
Network Working Group Vinton Cerf
Request for Comments: 675 Yogen Dalal
NIC: 2 Carl Sunshine
INWG: 72 December 1974

 SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM

 December 1974 Version

1. INTRODUCTION

 This document describes the functions to be performed by the
 internetwork Transmission Control Program [TCP] and its interface to
 programs or users that require its services. Several basic
 assumptions are made about process to process communication and these
 are listed here without further justification. The interested reader
 is referred to [CEKA74, TOML74, BELS74, DALA74, SUNS74] for further
 discussion.

 The authors would like to acknowledge the contributions of R.
 Tomlinson (three way handshake and Initial Sequence Number
 Selection), D. Belsnes, J. Burchfiel, M. Galland, R. Kahn, D. Lloyd,
 W. Plummer, and J. Postel all of whose good ideas and counsel have
 had a beneficial effect (we hope) on this protocol design. In the
 early phases of the design work, R. Metcalfe, A. McKenzie, H.
 Zimmerman, G. LeLann, and M. Elie were most helpful in explicating
 the various issues to be resolved. Of course, we remain responsible
 for the remaining errors and misstatements which no doubt lurk in the
 nooks and crannies of the text.

 Processes are viewed as the active elements of all HOST computers in
 a network. Even terminals and files or other I/O media are viewed as
 communicating through the use of processes. Thus, all network
 communication is viewed as inter-process communication.

 Since a process may need to distinguish among several communication
 streams between itself and another process [or processes], we imagine
 that each process may have a number of PORTs through which it
 communicates with the ports of other processes.

 Since port names are selected independently by each operating system,
 TCP, or user, they may not be unique. To provide for unique names at
 each TCP, we concatenate a NETWORK identifier, and a TCP identifier
 with a port name to create a SOCKET name which will be unique
 throughout all networks connected together.

Cerf, Dalal & Sunshine [Page 1]

RFC 675 Specification of Internet TCP December 1974

 A pair of sockets form a CONNECTION which can be used to carry data
 in either direction [i.e. full duplex]. The connection is uniquely
 identified by the <local socket, foreign socket> address pair, and
 the same local socket can participate in multiple connections to
 different foreign sockets [see Section 2.2].

 Processes exchange finite length LETTERS as a way of communicating;
 thus, letter boundaries are significant. However, the length of a
 letter may be such that it must be broken into FRAGMENTS before it
 can be transmitted to its destination. We assume that the fragments
 will normally be reassembled into a letter before being passed to the
 receiving process. Throughout this document, it is legitimate to
 assume that a fragment contains all or a part of a letter, but that a
 fragment never contains parts of more than one letter.

 We specifically assume that fragments are transmitted from Host to
 Host through means of a PACKET SWITCHING NETWORK [PSN] [ROWE70,
 POUZ73]. This assumption is probably unnecessary, since a circuit
 switched network could also be used, but for concreteness, we
 explicitly assume that the hosts are connected to one or more PACKET
 SWITCHES [PS] of a PSN [HEKA7O, POUZ74, SCWI71].

 Processes make use of the TCP by handing it letters. The TCP breaks
 these into fragments, if necessary, and then embeds each fragment in
 an INTERNETWORK PACKET. Each internetwork packet is in turn embedded
 in a LOCAL PACKET suitable for transmission from the host to one of
 its serving PS. The packet switches may perform further formatting or
 other operations to achieve the delivery of the local packet to the
 destination Host.

 The term LOCAL PACKET is used generically here to mean the formatted
 bit string exchanged between a host and a packet switch. The format
 of bit strings exchanged between the packet switches in a PSN will
 generally not be of concern to us. If an internetwork packet is
 destined for a TCP in a foreign PSN, the packet is routed to a
 GATEWAY which connects the origin PSN with an intermediate or the
 destination PSN. Routing of internetwork packets to the GATEWAY may
 be the responsibility of the source TCP or the local PSN, depending
 upon the PSN Implementation.

 One model of TCP operation is to imagine that there is a basic
 GATEWAY associated with each TCP which provides an interface to the
 local network. This basic GATEWAY performs routing and packet
 reformatting or embedding, and may also implement congestion and
 error control between the TCP and GATEWAYS at or intermediate to the
 destination TCP.

Cerf, Dalal & Sunshine [Page 2]

RFC 675 Specification of Internet TCP December 1974

 At a GATEWAY between networks, the internetwork packet is unwrapped
 from its local packet format and examined to determine through which
 network the internetwork packet should travel next. The internetwork
 packet is then wrapped in a local packet format suitable to the next
 network and passed on to a new packet switch.

 A GATEWAY is permitted to break up the fragment carried by an
 internetwork packet into smaller fragments if this is necessary for
 transmission through the next network. To do this, the GATEWAY
 produces a set of internetwork packets, each carrying a new fragment.
 The packet format is designed so that the destination TCP may treat
 fragments created by the source TCP or by intermediate GATEWAYS
 nearly identically.

 The TCP is responsible for regulating the flow of internetwork
 packets to and from the processes it serves, as a way of preventing
 its host from becoming saturated or overloaded with traffic. The TCP
 is also responsible for retransmitting unacknowledged packets, and
 for detecting duplicates. A consequence of this error
 detection/retransmission scheme is that the order of letters received
 on a given connection is also maintained [CEKA74, SUNS74]. To perform
 these functions, the TCP opens and closes connections between ports
 as described in Section 4.3. The TCP performs retransmission,
 duplicate detection, sequencing, and flow control on all
 communication among the processes it serves.

2. The TCP INTERFACE to the USER

2.1 The TCP as a POST OFFICE

 The TCP acts in many ways like a postal service since it provides a
 way for processes to exchange letters with each other. It sometimes
 happens that a process may offer some service, but not know in
 advance what its correspondents’ addresses are. The analogy can be
 drawn with a mail order house which opens a post office box which can
 accept mail from any source. Unlike the post box, however, once a
 letter from a particular correspondent arrives, a port becomes
 specific to the correspondent until the owner of the port declares
 otherwise.

 In addition to acting like a postal service, the TCP insures end-to-
 end acknowledgment, error correction, duplicate detection,
 sequencing, and flow control.

Cerf, Dalal & Sunshine [Page 3]

RFC 675 Specification of Internet TCP December 1974

2.2 Sockets and Addressing

 We have borrowed the term SOCKET from the ARPANET terminology
 [CACR70, MCKE73]. In general, a socket is the concatenation of a
 NETWORK identifier, TCP identifier, and PORT identifier. A CONNECTION
 is fully specified by the pair of SOCKETS at each end since the same
 local socket may participate in many connections to different foreign
 sockets.

 Once the connections is specified in the OPEN command [see section
 2.3.2], the TCP supplies a [short] Local Connection Name by which the
 user refers to the connection in subsequent commands. In particular
 this facilitates using connections with initially unspecified foreign
 sockets.

 TCP’s are free to associate ports with processes however they choose.
 However, several basic concepts seem necessary in an implementation.
 There must be well known sockets [WKS] which the TCP associates only
 with the "appropriate" processes by some means. We envision that
 processes may "own" sockets, and that processes can only initiate
 connections on the sockets they own [means for implementing ownership
 is a local issue, but we envision a Request Port user call, or a
 method of uniquely allocating a group of ports to a given process,
 e.g. by associating the high order bits of a port name with a given
 process.]

 Once initiated, a connection may be passed to another process that
 does not own the local socket [e.g. from logger to service process].
 Strictly speaking this is a reconnection issue which might be more
 elegantly handled by a general reconnection protocol as discussed in
 section 3.3. To simplify passing a connection within a single TCP,
 such "invisible" switches may be allowed as in TENEX systems.

 Of course, each connection is associated with exactly one process,
 and any attempt to reference that connection by another process will
 be signaled as an error by the TCP. This prevents stealing data from
 or inserting data into another process’ data stream.

 A connection is initiated by the rendezvous of an arriving
 internetwork packet and a waiting Transmission Control Block [TCB]
 created by a user OPEN, SEND, INTERPUPT, or RECEIVE call [see section
 2.3]. The matching of local and foreign socket identifiers determines
 when a successful connection has been initiated. The connection
 becomes established when sequence numbers have been synchronized in
 both directions as described in section 4.3.2.

Cerf, Dalal & Sunshine [Page 4]

RFC 675 Specification of Internet TCP December 1974

 It is possible to specify a socket only partially by setting the PORT
 identifier to zero or setting both the TCP and PORT identifiers to
 zero. A socket of all zero is called UNSPECIFIED. The purpose behind
 unspecified sockets is to provide a sort of "general delivery"
 facility [useful for logger type processes with well known sockets].

 There are bounds on the degree of unspecificity of socket
 identifiers. TCB’s must have fully specified local sockets, although
 the foreign socket may be fully or partly unspecified. Arriving
 packets must have fully specified sockets.

 We employ the following notation:

 x.y.z = fully specified socket with x=net, y=TCP, z=port

 x.y.u = as above, but unspecified port

 x.u.u = as above, but unspecified TCP and port

 u.u.u = completely unspecified

 with respect to implementation, u = 0 [zero]

 We illustrate the principles of matching by giving all cases of
 incoming packets which match with existing TCB’s. Generally, both
 the local (foreign) socket of the TCB and the foreign (local) socket
 of the packet must match.

 TCB local TCB foreign Packet local Packet foreign

 (a) a.b.c e.f.g e.f.g a.b.c

 (b) a.b.c e.f.u e.f.g a.b.c

 (c) a.b.c e.u.u e.f.g a.b.c

 (d) a.b.c u.u.u e.f.g a.b.c

 There are no other legal combinations of socket identifiers which
 match. Case (d) is typical of the ARPANET well known socket idea in
 which the well known socket (a.b.c) LISTENS for a connection from
 any (u.u.u) socket. Cases (b) and (c) can be used to restrict
 matching to a particular TCP or net.

Cerf, Dalal & Sunshine [Page 5]

RFC 675 Specification of Internet TCP December 1974

2.3 TCP USER CALLS

2.3.1 A Note on Style

 The following sections functionally define the USER/TCP interface.
 The notation used is similar to most procedure or function calls in
 high level languages, but this usage is not meant to rule out trap
 type service calls [e.g. SVC’s, UUO’s, EMT’s,...].

 The user calls described below specify the basic functions the TCP
 will perform to support interprocess communication. Individual
 implementations should define their own exact format, and may
 provide combinations or subsets of the basic functions in single
 calls. In particular, some implementations may wish to automatically
 OPEN a connection on the first SEND, RECEIVE, or INTERRUPT issued by
 the user for a given connection.

 In providing interprocess communication facilities, the TCP must not
 only accept commands, but also return information to the processes
 it serves. This communication consists of:

 (a) general information about a connection [interrupts, remote
 close, binding of unspecified foreign socket].

 (b) replies to specific user commands indicating success or various
 types of failure.

 Although the means for signaling user processes and the exact format
 of replies will vary from one implementation to another, it would
 promote common understanding and testing if a common set of codes
 were adopted. Such a set of Event Codes is described in section 2.4.

 With respect to error messages, references to "local" and "foreign"
 are ambiguous unless it is known whether these refer to the world as
 seen by the sender or receiver of the error message. The authors
 attempted several different approaches and finally settled on the
 convention that these references would be as seen by the receiver of
 the message.

2.3.2 OPEN CONNECTION

 Format: OPEN(local port, foreign socket [, timeout])

 We assume that the local TCP is aware of the identity of the
 processes it serves and will check the authority of the process to
 use the connection specified. Depending upon the implementation of
 the TCP, the source network and TCP identifiers will either be
 supplied by the TCP or by the processes that serve it [e.g. the

Cerf, Dalal & Sunshine [Page 6]

RFC 675 Specification of Internet TCP December 1974

 program which interfaces the TCP to its packet switch or the packet
 switch itself]. These considerations are the result of concern about
 security, to the extent that no TCP be able to masquerade as another
 one, and so on. Similarly, no process can masquerade as another
 without the collusion of the TCP.

 If no foreign socket is specified [i.e. the foreign socket parameter
 is 0 or not present], then this constitutes a LISTENING local socket
 which can accept communication from any foreign socket. Provision is
 also made for partial specification of foreign sockets as described
 in section 2.2.

 If the specified connection is already OPEN, an error is returned,
 otherwise a full-duplex transmission control block [TCB] is created
 and partially filled in with data from the OPEN command parameters.
 The TCB format is described in more detail in section 4.2.2.

 No network traffic is generated by the OPEN command. The first SEND
 or INTERRUPT by the local user or the foreign user will cause the TCP
 to synchronize the connection.

 The timeout, if present, permits the caller to set up a timeout for
 all letters transmitted on the connection. If a letter is not
 successfully transmitted within the timeout period, the user is
 notified and may ignore the condition [TCP will continue trying to
 transmit] or direct the TCP to close the connection. The present
 global default is 30 seconds, and connections which are set up
 without specifying another timeout will retransmit every letter for
 at least 30 seconds before notifying the user. The retransmission
 rate may vary, and is the responsibility of the TCP and not the user.
 Most likely, it will be related to the measured time for responses to
 return from letters sent.

 Depending on the TCP implementation, either a local connection name
 will be returned to the user by the TCP, or the user will specify
 this local connection name (in which case another parameter is needed
 in the call). The local connection name can then be used as a short
 hand term for the connection defined by the <local socket, foreign
 socket> pair.

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.3.3 SEND LETTER

 Format: SEND(local connection name, buffer address, byte count, EOL
 flag [, timeout])

Cerf, Dalal & Sunshine [Page 7]

RFC 675 Specification of Internet TCP December 1974

 This call causes the data contained in the indicated user buffer to
 be sent on the indicated connection. If the connection has not been
 opened, the SEND is considered an error. Some implementations may
 allow users to SEND first, in which case an automatic OPEN would be
 done. If the calling process is not authorized to use this
 connection, an error is returned.

 If the EOL flag is set, the data is the End Of a Letter, and the EOL
 bit will be set in the last packet created from the buffer. If the
 EOL f1ag is not set, subsequent SEND’s will appear as part of the
 same letter. This extended letter facility should be used sparingly
 because some TCP’s may delay processing packets until an entire
 letter is received.

 If no foreign socket was specified in the OPEN, but the connection is
 established [e.g. because a listening connection has become specific
 due to a foreign letter arriving for the local port] then the
 designated letter is sent to the implied foreign socket. In general,
 users who make use of OPEN with an unspecified foreign socket can
 make use of SEND without ever explicitly knowing the foreign socket
 address.

 However, if a SEND is attempted before the foreign socket becomes
 specified, an error will be returned. Users can use the STATUS call
 to determine the status of the connection. In some implementations
 the TCP may notify the user when an unspecified socket is bound.

 If the timeout is specified, then the current default timeout for
 this connection is changed to the new one. This can affect not only
 all letters sent including and after this one, but also those which
 have not yet been sent, since the timeout is kept in the TCB and not
 associated with each letter sent. Of course, a time is maintained for
 each internetwork packet formed so as to determine how long each of
 these has been on the retransmission queue.

 In the simplest implementation, SEND would not return control to the
 sending process until either the transmission was complete or the
 timeout had been exceeded. This simple method is highly subject to
 deadlocks and is not recommended. [For example both sides of the
 connection try to do SEND’s before doing any RECEIVE’s.] A more
 sophisticated implementation would return immediately to allow the
 process to run concurrently with network I/O, and, furthermore, to
 allow multiple SENDs to be in progress concurrently. Multiple SENDs
 are served in first come, first served order, so the TCP will queue
 those it cannot service immediately.

Cerf, Dalal & Sunshine [Page 8]

RFC 675 Specification of Internet TCP December 1974

 NOTA BENE: In order for the process to distinguish among error or
 success indications for different letters, the buffer address should
 be returned along with the coded response to the SEND request. We
 will offer an example event code format in section 2.4, showing the
 information which should be returned to the calling process.

 The semantics of the INTERRUPT call are described later, but this
 call can have an effect on letters which have been given to the TCP
 but not yet sent. In particular, all such letters are flushed by the
 source TCP. Thus one of the responses to a SEND may be "flushed due
 to interrupt."

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.3.4 RECEIVE LETTER

 Format: RECEIVE(local connection name, buffer address, byte count)

 This command allocates a receiving buffer associated with the
 specified connection. If no OPEN precedes this command or the calling
 process is not authorized to use this connection, an error is
 returned.

 In the simplest implementation, control would not return to the
 calling program until either a letter was received, or some error
 occurred, but this scheme is highly subject to deadlocks [see section
 2.3.3]. A more sophisticated implementation would permit several
 RECEIVE’s to be outstanding at once, These would be filled as letters
 arrive. This strategy permits increased throughput, at the cost of a
 more elaborate scheme [possibly asynchronous] to notify the calling
 program that a letter has been received.

 If insufficient buffer space is given to reassemble a complete
 letter, an indication that the buffer holds a partial letter will be
 given; the buffer will be filled with as much data as it can hold.

 The remaining parts of a partly delivered letter will be placed in
 buffers as they are made available via successive RECEIVES. If a
 number of RECEIVES are outstanding, they may be filled with parts of
 a single long letter or with at most one letter each. The event codes
 associated with each RECEIVE will indicate what is contained in the
 buffer.

 To distinguish among several outstanding RECEIVES, and to take care
 of the case that a letter is smaller than the buffer supplied, the
 event code is accompanied by both a buffer pointer and a byte count
 indicating the actual length of the letter received.

Cerf, Dalal & Sunshine [Page 9]

RFC 675 Specification of Internet TCP December 1974

 The semantics of the INTERRUPT system call are discussed later, but
 this call can have an effect on outstanding RECEIVES. When the TCP
 receives an INTERRUPT, it will flush all data currently queued up
 awaiting receipt by the receiving process. If no data is waiting, but
 several buffers have been made available by anticipatory RECEIVE
 commands, these buffers are returned to the process with an error
 indicating that any data that might have been placed in those buffers
 has been flushed. This enables the receiving process to synchronize
 its RECEIVES with the interrupt. That is, the process can distinguish
 between RECEIVES issued before the receipt of the INTERRUPT and these
 issued afterwards.

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.3.5 CLOSE CONNECTION

 Format: CLOSE(local connection name)

 This command causes the connection specified to be closed. If the
 connection is not open or the calling process is not authorized to
 use this connection, an error is returned. Any unfilled receive
 buffers or pending send buffers will be returned to the user with
 event codes indicating they were aborted due to the CLOSE. Users
 should wait for event codes for each SEND before closing the
 connection if they wish to be certain that all letters were
 successfully delivered.

 The user may CLOSE the connection at any time on his own initiative,
 or in response to various prompts from the TCP [remote close
 executed, transmission timeout exceeded, destination inaccessible].

 Because closing a connection requires communication with the foreign
 TCP, connections may remain in the closing state for a short time.
 Attempts to reopen the connection before the TCP replies to the CLOSE
 command will result in errors.

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.3.6 INTERRUPT

 Format: INTERRUPT(local connection name)

 A special control signal is sent to the destination indicating an
 interrupt condition. This facility can be used to simulate "break"
 signals from terminals or error or completion codes from I/O devices,
 for example. The semantics of this signal to the receiving process

Cerf, Dalal & Sunshine [Page 10]

RFC 675 Specification of Internet TCP December 1974

 are unspecified. The receiving TCP will signal the interrupt to the
 receiving process immediately upon receipt, and will also flush any
 outstanding letters waiting to be delivered. Since it is possib1e to
 tell where in the letter stream this command was invoked, it is
 possible for the receiving TCP to flush only preceding data. The
 sending TCP will flush any letters pending transmission, returning a
 special error code to indicate the flush.

 If the connection is not open or the calling process is not
 authorized to use this connection, an error is returned.

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.3.7 STATUS

 Format: STATUS(local connection name)

 This command returns a data block containing the following
 information:

 local socket, foreign socket, local connection name, receive window,
 send window, connection state, number of letters awaiting
 acknowledgment, number of letters pending receipt [including partial
 ones], default transmission timeout

 Depending on the state of the connection, some of this information
 may not be available or meaningful. If the calling process is not
 authorized to use this connection, an error is returned. This
 prevents unauthorized processes from gaining information about a
 connection.

 Responses from the TCP which may occur as a result of this call are
 detailed in section 2.4.

2.4 TCP TO USER MESSAGES

2.4.1 TYPE CODES

 All messages include a type code which identifies the type of user
 call to which the message applies. Types are:

 0 - General message, does not apply to a particular user call

 1 - Applies to OPEN

 2 - Applies to CLOSE

Cerf, Dalal & Sunshine [Page 11]

RFC 675 Specification of Internet TCP December 1974

 3 - Applies to INTERRUPT

 10 - Applies to SEND

 20 - Applies to RECEIVE

 30 - Applies to STATUS

2.4.2 MESSAGE FORMAT [notional]

 All messages include the following three fields:

 Type code

 Local connection name

 Event code

 For message types 0-3 [General, Open, Close, Interrupt] only these
 three fields are necessary.

 For message type 10 [Send] one additional field is necessary:

 Buffer address

 For message type 20 [Receive] three additional fields are necessary:

 Buffer address

 Byte count

 End-of-letter flag

 For message type 30 [status] additional data might include;

 Local socket, foreign socket

 Send window [measures buffer space at foreign TCP]

 Receive window [measures buffer space at local TCP]

 Connection state [see section 4.3.6]

 Number of letters awaiting acknowledgment

 Number of letters awaiting receipt

 Retransmission timeout

Cerf, Dalal & Sunshine [Page 12]

RFC 675 Specification of Internet TCP December 1974

2.4.3 EVENT CODES

 The event code specifies the particular event that the TCP wishes to
 communicate to the user.

 In addition to the event code, three flags may be useful to classify
 the event into major categories and facilitate event processing by
 the user:

 E flag: set if event is an error

 L/F flag: indicates whether event was generated by Local TCP, or
 Foreign TCP or network

 P/T flag: indicates whether the event is Permanent or Temporary
 [retry may succeed]

 Events are encoded into 8 bits with the high order bits set to
 indicate the state of the E, L/F, and P/T flags, respectively.

 Events specified so far are listed below with their codes and flag
 settings. A * means a flag does not apply or can take both values for
 this event. Additional events may be defined in the course of
 experimentation.

 0 0** general success

 1 ELP connection illegal for this process

 2 OF* unspecified foreign socket has become bound

 3 ELP connection not open

 4 ELT no room for TCB

 5 ELT foreign socket unspecified

 6 ELP connection already open
 EFP unacceptable SYN [or SYN/ACK] arrived at foreign
 TCP. Note: This is not a misprint, the local meaning is different
 from foreign.

 7 EFP connection does not exist at foreign TCP

 8 EFT foreign TCP inaccessible [may have subcases]

 9 ELT retransmission timeout

Cerf, Dalal & Sunshine [Page 13]

RFC 675 Specification of Internet TCP December 1974

 10 E*P buffer flushed due to interrupt

 11 OF* interrupt to user

 12 **P connection closing

 13 E** general error

 14 E*P connection reset

 Possible events for each message type are as follows:

 Type 0[general]: 2,11,12,14

 Type 1[open]: 0,1,4,6,13

 Type 2[close]: 0,1,3,13

 Type 3[interrupt]: 0,1,3,5,7,8,9,12,13

 Type 10[send]: 0,1,3,5,7,8,9,10,11,12,13

 Type 20[receive]: 0,1,3,10,12,13

 Type 30[status]: 0,1,13

 Note that events 6(foreign), 7, 8 are generated at the foreign TCP or
 in the network[s], and these same codes are used in the error field
 of the internet packet [see section 4.2.1].

3. HIGHER LEVEL PROTOCOLS

3.1 INTRODUCTION

 It is envisioned that the TCP will be able to support higher level
 protocols efficiently. It should be easy to interface existing
 ARPANET protocols like TELNET and FTP to the TCP.

3.2 WELL KNOWN SOCKETS

 At some point, a set of well known 24 bit port numbers must be
 picked. The type of service associated with the well known ports
 might include:

 (a) Logger

 (b) FTP (File transfer protocol)

Cerf, Dalal & Sunshine [Page 14]

RFC 675 Specification of Internet TCP December 1974

 (c) RJE (Remote job entry)

 (d) Host status

 (e) TTY Test

 (f) HELP - descriptive, interactive system documentation

 WE RESERVE WELL KNOWN SOCKET 0 (24 bits of 0) for global messages
 destined for a particular TCP but not related to any particular
 connection. We imagine that this socket would be used for unusual TCP
 synchronization (e.g. RESET ALL) or for testing purposes (e.g.
 sending letters to TRASHCAN or ECHO). This does not conflict with the
 usage that if a socket is 0, it is unspecified, since no user can
 SEND, CLOSE, or INTERRUPT on socket 0.

3.3 RECONNECTION PROTOCOL (RCP)

 Port identifiers fall into two categories: permanent and transient.
 For example, a Logger process is generally assigned a port identifier
 that is fixed and well known. Transient processes will in general
 have ID’s which are dynamically assigned.

 In the distributed processing environment of the network, two
 processes that don’t have well known port identifiers may often wish
 to communicate. This can be achieved with the help of a well known
 process using a reconnection protocol. Such a protocol is briefly
 outlined using the communication facilities provided by the TCP. It
 essentially provides a mechanism by which port identifiers are
 exchanged in order to establish a connection between a pair of
 sockets.

 Such a protoco1 can be used to achieve the dynamic establishment of
 new connections in order to have multiple processes solving a problem
 cooperatively, or to provide a user process access to a server
 process via a logger, when the logger’s end of the connection can not
 be invisibly passed to the server process.

 A paper on this subject by R. Schantz [SCHA74] discusses some of the
 issues associated with reconnection, and some of the ideas contained
 therein went into the design of the protocol outlined below.

 In the ARPANET, a protocol was implemented which would allow a
 process to connect to a well known socket, thus making an implicit
 request for service, and then be switched to another socket so that
 the well known socket could be freed for use by others. Since sockets

Cerf, Dalal & Sunshine [Page 15]

RFC 675 Specification of Internet TCP December 1974

 in our TCP are permitted to have connections with more than one
 foreign socket, this facility may not be explicitly needed (i.e.
 connections <A,B> and <A,C> are distinguishable).

 However. the well known socket may be in one network and the actual
 service socket(s) may be in another network (or at least in another
 TCP). Thus, the invisible switching of a connection from one port to
 another within a TCP may not be sufficient as an "Initial Connection
 Protocol". We imagine that a process wishes to use socket N1.T1.Q to
 access well known socket N2.T2.P. However, the process associated
 with socket N2.T2.P will actually start up a new process somewhere
 which will use N3.T3.S as its server socket. The N(i) and T(i) may be
 distinct or the same. The user will send to N2.T2.P the relevant user
 information such as user name, password, and account. The server will
 start up the server process and send to N1.T1.Q the actual service
 socket ldentif1er: N3.T3.S. The connection (N1.TI.Q,N2.T2.P) can then
 be closed, and the user can do a RECEIVE on (N1.T1.Q,N3.T3.S). The
 serving process can SEND on (N3.T3.S,N1.T1.Q). There are many
 variations on this scheme, some involving the user process doing a
 RECEIVE on a different socket (e.g. (N1.T1.X,U.U.U)) with the server
 doing SEND on (N3.T3.S,N1.T1.X). Without showing all the detail of
 synchronization of sequence numbers and the like, we can illustrate
 the exchange as shown below.

 USER SERVER

 1. RECEIVE(N2.T2.P,U.U.U)

 1. SEND (N1.T1.Q,N2.T2.P)==>

 <== 2. SEND(N2.T2.P,N1.T1.Q)

 With "N3.T3.S" as data

 2. RECEIVE(N1.T1.Q,N2.T2.P)

 3. CLOSE(N1.T1.Q,N2.T2.P)==>

 <:= 3. CLOSE(N2.T2.P,N1.T1.Q)

 4. RECEIVE(N1.T1.Q,N3.T3.S)

 <== 4. SEND(N3.T3.S,N1.T1.Q)

 At this point, a connection is open between N1.T1.Q and N3.T3.S. A
 variation might be to have the user do an extra RECEIVE on
 (N1.T1.X,U.U.U) and have the data "N1.T1.X" be sent in the first user
 SEND. Then, the server can start up the real serving process and do a

Cerf, Dalal & Sunshine [Page 16]

RFC 675 Specification of Internet TCP December 1974

 SEND on (N3.T3.S,N1.T1.X) without having to send the "N3.T3.S" data
 to the user. Or perhaps both server and receiver exchange this data,
 to assure security of the ultimate connection (i.e. some wild process
 might try to connect to N1.T1.X if it is merely RECEIVING on foreign
 socket U.U.U.).

 We do not propose any specific reconnection protocol here, but leave
 this to further deliberation, since it is really a user level
 protocol issue.

4. TCP IMPLEMENTATION

4.1 INTRODUCTION

 Conceptually, the TCP is made up of several processes. Some of these
 deal with USER/TCP commands, and others with packets arriving from
 the network. The TCP also has an internal measurement facility which
 can be activated remotely.

 Any particular TCP could be viewed in a number of ways. It could be
 implemented as an independent process, servicing many user processes.
 It could be viewed as a set of re-entrant library routines which
 share a common interface to the local PSN, and common buffer storage.
 It could even be viewed as a set of processes, some handling the
 user, some the input of packets from the net, and some the output of
 packets to the net.

4.2 TCP DATA STRUCTURES

4.2.1 INTERNETWORK PACKET FONMAT

 8 bits: Internet information

 2 bits: Reserved for local PSN use

 2 bits: Header format (11 in binary)

 4 bits: Protocol version number

 8 bits: Header length in octets (32 is the current value)

 16 bits: Length of text in octets

 32 bits: Packet sequence number

 32 bits: Acknowledgment number (i.e. sequence number of next octet
 expected).

Cerf, Dalal & Sunshine [Page 17]

RFC 675 Specification of Internet TCP December 1974

 16 bits: Window size (in octets)

 16 bits: Control Information

 Listed from high to low order:

 SYN: Request to synchronize sending sequence numbers

 ACK: There is a valid acknowledgment in the 32 bit ACK field

 FIN: Sender will stop SENDing and RECEIVEing on this connection

 DSN: The sender has stopped using sequence numbers and wants to
 initiate a new sequence number for sending.

 EOS: This packet is the end of a segment and therefore has a
 checksum in the 16 bit checksum field. If this bit is not set, the
 16 bit checksum field is to be ignored. The bit is usually set,
 but if fragmentation at a GATEWAY occurs, the packets preceding
 the last one will not have checksums, and the last packet will
 have the checksum for the entire original fragment (segment) as it
 was calculated by the sending TCP.

 EOL: This packet contains the last fragment of a letter. The EOS
 bit will always be set in this case.

 INT: The sender wants to INTERRUPT on this connection.

 XXX: six (6) unused control bits

 OD: three (3) bits of control dispatch:

 000: Null (the control octet contents should be ignored}

 001: Event Code is present in the control octet. These were
 defined in section 2.4.3.

 010: Special Functions

 011: Reject (codes as yet undefined)

 1XX: Unused

 8 bits: Control Data Octet

 If CD is 000 then this octet is to be ignored.

Cerf, Dalal & Sunshine [Page 18]

RFC 675 Specification of Internet TCP December 1974

 If CD is 001, this octet contains event codes defined in section
 2.4.3

 If CD is 010, this octet contains a special function code as
 defined below:

 0: RESET all connections between Source and Destination TCPs

 l: RESET the specific connection referenced in this packet

 2: ECHO return packet to sender with the special function code
 ECHOR (Echo Reply).

 3: QUERY Query status of connection referenced in this packet

 4: STATUS Reply to QUERY with requested status.

 5: ECHOR Echo Reply

 6: TRASH Discard packet without acknowledgment

 >6: Unused

 Note: Special function packets not pertaining to a particular
 connection [RESET all, ECHO, ECHOR, and TRASH] are normally
 sent using socket zero as described in section 3.2.

 If CD is 01l, this octet contains an as yet undefined REJECT code.

 If CD is 1XX, this octet is undefined.

 4 bits: Length of destination network address in 4 bit units (current
 value is 1)

 4 bits: Destination network address

 1010-1111 are addresses of ARPANET, UCL, CYCLADES, NPL, CADC, and
 EPSS respectively.

 16 bits: Destination TCP address

 8 bits: Padding

 4 bits: length of source network address in 4 bit units (current
 value is 1)

 4 bits: source network address (as for destination address)

Cerf, Dalal & Sunshine [Page 19]

RFC 675 Specification of Internet TCP December 1974

 16 bits: Source TCP address

 24 bits: Destination port address

 24 bits: Source port address

 16 bits: Checksum (if EOS bit is set)

4.2.2 TRANSMISSION CONTROL BLOCK

 It is highly likely that any implementation will include shared data
 structures among parts of the TCP and some asynchronous means of
 signaling users when letters have been delivered.

 One typical data structure is the Transmission Control Block (TCB)
 which is created and maintained during the lifetime of a given
 connection. The TCB contains the following information (field sizes
 are notional only and may vary from one implementation to another):

 16 bits: Local connection name

 48 bits: Local socket

 48 bits: Foreign socket

 16 bits: Receive window size in octets

 32 bits: Receive left window edge (next sequence number expected)

 16 bits: Receive packet buffer size of TCB (may be less than
 window)

 16 bits: Send window size in octets

 32 bits: Send left window edge (earliest unacknowledged octet)

 32 bits: Next packet sequence number

 16 bits: Send packet buffer size of TCB (may be less than window)

 8 bits: Connection state

 E/C - 1 if TCP has been synchronized at least once (i.e. has
 been established, else O, meaning it is closed; this bit is
 reset after FINS are exchanged and the user has done a CLOSE).
 The bit is not reset if the connection is only desynchronized
 on send or receive or both directions.

Cerf, Dalal & Sunshine [Page 20]

RFC 675 Specification of Internet TCP December 1974

 SS - SYNCed on send side (if set) else desynchronized

 SR - SYNCed on receive side (if set, else desynchronized)

 16 bits: Special flags

 S1 - SYN sent if set

 S2 - SYN verified if set

 R - SYN received if set

 Y - FIN sent if set

 C - CLOSE from local user received if set

 U - Foreign socket unspecified if set

 SDS - Send side DSN sent if set

 SDV - Send side DSN verified if set

 RDR - Receive side DSN received if set

 Initially, all bits are off [no pun intended] (i.e. SS, SR, E/C, S1,
 S2, R, F, C, SDS, SDV, RDR =0). When R is set, so is SR. When S1 and
 S2 are both set, so is SS. SR is reset when RDR is set. SS is reset
 when both SDS and SDV are set. These bits are used to keep track of
 connection state and to aid in arriving packet processing (e.g. Can
 sequence number be validated? Only if SR is set.).

 16 bits: Retransmission timeout (in eighths of a second#]

 16 bits: Head of Send buffer queue [buffers SENT from user to TCP,
 but not packetized]

 16 bits: Tail of Send buffer queue

 16 bits: Pointer to last octet packetized in partially packetized
 buffer (refers to the buffer at the head of the queue)

 16 bits: Head of Send packet queue

 16 bits: Tail of Send packet queue

 16 bits: Head of Packetized buffer Queue

 16 bits: Tail of Packetized buffer queue

Cerf, Dalal & Sunshine [Page 21]

RFC 675 Specification of Internet TCP December 1974

 16 bits: Head of Retransmit packet queue

 16 bits: Tail of Retransmit packet queue

 16 bits: Head of Receive buffer queue [queue of buffers given by user
 to RECEIVE letters, but unfilled]

 16 bits: Tail of Receive buffer queue

 16 bits: Head of Receive packet queue

 16 bits: Tail of receive packet queue

 16 bits: Pointer to last contiguous receive packet

 16 bits: Pointer to last octet filled in partly filled buffer

 16 bits: Pointer to next octet to read from partly emptied packet

 [Note: The above two pointers refer to the head of the receive
 buffer and receive packet queues respectively]

 16 bits: Forward TCB pointer

 16 bits: Backward TCB pointer

4.3 CONNECTION MANAGEMENT

4.3.1 INITIAL SEQUENCE NUMBER SELECTION

 The protocol places no restriction on a particular connection being
 used over and over again. New instances of a connection will be
 referred to as incarnations of the connection. The problem that
 arises owing to this is, "how does the TCP identify duplicate packets
 from previous incarnations of the connection?". This problem becomes
 harmfully apparent if the connection is being opened and closed in
 quick succession, or if the connection breaks with loss of memory and
 is then reestablished.

 The essence of the solution [TOML74] is that the initial sequence
 number [ISN] must be chosen so that a particular sequence number can
 never refer to an "o1d" octet, Once the connection is established the
 sequencing mechanism provided by the TCP filters out duplicates.

 For an association to be established or initialized, the two TCP’s
 must synchronize on each other’s initial sequence numbers. Hence the
 solution requires a suitable mechanism for picking an initial
 sequence number [ISN], and a slightly involved handshake to exchange

Cerf, Dalal & Sunshine [Page 22]

RFC 675 Specification of Internet TCP December 1974

 the ISN’s. A "three way handshake" is necessary because sequence
 numbers are not tied to a global clock in the network, and TCP’s may
 have different mechanisms for picking the ISN’s. The receiver of the
 first SYN has no way of knowing whether the packet was an old delayed
 one or not, unless it remembers the last sequence number used on the
 connection which is not always possible, and so it must ask the
 sender to verify this SYN.

 The "three way handshake" and the advantages of a "clock-driven"
 scheme are discussed in [TOML74]. More on the subject, and algorithms
 for implementing the clock-driven scheme can be found in [DALA74].

4.3.2 ESTABLISHING A CONNECTION

 The "three way handshake" is essentially a unidirectional attempt to
 establish the connection, i.e. there is an initiator and a responder.
 The TCP’s should however be able to establish the connection even if
 a simultaneous attempt is made by both TCP’s to establish the
 connection. Simultaneous attempts are treated like "collisions" in
 "Aloha" systems and these conflicts are resolved into unidirectional
 attempts to establish the connection. This scheme was adopted because

 (i) Connections will normally have a passive and an active end,
 and so the mechanism should in most cases be as simple as
 possible.

 (ii) It is easy to implement as special cases do not have to be
 accounted for.

 The example below indicates what a three way handshake between TCP’s
 A and B looks like

 A B

 --> <SEQ x><SYN> -->

 <-- <SEQ y><SYN, ACK x+l> <--

 --> <SEQ x+1><ACK y+l><DATA BYTES> -->

 The receiver of a "SYN" is able to determine whether the "SYN" was
 real (and not an old duplicate) when a positive "ACK" is returned for
 the receiver’s "SYN,ACK" in response to the "SYN". The sender of a
 "SYN" gets verification on receipt of a "SYN,ACK" whose "ACK" part
 references the sequence number proposed in the original "SYN" [pun
 intended]. If the TCP is in the state where it is waiting for a
 response to its SYN, but gets a SYN instead, then it always thinks
 this is a collision and goes into the state prior to having sent the

Cerf, Dalal & Sunshine [Page 23]

RFC 675 Specification of Internet TCP December 1974

 SYN, i.e. it forgets that it had sent a SYN. The TCP will try to
 establish the connection again after some time, unless it has to
 respond to an arriving SYN. Even if the wait times in the two TCPs
 are the same, the varying delays in network transmission will usually
 be adequate to avoid a collision on the next cycle of attempts to
 send SYN.

 When establishing a connection, the state of the TCP is represented
 by 3 bits --

 S1 S2 R

 S1 = 1 -- SYN sent

 S2 = 1 -- My SYN verified

 R = 1 -- SYN received

 Some examples of attempts to establish the connection are now shown.
 The state of the connection is indicated when a change occurs. We
 specifically do not show the cases in which connection
 synchronization is carried out with packets containing both SYN and
 data. We do this to simplify the explanation, but we do not rule out
 an implementation which is capable of dealing with data arriving in
 the first packet (it has to be stored temporarily without
 acknowledgment or delivery to the user until the arriving SYN has
 been verified).

 The "three way handshake" now looks like --

 A B
 ------------ ------------
 S1 S2 R S1 S2 R

 0 0 0 0 0 0

 --> <SEQ x><SYN> -->

 1 0 0 0 0 1

 <-- <SEQ y><SYN, ACK x+l> <--

 1 1 1 1 0 1

 --> <SEQ x+1><ACK y+1>(DATA OCTETS) -->

 1 1 1 1 1 1

Cerf, Dalal & Sunshine [Page 24]

RFC 675 Specification of Internet TCP December 1974

 The scenario for a simultaneous attempt to establish the connection
 without the arrival of any delayed duplicates is --

 A B
 ------------ ------------
 S1 S2 R S1 S2 R

 0 0 0 0 0 0

 (M1) 1 0 0 --> <SEQ x><SYN> ...

 (M2) 0 0 0 <-- <SEQ y><SYN) <-- 1 0 0

 (M1) B returns no SYN sent --> 0 0 0

 (M1) 1 0 0 --> <SEQ z><SYN> * --> 0 0 1

 (M3) 1 1 1 <-- <SEQ y+1><SYN,ACK z+1> <-- 1 0 1

 (M4) 1 1 1 --> <SEQ z+1><ACK y+1><DATA> --> 1 1 1

 Note: "..." means that a message does not arrive, but is delayed
 in the network. State changes are upon arrival or upon departure
 of a given message, as the case may be. Packets containing the SYN
 or INT or DSN bits implicitly contain a "dummy" data octet which
 is never delivered to the user, but which causes the packet
 sequence numbers to be incremented by 1 even if no real data is
 sent. This permits the acknowledgment of these controls without
 acknowledging receipt of any data which might also have been
 carried in the packet. A packet containing a FIN bit has a dummy
 octet following the last octet of data (if any) in the packet.

 * Once in state 000 sender selects new ISN z when attempting to
 establish the connection again.

4.3.3 HALF-OPEN CONNECTIONS

 An established connection is said to be a "half-open" connection if
 one of the TCP’s has closed the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a crash that resulted in loss of
 memory. Such connections will automatically become reset if an
 attempt is made to send data in either direction. However, half-open
 connections are expected to be unusual, and the recovery procedure is
 somewhat involved.

Cerf, Dalal & Sunshine [Page 25]

RFC 675 Specification of Internet TCP December 1974

 If one end of the connection no longer exists, then any attempt by
 the other user to send any data on it will result in the sender
 receiving the event code "Connection does not exist at foreign TCP".
 Such an error message should indicate to the user process that
 something is wrong and it is expected to CLOSE the connection.

 Assume that two user processes A and B are communicating with one
 another when a crash occurs causing loss of memory to B’s TCP.
 Depending on the operating system supporting B’s TCP, it is likely
 that some error recovery mechanism exists. When the TCP is up again B
 is likely to start again from the beginning or from a recovery point.
 As a result B will probably try to OPEN the connection again or try
 to SEND on the connection it believes open. In the latter case 1t
 receives the error message "connection not open" from the local TCP.
 In an attempt to establish the connection B’s TCP will send a packet
 containing SYN. A’s TCP thinks that the connection is already
 established and so will respond with the error "unacceptable SYN (or
 SYN/ACK) arrived at foreign TCP". B’s TCP knows that this refers to
 the SYN it just sent out, and so should reset the connection and
 inform the user process of this fact.

 It may happen that B is passive and only wants to receive data. In
 this case A’s data will not reach B because the TCP at B thinks the
 connection is not established. As a result A’S TCP will timeout and
 send a QRY to B’s TCP. B’s TCP will send STATUS saying the connection
 is not synched. A’s TCP will treat this as if an implicit CLOSE had
 occurred and tell the user process, A, that the connection is
 closing. A is expected to respond with a CLOSE command to his TCP.
 However, A’s TCP does not send a FIN to B’s TCP, since it would not
 be accepted anyway on the unsynced connection. Eventually A will try
 to reopen the connection or B will give up and CLOSE. If B CLOSES,
 B’s TCP will simply delete the connection since it was not
 established as far as B’s TCP is concerned. No message will be sent
 to A’S TCP as a result.

4.3.4 RESYNCHRONIZING A CONNECTION

 Details of resynchronization have not yet been specified since the
 need for this should be infrequent in the initial testing stages.

4.3.5 CLOSING A CONNECTION

 There are essentially three cases:

 a) The user initiates by telling the TCP to CLOSE the connection

 b) The remote TCP initiates by sending a FIN control signal

Cerf, Dalal & Sunshine [Page 26]

RFC 675 Specification of Internet TCP December 1974

 c) Both users CLOSE simultaneously

 Two bits are used to maintain control over the closing of a
 connection: these are called the "FIN sent" bit [F] and the "USER
 Closed" bit, [C] respectively. The control procedure uses these two
 bits to assure that the connection is properly closed.

 Case 1: Local user initiates the close

 In this case, both the F and C bits are initially zero, but the C
 bit is set immediately upon receipt of the user call "CLOSE." When
 the FIN is sent out by the TCP, the F bit is set. All pending
 RECEIVES are terminated and the user is told that they have been
 prematurely terminated ("connection closing"} without data.
 Similarly, any pending SENDS are terminated with the same
 response, "connection closing."

 Several responses may arrive as the result of sending a FIN. The
 one which is generally expected is a matching FIN. When this is
 received, the TCB CAN BE ELIMINATED. If a "connection does not
 exist at foreign TCP" message comes in response to the FIN, then
 the TCB can likewise be eliminated. If no response is forthcoming,
 or if "Foreign TCP inaccessible" arrives then the resolution is
 moot. One might simply timeout and discard the TCB. Since the
 local user wants to CLOSE anyway, this is probably satisfactory,
 although it will leave a potential "half-open" connection at the
 other side. We deal with half open connections in section 4.3.3.

 When the acknowledging FIN arrives after the connection state bits
 are set (F=1, C=1), then the TCB can be deleted.

 Case 2: TCP receives a FIN from the network

 First of all, a FIN must have a sequence number which lies in the
 valid receive window. If not, it is discarded and the left window
 edge is sent as acknowledgment. If the FIN can be processed, it is
 handled (possibly out of order, since it is taken as an imperative
 to shut down the connection). All pending RECEIVES and SENDS are
 responded to by showing that they were terminated by the other
 side’s close request (i.e. "connection closing"). The user is also
 told by an unsolicited event or signal that the connection has
 been closed (in some systems, the user might have to request
 STATUS to get this information). Finally, the TCP sends FIN in
 response.

 Thus, because a FIN arrived, a FIN is sent back, so the F bit is
 set. However, the TCB stays around until the local user does a
 CLOSE in acknowledgment of the unsolicited signal that the

Cerf, Dalal & Sunshine [Page 27]

RFC 675 Specification of Internet TCP December 1974

 connection has been closed by the other side. Thus, the C bit
 remains unset until this happens. If the C and F bits go from (F=1
 C=O) to (F=l, C=1), then the connection is closed and the TCB can
 be removed.

 Case 3: both users close simultaneously

 If this happens, both connections will be in the (F=1, C=1) state.
 When the FINs arrive, the connections w11i be shut down. If one
 FIN fails to arrive, we have two choices. One is to insist on
 acknowledgments for FINs, in which case the missing one will be
 retransmitted. Another is merely to permit the half-open
 connection to remain (we prefer this solution}. It can timeout
 independently and go away after a while. If an attempt is made to
 reestablish the connection, the initiator will discover the
 existence of the open connection since an "inappropriate SYN
 received" message will be sent by the TCP which holds the "half-
 open" connection. The receiver of this message can tell the other
 TCP to reset the connection. We cannot permit the holder of the
 half-open connection to reset automatically on receipt of the SYN
 since its receipt is not necessarily prima facie evidence of a
 half open connection. (The SYN could be a delayed duplicate.)

4.3.6. CONNECTION STATE and its relation to USER and INCOMING CONTROL
 REQUESTS

 In order to formalize the action taken by the TCP when it receives
 commands from the User, or Control information from the network, we
 define a connection to be in one of 7 states at any instant. These
 are known as the TCB Major States. Each Major State is simply a
 convenient name for a particular setting or group of settings of the
 state bits, as follows:

 S1 S2 R U F C # name

 - - - - - - 0 no TCB

 0 0 0 0/1 0 0 1 unsync

 1 0 0 0 0 0 2 SYN sent

 1 0 1 0/1 0 0 3 SYN received

 1 1 1 0 0 0 4 established

 1 0/1 1 0/1 1 1 5 FIN wait

 1 1 1 0 1 0 6 FIN received

Cerf, Dalal & Sunshine [Page 28]

RFC 675 Specification of Internet TCP December 1974

 The connection moves from state to state as shown below. The
 transition from one state to another will be represented as

 [X, Y]<cause><action>

 which means that there is a transition from state X to state Y owing
 to <cause>. The action taken by the TCP is specified as <action>. We
 use this notation to give the important state transitions, often
 simplifying the cause and action fields to take into account a number
 of situations. Figure 1 illustrates these transitions in traditional
 state diagram form. Section 4.4.6 and section 4.4.7 fully specify the
 effect of all User commands and Control information arriving from the
 network.

 [0,l] <OPEN> <create TCB>

 [1,2] <SEND,INTERRUPT, or collision timeout> <send SYN>

 [1,3] <SYN arrives> <send SYN,ACK>

 [1,0] <CLOSE> <remove TCB>

 [2,1] <SYN arrives (collision)> <set timeout, forget SYNs>

 [2,0] <CLOSE> <remove TCB>

 [2,4] <appropriate SYN,ACK arrives> <send ACK>

 [3,4] <appropriate ACK arrives> <none>

 [3,1] <error arrives or timeout> <(forget SYN)>

 [3,5] <CLOSE> <send FIN>

 [4,5] <CLOSE> <send FIN>

 [4,6] <appropriate FIN arrives> <send FIN, inform user>

 [5,0] <FIN or error arrives, or timeout> <remove TCB>

 [6,0] <CLOSE> <remove TCB>

4.4 STRUCTURE 0F THE TCP

4.4.l INTRODUCTION [See figure 2.1]

 There are many possible implementations of the TCP. We offer one
 conceptual framework in which to view the various algorithms that

Cerf, Dalal & Sunshine [Page 29]

RFC 675 Specification of Internet TCP December 1974

 make up the TCP design. In our concept, the TCP is written in two
 parts, an interrupt or signal driven part (consisting of four
 processes), and a reentrant library of subroutines or system calls
 which interface the user process to the TCP. The subroutines
 communicate with the interrupt part through shared data structures
 (TCB’s, shared buffer queues etc.). The four processes are the Output
 Packet Handler which sends packets to the packet switch; the
 Packetizer which formats letters into internet packets; the Input
 Packet Handler which processes incoming packets; and the Reassembler
 which builds letters for users.

 The ultimate bottleneck is the pipe through which arriving and
 departing packets must travel. This is the Host/Packet Switch
 interface. The interrupt driven TCP shares among all TCB’s its
 limited packet buffer resources for sending and receiving packets.
 From the standpoint of controlling buffer congestion, it appears
 better to TREAT INCOMING PACKETS WITH HIGHER PRIORITY THAN OUTGOING
 PACKETS. That is, packet buffers which can be released by copying
 their contents into user buffers clearly help to reduce congestion.
 Neither the packetizer nor the input packet handler should be allowed
 to take up all available packet buffer space; an analogous problem
 arises in the IMP in the allocation of store and forward, and
 reassembly buffer space. One policy is to permit neither contender
 more than, say, two-thirds of the space. The buffer allocation
 routines can enforce these limits and reject buffer requests as
 needed. Conceptually, the scheduler can monitor the amounts of
 storage dedicated to the input and output routines, and can force
 either to sleep if its buffer allocation exceeds the limit.

 As an example, we can consider what happens when a user executes a
 SEND call to the TCP service routines. The buffer containing the
 letter is placed on a SEND buffer queue associated with the user’s
 TCB. A ’packetizer’ process is awakened to look through all the TCB’s
 for ’packetizing’ work. The packetizer will keep a roving pointer
 through the TCB list which enables it to pick up new buffers from the
 TCB queue and packetize them into output buffers. The packetizer
 takes no more than one letter at a time from any single TCB. The
 packetizer attempts to maintain a non-empty queue of output packets
 so that the output handler will not fall idle waiting for the
 packetizing operation. However, since arriving packets compete with
 departing packets, care must be taken to prevent either class from
 occupying all of the shared packet buffer space. Similarly since the
 TCB’s all compete for space in service to their connections, neither
 input nor output packet space should be dominated by any one TCB.

 When a packet is created, it is placed on a FIFO SEND packet queue
 associated with its origin TCB. The packetizer wakes the output
 handler and then continues to packetize a few more buffers, perhaps,

Cerf, Dalal & Sunshine [Page 30]

RFC 675 Specification of Internet TCP December 1974

 before going to sleep. The output handler is awakened either by a
 ’hungry’ packet switch or by the packetizer; in either case, it uses
 a roving TCB pointer to select the next TCB for service. The send
 packet queue can be used as a ’work queue’ for the output handler.
 After a packet has been sent, but usually before an ACK is returned,
 the output handler moves the packet to a retransmission queue
 associated with each TCB.

 Retransmission timeouts can refer to specific packets and the
 retransmission list can be searched for the specific packet. If an
 ACK is received, the retransmission entry can be removed from the
 retransmit queue. The send packet queue contains only packets waiting
 to be sent for the first time. INTERRUPT requests can remove entries
 in both the send packet queue and the retransmit packet queue.

 Since packets are never in more than one queue at a time, it appears
 possible for INT, FIN or RESET commands to remove packets from the
 receive, send, or retransmit packet queues with the assurance that an
 already issued signal to enter the reassembler, the packetizer or the
 output handler will not be confusing.

 Handling the INTERRUPT and CLOSE functions can however require some
 care to avoid confusing the scheduler, and the various processes. The
 scheduler must maintain status information for the processes. This
 information includes the current TCB being serviced. When an
 INTERRUPT is issued by a local process, the output queue of letters
 associated with the local port reference is to be deleted. The
 packetizer, for example, may however be working at that time on the
 same queue. As usual, simultaneous reading and writing of the TCB
 queue pointers must be inhibited through some sort of semaphore or
 lockout mechanism. When the packetizer wants to serve the next send
 buffer queue, it must lock out all other access to the queue, remove
 the head of the queue (assuming of course that there are enough
 buffers for packetization), advance the head of the queue, and then
 unlock access to the queue.

 If the packetizer keeps only a TCB pointer in a global place called
 CPTCB (current packetizer TCB address), and always uses the address
 in CPTCB to find the TCB in which to examine the send buffer queue,
 then removal of the output buffer queue does not require changes to
 any working storage belonging to the packetizer. Even more important,
 the arrival and processing of a RESET or CLOSE, which clears the
 system of a given TCB, can update the CPTCB pointer, as long as the
 removal does not occur while the packetizer is still working on the
 TCB.

Cerf, Dalal & Sunshine [Page 31]

RFC 675 Specification of Internet TCP December 1974

 Incoming packets are examined by the input packet handler. Here they
 are checked for valid connection sockets, and acknowledgments are
 processed, causing packets to be removed, possibly, from the SEND or
 RETRANSMIT packet queues as needed. As an example, consider the
 receipt of a valid FIN request on a particular TCB. If a FIN had not
 been sent before (i.e. F bit not set), then a FIN packet is
 constructed and sent after having cleared out the SEND buffer and
 SEND packet queues as well as the RETRANSMIT queue. Otherwise, if the
 F and C bits are both set, all queues are emptied and the TCB is
 returned to free storage.

 Packets which should be reassembled into letters and sent to users
 are queued by the input packet handler, on the receive packet queue,
 for processing by the reassembly process. The reassembler looks at
 its FIFO work queue and tries to move packets into user buffers which
 are queued up in an input buffer queue on each TCB. If a packet has
 arrived out of order, it can be queued for processing in the correct
 sequence. Each time a packet is moved into a user buffer, the left
 window edge of the receiving TCB is moved to the right so that
 outgoing packets can carry the correct ACK information. If the SEND
 buffer queue is empty, then the reassembler creates a packet to carry
 the ACK.

 As packets are moved 1nto buffers and they are filled, the buffers
 are dequeued from the RECEIVE buffer queue and passed to the user.
 The reassembler can also be awakened by the RECEIVE user call should
 it have a non-empty receive packet queue with an empty RECEIVE buffer
 queue. The awakened reassembler goes to work on each TCB, keeping a
 roving pointer, and sleeping if a cycle is made of all TCB’s without
 finding any work.

4.4.2 INPUT PACKET HANDLER [See figure 2.2]

 The Input Packet Handler is awakened when a packet arrives from the
 network. It first verifies that the packet is for an existing TCB
 (i.e. the local and foreign socket numbers are matched with those of
 existing TCB’s). If this fails, an error message is constructed and
 queued on the send packet queue of a dummy TCB. A signal is also sent
 to the output packet handler. Generally, things to be transmitted
 from the dummy TCB have a default retransmission timeout of zero, and
 will not be retransmitted. (We use the idea of a dummy TCB so that
 all packets containing errors, or RESET can be sent by the output
 packet handler, instead of having the originator of them interface to
 the net. These packets, it will be noticed, do not belong to any
 TCB).

Cerf, Dalal & Sunshine [Page 32]

RFC 675 Specification of Internet TCP December 1974

 The input packet handler looks out for control or error information
 and acts appropriately. Section 4.4.7 discusses this in greater
 detail, but as an example, if the incoming packet is a RESET request
 of any kind (i.e. all connections from designated TCP or given
 connection), and is believable, then the input packet handler clears
 out the related TCB(s), empties the send and receive packet queues,
 and prepares error returns for outstanding user SEND(s) and
 RECEIVE(s) on each reset TCB. The TCB’s are marked unused and
 returned to storage. If the RESET refers to an unknown connection, it
 is ignored.

 Any ACK’s contained in incoming packets are used to update the send
 left window edge, and to remove the ACK’ed packets from the TCB
 retransmit packet queue. If the packet being removed was the end of a
 user buffer, then the buffer must be dequeued from the packetized
 buffer queue, and the User informed. The packetizer is also signaled.
 Only one signal, or one for each packet, will have to be sent,
 depending on the scheduling scheme for the processes. See section
 4.4.7 for a detailed discussion.

 The packet sequence number, the current receive window size, and the
 receive left window edge determine whether the packet lies within the
 window or outside of it.

 Let W = window size

 S = size of sequence number space

 L = left window edge

 R = L+W-1 = right window edge

 x = sequence number to be tested

 For any sequence number, x, if

 (R-x) mod S <= W

 then x is within the window.

 A packet should be rejected only if all of it lies outside the
 window. This is easily tested by letting x be, first the packet
 sequence number, and then the sum of packet sequence number and
 packet text length, less one. If the packet lies outside the window,
 and there are no packets waiting to be sent, then the input packet
 handler should construct a dummy ACK and queue it for output on the

Cerf, Dalal & Sunshine [Page 33]

RFC 675 Specification of Internet TCP December 1974

 send packet queue, and signal the output packet handler. Successfully
 received packets are placed on the receive packet queue in the
 appropriate sequence order, and the reassembler signaled.

 The packet window check can not be made if the associated TCB is not
 in the ’established’ state, so care must be taken to check for
 control and TCB state before doing the window check.

4.4.3 REASSEMBLER [See figure 2.3]

 The Reassembler process is activated by both the Input Packet Handler
 and the RECEIVE user call. While the reassembler is asleep, if
 multiple signals arrive, all but one can be discarded. This is
 important as the reassembler does not know the source of the signal.
 This is so in order that "dangling" signals from work in TCB’s that
 have subsequently been removed don’t confuse it. Each signal simply
 means that there may be work to be done. If the reassembler is awake
 when a signal arrives, it may be necessary to put 1t in a
 "hyperawake" state so that even if the reassembler tries to quit, the
 scheduler will run it one more time.

 When the reassembler is awakened it looks at the receive packet queue
 for each TCB. If there are some packets there then it sees whether
 the RECEIVE buffer queue is empty. If it is then the reassembler
 gives up on this TCB and goes on to the next one, otherwise if the
 first packet matches the left window edge, then the packet can be
 moved into the User’s buffer. The reassembler keeps transferring
 packets into the User’s buffer until the letter is completely
 transferred, or something causes it to stop. Note that a buffer may
 be partly filled and then a sequence ’hole’ is encountered in the
 receive packet queue. The reassembler must mark progress so that the
 buffer can be filled up starting at the right place when the ’hole’
 is filled. Similarly a packet might be only partially emptied when a
 buffer is filled, so progress in the packet must be marked.

 If a letter was successfully transferred to a User buffer then the
 reassembler signals the User that a letter has arrived and dequeues
 the buffer associated with it from the TCB RECEIVE buffer queue. If
 the buffer is filled then the User is signaled and the buffer
 dequeued as before. The event code indicates whether the buffer
 contains all or part of a letter, as described in section 2.4.

 In every case when a packet is delivered to a buffer, the receive
 left window edge is updated, and the packetizer is signaled. This
 updating must take account of the extra octet included in the
 sequencing for certain control functions [SYN, INT, FIN, DSN]. If the
 send packet queue is empty then the reassembler must create a packet
 to carry the ACK, and place it on the send packet queue.

Cerf, Dalal & Sunshine [Page 34]

RFC 675 Specification of Internet TCP December 1974

 Note that the reassembler never works on a TCB for more than one User
 buffer’s worth of time, in order to give all TCB’s equal service.

 Scheduling of the reassembler is a big issue, but perhaps running to
 completion will be satisfactory, or else it can be time sliced. In
 the latter case it will continue from where it left off, but a new
 signal may have arrived producing some possible work. This work will
 be processed as part of the old incomplete signal, and so some
 wasteful processing may occur when the reassembler wakes up again.
 This is the general problem of trying to implement a protocol that is
 fundamentally asynchronous, but at least it is immune to harmful
 race-conditions. E.g. if we were to have the reassembler ’remove’ the
 signal that caused it to wake up, just before it went to sleep (in
 order that new arriving ones were discarded) then a new signal may
 arrive at a critical time causing 1t not to be recognized; thus
 leaving some work pending, and this may result in a deadlock [see
 previous comments on "hyperawake" state].

4.4.4 PACKETIZER [See figure 2.4]

 The Packetizer process gets work from both the Input Packet Handler
 and the SEND user call. The signal from the SEND user call indicates
 that there is something new to send, while the one from the input
 packet handler indicates that more TCP buffers may be available from
 delivered packets. This latter signal is to prevent deadlocks in
 certain kind of scheduling schemes. We assume the same treatment of
 signals as discussed in section 4.4.3.

 When the packetizer is awakened it looks at the SEND buffer queue for
 each TCB. If there is a new or partial letter awaiting packetization,
 it tries to packetize the letter, TCB buffer and window permitting.
 It packetizes no more than one letter for a TCB before servicing
 another TCB. For every packet produced it signals the output packet
 handler (to prevent deadlock in a time sliced scheduling scheme). If
 a ’run till completion’ scheme is used then one signal only need be
 produced, the first time a packet is produced since awakening. If
 packetization is not possible the packetizer goes on to the next TCB.

 If a partial buffer was transferred then the packetizer must mark
 progress in the SEND buffer queue. Completely packetized buffers are
 dequeued from the SEND buffer queue, and placed on a Packetized
 buffer queue, so that the buffer can be returned to the user when an
 ACK for the last bit is received.

 When the packetizer packetizes a letter it must see whether it is the
 first piece of data being sent on the connection, in which case it
 must include the SYN bit. Some implementations may not permit data to
 be sent with SYN and others may discard any data received with SYN.

Cerf, Dalal & Sunshine [Page 35]

RFC 675 Specification of Internet TCP December 1974

 The Packetizer goes to sleep if it finds no more work at any TCB.

4.4.5 OUTPUT PACKET HANDLER [see figure 2.5]

 When activated by the packetizer, or the input packet handler, or
 some of the user call routines, the Output Packet Handler attempts to
 transmit packets on the net (may involve going through some other
 network interface program). It looks at the TCB’s in turn,
 transmitting some packets from the send packet queue. These are
 dequeued and put on the retransmit queue along with the time when
 they should be retransmitted.

 All data packets that are transmitted have the latest receive left
 window edge in the ACK field. Error and control messages may have no
 ACK [ACK bit off], or set the ACK field to refer to a received
 packet’s sequence number.

 The RETRANSMIT PROCESS:

 This process can either be viewed as a separate process, or as part
 of the output packet handler. Its implementation can vary; it could
 either perform its function, by being woken up at regular intervals,
 or when the retransmission time occurs for every packet put on the
 retransmit queue. In the first case the retransmit queue for each TCB
 is examined to see if there is anything to retransmit. If there is, a
 packet is placed on the send packet queue of the corresponding TCB.
 The output packet handler is also signaled.

 Another "demon" process monitors all user Send buffers and
 retransmittable control messages sent on each connection, but not yet
 acknowledged. If the global retransmission timeout is exceeded for
 any of these, the User is notified and he may choose to continue or
 close the connection. A QUERY packet may also be sent to ascertain
 the state of the connection [this facilitates recovery from half open
 connections as described in section 4.3.3].

4.4.6 USER CALL PROCESSING

 OPEN [See figure 3.1]

 1. If the process calling does not own the specified local socket,
 return with <type 1><ELP 1 "connection illegal for this process">.

 2. If no foreign socket is specified, construct a new TCB and add
 it to the list of existing TCB’s. Select a new local connection
 name and return it along with <type 1><OLP 0 "success">. If there
 is no room for the TCB, respond with <type 1><ELT 4 "No room for
 TCB">.

Cerf, Dalal & Sunshine [Page 36]

RFC 675 Specification of Internet TCP December 1974

 3. If a foreign socket is specified, verify that there is no
 existing TCB with the same <local socket, foreign socket> pair
 (i.e. same connection), otherwise return <type l><ELP 6
 "connection already open">. If there is no TCB space, return as in
 (2), otherwise, create the TCB and link it with the others,
 returning a local connection name with the success event code.

 Note: if a TCB is created, be sure to copy the timeout parameter
 into it, and set the "U" bit to 0 if a foreign socket is
 specified, else set U to 1 (to show unspecified foreign socket).

 SEND [see figure 3.2]

 1. Search for TCB with local connection name specified. If none
 found, return <type 10><ELP 3 "connection not open">

 2. If TCB is found, check foreign socket specification. If not set
 (i.e. U = 1 in TCB), return <type 10><ELT 5 "foreign socket
 unspecified">. If the connection is in the "closing" state (i.e.
 state 5 or 6), return <type 3><ELP 12 "connection closing"> and do
 not process the buffer.

 3. Put the buffer on the Send buffer queue and signal the
 packetizer that there is work to do.

 INTERRUPT [see figure 3.3]

 1. Validate existence of the referenced connection, sending out
 error messages of the form <type 3><ELP 3 "connection not open">
 or <type 3><ELT 5 "foreign socket unspecified"> as appropriate. If
 the local connection refers to a connection not accessible to the
 process interrupting, send <type 3><ELP 1 "connection illegal for
 this process">.

 2. If the connection is in the "closing" state (i.e. states 5 or
 6), return <type 3><ELT 12 "connection closing"> and do not send
 an INT packet to the destination.

 3. Any pending SEND buffers should be returned with <type 10><ELP
 10 "buffer flushed due to interrupt">. An INT packet should be
 created and placed on the output packet queue, and the output
 packet handler should be signaled.

 RECEIVE [See figure 3.4]

 1. If the caller does not have access to the referenced local
 connection name, return <type 20><ELP 1 "connection illegal for
 this process">. And if the connection is not open, return <type

Cerf, Dalal & Sunshine [Page 37]

RFC 675 Specification of Internet TCP December 1974

 20><ELP 3 "connection not open"). If the connection is in the
 closing state (e.g. a FIN has been received or a user CLOSE is
 being processed), return <type 20><ELP 12 "connection closing">.

 2. Otherwise, put the buffer on the receive buffer queue and
 signal the reassembler that buffer space is available.

 CLOSE [See figure 3.5]

 1. If the connection is not accessible to the caller, return <type
 2><ELP 1 "connection illegal for this process">. If there is no
 such connection respond with <type 2><ELP 3 "connection not
 open">.

 2. If the R bit is 0 (i.e. connection is in state 1 or 2), simply
 remove the TCB.

 3. If the R bit is set and the F bit is set, then remove the TCB.

 4. Otherwise, if the R bit is set, but F is 0 (i.e. states 3 or
 4), return all buffers to the User with <type x><ELP 12
 "connection closing">, clear all output and input packet queues
 for this connection, create a FIN packet, and signal the output
 packet handler. Set the C and F bits to show this action.

 STATUS [See figure 3.6]

 1. If the connection is illegal for the caller to access, send
 <type 30><ELP 1 "connection illegal for this process">.

 2. If the connection does not exist, return <type 30><ELP 3
 "connection not open">.

 3. Otherwise set status information from the TCB and return it via
 <type 30><O-T 0 "status data...">.

4.4.7 NETWORK CONTROL PROCESSING

 The Input Packet Handler examines the header to see if there is any
 control information or error codes present. We do not discuss the
 action taken for various special function codes, as it is often
 implementation dependent, but we describe those that affect the state
 of the connection. After initial screening by the IPC [see section
 4.4.2 and figure 2.2], control and error packets are processed as
 shown in figures 4.l-4.7. [ACK and data processing is done within the
 IPC.]

Cerf, Dalal & Sunshine [Page 38]

RFC 675 Specification of Internet TCP December 1974

4.4.8 TCP ERROR HANDLING

 Error messages have CD=001 and do not carry user data. Depending on
 the error, zero or more octets of error information will be carried
 in the packet text field. We explicitly assume that this data is
 restricted in length so as to fall below the GATEWAY fragmentation
 threshold (probably 512 bits of data and header). Errors generally
 refer to specific connections, so the source and destination socket
 identifiers are relevant here. The ACK field of an error packet
 contains the sequence number of the packet that caused the error, and
 the ACK bit is off. [RESET and STATUS special functions may use the
 ACK field in the same way.] This allows the receiver of an error
 message to determine which packet caused the error. Error packets are
 not ACK’ed or retransmitted.

4.5. BUFFER AND WINDOW ALLOCATION

4.5.1 INTRODUCTION

 The TCP manages buffer and window allocation on connections for two
 main purposes: equitably sharing limited TCP buffer space among all
 connections (multiplexing function), and limiting attempts to send
 packets, so that the receiver is not swamped (flow control function).
 For further details on the operation and advantages of the window
 mechanism see CEKA74.

 Good allocation schemes are one of the hardest problems of TCP
 design, and much experimentation must be done to develop efficient
 and effective algorithms. Hence the following suggestions are merely
 initial thoughts. Different implementations are encouraged with the
 hope that results can be compared and better schemes developed.

 Several of the measurements discussed in a later section are aimed at
 providing information on the performance of allocation mechanisms.
 This should aid in determining significant parameters and evaluating
 alternate schemes.

4.5.2 The SEND Side

 The window is determined by the receiver. Currently the sender has no
 control over the SEND window size, and never transmits beyond the
 right window edge. There exists the possibility of specifying two
 more special function codes so that the sender can request the
 receiver to INCREASE or DECREASE the window size, without specifying
 by how much. The receiver, of course, needn’t satisfy this request.

Cerf, Dalal & Sunshine [Page 39]

RFC 675 Specification of Internet TCP December 1974

 Buffers must be allocated for outgoing packets from a TCP buffer
 pool. The TCP may not be willing to allocate a full window’s worth of
 buffers, so buffer space for a connection may be less than what the
 window would permit. No deadlocks are possible even if there is
 insufficient buffer or window space for one letter, since the
 receiver will ACK parts of letters as they are put into the user’s
 buffer, thus advancing the window and freeing buffers for the
 remainder of the letter.

 It is not mandatory that the TCP buffer outgoing packets until
 acknowledgments for them are received, since it is possible to
 reconstruct them from the actual letters sent by the user.

 However, for purposes of retransmission and processing efficiency it
 is very convenient to do.

4.5.3 The RECEIVE Side

 At the receiving side there are two requirements for buffering:

 (l) Rate Discrepancy:

 If the sender produces data much faster or much slower than the
 receiver consumes it, little buffering is needed to maintain the
 receiver at near maximum rate of operation. Simple queuing
 analysis indicates that when the production and consumption
 (arrival and service) rates are similar in magnitude, more
 buffering is needed to reduce the effect of stochastic or bursty
 arrivals and to keep the receiver busy.

 (2) Disorderly Arrivals:

 When packets arrive out of order, they must be buffered until the
 missing packets arrive so that packets (or letters) are delivered
 in sequence. We do not advocate the philosophy that they be
 discarded, unless they have to be, otherwise a poor effective
 bandwidth may be observed. Path length, packet size, traffic
 level, routing, timeouts, window size, and other factors affect
 the amount by which packets come out of order. This is expected to
 be a major area of investigation.

 The considerations for choosing an appropriate window are as follows:

 Suppose that the receiver knows the sender’s retransmission timeout,
 also, that the receiver’s acceptance rate is ’U’ bits/sec, and the
 window size is ’W’ bits. Ignoring line errors and other traffic, the
 sender transmits at a rate between W/K and the maximum line rate (the
 sender can send a window’s worth of data each timeout period).

Cerf, Dalal & Sunshine [Page 40]

RFC 675 Specification of Internet TCP December 1974

 If W/K is greater than U, the difference must be retransmissions
 which is undesirable, so the window should be reduced to W’, such
 that W’/K is approximately equal to U. This may mean that the entire
 bandwidth of the transmission channel is not being used, but it is
 the fastest rate at which the receiver is accepting data, and the
 line capacity is free for other users. This is exactly the same case
 where the rates of the sender and receiver were almost equal, and so
 more buffering is needed. Thus we see that line utilization and
 retransmissions can be traded off against buffering.

 If the receiver does not accept data fast enough (by not performing
 sufficient RECEIVES) the sender may continue retransmitting since
 unaccepted data will not be ACK’ed. In this case the receiver should
 reduce the window size to "throttle" the sender and inhibit useless
 retransmissions.

 Receiver window control:

 If the user at the receiving side is not accepting data, the
 window should be reduced to zero. In particular, if all TCP
 incoming packet buffers for a connection are filled with received
 packets, the window must go to zero to prevent retransmissions
 until the user accepts some packets.

 Short term flow control:

 Let F = the number of user receive buffers filled

 B = the total user receive buffers

 W = the long-term or nominal window size

 W’ = the window size returned to the sender

 then a possible value for W’ is

 W’ = W*[1-F/B]**a

 The value of ’a’ should be greater than one, in order to shut the
 window faster as buffers run out. The values of W’ and F actually
 used could be averages of recent values, in order to get smooth
 control. Note that W’ is constantly being recomputed, while the
 value of W, which sets the upper limit of W’, only changes slowly
 in response to other factors.

 The value of W can be large (up to half the sequence number space)
 to allow for good throughput on high delay channels. The sender
 needn’t allocate W worth of buffer space anyway. The long-term

Cerf, Dalal & Sunshine [Page 41]

RFC 675 Specification of Internet TCP December 1974

 variation of W to match flow requirements may be a separate
 question

 This short-term mechanism for flow control allows some buffering in
 the two TCP’s at either end, (as much as they are willing), and the
 rest in the user process at the send side where the data is being
 created. Hence the cost of buffering to smooth out bursty traffic is
 borne partly by the TCP’s, and partly by the user at the send side.
 None of it is borne by the communication subnet.

5. NETWORK MEASUREMENT PLANS FOR TCP

5.1 USERLEVEL DIAGNOSTICS

 We have in mind a program which will exercise a given TCP, causing it
 to cycle through a number of states; opening, closing, and
 transmitting on a variety of connections. This program will collect
 statistics and will generally try to detect deviation from TCP
 functional specifications. Clearly there will have to be a copy of
 this program both at the local site being tested and some site which
 has a certified TCP. So we will have to produce a specification for
 this user level diagnostic program also.

 There needs to be a master and a slave side to all this so the master
 can tell the slave what’s going wrong with the test.

5.2 SINGLE CONNECTION MEASUREMENTS

 Round trip delay times

 Time from moment the packet is sent by the TCP to the time that
 the ACK is received by the TCP.

 Time from the moment the USER issues the SEND to the time that the
 USER gets the successful return code.

 Note: packet size should be used to distinguish from one set of
 round trip times and another.

 Network destination, and current configuration and traffic load
 may also be issues of importance that must be taken into
 account.

 What if the destination TCP decides to queue up ACKs and send a
 single ACK after a while? How does this affect round trip
 statistics?

Cerf, Dalal & Sunshine [Page 42]

RFC 675 Specification of Internet TCP December 1974

 What about out of order arrivals and the bunched ACK for all of
 them?

 The histogram of round trip times include retransmission times
 and these must be taken into account in the analysis and
 evaluation of the collected data.

 Packet size statistics

 Histogram of packet length in both directions on the full duplex
 connection.

 Histogram of letter size in both directions.

 Measure of disorderly arrival

 Distance from the first octet of arriving packet to the left
 window edge. A histogram of this measure gives an idea of the out
 of order nature of packet arrivals. It will be 0 for packets
 arriving in order.

 Retransmission Histogram

 Effective throughput

 This is the effective rate at which the left edge of the window
 advances. The time interval over which the measure is made is a
 parameter of the measurement experiment. The shorter the interval,
 the more bursty we would expect the measure to be.

 It is possible to measure effective data throughput in both
 directions from one TCP by observing the rate at which the left
 window edge is moving on ACK sent and received for the two
 windows.

 Since throughput is largely dependent upon buffer allocation and
 window size, we must record these values also. Varying window for
 a fixed file transmission might be a good way to discover the
 sensitivity of throughput to window size.

 Output measurement

 The throughput measurement is for data only, but includes
 retransmission. The output rate should include all octets
 transmitted and will give a measure of retransmission overhead.
 Output rate also includes packet format overhead octets as well as
 data.

Cerf, Dalal & Sunshine [Page 43]

RFC 675 Specification of Internet TCP December 1974

 Utilization

 The effective throughput divided by the output rate gives a
 measure of utilization of the communication connection.

 Window and buffer allocation measurements

 Histogram of letters outstanding, measured at the instant of SEND
 receipt by TCP from user or at instant of arrival of a letter for
 a receiving user.

 Buffers in use on the SEND side upon packet departure into the
 net; buffers in use on the RECEIVE side upon delivery of packet
 into a USER Buffer.

5.3 MULTICONNECTION MEASUREMENTS

 Statistics on User Commands sent to the local TCP

 Statistics of error or success codes returned [histogram of each type
 of error or return response]

 Statistics of control bit use

 Counter for each control bit over all packets emitted by the TCP
 and another for packets accepted

 Count data carrying packets

 Count ACK packets with no data

 Error packets distribution by error type code received from the net
 and sent out into the net

5.4 MEASUREMENT IMPLEMENTATION PHILOSOPHY

 We view the measurement process as something which occurs internal to
 the TCP but which is controllable from outside. A well known socket
 owned by the TCP can be used to accept control which will select one
 or more measurement classes to be collected. The data would be
 periodically sent to a designated foreign socket which would absorb
 the data for later processing, in the manner currently used in the
 ARPANET IMPs. Each measurement class has its own data packet format
 to make the job of parsing and analyzing the data easier.

Cerf, Dalal & Sunshine [Page 44]

RFC 675 Specification of Internet TCP December 1974

 We would restrict access to TCP measurement control to a few
 designated sites [e.g. NMC, SU-DSL, BBN]. This is easily done by
 setting up listening control connections on partially specified
 foreign sockets.

6. SCHEDULE OF IMPLEMENTATION

7. REFERENCES

 1. CEKA74

 V. Cerf and R. Kahn, "A Protocol For Packet Network
 Intercommunication," IEEE Transactions on Communication, vol. C-
 2O, No. 5. May 1974, pp. 637-648.

 2. CERF74

 V. Cerf, "An Assessment of ARPANET Protocols," in Proceedings of
 the Jerusalem Conference on Information Technology, July l974
 [RFC#635, INWG Note # ***].

 3.CESU74

 V. Cerf and C. Sunshine, "Protocols and Gateways for the
 Interconnection of Packet Switching Networks," Proc. of the
 Subconference on Computer Nets, Seventh Hawaii International
 Conference on Systems Science, January 1974.

 4. HEKA70

 F. Heart, R.E. Kahn, et al, "The Interface Message Processor for
 the ARPA Computer Network," AFIPS 1970 SJCC Proceedings, vol. 36,
 Atlantic City, AFIPS Press, New Jersey, pp. 551-567.

 5. POUZ74

 L. Pouzin, "CIGALE, the packet switching machine of the CYCLADES
 computer network," Proceedings of the IFIP74 Congress, Stockholm,
 Sweden.

 6. ROWE74

 L. Roberts and B. Wessler, "Computer Network Development to
 achieve resource sharing," AFIPS 1970, SJCC Proceedings, vol. 36,
 Atlantic City, AFIPS Press, New Jersey, pp. 543-549.

Cerf, Dalal & Sunshine [Page 45]

RFC 675 Specification of Internet TCP December 1974

 7. POUZ73

 L. Pouzin, "Presentation and major design aspects of the CYCLADES
 Computer Network," Data Networks: Analysis and Design, Third Data
 Communications Symposium, St. Petersburg, Florida, November 1973,
 pp. 80-87.

 8. SCWI71

 R. Scantlebury and P.T. Wilkinson, "The Design of a Switching
 System to allow remote Access to Computer Services by other
 computers and Terminal Devices," Second Symposium on Problems in
 the Optimization of Data Communication Systems Proceedings, Palo
 Alto, California, 0ctober 1971, pp. 160-167.

 9. POST72

 J. Postel, "Official Initial Connection Protocol," Current Network
 Protocols, Network Information Center, Stanford Research
 Institute, Menlo Park, California. January 1972 (NIC 7101).

 10. CACR70

 C.S. Carr, S.D. Crocker, and V.G. Cerf, "Host-Host Communication
 Protocol in the ARPA Network," AFIPS Conference Proceedings, vol.
 36, 1970 SJCC, AFIPS Press, Montvale, N.J.

 11. ZIEL74

 H. Zimmerman and M. Elie, "Transport Protocol. Standard Host-Host
 Protocol for heterogeneous computer networks," INWG#61, April
 1974.

 12. CRHE72

 S. D. Crocker, J. F. Heafner, R. M. Metcalfe and J. B. Postel,
 "Function-oriented protocols for the ARPA Computer Network," AFIPS
 Conference Proceedings, vol. 41, 1972 FJCC, AFIPS Press, Montvale,
 N.J.

 13. DALA74

 Y. Dalal, "More on selecting sequence numbers," INWG Protocol Note
 #4, October 1974.

Cerf, Dalal & Sunshine [Page 46]

RFC 675 Specification of Internet TCP December 1974

 14. SUNS74

 C. Sunshine, "Issues in communication protocol design -- formal
 correctness." INWG Protocol Note #5, October 1974

 BELS74

 D. Belsnes, "Note on single message communication," INWG Protocol
 Note #3. September 1974.

 16. TOML74

 R. Tomlinson, "Selecting sequence numbers," INWG Protocol Note #2,
 September 1974.

 17. SCHA74

 R. Schantz, "Reconnection Protocol", private communication;
 available from Schantz at BBN.

 18. POUZ74A

 L. Pouzin, "A proposal for interconnecting packet switching
 networks, INWG Note #60, March 1974 [also submitted to EUROCOMP
 74].

 19. DLMG74

 D. Lloyd, M. Galland, and P. T. Kirstein, "Aims and objectives of
 internetwork experiments," to be published as an INWG Experiments
 Note.

 20. MCKE73

 A. McKenzie, "Host-Host Protocol for the ARPANET," NIC # 8246,
 Stanford Research Institute [also in ARPANET Protocols Notebook
 NIC 7104].

 21. BELS74A

 D. Belsnes, "Flow control in packet switching networks," INWG Note
 #63, October 1974.

Cerf, Dalal & Sunshine [Page 47]

RFC 675 Specification of Internet TCP December 1974

FIGURE 1: TCB Major States

 0-no TCB
 __/
 OPEN | A CLOSE CLOSE A
 ---------- | | ---------- ---------- |
 set up TCB | | remove TCB remove TCB |
 | | |
 | | collision retry, |
 SYN arrives __V____|__ SEND, INTER |
 ------------- / S1=0 \ ---------------- |
 send SYN, ACK | S2=0 F=0 | send SYN |
 ______________________| R=0 C=0 |_____________________ |
 | | U=0/1 | | |
 | | | SYN arrives | |
 | error,timeout | 1-OPEN | ----------- | |
 | ------------- __________/ collision; | |
 | clear TCB A A set timeout | |
 | _____________________| |_____________________ | |
 __V____|__ _|___V__|_
 / S1=1 \ / S1=1 \
S2=0 F=0		S2=0 F=0
R=1 C=0	SYN, ACK arrives	R=0 C=0
U=0/1	ACK arrives ----------------	U=0
	----------- send ACK	
3-SYN rcvd	_________________ _________________	2-SYN sent
 __________/ | | __________/
 | __V_____V__
 | / S1=1 \
 | CLOSE | S2=1 F=0 |
 | -------- | R=1 C=0 | FIN arrives
 | send FIN | U=0 | -------------------
 | | | tell user, send FIN
 | ________________|4-established|______________________
 | | CLOSE ___________/ |
 | | ------- |
 __V_____V_ send FIN _______V__
 / S1=1 \ / S1=1 \
S2=0/1 F=1	timeout or	S2=1 F=1
R=1 C=1	FIN, error, arrives CLOSE	R=1 C=0
U=0/1	------------------- ----------	U=0
	remove TCB remove TCB	
5-FIN wait	_____________________ _____________	6-FIN rcvd
 __________/ | | __________/
 | |
 ____________________________V_____V_______________________
 / \
 0-no TCB

Cerf, Dalal & Sunshine [Page 48]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.1: Structure of the TCP

 | _____________ _______________ |
 | | | | | |
 | | | | INPUT PACKET |<---->|
 | | REASSEMBLER | | HANDLER | |
 | |_____________| |_______________| |
 | |_______________ | |
 | | | |
 | _________ | | |
 | | | __V_________V____ | NETWORK
 |<=====| SYSTEM | | | | or
 | | CALLS |<========| TCB’s |<========| some
USERS |=====>| or | | and | | NETWORK
 | | USER |========>|ASSOCIATED QUEUES|========>| INTERFACE
 |<---->|INTERFACE| |_________________| | PROGRAM
 | |_________| A A | | |
 | | | |
 | ______________| | |
 | _______|_____ _______|_______ |
 | | | | | |
 | | PACKETIZER | | OUTPUT PACKET | |
 | | | | HANDLER |<---->|
 | |_____________| |_______________| |
 | |

 =======> Logical or physical flow of data (packets/letters)

 -------> "Interaction"

 NOTE: The signalling of processes by others is not shown

Cerf, Dalal & Sunshine [Page 49]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.2a: ________
Address Check / Begin \
 ________/
 |
 V
 .’ ’.
 .’ packet ’.
 .’ foreign ’.
 ___________________.’ socket matches ’.
 | no ’. a TCB local .’
 | ’. socket .’
 | ’. ? .’
 | ’.___.’
 | | yes
 | _V_
 | .’ ’.
 | .’ packet ’. ___
 | .’local socket ’. / \
 | .’ matches fully ’.____\| YES |
 | ’. specified TCB .’ / ___/
 | ’.fgn socket .’
 | ’. ? .’
 V ’.___.’
 .’ ’. | no
 .’ SYN, ’. _V_
 .’FIN,INT,DSN, ’. .’ ’.
 _____.’or text length>0 ’./_____ .’ matches ’.
 | no ’. or QUERY .’ \ | .’partly spec. ’.
 | ’. .’ |___.’ or unspec. TCB ’.
 | ’. ? .’ no ’. foreign .’
 | ’.___.’ ’. socket .’
 | | yes ’. ? .’
 | __________V_________ ’.___.’
 | | | | yes
 | | Create error 7 | _V_
 | | packet. Signal OPH | .’ ’.
 | |____________________| .’ packet ’.
 | | ______.’ has SYN set ’.
 | ____V____ | no ’. .’
 | | | | ’. ? .’
 |_________\| discard |/________| ’.___.’
 /|_________|\ |
 | _V_
 V / \
 / \ | YES |
 | NO | ___/
 ___/

Cerf, Dalal & Sunshine [Page 50]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.2b-1: _______
Input Packet Handler / Begin \
 _______/
 |
 __\|/_________________________
A /	\		
	V		
	.’ ’. _______		
	.’ input ’.	go to	
	.’ packet ’.____\| sleep		
	’.available.’ no /	_______	
	’.__?__.’		
		yes	
	V		
	.’ ’.		
.->SPECIAL FUNCT. Fig 4.7	.’address’.		
	.->ERR Fig 4.5,4.6	___.’ check OK ’.	
		.->SYN Fig 4.1,4.2 no ’. ? .’	
			.->INT Fig 4.3 ’._____.’
_	_	_	_
		.’ error ’.	__________
<-	Control Processing	/_________.’or control ’. A	
____________________	\ yes ’. ? .’		
 | ’._____.’ |
 | (INT with data) | no |
 | | |
 V _V_ |
 to "X" .’ ’. . |
 in Fig 2.2b-2 .’(estab)’. .’ ’. |
 _____.’ R=S1=S2=1 ’.----->.’seq.#’.--->|
 | yes ’. ? .’ no ’.OK .’ no |
 | ’._____.’ ’.’ |
 | | yes | |
 | _______________ | |
 | | Set S2=1, U=0 | V |
 | | Notify user | .’. |
 |<--| with event 2 | .’ACK’. |
 | | if U was 1 |<-----’. OK .’--->’
 | |_______________| yes ’. .’ no
 | ’
 V
 to "Y"
 in Fig 2.2b-2

Cerf, Dalal & Sunshine [Page 51]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.2b-2: Input Packet Handler (continued)

 "Y"
 |
 .’. _V_
 .’txt’. .’ ’. ______________________________
 .’lgth>0 ’. .’within ’. |Use ACK to advance send window|
,<----’. or DSN .’<---’. window .’--->|Release ACK’ed packets from |
no ’. ? .’ no ’. ? .’ yes	retransmit or send queues. If		
’._.’ ’._.’	any packet had EB bit set		
	yes	remove buffer from Packetized	
________V____________________	buffer queue and inform user		
	Create ACK packet. Put on		(success). Signal Packetizer.
<-	Send packet queue. Signal OPH		______________________________

	"X"		
V _V_ _____________________			
.’ ’. .’TCB’.	Put packet on		
.’ text ’. yes .’Receive’. yes	Receive packet queue		
.’ length>0 ’.-------->.’ buffer ’.------>	in the right order.		
’. or DSN .’ A ’.available.’	Signal Reassembler.		
’. ? .’	’. ? .’	_____________________	
’._.’	’._.’		
	no		no
		V	
________\|	.’ ’.		
 /| | .’ seq # ’. ________ |
 | | .’ of packet ’. yes |Discard | |
 | | ’. highest so .’---->|packet |----->|
 | | ’. far .’ |________| |
 | | ’. ? .’ |
 | | ’._.’ |
 | | | no |
 | | _______V______________ |
 | | |Discard packet with | |
 | |_____|highest seq. no from | |
 | |Receive packet queue. | |
 | |______________________| |
 | |
 |___|
 |
 V
 to "Begin" in Fig 2.2b-1

Cerf, Dalal & Sunshine [Page 52]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.3-1: Reassembler

 / Begin \
 _______/
 |
 |
 |<--.
 | _____ | yes
 ______V_____ .’ ’. _|_
 |Get ready | .’ Receive ’. yes .’any’.
 |for next TCB|--------->.’Packet Queue ’.-------->.’ more ’.
 |____________| A ’. empty ? .’ A ’.work?.’
 | ’._______.’ | ’._.’
 | | no | | no
 "R"------>---------’ __V__ | ____V____
 .’ is ’. | | Go to |
 .’ packet ’. | | Sleep |
 .--<----------------------’.DSN with no.’ | |_________|
 | yes ’. data? .’ |
 | ’.___.’ |
 | | no |
 | __V__ |
 | .’ ’. |
 | .’ Receive ’. yes |
 | .’Buffer Queue ’.--->|
 | ’. empty ? .’ |
 | ________________ ’._______.’ |
 | |Copy from packet| | no |<-------------"S"
	to buffer until	__V__
	one is exhausted	.’First’.
	Update receive	yes .’ packet ’. no
	window.	<----.’matches Recv ’.--->’
	________________	’.left window.’
	’. edge ?.’	
__V__ ’.___.’		
.’Send ’.		
.’ Packet ’. yes _____________________________		
.’ Queue empty ’.---->	Create ACK packet containing	
’. ? .’	new window. Signal OPH.	
’._______.’	_____________________________	
no		
’--------------------------->		
 V V
to "T" to "U"
in Fig 2.3-2 in Fig 2.3-2

Cerf, Dalal & Sunshine [Page 53]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.3-2: Reassembler (continued)

 "T" "U"
 | |
 | | _____________
 ___V____ ___ __V__ |Mark progress|
 |process | yes .’ ’. yes .’whole’. no |in packet. |
 | DSN |<-----.’ DSN ’.<-----.’ packet ’.--->|Return buffer|--->.
________	’. set?.’ ’.copied?.’	to user.	
 | ’._.’ ’.___.’ |_____________| |
 | | no |
 ’--------------->| |
 | |
 __V__ __________________________ |
 .’ EOL ’. yes |Return buffer to user. | |
 ’. set? .’--------->|Return packet to free |--->|
 ’.___.’ |storage. Signal Packetizer| |
 no | |__________________________| |
 | A |
 __V__ | |
 .’ full’. | |
 ’. buffer.’--------------’ |
 ’.___.’ yes |
 | no |
 | |
 ___________________V__________________ |
 |Mark progress in buffer. Return packet| |
 |to free storage. Signal Packetizer. | ,--------’
 |______________________________________| |
 | |
 | |
 V V
 to "R" in Fig 2.3-1 to "S" in Fig 2.3-1

Cerf, Dalal & Sunshine [Page 54]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.4: Packetizer

 _______ ________________________
 / Begin ____________\| Get ready for next TCB |/___________________
 _______/ /|________________________|\ |
 | |
 __V__ _____ |
 .’Send ’. .’ any ’. |
 no .’ Buffer ’. yes .’ more ’. yes |
 .-------------’. Queue .’---->’. work .’-----’
 | ’.empty? .’ A ’. ? .’
 ____________V____________ ’.___.’ | ’.___.’
 |Pick packet size depend- | | | no
,-->|ing on send buffer, TCB | | ______V______
	buffer space, window, etc			go to sleep
	_________________________			_____________
__V__				
.’Send ’.				
.’ window ’. no				
’.has room ? .’--------------------->				
’._______.’				
	yes			
__V__				
.’ TCB ’.				
.’ buffer ’. no				
.’space avail- ’.---------------------’				
’. able ? .’ A				
’._______.’				
	yes			
_____________V____________ _________	_______ ____________			
	Copy from Send buffer to		Move buffer from	
	packet until packet full.		Send queue to	<--
	Put packet on Send packet		packetized queue	
	queue. Signal OPH.		_________________	
	__________________________	A A		
		no		
__V__ __	__			
.’whole’. .’ EOL ’.				
.’ Send ’. yes .’ set in ’. yes				
’. buffer .’----------->’. Send .’-----------’				
’.copied?.’ ’.buffer?.’				
’.___.’ ’.___.’				
	no			
_____________V__________				
	Note in TCB where in			
--	Send buffer we stopped.			

Cerf, Dalal & Sunshine [Page 55]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.5a:
Output Packet Handler

 / Begin \
 _______/
 |
 |<--------------------------.
 ____________V___________ |
 | Get ready for next TCB | |
 |________________________| |
 | |
,------------------------------------>| |
| __V__ _____ |
| _____ .’Send ’. .’ any ’. |
| yes .’ ACK ’. no .’ Buffer ’. yes .’ more ’. yes |
| .-----’.bit set.’<------’. Queue .’---->’. work .’-----’
| | ’.___.’ ’.empty? .’ A ’. ? .’
| | no |________ ’.___.’ | ’.___.’
| | |__________ | | no
| ____V__________________ | | |
| |Put latest receive left| ________v______ | ______V______
	window edge in ACK.	->	Transmit packet			go to sleep
	_______________________		_______________			_____________
________________ __V__						
	Return packet to	.’pckt ’.	_________________			
	buffer pool as	no .’seq # to ’.				
	it has been	<------.’rgt of Send ’.				
	ACKed	’.left window.’				
	________________	’. edge .’				
	’.___.’					
		yes				
	_______________V________________					
		Move packet to retransmit queue;				
		set new retrans. time for it.				

’---------------------->						
__V__						
no .’Time ’. yes						
 -------------------------------.’to switch’.---------------------’
 ’.TCB’s? .’
 ’.___.’

Cerf, Dalal & Sunshine [Page 56]

RFC 675 Specification of Internet TCP December 1974

FIGURE 2.5b:
Retransmit Process

 / Begin \
 _______/
 |
 |<----------------------------------.
 ____________V___________ |
 | Get ready for next TCB | |
 |________________________| |
 | |
 .-------------------------------->| |
 | __V__ |
 | .’ Any ’. _____ |
 | .’packet’s ’. .’ any ’. |
 | .’retrans. time’. no .’ more ’. yes |
 | ’. has occurred .’----->’. work .’-----’
 | ’. for this .’ ’. ? .’
 | ’. TCB ? .’ ’.___.’
 | ’.___.’ |
 | | yes | no
 | | ______V______
 | ________V________ | go to sleep |
 | |Move packet to | |_____________|
 ’------------------------|Send Packet |
 |queue. Signal OPH|
 |_________________|

Cerf, Dalal & Sunshine [Page 57]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.1:
OPEN

 / Begin \
 _______/
 |
 __V__
 .’User ’. _______
 .’permitted’. no | |
 .’ access to ’.---->|error 1|------------.
 ’.this local .’ |_______| |
 ’.socket?.’ |
 ’.___.’ |
 | yes |
 __V__ |
 .’ fgn ’. |
 yes .’ socket ’. no |
 .-----’. specified .’----. |
 | ’. ? .’ | |
 __V__ ’.___.’ __V__ _______ |
 _______ .’conn-’. .’space’. no | | |
 | | yes .’ ection ’. ’.for TCB.’---->|error 4|-->|
,-|error 6|<----’. already .’ ’.___.’ |_______| |
	_______	’.exists?.’	yes	
’.___.’				
	no ____V__________			
_______ __V__	Create TCB. Set			
		no .’space’.	S1=S2=R=F=C=1	
<-	error 4	<-----’.for TCB.’	Set U=1	
	_______	’.___.’	_______________	
	yes			
_________V__________				
	Create TCB. Set U=0			
	Set S1=S2=R=F=C=1			

’-------------.-------------’				
_____________________V__________________				
	Return local connection name and Success			
	__			
 ----------------------------------->|<--------------------------------’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 58]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.2:
SEND

 / Begin \
 _______/
 |
 __V__
 .’conn-’.
 .’ ection ’. _________
 .’ legal for ’. no | |
 ’. this process .’---------->| error 1 |-----------.
 ’. ? .’ |_________| |
 ’._______.’ |
 | yes |
 __V__ |
 .’conn-’. _________ |
 .’ ection ’. no | | |
 .’ open ’.----------->| error 3 |---------->|
 ’. ? .’ |_________| |
 ’._______.’ |
 | yes |
 __V__ |
 .’ fgn ’. _________ |
 .’ socket ’. no | | |
 ’. specified .’------------>| error 5 |---------->|
 ’.(U=0)? .’ |_________| |
 ’.___.’ |
 | yes |
 __V__ |
 .’conn-’. _________ |
 .’ ection ’. yes | | |
 ’. closing ? .’------------>| error 12|---------->|
 ’.(F,C=1).’ |_________| |
 ’.___.’ |
 | no |
 ____________________V________________________________ |
 |Put buffer on Send Buffer queue and signal Packetizer| |
 |___| |
 | |
 |<---’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 59]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.3:
INTERRUPT

 / Begin \
 _______/
 |
 |
 V

 Same as SEND

 | |
 | |
 ____________________V_________________________ |
Return any pending Send buffers with code 10.	
Create INT packet on outgoing packet queue.	
Signal Output Packet Handler.	
__	
 | |
 |<---’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 60]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.4:
RECEIVE

 / Begin \
 _______/
 |
 __V__
 .’conn-’.
 .’ ection ’. _________
 .’ legal for ’. no | |
 ’. this process .’---------->| error 1 |-----------.
 ’. ? .’ |_________| |
 ’._______.’ |
 | yes |
 V |
 .’ ’. |
 .’ ’. |
 .’connection ’. |
 .’ state ’. |
 :___________________: _________ |
 | | | | | |
 1-4 | 5,6 | 0 ’-------------------->| error 3 |-->|
 | ’---------------------. |_________| |
 __________V__________ | |
 |Put buffer on Receive| | _________ | | |
 |Buffer queue. Signal | | | | |
 |Reassembler | ’----->| error 12|-->|
 |_____________________| |_________| |
 | |
 |<--’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 61]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.5:
CLOSE

 / Begin \
 _______/
 |
 __V__
 .’conn-’.
 .’ ection ’. _________
 .’ legal for ’. no | |
 ’. this process .’---------->| error 1 |-----------.
 ’. ? .’ |_________| |
 ’._______.’ |
 | yes |
 V |
 .’ ’. |
 .’ ’. |
 .’connection ’. |
 .’ state ’. |
 :___________________: _________ |
 5| |3,4 |1,2,6 |0 | | |
 | | | ’------------------>| error 3 |-->|
,------------’ | ’-------------------. |_________| |
______________V______________________					
	Return all buffers to user with error		___________		
	12; clear all packet queues, create			Remove TCB	
	FIN packet, signal Output Packet	’--->	Return	--->	
	Handler, set C=F=1		Success		
	_____________________________________		___________		
 --------------------->|<--’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 62]

RFC 675 Specification of Internet TCP December 1974

FIGURE 3.6:
STATUS

 / Begin \
 _______/
 |
 __V__
 .’conn-’.
 .’ ection ’. _________
 .’ legal for ’. no | |
 ’. this process .’---------->| error 1 |-----------.
 ’. ? .’ |_________| |
 ’._______.’ |
 | yes |
 __V__ __________ |
 .’conn-’. |Return | |
 .’ ection ’. no |state=0 or| |
 ’. open ? .’------------>|error 3 |--------->|
 ’._______.’ |__________| |
 | yes |
 ___________V___________ |
 |Fill in reply from TCB.| |
 |Return Success to user.| |
 |_______________________| |
 | |
 |<---’
 ____V___
 / Return \
 ________/

Cerf, Dalal & Sunshine [Page 63]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.1:
SYN (no ACK)

 / Begin \
 _______/
 |
 V
 .’ ’.
 .’ ’.
 .’ S1, S2, R ’.
 .’ ? ’.
 :___________________: 1,1,1 _________
 __________ | | | | (states 4-6) | |
|Treat as a| 1,0,1 | | | ’------------->| error 6 |-->.
duplicate.	<-----------’			_________	
Retransmit			1.0,0		
SYN, ACK	0,0,0		(Syn sent) ________________		
__________	(listening)	’------------>	Collision: Clear		
 | | |S1, set timeout,| |
 | _____________________V________________ |remove SYN from |-->|
 | |Set R=S1=1. If U=1 set foreign socket | |retransmit queue| |
 | |in TCB to match packet local socket. | |________________| |
 | |Send SYN, ACK. Signal OPH. Fill in TCB| |
 | |with send window, receive sequence #. | |
 | |______________________________________| |
 | | |
 | | |
 ’----------------------->|<---------------------------------------’
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 64]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.2:
SYN,ACK

 / Begin \
 _______/
 |
 __V__
 .’ ’.
 .’ State 2 ’. no
 ’.S1=1;S2=R=0.’----------------.
 ’. ? .’ |
 ’.___.’ |
 | yes |
 __V__ _______V______
 .’ ACK ’. no | |
 .’ correct ’.-------->| send error 6 |
 ’. ? .’ |______________|
 ’.___.’ |
 | yes |
 _________V_________ |
 |Set S2=R=1. Process| |
 |ACK. Send ACK. | |
 |___________________| |
 | |
 |<----------------------’
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 65]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.3:
INT (from net)
 _______ ____________
 / Begin ____\|Process ACK |
 _______/ /|(may set S2)|------.
 |____________| |
 |
 __V__
 ____________ .’ in ’.
 | Discard | no .’ state 4 ’.
 .<-------| (or queue) |<-------’. S1=S2=R=1 .’
 | |____________| ’. F=0 ? .’
 | ’.___.’
 | | yes
 | __V__
 | ____________ .’ ’.
 | | ACK and | no .’ within ’.
 |<-------| discard |<-------’. window .’
 | |____________| ’. ? .’
 | ’.___.’
 | | yes
 | ____________________________V_______________
 | |Move Receive Left window edge to sequence |
 | |number of INT. Return event 10 with any |
 | |pending Receive buffers. Ruturn event 11 to |
 | |user. Send ACK for INT. |
 | |__|
 | |
 | __V__
 | see yes .’data ’.
 | Figure<----------.’ in this ’.
 | 2.2 ’.packet?.’
 | ’.___.’
 | | no
 ’------------------------------------>|
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 66]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.4:
FIN
 _______ ____________
 / Begin ____\|Process ACK |
 _______/ /|(may set S2)|------.
 |____________| |
 |
 __V__
 .’ ’.
 no .’S1=S2=R=1’.
 .--------------’. (estab- .’
 | ’.lished).’
 | ’.___.’
 | | yes
 | __V__
 ______V_____ .’ ’.
 | | no .’ within ’.
 .-----------------| discard |<-------’. window .’
 | |____________| ’. ? .’
 | ’.___.’
 | | yes
 | __V__
 | (state 4) 0 .’F bit’. 1 (state 5)
 | .------------’. value .’------------.
 | | ’.___.’ |
 | _________________________V________ |
 | |Return all user buffers (event 12)| _____________________V__
	Clear all packet queues. Send FIN		Return success to User’s
	packet. Set F=1. Inform user		CLOSE. Remove TCB.
	"connection closing" (event 12)		________________________

 ’----------------->|<-----------------------------------’
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 67]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.5:
Error 6 (bad SYN)

 / Begin \
 _______/
 |
 |
 __V__
 .’ ’.
 .’refers to’.
 .’current pckt?’. _________
 .’(ACK matches seq ’. no | |
 ’. # of packet on .’----------------->| discard |-----------.
 ’.retrans or send.’ |_________| |
 ’. queues?) .’ |
 ’._______.’ |
 | yes |
 | |
 V |
 .’ ’. 1 (state 3) |
 .’ value ’.--------------------------------. |
 ’. of R.’ bad SYN,ACK | |
 ’._.’ | |
 | | |
 | 0 (state 2) | |
 | bad SYN | |
 __________________V__________________ _______V______ |
Other side is established. Send RESET		Clear S1, R	
(put error packet’s seq. # in ACK		Remove SYN,ACK	
field. Return all user buffers with		from retrans	
code 14. Inform user with event 14		queue.	
_____________________________________		______________	
 | | |
 | V |
 |<--’
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 68]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.6:
Error 7,8

 / Begin \
 _______/
 |
 __V__
 .’ ’.
 .’refers to’. _________
 .’ current ’. no | |
 ’. packet (check .’---------------->| discard |-----------.
 ’. ACK)? .’ A |_________| |
 ’._______.’ | |
 | yes | |
 V | |
 .’ ’. | |
 .’ ’. | |
 .’connection ’. | |
 .’ state ’. | |
 :___________________: | |
 4| 5| 3| 2| 6| | |
 .-------’ | | | ’------’ |
 | | | ’-----------------------------. | |
 | | ’-------------. | |
 | | | | |
 ___V___ ____V_______ ______V_______ ________V_________ |
Pass to		Remove TCB.		Clear S1, R.		Discard. SYN will	
user		Return		Remove SYN,ACK		be retrans to	
_______		success to		from transmit		avoid receiver	
 | |user’s CLOSE| |queue (go to | |having to queue it| |
 | |____________| |state 1). | |__________________| |
 | | |______________| | |
 | V | V |
 ’------------------------------>|<---------------------------------’
 ___V__
 / Done \
 ______/

Cerf, Dalal & Sunshine [Page 69]

RFC 675 Specification of Internet TCP December 1974

FIGURE 4.7:
RESET

 / Begin \
 _______/
 |
 __V__
 no .’Reset’. yes
 .------------’. All ? .’------------------.
 | ’.___.’ |
 | _________V_________
 | |Clear all TCB’s for|
 | |foreign TCP. Inform|
 | |users with event 14|
 | |___________________|
 __V__ |
 .’ Is ’. _________ |
 .’ RESET ’. no | | |
 .’believable ? ’.------->| discard |------------->|
 ’.(check ACK .’ |_________| |
 ’.field) .’ |
 ’.___.’ |
 | yes |
 ________________V________________ |
Clear all queues for this TCB.	
Return event 14 for user buffers.	
Inform User with event 14.	

 | |
 |<--’
 ___V__
 / Done \
 ______/

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Alex McKenzie with]
 [support from GTE, formerly BBN Corp. 2/2000]

Cerf, Dalal & Sunshine [Page 70]

