhRK0lB
 MEtQQw0KOXpZVzFzY0RwQmRYUm9ibEpsY1hWbGMzUSs=
 C: PQ==
 S: . OK Success (TLS protection)

 The decoded challenge is as follows:

 https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOkF
 1dGhuUmVxdWVzdCB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWVzOnRjOlNB
 TUw6Mi4wOnByb3RvY29sIg0KICAgIElEPSJfYmVjNDI0ZmE1MTAzNDI4OTA5Y
 TMwZmYxZTMxMTY4MzI3Zjc5NDc0OTg0IiBWZXJzaW9uPSIyLjAiDQogICAgSX
 NzdWVJbnN0YW50PSIyMDA3LTEyLTEwVDExOjM5OjM0WiIgRm9yY2VBdXRobj0
 iZmFsc2UiDQogICAgSXNQYXNzaXZlPSJmYWxzZSINCiAgICBQcm90b2NvbEJp
 bmRpbmc9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDpiaW5kaW5nczpIV
 FRQLVBPU1QiDQogICAgQXNzZXJ0aW9uQ29uc3VtZXJTZXJ2aWNlVVJMPQ0KIC
 AgICAgICAiaHR0cHM6Ly9tYWlsLmV4YW1wbGUuY29tL1NBTUwvQXNzZXJ0aW9
 uQ29uc3VtZXJTZXJ2aWNlIj4NCiA8c2FtbDpJc3N1ZXIgeG1sbnM6c2FtbD0i
 dXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmFzc2VydGlvbiI+DQogICAgI
 Gh0dHBzOi8veG1wcC5leGFtcGxlLmNvbQ0KIDwvc2FtbDpJc3N1ZXI+DQogPH
 NhbWxwOk5hbWVJRFBvbGljeSB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWV
 zOnRjOlNBTUw6Mi4wOnByb3RvY29sIg0KICAgICBGb3JtYXQ9InVybjpvYXNp
 czpuYW1lczp0YzpTQU1MOjIuMDpuYW1laWQtZm9ybWF0OnBlcnNpc3RlbnQiD
 QogICAgIFNQTmFtZVF1YWxpZmllcj0ieG1wcC5leGFtcGxlLmNvbSIgQWxsb3
 dDcmVhdGU9InRydWUiIC8+DQogPHNhbWxwOlJlcXVlc3RlZEF1dGhuQ29udGV
 4dA0KICAgICB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6
 Mi4wOnByb3RvY29sIiANCiAgICAgICAgQ29tcGFyaXNvbj0iZXhhY3QiPg0KI
 CA8c2FtbDpBdXRobkNvbnRleHRDbGFzc1JlZg0KICAgICAgeG1sbnM6c2FtbD
 0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmFzc2VydGlvbiI+DQogICA
 gICB1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6YWM6Y2xhc3NlczpQYXNz
 d29yZFByb3RlY3RlZFRyYW5zcG9ydA0KICA8L3NhbWw6QXV0aG5Db250ZXh0Q
 2xhc3NSZWY+DQogPC9zYW1scDpSZXF1ZXN0ZWRBdXRobkNvbnRleHQ+IA0KPC
 9zYW1scDpBdXRoblJlcXVlc3Q+

Wierenga, et al. Standards Track [Page 16]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 Where the decoded SAMLRequest looks like the following:

 <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
 IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
 IsPassive="false"
 ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 AssertionConsumerServiceURL=
 "https://mail.example.com/SAML/AssertionConsumerService">
 <saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 https://xmpp.example.com
 </saml:Issuer>
 <samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
 SPNameQualifier="xmpp.example.com" AllowCreate="true" />
 <samlp:RequestedAuthnContext
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 Comparison="exact">
 <saml:AuthnContextClassRef
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
 </saml:AuthnContextClassRef>
 </samlp:RequestedAuthnContext>
 </samlp:AuthnRequest>

6. Security Considerations

 This section addresses only security considerations associated with
 the use of SAML with SASL applications. For considerations relating
 to SAML in general, and for general SASL security considerations, the
 reader is referred to the SAML specifications and to other
 literature.

6.1. Man-in-the-Middle and Tunneling Attacks

 This mechanism is vulnerable to man-in-the-middle and tunneling
 attacks unless a client always verifies the server’s identity before
 proceeding with authentication (see [RFC6125]). Typically, TLS is
 used to provide a secure channel with server authentication.

6.2. Binding SAML Subject Identifiers to Authorization Identities

 As specified in [RFC4422], the server is responsible for binding
 credentials to a specific authorization identity. It is therefore
 necessary that only specific trusted IdPs be allowed. This is a
 typical part of SAML trust establishment between RPs and the IdP.

Wierenga, et al. Standards Track [Page 17]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

6.3. User Privacy

 The IdP is aware of each RP that a user logs into. There is nothing
 in the protocol to hide this information from the IdP. It is not a
 requirement to track the visits, but there is nothing that prohibits
 the collection of information. SASL server implementers should be
 aware that SAML IdPs will be able to track -- to some extent -- user
 access to their services.

6.4. Collusion between RPs

 It is possible for RPs to link data that they have collected on the
 users. By using the same identifier to log into every RP, collusion
 between RPs is possible. In SAML, targeted identity was introduced.
 Targeted identity allows the IdP to transform the identifier the user
 typed in to an RP-specific opaque identifier. This way, the RP would
 never see the actual user identifier but instead would see a randomly
 generated identifier.

6.5. Security Considerations Specific to GSS-API

 Security issues inherent in GSS-API [RFC2743] and GS2 [RFC5801] apply
 to the SAML GSS-API mechanism defined in this document. Further, and
 as discussed in Section 4, proper TLS server identity verification is
 critical to the security of the mechanism.

7. IANA Considerations

7.1. IANA Mech-Profile

 The IANA has registered the following SASL profile:

 SASL mechanism profile: SAML20

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Intended usage: COMMON

 Note: None

Wierenga, et al. Standards Track [Page 18]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

7.2. IANA OID

 The IANA has also assigned a new entry for this GSS mechanism in the
 SMI Security for Mechanism Codes sub-registry, whose prefix is
 iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5), and
 referenced this specification in the registry.

8. References

8.1. Normative References

 [OASIS-SAMLv2-BIND]
 Cantor, S., Ed., Hirsch, F., Ed., Kemp, J., Ed., Philpott,
 R., Ed., and E. Maler, Ed., "Bindings for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard saml-bindings-2.0-os, March 2005, <http://
 docs.oasis-open.org/security/saml/v2.0/
 saml-bindings-2.0-os.pdf>.

 [OASIS-SAMLv2-CORE]
 Cantor, S., Ed., Kemp, J., Ed., Philpott, R., Ed., and E.
 Maler, Ed., "Assertions and Protocols for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard saml-core-2.0-os, March 2005, <http://
 docs.oasis-open.org/security/saml/v2.0/
 saml-core-2.0-os.pdf>.

 [OASIS-SAMLv2-PROF]
 Hughes, J., Ed., Cantor, S., Ed., Hodges, J., Ed., Hirsch,
 F., Ed., Mishra, P., Ed., Philpott, R., Ed., and E. Maler,
 Ed., "Profiles for the OASIS Security Assertion Markup
 Language (SAML) V2.0", OASIS Standard OASIS.saml-profiles-
 2.0-os, March 2005, <http://docs.oasis-open.org/security/
 saml/v2.0/saml-profiles-2.0-os.pdf>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

Wierenga, et al. Standards Track [Page 19]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC4422] Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 June 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, August 2010.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

Wierenga, et al. Standards Track [Page 20]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [W3C-REC-HTML401]
 Le Hors, A., Ed., Raggett, D., Ed., and I. Jacobs, Ed.,
 "HTML 4.01 Specification", World Wide Web Consortium
 Recommendation REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

8.2. Informative References

 [RFC1939] Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, May 1996.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 VERSION 4rev1", RFC 3501, March 2003.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

Wierenga, et al. Standards Track [Page 21]

RFC 6595 A SASL and GSS-API Mechanism for SAML April 2012

Appendix A. Acknowledgments

 The authors would like to thank Scott Cantor, Joe Hildebrand, Josh
 Howlett, Leif Johansson, Thomas Lenggenhager, Diego Lopez, Hank
 Mauldin, RL "Bob" Morgan, Stefan Plug, and Hannes Tschofenig for
 their review and contributions.

Authors’ Addresses

 Klaas Wierenga
 Cisco Systems, Inc.
 Haarlerbergweg 13-19
 1101 CH Amsterdam
 The Netherlands

 Phone: +31 20 357 1752
 EMail: klaas@cisco.com

 Eliot Lear
 Cisco Systems GmbH
 Richtistrasse 7
 CH-8304 Wallisellen
 Switzerland

 Phone: +41 44 878 9200
 EMail: lear@cisco.com

 Simon Josefsson
 SJD AB
 Johan Olof Wallins vag 13
 Solna 171 64
 Sweden

 EMail: simon@josefsson.org
 URI: http://josefsson.org/

Wierenga, et al. Standards Track [Page 22]

