
Network Working Group Richard Schantz (BBN-TENEX)
Request for Comments: 672 Dec 1974
NIC #31440

 A Multi-Site Data Collection Facility

 Preface:

 This RFC reproduces most of a working document
 prepared during the design and implementation of the
 protocols for the TIP-TENEX integrated system for
 handling TIP accounting. Bernie Cosell (BBN-TIP)
 and Bob Thomas (BBN-TENEX) have contributed to
 various aspects of this work. The system has been
 partially operational for about a month on selected
 hosts. We feel that the techniques described here
 have wide applicability beyond TIP accounting.

Section I

Protocols for a Multi-site Data Collection Facility

Introduction

 The development of computer networks has provided the
groundwork for distributed computation: one in which a job or task
is comprised of components from various computer systems. In a
single computer system, the unavailability or malfunction of any of
the job components (e.g. program, file, device, etc.) usually
necessitates job termination. With computer networks, it becomes
feasible to duplicate certain job components which previously had no
basis for duplication. (In a single system, it does not matter how
many times a process that performs a certain function is duplicated;
a system crash makes all unavailable). It is such resource
duplication that enables us to utilize the network to achieve high
reliability and load leveling. In order to realize the potential of
resource duplication, it is necessary to have protocols which
provide for the orderly use of these resources. In this document,
we first discuss in general terms a problem of protocol definition
for interacting with a multiply defined resource (server). The
problem deals with providing a highly reliable data collection
facility, by supporting it at many sites throughout the network. In
the second section of this document, we describe in detail a
particular implementation of the protocol which handles the problem
of utilizing multiple data collector processes for collecting
accounting data generated by the network TIPs. This example also
illustrates the specialization of hosts to perform parts of a
computation they are best equipped to handle. The large network
hosts (TENEX systems) perform the accounting function for the small
network access TiPs.

 The situation to be discussed is the following: a data
generating process needs to use a data collection service which is
duplicately provided by processes on a number of network machines.
A request to a server involves sending the data to be collected.

An Initial Approach

 The data generator could proceed by selecting a particular
server and sending its request to that server. It might also take
the attitude that if the message reaches the destination host (the
communication subsystem will indicate this) the message will be
properly processed to completion. Failure of the request Message
would then lead to selecting another server, until the request
succeeds or all servers have been tried.

 -2-

 Such a simple strategy is a poor one. It makes sense to
require that the servicing process send a positive acknowledgement
to the requesting process. If nothing else, the reply indicates
that the server process itself is still functioning. Waiting for
such a reply also implies that there is a strategy for selecting
another server if the reply is not forthcoming. Herein lies a
problem. If the expected reply is timed out, and then a new request
is sent to another server, we run the risk of receiving the
(delayed) original acknowledgement at a later time. This could
result in having the data entered into the collection system twice
(data duplication). If the request is re-transmitted to the same
server only, we face the possibility of not being able to access a
collector (data loss). In addition, for load leveling purposes, we
may wish to send new requests to some (or all) servers. We can then
use their reply (or lack of reply) as an indicator of load on that
particular instance of the service. Doing this without data
duplication requires more than a simple request and acknowledgement
protocol*.

Extension of the Protocol

 The general protocol developed to handle multiple collection
servers involves having the data generator send the data request to
some (or all) data collectors. Those willing to handle the request
reply with an "I’ve got it" message. They then await further
notification before finalizing the processing of the data. The data
generator sends a "go ahead" message to one of the replying
collectors, and a "discard" message to all other replying
collectors. The "go ahead" message is the signal to process the
data (i.e. collect permanently), while the "discard" message
indicates that the data is being collected elsewhere and should not
be retained.

 The question now arises as to whether or not the collector
process should acknowledge receipt of the "go ahead" message with a
reply of its own, and then should the generator process acknowledge
this acknowledgement, etc. We would like to send as few messages as
possible to achieve reliable communication. Therefore, when a state

* If the servers are independent of each other to the extent that if
two or more servers all act on the same request, the end result is
the same as having a single server act on the request, then a simple
request/acknowledgement protocol is adequate. Such may be the case,
for example, if we subject the totality of collected data (i.e. all
data collected by all collectors for a certain period) to a
duplicate detection scan. If we could store enough context in each
entry to be able to determine duplicates, then having two or more
servers act on the data would be functionally equivalent to
processing by a single server.

 -3-

is reached for which further acknowledgements lead to a previously
visited state, or when the cost of further acknowledgements outweigh
the increase in reliability they bring, further acknowledgements
become unnecessary.

 The initial question was should the collector process
acknowledge the "go ahead" message? Assume for the moment that it
should not send such an acknowledgement. The data generator could
verify, through the communication subsystem, the transmission of the
"go ahead" message to the host of the collector. If this message
did not arrive correctly, the generator has the option of
re-transmitting it or sending a "go ahead" to another collector
which has acknowledged receipt of the data. Either strategy
involves no risk of duplication. If the "go ahead" message arrives
correctly, and a collector acknowledgement to the "go ahead" message
is not required, then we incur a vulnerability to (collector host)
system crash from the time the "go ahead" message is accepted by the
host until the time the data is totally processed. Call the data
processing time P. Once the data generator has selected a
particular collector (on the basis of receiving its "I’ve got it"
message), we also incur a vulnerability to malfunction of this
collector process. The vulnerable period is from the time the
collector sends its "i’ve got it" message until the time the data is
processed. This amounts to two network transit times (2N) plus IMP
and host overhead for message delivery (0) plus data processing time
(P). [Total time=2N+P+O]. A malfunction (crash) in this period can
cause the loss of data. There is no potential for duplication.

 Now, assume that the data collector process must acknowledge
the "go ahead" message. The question then arises as to when such an
acknowledgement should be sent. The reasonable choices are either
immediately before final processing of the data (i.c. before the
data is permanently recorded) or immediately after final processing.
It can be argued that unless another acknowledgement is required (by
the generator to the collector) to this acknowledgement BEFORE the
actual data update, then the best time for the collector to
acknowledge the "go ahead" is after final processing. This is so
because receiving the acknowledgement conveys more information if it
is sent after processing, while not receiving it (timeout), in
either case, leaves us in an unknown state with respect to the data
update. Depending on the relative speeds of various network and
system components, the data may or may not be permanently entered.
Therefore if we interpret the timeout as a signal to have the data
processed at another site, we run the risk of duplication of data.
To avoid data duplication, the timeout strategy must only involve
re-sending the "go ahead" message to the same collector. This will
only help if the lack of reply is due to a lost network message.
Our vulnerability intervals to system and process malfunction remain
as before.

 It is our conjecture (to be analyzed further) that any further
acknowledgements to these acknowledgements will have virtually no
effect on reducing the period of vulnerability outlined above. As
such, the protocol with the fewest messages required is superior.

 -4-

Data Dependent Aspects of the Protocol

 As discussed above, a main issue is which process should be the
last to respond (send an acknowledgement). If the data generator
sends the last message (i.e. "go ahead"), we can only check on its
correct arrival at the destination host. We must "take on faith"
the ability of the collector to correctly complete the transaction.
This strategy is geared toward avoiding data duplication. If on the
other hand, the protocol specifies that the collector is to send the
last message, with the timeout of such a message causing the data
generator to use another collector, then the protocol is geared
toward the best efforts of recording the data somewhere, at the
expense of possible duplication.

 Thus, the nature of the problem will dictate which of the
protocols is appropriate for a given situation. The next section
deals in the specifics of an implement;tion of a data collection
protocol to handle the problem of collecting TIP accounting data by
using the TENEX systems for running the collection server processes.
It is shown how the general protocol is optimized for the accounting
data collection.

Section II

Protocol for TIP-TENEX Accounting Server Information Exchange

Overview of the Facility

 When a user initially requests service from a TIP, the TIP will
perform a broadcast ICP to find an available RSEXEC which maintains
an authentication data base. The user must then complete s login
sequence in order to authenticate himself. If he is successful the
RSEXEC will transmit his unique ID code to the TIP. Failure will
cause the RSEXEC to close the connection and the TIP to hang up on
the user. After the user is authenticated, the TIP will accumulate
accounting data for the user session. The data includes a count of
messages sent on behalf of the user, and the connect time for the
user. From time to time the TIP will transmit intermediate
accounting data to Accounting Server (ACTSER) processes scattered
throughout the network. These accounting servers will maintain
files containing intermediate raw accounting data. The raw
accounting data will periodically be collected and sorted to produce
an accounting data base. Providing a number of accounting servers
reduces the possibility of being unable to find a repository for the
intermediate data, which otherwise would be lost due to buffering
limitations in the TiPs. The multitude of accounting servers can
also serve to reduce the load on the individual hosts providing this
facility.

 -5-

The rest of this document details the protocol that has been
developed to ensure delivery of TIP accounting data to one of the
available accounting servers for storage in the intermediate
accounting files.

Adapting the Protocol

The TIP to Accounting Server data exchange uses a protocol that
allows the TIP to select for data transmission one, some, or all
server hosts either sequentially or in parallel, yet insures that
the data that becomes part of the accounting file does not contain
duplicate information. The protocol also minimizes the amount of
data buffering that must be done by the limited capacity TiPs. The
protocol is applicable to a wide class of data collection problems
which use a number of data generators and collectors. The following
describes how the protocol works for TIP accounting.

Each TIP is responsible for maintaining in its memory the cells
indicating the connect time and the number of messages sent for each
of its current users. These cells are incremented by the TIP for
every quantum of connect time and message sent, as the case may be.
This is the data generation phase. Periodically, the TIP will scan
all its active counters, and along with each user ID code, pack the
accumulated data into one network message (i.e. less than 8K bits).
The TIP then transmits this data to a set of Accounting Server
processes residing throughout the network. The data transfer is
over a specially designated host-host link. The accounting servers
utilize the raw network message facility of TENEX 1.32 in order to
directly access that link. When an ACTSER receives a data message
from a TIP, it buffers the data and replies by returning the entire
message to the originating TIP. The TIP responds with a positive
acknowledgement ("go ahead") to the first ACTSER which returns the
data, and responds with a negative acknowledgement ("discard") to
all subsequent ACTSER data return messages for this series of
transfers. If the TIP does not receive a reply from any ACTSER, it
accumulates new data (i.e. the TIP has all the while been
incrementing its local counters to reflect the increased connect
time and message count; the current values will comprise new data
transfers) and sends the new data to the Accounting Server
processes. When an ACTSER receives a positive acknowledgement from
a TIP (i.e. "go ahead"), it appends the appropriate parts of the
buffered data to the locally maintained accounting information file.
On receiving a negative acknowledgement from the TIP (i.e.
"discard"), the ACTSER discards the data buffered for this TIP. In
-addition, when the TIP responds with a "go ahead" to the first
ACTSER which has accepted the data (acknowledged by returning the
data along with the "I’ve got it"), the TIP decrements the connect
time and message counters for each user by the amount indicated in
the data returned by the ACTSER. This data will already be
accounted for in the intermediate accounting files.

As an aid in determining which ACTSER replies are to current
requests, and which are tardy replies to old requests, the TIP

 -6-

maintains a sequence number indicator, and appends this number to
each data message sent to an ACTSER. On receiving a reply from an
ACTSER, the TIP merely checks the returned sequence number to see if
this is the first reply to the current set of TIP requests. If the
returned sequence number is the same as the current sequence number,
then this is the first reply; a positive acknowledgement is sent
off, the counters are decremented by the returned data, and the
sequence number is incremented. If the returned sequence number is
not the same as the current one (i.e. not the one we are now
seeking a reply for) then a negative acknowledgement is sent to the
replying ACTSER. After a positive acknowledgement to an ACTSER (and
the implied incrementing of the sequence number), the TIP can wait
for more information to accumulate, and then start transmitting
again using the new sequence number.

Further Clarification of the Protocol

There are a number of points concerning the protocol that
should be noted.

1. The data generator (TIP) can send different (i.e. updated
versions) data to different data collectors (accounting servers) as
part of the same logical transmission sequence. This is possible
because the TIP does not account for the data sent until it receives
the acknowledgement of the data echo. This strategy relieves the
TIP of any buffering in conjunction with re-transmission of data
which hasn’t been acknowledged.

2. A new data request to an accounting server from a TIP will
also serve as a negative acknowledgement concerning any data already
buffered by the ACTSER for that TIP, but not yet acknowledged. The
old data will be discarded, and the new data will be buffered and
echoed as an acknowledgement. This allows the TIP the option of not
sending a negative acknowledgement when it is not convenient to do
so, without having to remember that it must be sent at a later time.
There is one exception to this convention. If the new data message
has the same sequence number as the old buffered message, then the
new data must be discarded, and the old data kept and re-echoed.
This is to prevent a slow acknowledgement to the old data from being
accepted by the TIP, after the TIP has already sent the new data to
the slow host. This caveat can be avoided if the TIP does not
resend to a non-responding server within the time period that a
message could possibly be stuck in the network, but could still be
delivered. Ignoring this situation may result in some accounting
data being counted twice. Because of the rule to keep old data when
confronted with matching sequence numbers, on restarting after a
crash, the TIP should send a "discard" message to all servers in
order to clear any data which has been buffered for it prior to the
crash. An alternative to this would be for the TIP to initialize
its sequence number from a varying source such as time of day.

3. The accounting server similarly need not acknowledge receipt
of data (by echoing) if it finds itself otherwise occupied. This
will mean that the ACTSER is not buffering the data, and hence is
not a candidate for entering the data into the file. However, the

 -7-

TIP may try this ACTSER at a later time (even with the same data),
with no ill effects.

4. Because of 2 and 3 above, the protocol is robust with respect
to lost or garbled transmissions of TIP data requests and accounting
server echo replies. That is, in the event of loss of such a
message, a re-transmission will occur as the normal procedure.

5. There is no synchronization problem with respect to the
sequence number used for duplicate detection, since this number is
maintained only at the TIP site. The accounting server merely
echoes the sequence number it has received as part of the data.

6. There are, however, some constraints on the size of the
sequence number field. It must be large enough so that ALL traces
of the previous use of a given sequence number are totally reMoved
from the network before the number is re-used by the TIP. The
sequence number is modulo the size of the largest number represented
by the number of bits allocated, and is cyclic. Problems generally
arise when a host proceeds from a service interruption while it was
holding on to a reply. If during the service interruption, we have
cycled through our sequence numbers exactly N times (where N is any
integer), this VERY tardy reply could be mistaken for a reply to the
new data, which has the same sequence number (i.e. N revolutions of
sequence numbers later). By utilizing a sufficiently large sequence
number field (16 bits), and by allowing sufficient time between
instances of sending new data, we can effectively reduce the
probability of such an error to zero.

7. Since the data involved in this problem is the source of
accounting information, care must be taken to avoid duplicate
entries. This must be done at the expense of potentially losing
data in certain instances. Other than the obvious TIP malfunction,
there are two known ways of losing data. One is the situation where
no accounting server responds to a TIP for an extended period of
time causing the TIP counters to overflow (highly unlikely if there
are sufficient Accounting Servers). In this case, the TIP can hold
the counters at their maximum value until a server comes up, thereby
keeping the lost accounting data at its minimum. The other
situation results from adapting the protocol to our insistence on no
duplicate data in the incremental files. We are vulnerable to data
loss with no recourse from the time the server receives the "go
ahead" to update the file with the buffered data (i.e. positive
acknowledgement) until the time the update is completed and the file
is closed. An accounting server crash during this period will cause
that accounting data to be lost. In our initial implementation, we
have slightly extended this period of vulnerability in order to save
the TIP from having to buffer the acknowledged data for a short
period of time. By updating TIP counters from the returned data in
parallel with sending the "go ahead" acknowledgement, we relieve the
TIP of the burden of buffering this data until the Request for Next
Message (RFNM) from the accounting server IMP is received. This
adds slightly to our period of vulnerability to malfunction, moving
the beginning of the period from the point when the ACTSER host
receives the "go ahead", back to the point when the TIP sends off

 -8-

the "go ahead" (i.e. a period of one network transit time plus some
IMP processing time). However, loss of data in this period is
detectable through the Host Dead or Incomplete Transmission return
in place of the RFNM. We intend to record such occurrences with the

Network Control Center. If this data loss becomes intolerable, the
TIP program will be modified to await the RFNM for the positive
acknowledgement before updating its counters. In such a case, if
the RFNM does not come, the TIP can discard the buffered data and
re-transmit new data to other servers.

8. There is adequate protection against the entry of forged data
into the intermediate accounting files. This is primarily due to
the system enforced limited access to Host-Imp messages and
Host-Host links. In addition, messages received on such designated
limited access links can be easily verified as coming from a TIP.
The IMP subnet appends the signature (address) of the sending host
to all of its messages, so there can be no forging. The Accounting
Server is in a position to check if the source of the message is in
fact a TIP data generator.

Current Parameters of the Protocol

In the initial implementation, the TIP sends its accumulated
accounting data about once every half hour. If it gets no positive
acknowledgement, it tries to send with greater frequency (about
every 5 minutes) until it finally succeeds. It can then return to
the normal waiting period. (A TIP user logout introduces an
exception to this behavior. In order to re-use the TIP port and its
associated counters as soon as possible, a user terminating his TIP
session causes the accounting data to be sent immediately).
initially, our implementation calls for each TIP to remember a
"favored" accounting server. At the wait period expiration, the TIP
will try to deposit the data at its "favored" site. If successful
within a short timeout period, this site remains the favored site,
and the wait interval is reset. If unsuccessful within the short
timeout, the data can be sent to all servers*. The one replying
first will update its file with the data and also become the
"favored" server for this TIP. With these parameters, a host would
have to undergo a proceedable service interruption of more than a
year in order for the potential sequence number problem outlined in
(6) above to occur.

Concluding Remarks

When the implementation is complete, we will have a general
data accumulation and collection system which can be used to gather
a wide variety of information. The protocol as outlined is geared
to gathering data which is either independent of the previously
accumulated data items (e.g. recording names), or data which
adheres to a commutative relationship (e.g. counting). This is a

 -9-

consequence of the policy of retransmission of different versions of
the data to different potential collectors (to relieve TIP buffering
problems).

In the specified version of the protocol, care was taken to
avoid duplicate data entries, at the cost of possibly losing some
data through collector malfunction. Data collection problems which
require avoiding such loss (at the cost of possible duplication of
some data items) can easily be accommodated with a slight adjustment
to the protocol. Collected data which does not adhere to the
commutative relationship indicated above, can also be handled by
utilizing more buffer space at the data generator sites.

The sequence number can be incremented for this new set of data
messages, and the new data can also be sent to the slow host. In
this way we won’t be giving the tardy response from the old favored
host unfair advantage in determining which server can respond most
quickly. If there is no reply to this series of messages, the TIP
can continue to resend the new data. However, the sequence number
should not be incremented, since no reply was received, and since
indiscriminate incrementing of the sequence number increases the
chance of recycling during the lifetime of a message.

 -10-

