
Internet Engineering Task Force (IETF) C. Boulton
Request for Comments: 6917 NS-Technologies
Category: Standards Track L. Miniero
ISSN: 2070-1721 Meetecho
 G. Munson
 AT&T
 April 2013

 Media Resource Brokering

Abstract

 The MediaCtrl working group in the IETF has proposed an architecture
 for controlling media services. The Session Initiation Protocol
 (SIP) is used as the signaling protocol that provides many inherent
 capabilities for message routing. In addition to such signaling
 properties, a need exists for intelligent, application-level media
 service selection based on non-static signaling properties. This is
 especially true when considered in conjunction with deployment
 architectures that include 1:M and M:N combinations of Application
 Servers and Media Servers. This document introduces a Media Resource
 Broker (MRB) entity, which manages the availability of Media Servers
 and the media resource demands of Application Servers. The document
 includes potential deployment options for an MRB and appropriate
 interfaces to Application Servers and Media Servers.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6917.

Boulton, et al. Standards Track [Page 1]

RFC 6917 Media Resource Brokering April 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Conventions and Terminology6
 3. Problem Discussion ..6
 4. Deployment Scenario Options7
 4.1. Query MRB ..8
 4.1.1. Hybrid Query MRB9
 4.2. In-Line MRB ...11
 5. MRB Interface Definitions12
 5.1. Media Server Resource Publish Interface12
 5.1.1. Control Package Definition13
 5.1.2. Element Definitions15
 5.1.3. <mrbrequest>15
 5.1.4. <mrbresponse>17
 5.1.5. <mrbnotification>19
 5.2. Media Service Resource Consumer Interface30
 5.2.1. Query Mode/HTTP Consumer Interface Usage31
 5.2.2. In-Line Aware Mode/SIP Consumer Interface Usage32
 5.2.3. Consumer Interface Lease Mechanism35
 5.2.4. <mrbconsumer>38
 5.2.5. Media Service Resource Request39
 5.2.6. Media Service Resource Response51
 5.3. In-Line Unaware MRB Interface54
 6. MRB Acting as a B2BUA ..54
 7. Multimodal MRB Implementations55
 8. Relative Merits of Query Mode, IAMM, and IUMM56
 9. Examples ...58
 9.1. Publish Example ...58
 9.2. Consumer Examples ...64
 9.2.1. Query Example64
 9.2.2. IAMM Examples68
 10. Media Service Resource Publisher Interface XML Schema83

Boulton, et al. Standards Track [Page 2]

RFC 6917 Media Resource Brokering April 2013

 11. Media Service Resource Consumer Interface XML Schema106
 12. Security Considerations127
 13. IANA Considerations ..130
 13.1. Media Control Channel Framework Package Registration130
 13.2. application/mrb-publish+xml Media Type130
 13.3. application/mrb-consumer+xml Media Type131
 13.4. URN Sub-Namespace Registration for mrb-publish132
 13.5. URN Sub-Namespace Registration for mrb-consumer132
 13.6. XML Schema Registration for mrb-publish132
 13.7. XML Schema Registration for mrb-consumer133
 14. Acknowledgements ...133
 15. References ...133
 15.1. Normative References133
 15.2. Informative References135

1. Introduction

 As IP-based multimedia infrastructures mature, the complexity and
 demands from deployments increase. Such complexity will result in a
 wide variety of capabilities from a range of vendors that should all
 be interoperable using the architecture and protocols produced by the
 MediaCtrl working group. It should be possible for a controlling
 entity to be assisted in Media Server selection so that the most
 appropriate resource is selected for a particular operation. The
 importance increases when one introduces a flexible level of
 deployment scenarios, as specified in RFC 5167 [RFC5167] and RFC 5567
 [RFC5567]. These documents make statements like "it should be
 possible to have a many-to-many relationship between Application
 Servers and Media Servers that use this protocol". This leads to the
 following deployment architectures being possible when considering
 media resources, to provide what can be effectively described as
 media resource brokering.

 The simplest deployment view is illustrated in Figure 1.

 +---+-----+---+ +---+-----+---+
 | Application | | Media |
 | Server |<-------MS Control------>| Server |
 +-------------+ +-------------+

 Figure 1: Basic Architecture

 This simply involves a single Application Server and Media Server.
 Expanding on this view, it is also possible for an Application Server
 to control multiple (greater than 1) Media Server instances at any
 one time. This deployment view is illustrated in Figure 2.
 Typically, such architectures are associated with application logic
 that requires high-demand media services. It is more than possible

Boulton, et al. Standards Track [Page 3]

RFC 6917 Media Resource Brokering April 2013

 that each Media Server possesses a different media capability set.
 Media Servers may offer different media services as specified in the
 MediaCtrl architecture document [RFC5567]. A Media Server may have
 similar media functionality but may have different capacity or media
 codec support.

 +---+-----+---+
 | Media |
 +----->| Server |
 | +-------------+
 |
 +---+-----+---+ | +---+-----+---+
 | Application | | | Media |
 | Server |<--MS Control-----+----->| Server |
 +-------------+ | +-------------+
 |
 | +---+-----+---+
 +----->| Media |
 | Server |
 +-------------+

 Figure 2: Multiple Media Servers

 Figure 3 conveys the opposite view to that in Figure 2. In this
 model, there are a number of (greater than 1) Application Servers,
 possibly supporting dissimilar applications, controlling a single
 Media Server. Typically, such architectures are associated with
 application logic that requires low-demand media services.

 +---+-----+---+
 | Application |
 | Server |<-----+
 +-------------+ |
 |
 +---+-----+---+ | +---+-----+---+
 | Application | | | Media |
 | Server |<-----+-----MS Control-->| Server |
 +-------------+ | +-------------+
 |
 +---+-----+---+ |
 | Application | |
 | Server |<-----+
 +-------------+

 Figure 3: Multiple Application Servers

Boulton, et al. Standards Track [Page 4]

RFC 6917 Media Resource Brokering April 2013

 The final deployment view is the most complex (Figure 4). In this
 model (M:N), there exist any number of Application Servers and any
 number of Media Servers. It is again possible in this model that
 Media Servers might not be homogeneous, and they might have different
 capability sets and capacities.

 +---+-----+---+ +---+-----+---+
 | Application | | Media |
 | Server |<-----+ +---->| Server |
 +-------------+ | | +-------------+
 | |
 +---+-----+---+ | | +---+-----+---+
 | Application | | | | Media |
 | Server |<-----+-MS Control-+---->| Server |
 +-------------+ | | +-------------+
 | |
 +---+-----+---+ | | +---+-----+---+
 | Application | | +---->| Media |
 | Server |<-----+ | Server |
 +-------------+ +---+-----+---+

 Figure 4: Many-to-Many Architecture

 The remaining sections in this specification will focus on a new
 entity called a Media Resource Broker (MRB), which can be utilized in
 the deployment architectures described previously in this section.
 The MRB entity provides the ability to obtain media resource
 information and appropriately allocate (broker) on behalf of client
 applications.

 The high-level deployment options discussed in this section rely on
 network architecture and policy to prohibit inappropriate use. Such
 policies are out of scope for this document.

 This document will take a look at the specific problem areas related
 to such deployment architectures. It is recognized that the
 solutions proposed in this document should be equally adaptable to
 all of the previously described deployment models. It is also
 recognized that the solution is far more relevant to some of the
 previously discussed deployment models and can almost be viewed as
 redundant on others.

Boulton, et al. Standards Track [Page 5]

RFC 6917 Media Resource Brokering April 2013

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document inherits terminology proposed in RFC 5567 [RFC5567] and
 in "Media Control Channel Framework" [RFC6230]. In addition, the
 following terms are defined for use in this document and for use in
 the context of the MediaCtrl working group in the IETF:

 Media Resource Broker (MRB): A logical entity that is responsible
 for both collection of appropriate published Media Server (MS)
 information and selecting appropriate Media Server resources on
 behalf of consuming entities.

 Query MRB: An instantiation of an MRB (see previous definition) that
 provides an interface for an Application Server to retrieve the
 address of an appropriate Media Server. The result returned to
 the Application Server can be influenced by information contained
 in the query request.

 In-line MRB: An instantiation of an MRB (see previous definition)
 that directly receives requests on the signaling path. There is
 no separate query.

 CFW: Media Control Channel Framework, as specified in [RFC6230].

 Within the context of In-line MRBs, additional terms are defined:

 In-line Aware MRB Mode (IAMM): Defined in Section 5.2.2.1.

 In-line Unaware MRB Mode (IUMM): Defined in Section 5.3.

 The document will often specify when a specific identifier in a
 protocol message needs to be unique. Unless stated otherwise, such
 uniqueness will always be within the scope of the Media Servers
 controlled by the same MRB. The interaction between different MRB
 instances, e.g., the partitioning of a logical MRB, is out of scope
 for this document.

3. Problem Discussion

 As discussed in Section 1, a goal of the MediaCtrl working group is
 to produce a solution that will service a wide variety of deployment
 architectures. Such architectures range from the simplest 1:1
 relationship between Media Servers and Application Servers to
 potentially linearly scaling 1:M, M:1, and M:N deployments.

Boulton, et al. Standards Track [Page 6]

RFC 6917 Media Resource Brokering April 2013

 Managing such deployments is itself non-trivial for the proposed
 solution until an additional number of factors that increase
 complexity are included in the equation. As Media Servers evolve, it
 must be taken into consideration that, where many can exist in a
 deployment, they may not have been produced by the same vendor and
 may not have the same capability set. It should be possible for an
 Application Server that exists in a deployment to select a media
 service based on a common, appropriate capability set. In
 conjunction with capabilities, it is also important to take available
 resources into consideration. The ability to select an appropriate
 media service function is an extremely useful feature but becomes
 even more powerful when considered with available resources for
 servicing a request.

 In conclusion, the intention is to create a toolkit that allows
 MediaCtrl deployments to effectively utilize the available media
 resources. It should be noted that in the simplest deployments where
 only a single Media Server exists, an MRB function is probably not
 required. Only a single capability set exists, and resource
 availability can be handled using the appropriate underlying
 signaling, e.g., SIP response. This document does not prohibit such
 uses of an MRB; it simply provides the tools for various entities to
 interact where appropriate. It is also worth noting that the
 functions specified in this document aim to provide a ’best effort’
 view of media resources at the time of request for initial Media
 Server routing decisions. Any dramatic change in media capabilities
 or capacity after a request has taken place should be handled by the
 underlying protocol.

 It should be noted that there may be additional information that is
 desirable for the MRB to have for purposes of selecting a Media
 Server resource, such as resource allocation rules across different
 applications, planned or unplanned downtime of Media Server
 resources, the planned addition of future Media Server resources, or
 Media Server resource capacity models. How the MRB acquires such
 information is outside the scope of this document. The specific
 techniques used for selecting an appropriate media resource by an MRB
 is also outside the scope of this document.

4. Deployment Scenario Options

 Research into media resource brokering concluded that a couple of
 high-level models provided an appropriate level of flexibility. The
 general principles of "in-line" and "query" MRB concepts are
 discussed in the rest of this section. It should be noted that while
 the interfaces are different, they both use common underlying
 mechanisms defined in this specification.

Boulton, et al. Standards Track [Page 7]

RFC 6917 Media Resource Brokering April 2013

4.1. Query MRB

 The "Query" model for MRB interactions provides the ability for a
 client of media services (for example, an Application Server) to
 "ask" an MRB for an appropriate Media Server, as illustrated in
 Figure 5.

 +---+-----+---+
 +------------>| MRB |<----------+----<-----+---+
 | +-------------+ (1)| | | |
 | | | |
 |(2) +---+--+--+---+ | |
 | | Media | | |
 | +---->| Server | | |
 | | +-------------+ | |
 | | (1)| |
 +---+--+--+---+ | +---+-----+---+ | |
 | Application | | | Media | | |
 | Server |<-----+-MS Control-+---->| Server |->-+ |
 +-------------+ (3) | +-------------+ |
 | |
 | +---+-----+---+ (1)|
 +---->| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 5: Query MRB

 In this deployment, the Media Servers use the Media Server Resource
 Publish interface, as discussed in Section 5.1, to convey capability
 sets as well as resource information. This is depicted by (1) in
 Figure 5. It is then the MRB’s responsibility to accumulate all
 appropriate information relating to media services in the logical
 deployment cluster. The Application Server (or other media services
 client) is then able to query the MRB for an appropriate resource (as
 identified by (2) in Figure 5). Such a query would carry specific
 information related to the media service required and enable the MRB
 to provide increased accuracy in its response. This particular
 interface is discussed in "Media Service Resource Consumer Interface"
 (Section 5.2). The Application Server is then able to direct control
 commands (for example, create a conference) and media dialogs to the
 appropriate Media Server, as shown by (3) in Figure 5. Additionally,
 with Query mode, the MRB is not directly in the signaling path
 between the Application Server and the selected Media Server
 resource.

Boulton, et al. Standards Track [Page 8]

RFC 6917 Media Resource Brokering April 2013

4.1.1. Hybrid Query MRB

 As mentioned previously, it is the intention that a toolkit is
 provided for MRB functionality within a MediaCtrl architecture. It
 is expected that in specific deployment scenarios the role of the MRB
 might be co-hosted as a hybrid logical entity with an Application
 Server, as shown in Figure 6.

 +------------<----------------<---------+----<-----+---+
 | (1) | | | |
 | | | |
 | +---+--+--+---+ | |
 | | Media | | |
 V +---->| Server | | |
 +------+------+ | +-------------+ | |
 | MRB | | | |
 +---+--+--+---+ | +---+-----+---+ | |
 | Application | | | Media | | |
 | Server |<-----+-MS Control-+---->| Server |->-+ |
 +-------------+ | +-------------+ |
 | |
 | +---+-----+---+ |
 +---->| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 6: Hybrid Query MRB - Application Server Hosted

 This diagram is identical to that in Figure 5 with the exception that
 the MRB is now hosted on the Application Server. The Media Server
 Publish interface is still being used to accumulate resource
 information at the MRB, but as it is co-hosted on the Application
 Server, the Media Server Consumer interface has collapsed. It might
 still exist within the Application Server/MRB interaction, but this
 is an implementation issue. This type of deployment suits a single
 Application Server environment, but it should be noted that a Media
 Server Consumer interface could then be offered from the hybrid if
 required.

Boulton, et al. Standards Track [Page 9]

RFC 6917 Media Resource Brokering April 2013

 In a similar manner, the Media Server could also act as a hybrid for
 the deployment cluster, as illustrated in Figure 7.

 (1) +---+-----+---+
 +---+---+------------->---------------->----------->| MRB |
 | | | +---+--+--+---+ +---+-----+---+
 | | +-<-| Application | | Media |
 | | | Server |<--+-MS Control-+------->| Server |
 | | +-------------+ | +-------------+
	+---+--+--+---+	
+---<---	Application	
	Server	<--+-MS Control-+--+
+-------------+		
+---+--+--+---+		
 +---<-------| Application | |
 | Server |<--+-MS Control-+--+
 +-------------+

 Figure 7: Hybrid Query MRB - MS Hosted

 In this example, the MRB has collapsed and is co-hosted by the Media
 Server. The Media Server Consumer interface is still available to
 the Application Servers (1) to query Media Server resources. The
 Media Server Publish interface has collapsed onto the Media Server.
 It might still exist within the Media Server/MRB interaction, but
 this is an implementation issue. This type of deployment suits a
 single Media Server environment, but it should be noted that a Media
 Server Publish interface could then be offered from the hybrid if
 required. A typical use case scenario for such a topology would be a
 single Media Server representing a pool of MSs in a cluster. In this
 case, the MRB would actually be handling a cluster of Media Servers,
 rather than one.

Boulton, et al. Standards Track [Page 10]

RFC 6917 Media Resource Brokering April 2013

4.2. In-Line MRB

 The "In-line" MRB is architecturally different from the "Query" model
 discussed in the previous section. The concept of a separate query
 disappears. The client of the MRB simply uses the media resource
 control and media dialog signaling to involve the MRB. This type of
 deployment is illustrated in Figure 8.

 +-------<----------+----<-------+---+
 | | (1) | | |
 | | | |
 | +---+--+--+---+ | |
 | | Media | | |
 | +------>| Server | | |
 | |(3) +-------------+ | |
 | | (1)| |
 +---+--+--+---+ | | +---+-----+---+ | |
 | Application | (2) +---+--V--+---+ (3) | Media | | |
 | Server |----->| MRB |----->| Server |->-+ |
 +-------------+ +---+-----+---+ +-------------+ |
 | |
 | (3) +---+-----+---+ (1)|
 +------>| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 8: In-Line MRB

 The Media Servers still use the Media Server Publish interface to
 convey capabilities and resources to the MRB, as illustrated by (1).
 The Media Server Control Channels (and media dialogs as well, if
 required) are sent to the MRB (2), which then selects an appropriate
 Media Server (3) and remains in the signaling path between the
 Application Server and the Media Server resources.

 The In-line MRB can be split into two distinct logical roles that can
 be applied on a per-request basis. They are:

 In-line Unaware MRB Mode (IUMM): Allows an MRB to act on behalf of
 clients requiring media services who are not aware of an MRB or
 its operation. In this case, the Application Server does not
 provide explicit information on the kind of Media Server resource
 it needs (as in Section 5.2), and the MRB is left to deduce it by
 potentially inspecting other information in the request from the
 Application Server (for example, Session Description Protocol
 (SDP) content, or address of the requesting Application Server, or
 additional Request-URI parameters as per RFC 4240 [RFC4240]).

Boulton, et al. Standards Track [Page 11]

RFC 6917 Media Resource Brokering April 2013

 In-line Aware MRB Mode (IAMM): Allows an MRB to act on behalf of
 clients requiring media services who are aware of an MRB and its
 operation. In particular, it allows the Application Server to
 explicitly convey matching characteristics to those provided by
 Media Servers, as does the Query MRB mode (as in Section 5.2).

 In either of the previously described roles, signaling as specified
 by the Media Control Channel Framework ([RFC6230]) would be involved,
 and the MRB would deduce that the selected Media Server resources are
 no longer needed when the Application Server or Media Server
 terminates the corresponding SIP dialog. The two modes are discussed
 in more detail in Section 5.3.

5. MRB Interface Definitions

 The intention of this specification is to provide a toolkit for a
 variety of deployment architectures where media resource brokering
 can take place. Two main interfaces are required to support the
 differing requirements. The two interfaces are described in the
 remainder of this section and have been named the Media Server
 Resource Publish and Media Server Resource Consumer interfaces.

 It is beyond the scope of this document to define exactly how to
 construct an MRB using the interfaces described. It is, however,
 important that the two interfaces are complimentary so that
 development of appropriate MRB functionality is supported.

5.1. Media Server Resource Publish Interface

 The Media Server Resource Publish interface is responsible for
 providing an MRB with appropriate Media Server resource information.
 As such, this interface is assumed to provide both general and
 specific details related to Media Server resources. This information
 needs to be conveyed using an industry standard mechanism to provide
 increased levels of adoption and interoperability. A Control Package
 for the Media Control Channel Framework will be specified to fulfill
 this interface requirement. It provides an establishment and
 monitoring mechanism to enable a Media Server to report appropriate
 statistics to an MRB. The Publish interface is used with both the
 Query mode and In-line mode of MRB operation.

 As already discussed in Section 1, the MRB view of Media Server
 resource availability will in reality be approximate -- i.e., partial
 and imperfect. The MRB Publish interface does not provide an
 exhaustive view of current Media Server resource consumption; the
 Media Server may in some cases provide a best-effort computed view of
 resource consumption parameters conveyed in the Publish interface
 (e.g., Digital Signal Processors (DSPs) with a fixed number of

Boulton, et al. Standards Track [Page 12]

RFC 6917 Media Resource Brokering April 2013

 streams versus Graphics Processing Units (GPUs) with CPU
 availability). Media resource information may only be reported
 periodically over the Publish interface to an MRB.

 It is also worth noting that while the scope of the MRB is in
 providing interested Application Servers with the available
 resources, the MRB also allows for the retrieval of information about
 consumed resources. While this is of course a relevant piece of
 information (e.g., for monitoring purposes), such functionality
 inevitably raises security considerations, and implementations should
 take this into account. See Section 12 for more details.

 The MRB Publish interface uses the Media Control Channel Framework
 ([RFC6230]) as the basis for interaction between a Media Server and
 an MRB. The Media Control Channel Framework uses an extension
 mechanism to allow specific usages that are known as Control
 Packages. Section 5.1.1 defines the Control Package that MUST be
 implemented by any Media Server wanting to interact with an MRB
 entity.

5.1.1. Control Package Definition

 This section fulfills the requirement for information that must be
 specified during the definition of a Control Framework package, as
 detailed in Section 8 of [RFC6230].

5.1.1.1. Control Package Name

 The Media Channel Control Framework requires a Control Package
 definition to specify and register a unique name and version.

 The name and version of this Control Package is "mrb-publish/1.0".

5.1.1.2. Framework Message Usage

 The MRB Publish interface allows a Media Server to convey available
 capabilities and resources to an MRB entity.

 This package defines XML elements in Section 5.1.2 and provides an
 XML schema in Section 10.

 The XML elements in this package are split into requests, responses,
 and event notifications. Requests are carried in CONTROL message
 bodies; the <mrbrequest> element is defined as a package request.
 This request can be used for creating new subscriptions and updating/
 removing existing subscriptions. Event notifications are also
 carried in CONTROL message bodies; the <mrbnotification> element is

Boulton, et al. Standards Track [Page 13]

RFC 6917 Media Resource Brokering April 2013

 defined for package event notifications. Responses are carried
 either in REPORT message or Control Framework 200 response bodies;
 the <mrbresponse> element is defined as a package-level response.

 Note that package responses are different from framework response
 codes. Framework error response codes (see Section 7 of [RFC6230])
 are used when the request or event notification is invalid; for
 example, a request has invalid XML (400) or is not understood (500).
 Package-level responses are carried in framework 200 response or
 REPORT message bodies. This package’s response codes are defined in
 Section 5.1.4.

5.1.1.3. Common XML Support

 The Media Control Channel Framework [RFC6230] requires a Control
 Package definition to specify if the attributes for media dialog or
 conference references are required.

 The Publish interface defined in Section 10 does import and make use
 of the common XML schema defined in the Media Control Channel
 Framework.

 The Consumer interface defined in Section 11 does import and make use
 of the common XML schema defined in the Media Control Channel
 Framework.

5.1.1.4. CONTROL Message Body

 A valid CONTROL message body MUST conform to the schema defined in
 Section 10 and described in Section 5.1.2. XML messages appearing in
 CONTROL messages MUST contain either an <mrbrequest> or
 <mrbnotification> element.

5.1.1.5. REPORT Message Body

 A valid REPORT message body MUST conform to the schema defined in
 Section 10 and described in Section 5.1.2. XML messages appearing in
 REPORT messages MUST contain an <mrbresponse> element.

5.1.1.6. Audit

 The ’mrb-publish/1.0’ Media Control Channel Framework package does
 not require any additional auditing capability.

Boulton, et al. Standards Track [Page 14]

RFC 6917 Media Resource Brokering April 2013

5.1.2. Element Definitions

 This section defines the XML elements for the Publish interface Media
 Control Channel package defined in Section 5.1. The formal XML
 schema definition for the Publish interface can be found in
 Section 10.

 The root element is <mrbpublish>. All other XML elements (requests,
 responses, notifications) are contained within it. The MRB Publish
 interface request element is detailed in Section 5.1.3. The MRB
 Publish interface notification element is detailed in Section 5.1.5.
 The MRB Publish interface response element is detailed in
 Section 5.1.4.

 The <mrbpublish> element has the following attributes:

 version: a token specifying the mrb-publish package version. The
 value is fixed as ’1.0’ for this version of the package. The
 attribute MUST be present.

 The <mrbpublish> element has the following child elements, and there
 MUST NOT be more than one such child element in any <mrbpublish>
 message:

 <mrbrequest> for sending an MRB request. See Section 5.1.3.

 <mrbresponse> for sending an MRB response. See Section 5.1.4.

 <mrbnotification> for sending an MRB notification. See
 Section 5.1.5.

5.1.3. <mrbrequest>

 This section defines the <mrbrequest> element used to initiate
 requests from an MRB to a Media Server. The element describes
 information relevant for the interrogation of a Media Server.

 The <mrbrequest> element has no defined attributes.

 The <mrbrequest> element has the following child element:

 <subscription> for initiating a subscription to a Media Server
 from an MRB. See Section 5.1.3.1.

Boulton, et al. Standards Track [Page 15]

RFC 6917 Media Resource Brokering April 2013

5.1.3.1. <subscription>

 The <subscription> element is included in a request from an MRB to a
 Media Server to provide the details relating to the configuration of
 updates (known as a subscription session). This element can be used
 either to request a new subscription or to update an existing one
 (e.g., to change the frequency of the updates), and to remove ongoing
 subscriptions as well (e.g., to stop an indefinite update). The MRB
 will inform the Media Server regarding how long it wishes to receive
 updates and the frequency that updates should be sent. Updates
 related to the subscription are sent using the <mrbnotification>
 element.

 The <subscription> element has the following attributes:

 id: Indicates a unique token representing the subscription session
 between the MRB and the Media Server. The attribute MUST be
 present.

 seqnumber: Indicates a sequence number to be used in conjunction
 with the subscription session ID to identify a specific
 subscription command. The first subscription MUST contain a
 non-zero number ’seqnumber’, and subsequent subscriptions MUST
 contain a higher number than the previous ’seqnumber’ value. If a
 subsequent ’seqnumber’ is not higher, a 405 response code is
 generated as per Section 5.1.4. The attribute MUST be present.

 action: Provides the operation that should be carried out on the
 subscription:

 * The value of ’create’ instructs the Media Server to attempt to
 set up a new subscription.

 * The value of ’update’ instructs the Media Server to attempt to
 update an existing subscription.

 * The value of ’remove’ instructs the Media Server to attempt to
 remove an existing subscription and consequently stop any
 ongoing related notification.

 The attribute MUST be present.

Boulton, et al. Standards Track [Page 16]

RFC 6917 Media Resource Brokering April 2013

 The <subscription> element has zero or more of the following child
 elements:

 <expires>: Provides the amount of time in seconds that a
 subscription should be installed for notifications at the Media
 Server. Once the amount of time has passed, the subscription
 expires, and the MRB has to subscribe again if it is still
 interested in receiving notifications from the Media Server. The
 element MAY be present.

 <minfrequency>: Provides the minimum frequency in seconds that the
 MRB wishes to receive notifications from the Media Server. The
 element MAY be present.

 <maxfrequency>: Provides the maximum frequency in seconds that the
 MRB wishes to receive notifications from the Media Server. The
 element MAY be present.

 Please note that these three optional pieces of information provided
 by the MRB only act as a suggestion: the Media Server MAY change the
 proposed values if it considers the suggestions unacceptable (e.g.,
 if the MRB has requested a notification frequency that is too high).
 In such a case, the request would not fail, but the updated,
 acceptable values would be reported in the <mrbresponse> accordingly.

5.1.4. <mrbresponse>

 Responses to requests are indicated by an <mrbresponse> element.

 The <mrbresponse> element has the following attributes:

 status: numeric code indicating the response status. The attribute
 MUST be present.

 reason: string specifying a reason for the response status. The
 attribute MAY be present.

 The <mrbresponse> element has a single child element:

 <subscription> for providing details related to a subscription
 requested by a Media Server (see below in this section).

Boulton, et al. Standards Track [Page 17]

RFC 6917 Media Resource Brokering April 2013

 The following status codes are defined for ’status’:

 +-----------+---+
 | code | description |
 +-----------+---+
200	OK
400	Syntax error
401	Unable to create Subscription
402	Unable to update Subscription
403	Unable to remove Subscription
404	Subscription does not exist
405	Wrong sequence number
406	Subscription already exists
420	Unsupported attribute or element
 +-----------+---+

 Table 1: <mrbresponse> Status Codes

 If a new subscription request made by an MRB (action=’create’) has
 been accepted, the Media Server MUST reply with an <mrbresponse> with
 status code 200. The same rule applies whenever a request to update
 (action=’update’) or remove (action=’remove’) an existing transaction
 can be fulfilled by the Media Server.

 A subscription request, nevertheless, may fail for several reasons.
 In such a case, the status codes defined in Table 1 must be used
 instead. Specifically, if the Media Server fails to handle a request
 due to a syntax error in the request itself (e.g., incorrect XML,
 violation of the schema constraints, or invalid values in any of the
 attributes/elements), the Media Server MUST reply with an
 <mrbresponse> with status code 400. If a syntactically correct
 request fails because the request also includes any attribute/element
 the Media Server doesn’t understand, the Media Server MUST reply with
 an <mrbresponse> with status code 420. If a syntactically correct
 request fails because the MRB wants to create a new subscription, but
 the provided unique ’id’ for the subscription already exists, the
 Media Server MUST reply with an <mrbresponse> with status code 406.
 If a syntactically correct request fails because the MRB wants to
 update/remove a subscription that doesn’t exist, the Media Server
 MUST reply with an <mrbresponse> with status code 404. If the Media

Boulton, et al. Standards Track [Page 18]

RFC 6917 Media Resource Brokering April 2013

 Server is unable to accept a request for any other reason (e.g., the
 MRB has no more resources to fulfill the request), the Media Server
 MUST reply with an <mrbresponse> with status code 401/402/403,
 depending on the action the MRB provided in its request:

 o action=’create’ --> 401;

 o action=’update’ --> 402;

 o action=’remove’ --> 403;

 A response to a subscription request that has a status code of 200
 indicates that the request is successful. The response MAY also
 contain a <subscription> child that describes the subscription. The
 <subscription> child MAY contain ’expires’, ’minfrequency’, and
 ’maxfrequency’ values even if they were not contained in the request.

 The Media Server can choose to change the suggested ’expires’,
 ’minfrequency’, and ’maxfrequency’ values provided by the MRB in its
 <mrbrequest> if it considers them unacceptable (e.g., the requested
 frequency range is too high). In such a case, the response MUST
 contain a <subscription> element describing the subscription as the
 Media Server accepted it, and the Media Server MUST include in the
 <subscription> element all of those values that it modified relative
 to the request, to inform the MRB about the change.

5.1.5. <mrbnotification>

 The <mrbnotification> element is included in a request from a Media
 Server to an MRB to provide the details relating to current status.
 The Media Server will inform the MRB of its current status as defined
 by the information in the <subscription> element. Updates are sent
 using the <mrbnotification> element.

 The <mrbnotification> element has the following attributes:

 id: indicates a unique token representing the session between the
 MRB and the Media Server and is the same as the one appearing in
 the <subscription> element. The attribute MUST be present.

 seqnumber: indicates a sequence number to be used in conjunction
 with the subscription session ID to identify a specific
 notification update. The first notification update MUST contain a
 non-zero number ’seqnumber’, and subsequent notification updates
 MUST contain a higher number than the previous ’seqnumber’ value.
 If a subsequent ’seqnumber’ is not higher, the situation should be

Boulton, et al. Standards Track [Page 19]

RFC 6917 Media Resource Brokering April 2013

 considered an error by the entity receiving the notification
 update. How the receiving entity deals with this situation is
 implementation specific. The attribute MUST be present.

 It’s important to point out that the ’seqnumber’ that appears in an
 <mrbnotification> is not related to the ’seqnumber’ appearing in a
 <subscription>. In fact, the latter is associated with subscriptions
 and would increase at every command issued by the MRB, while the
 former is associated with the asynchronous notifications the Media
 Server would trigger according to the subscription and as such would
 increase at every notification message to enable the MRB to keep
 track of them.

 The following sub-sections provide details of the child elements that
 make up the contents of the <mrbnotification> element.

5.1.5.1. <media-server-id>

 The <media-server-id> element provides a unique system-wide
 identifier for a Media Server instance. The element MUST be present
 and MUST be chosen such that it is extremely unlikely that two
 different Media Servers would present the same id to a given MRB.

5.1.5.2. <supported-packages>

 The <supported-packages> element provides the list of Media Control
 Channel packages supported by the Media Server. The element MAY be
 present.

 The <supported-packages> element has no attributes.

 The <supported-packages> element has a single child element:

 <package>: Gives the name of a package supported by the Media
 Server. The <package> element has a single attribute, ’name’,
 which provides the name of the supported Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230].

5.1.5.3. <active-rtp-sessions>

 The <active-rtp-sessions> element provides information detailing the
 current active Real-time Transport Protocol (RTP) sessions. The
 element MAY be present.

 The <active-rtp-sessions> element has no attributes.

Boulton, et al. Standards Track [Page 20]

RFC 6917 Media Resource Brokering April 2013

 The <active-rtp-sessions> element has a single child element:

 <rtp-codec>: Describes a supported codec and the number of active
 sessions using that codec. The <rtp-codec> element has one
 attribute. The value of the attribute, ’name’, is a media type
 (which can include parameters per [RFC6381]). The <rtp-codec>
 element has two child elements. The child element <decoding> has
 as content the decimal number of RTP sessions being decoded using
 the specified codec, and the child element <encoding> has as
 content the decimal number of RTP sessions being encoded using the
 specified codec.

5.1.5.4. <active-mixer-sessions>

 The <active-mixer-sessions> element provides information detailing
 the current active mixed RTP sessions. The element MAY be present.

 The <active-mixer-sessions> element has no attributes.

 The <active-mixer-sessions> element has a single child element:

 <active-mix>: Describes a mixed active RTP session. The
 <active-mix> element has one attribute. The value of the
 attribute, ’conferenceid’, is the name of the mix. The
 <active-mix> element has one child element. The child element,
 <rtp-codec>, contains the same information relating to RTP
 sessions as that defined in Section 5.1.5.3. The element MAY be
 present.

5.1.5.5. <non-active-rtp-sessions>

 The <non-active-rtp-sessions> element provides information detailing
 the currently available inactive RTP sessions, that is, how many more
 RTP streams this Media Server can support. The element MAY be
 present.

 The <non-active-rtp-sessions> element has no attributes.

 The <non-active-rtp-sessions> element has a single child element:

 <rtp-codec>: Describes a supported codec and the number of
 non-active sessions for that codec. The <rtp-codec> element has
 one attribute. The value of the attribute, ’name’, is a media
 type (which can include parameters per [RFC6381]). The
 <rtp-codec> element has two child elements. The child element
 <decoding> has as content the decimal number of RTP sessions

Boulton, et al. Standards Track [Page 21]

RFC 6917 Media Resource Brokering April 2013

 available for decoding using the specified codec, and the child
 element <encoding> has as content the decimal number of RTP
 sessions available for encoding using the specified codec.

5.1.5.6. <non-active-mixer-sessions>

 The <non-active-mixer-sessions> element provides information
 detailing the current inactive mixed RTP sessions, that is, how many
 more mixing sessions this Media Server can support. The element MAY
 be present.

 The <non-active-mixer-sessions> element has no attributes.

 The <non-active-mixer-sessions> element has a single child element:

 <non-active-mix>: Describes available mixed RTP sessions. The
 <non-active-mix> element has one attribute. The value of the
 attribute, ’available’, is the number of mixes that could be used
 using that profile. The <non-active-mix> element has one child
 element. The child element, <rtp-codec>, contains the same
 information relating to RTP sessions as that defined in
 Section 5.1.5.5. The element MAY be present.

5.1.5.7. <media-server-status>

 The <media-server-status> element provides information detailing the
 current status of the Media Server. The element MUST be present. It
 can return one of the following values:

 active: Indicates that the Media Server is available for service.

 deactivated: Indicates that the Media Server has been withdrawn from
 service, and as such requests should not be sent to it before it
 becomes ’active’ again.

 unavailable: Indicates that the Media Server continues to process
 past requests but cannot accept new requests, and as such should
 not be contacted before it becomes ’active’ again.

 The <media-server-status> element has no attributes.

 The <media-server-status> element has no child elements.

Boulton, et al. Standards Track [Page 22]

RFC 6917 Media Resource Brokering April 2013

5.1.5.8. <supported-codecs>

 The <supported-codecs> element provides information detailing the
 current codecs supported by a Media Server and associated actions.
 The element MAY be present.

 The <supported-codecs> element has no attributes.

 The <supported-codecs> element has a single child element:

 <supported-codec>: Has a single attribute, ’name’, which provides
 the name of the codec about which this element provides
 information. A valid value is a media type that, depending on its
 definition, can include additional parameters (e.g., [RFC6381]).
 The <supported-codec> element then has a further child element,
 <supported-codec-package>. The <supported-codec-package> element
 has a single attribute, ’name’, which provides the name of the
 Media Control Channel Framework package, compliant with
 Section 13.1.1 of [RFC6230], for which the codec support applies.
 The <supported-codec-package> element has zero or more
 <supported-action> children, each one of which describes an action
 that a Media Server can apply to this codec:

 * ’decoding’, meaning a decoder for this codec is available;

 * ’encoding’, meaning an encoder for this codec is available;

 * ’passthrough’, meaning the Media Server is able to pass a
 stream encoded using that codec through, without re-encoding.

5.1.5.9. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as application-level data. This data is meant to only
 have meaning at the application-level logic and as such is not
 otherwise restricted by this specification. The set of allowed
 characters is the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646
 [ISO.10646.2012] (see also Section 2.2 of
 <http://www.w3.org/TR/xml/>)). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

Boulton, et al. Standards Track [Page 23]

RFC 6917 Media Resource Brokering April 2013

5.1.5.10. <file-formats>

 The <file-formats> element provides a list of file formats supported
 for the purpose of playing media. The element MAY be present.

 The <file-formats> element has no attributes.

 The <file-formats> element has zero of more the following child
 elements:

 <supported-format>: Has a single attribute, ’name’, which provides
 the type of file format that is supported. A valid value is a
 media type that, depending on its definition, can include
 additional parameters (e.g., [RFC6381]). The <supported-format>
 element then has a further child element,
 <supported-file-package>. The <supported-file-package> element
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the file
 format support applies.

5.1.5.11. <max-prepared-duration>

 The <max-prepared-duration> element provides the maximum amount of
 time a media dialog will be kept in the prepared state before timing
 out (see Section 4.4.2.2.6 of RFC 6231 [RFC6231]. The element MAY be
 present.

 The <max-prepared-duration> element has no attributes.

 The <max-prepared-duration> element has a single child element:

 <max-time>: Has a single attribute, ’max-time-seconds’, which
 provides the amount of time in seconds that a media dialog can be
 in the prepared state. The <max-time> element then has a further
 child element, <max-time-package>. The <max-time-package> element
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the time
 period applies.

Boulton, et al. Standards Track [Page 24]

RFC 6917 Media Resource Brokering April 2013

5.1.5.12. <dtmf-support>

 The <dtmf-support> element specifies the supported methods to detect
 Dual-Tone Multi-Frequency (DTMF) tones and to generate them. The
 element MAY be present.

 The <dtmf-support> element has no attributes.

 The <dtmf-support> element has zero of more of the following child
 elements:

 <detect>: Indicates the support for DTMF detection. The <detect>
 element has no attributes. The <detect> element then has a
 further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes: ’name’ and ’package’. The ’name’ attribute
 provides the type of DTMF being used, and it can only be a case-
 insensitive string containing either ’RFC4733’ [RFC4733] or
 ’Media’ (detecting tones as signals from the audio stream). The
 ’package’ attribute provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the DTMF type applies.

 <generate>: Indicates the support for DTMF generation. The
 <generate> element has no attributes. The <generate> element then
 has a further child element, <dtmf-type>. The <dtmf-type> element
 has two attributes: ’name’ and ’package’. The ’name’ attribute
 provides the type of DTMF being used, and it can only be a case-
 insensitive string containing either ’RFC4733’ [RFC4733] or
 ’Media’ (generating tones as signals in the audio stream). The
 ’package’ attribute provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the DTMF type applies.

 <passthrough>: Indicates the support for passing DTMF through
 without re-encoding. The <passthrough> element has no attributes.
 The <passthrough> element then has a further child element,
 <dtmf-type>. The <dtmf-type> element has two attributes: ’name’
 and ’package’. The ’name’ attribute provides the type of DTMF
 being used, and it can only be a case-insensitive string
 containing either ’RFC4733’ [RFC4733] or ’Media’ (passing tones as
 signals through the audio stream). The ’package’ attribute
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the DTMF
 type applies.

Boulton, et al. Standards Track [Page 25]

RFC 6917 Media Resource Brokering April 2013

5.1.5.13. <mixing-modes>

 The <mixing-modes> element provides information about the support for
 audio and video mixing of a Media Server, specifically a list of
 supported algorithms to mix audio and a list of supported video
 presentation layouts. The element MAY be present.

 The <mixing-modes> element has no attributes.

 The <mixing-modes> element has zero or more of the following child
 elements:

 <audio-mixing-modes>: Describes the available algorithms for audio
 mixing. The <audio-mixing-modes> element has no attributes. The
 <audio-mixing-modes> element has one child element. The child
 element, <audio-mixing-mode>, contains a specific available
 algorithm. Valid values for the <audio-mixing-mode> element are
 algorithm names, e.g., ’nbest’ and ’controller’ as defined in
 [RFC6505]. The element has a single attribute, ’package’. The
 attribute ’package’ provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the algorithm support applies.

 <video-mixing-modes>: Describes the available video presentation
 layouts and the supported functionality related to video mixing.
 The <video-mixing-modes> element has two attributes: ’vas’ and
 ’activespeakermix’. The ’vas’ attribute is of type boolean with a
 value of ’true’ indicating that the Media Server supports
 automatic Voice Activated Switching. The ’activespeakermix’ is of
 type boolean with a value of ’true’ indicating that the Media
 Server is able to prepare an additional video stream for the
 loudest speaker participant without its contribution. The
 <video-mixing-modes> element has one child element. The child
 element, <video-mixing-mode>, contains the name of a specific
 video presentation layout. The name may refer to one of the
 predefined video layouts defined in the XCON conference
 information data model [RFC6501], or to non-XCON layouts as well,
 as long as they are properly prefixed according to the schema they
 belong to. The <video-mixing-mode> element has a single
 attribute, ’package’. The attribute ’package’ provides the name
 of the Media Control Channel Framework package, compliant with
 Section 13.1.1 of [RFC6230], for which the algorithm support
 applies.

Boulton, et al. Standards Track [Page 26]

RFC 6917 Media Resource Brokering April 2013

5.1.5.14. <supported-tones>

 The <supported-tones> element provides information about which tones
 a Media Server is able to play and recognize. In particular, the
 support is reported by referring to both support for country codes
 (ISO 3166-1 [ISO.3166-1]) and supported functionality (ITU-T
 Recommendation Q.1950 [ITU-T.Q.1950]). The element MAY be present.

 The <supported-tones> element has no attributes.

 The <supported-tones> element has zero or more of the following child
 elements:

 <supported-country-codes>: Describes the supported country codes
 with respect to tones. The <supported-country-codes> element has
 no attributes. The <supported-country-codes> element has one
 child element. The child element, <country-code>, reports support
 for a specific country code, compliant with the ISO 3166-1
 [ISO.3166-1] specification. The <country-code> element has a
 single attribute, ’package’. The attribute ’package’ provides the
 name of the Media Control Channel Framework package, compliant
 with Section 13.1.1 of [RFC6230], in which the tones from the
 specified country code are supported.

 <supported-h248-codes>: Describes the supported H.248 codes with
 respect to tones. The <supported-h248-codes> element has no
 attributes. The <supported-h248-codes> element has one child
 element. The child element, <h248-code>, reports support for a
 specific H.248 code, compliant with the ITU-T Recommendation
 Q.1950 [ITU-T.Q.1950] specification. The codes can be either
 specific (e.g., cg/dt to only report the Dial Tone from the Call
 Progress Tones package) or generic (e.g., cg/* to report all the
 tones from the Call Progress Tones package), using wildcards. The
 <h248-code> element has a single attribute, ’package’. The
 attribute ’package’ provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], in
 which the specified codes are supported.

5.1.5.15. <file-transfer-modes>

 The <file-transfer-modes> element allows the Media Server to specify
 which scheme names are supported for transferring files to a Media
 Server for each Media Control Channel Framework package type, for
 example, whether the Media Server supports fetching resources via
 HTTP, HTTPS, NFS, etc. The element MAY be present.

 The <file-transfer-modes> element has no attributes.

Boulton, et al. Standards Track [Page 27]

RFC 6917 Media Resource Brokering April 2013

 The <file-transfer-modes> element has a single child element:

 <file-transfer-mode>: Has two attributes: ’name’ and ’package’. The
 ’name’ attribute provides the scheme name of the protocol that can
 be used for file transfer (e.g., HTTP, HTTPS, NFS, etc.); the
 value of the attribute is case insensitive. The ’package’
 attribute provides the name of the Media Control Channel Framework
 package, compliant with the specification in the related IANA
 registry (e.g., "msc-ivr/1.0"), for which the scheme name applies.

 It is important to point out that this element provides no
 information about whether or not the Media Server supports any flavor
 of live streaming: for instance, a value of "HTTP" for the IVR
 (Interactive Voice Response) Package would only mean the ’http’
 scheme makes sense to the Media Server within the context of that
 package. Whether or not the Media Server can make use of HTTP to
 only fetch resources, or also to attach an HTTP live stream to a
 call, is to be considered implementation specific to the Media Server
 and irrelevant to the Application Server and/or MRB. Besides, the
 Media Server supporting a scheme does not imply that it also supports
 the related secure versions: for instance, if the Media Server
 supports both HTTP and HTTPS, both the schemes will appear in the
 element. A lack of the "HTTPS" value would need to be interpreted as
 a lack of support for the ’https’ scheme.

5.1.5.16. <asr-tts-support>

 The <asr-tts-support> element provides information about the support
 for Automatic Speech Recognition (ASR) and Text-to-Speech (TTS)
 functionality in a Media Server. The functionality is reported by
 referring to the supported languages (using ISO 639-1 [ISO.639.2002]
 codes) regarding both ASR and TTS. The element MAY be present.

 The <asr-tts-support> element has no attributes.

 The <asr-tts-support> element has zero or more of the following child
 elements:

 <asr-support>: Describes the available languages for ASR. The
 <asr-support> element has no attributes. The <asr-support>
 element has one child element. The child element, <language>,
 reports that the Media Server supports ASR for a specific
 language. The <language> element has a single attribute,
 ’xml:lang’. The attribute ’xml:lang’ contains the ISO 639-1
 [ISO.639.2002] code of the supported language.

Boulton, et al. Standards Track [Page 28]

RFC 6917 Media Resource Brokering April 2013

 <tts-support>: Describes the available languages for TTS. The
 <tts-support> element has no attributes. The <tts-support>
 element has one child element. The child element, <language>,
 reports that the Media Server supports TTS for a specific
 language. The <language> element has a single attribute,
 ’xml:lang’. The attribute ’xml:lang’ contains the ISO 639-1
 [ISO.639.2002] code of the supported language.

5.1.5.17. <vxml-support>

 The <vxml-support> element specifies if the Media Server supports
 VoiceXML (VXML) and, if it does, through which protocols the support
 is exposed (e.g., via the control framework, RFC 4240 [RFC4240], or
 RFC 5552 [RFC5552]). The element MAY be present.

 The <vxml-support> element has no attributes.

 The <vxml-support> element has a single child element:

 <vxml-mode>: Has two attributes: ’package’ and ’support’. The
 ’package’ attribute provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the VXML support applies. The ’support’ attribute provides
 the type of VXML support provided by the Media Server (e.g.,
 RFC 5552 [RFC5552], RFC 4240 [RFC4240], or the IVR Package
 [RFC6231]), and valid values are case-insensitive RFC references
 (e.g., "rfc6231" to specify that the Media Server supports
 VoiceXML as provided by the IVR Package [RFC6231]).

 The presence of at least one <vxml-mode> child element would indicate
 that the Media Server does support VXML as specified by the child
 element itself. An empty <vxml> element would otherwise indicate
 that the Media Server does not support VXML at all.

5.1.5.18. <media-server-location>

 The <media-server-location> element provides information about the
 civic location of a Media Server. Its description makes use of the
 Civic Address Schema standardized in RFC 5139 [RFC5139]. The element
 MAY be present. More precisely, this section is entirely optional,
 and it’s implementation specific to fill it with just the details
 each implementer deems necessary for any optimization that may be
 needed.

 The <media-server-location> element has no attributes.

Boulton, et al. Standards Track [Page 29]

RFC 6917 Media Resource Brokering April 2013

 The <media-server-location> element has a single child element:

 <civicAddress>: Describes the civic address location of the Media
 Server, whose representation refers to Section 4 of RFC 5139
 [RFC5139].

5.1.5.19. <label>

 The <label> element allows a Media Server to declare a piece of
 information that will be understood by the MRB. For example, the
 Media Server can declare if it’s a blue or green one. It’s a string
 to allow arbitrary values to be returned to allow arbitrary
 classification. The element MAY be present.

 The <label> element has no attributes.

 The <label> element has no child elements.

5.1.5.20. <media-server-address>

 The <media-server-address> element allows a Media Server to provide a
 direct SIP URI where it can be reached (e.g., the URI that the
 Application Server would call in order to set up a Control Channel
 and relay SIP media dialogs). The element MAY be present.

 The <media-server-address> element has no attributes.

 The <media-server-address> element has no child elements.

5.1.5.21. <encryption>

 The <encryption> element allows a Media Server to declare support for
 encrypting RTP media streams using RFC 3711 [RFC3711]. The element
 MAY be present. If the element is present, then the Media Server
 supports DTLS-SRTP (a Secure Real-time Transport Protocol (SRTP)
 extension for Datagram Transport Layer Security (DTLS)) [RFC5763].

 The <encryption> element has no attributes.

 The <encryption> element has no child elements.

5.2. Media Service Resource Consumer Interface

 The Media Server Consumer interface provides the ability for clients
 of an MRB, such as Application Servers, to request an appropriate
 Media Server to satisfy specific criteria. This interface allows a
 client to pass detailed meta-information to the MRB to help select an
 appropriate Media Server. The MRB is then able to make an informed

Boulton, et al. Standards Track [Page 30]

RFC 6917 Media Resource Brokering April 2013

 decision and provide the client with an appropriate Media Server
 resource. The MRB Consumer interface includes both 1) the In-line
 Aware MRB Mode (IAMM), which uses the Session Initiation Protocol
 (SIP) and 2) the Query mode, which uses the Hypertext Transfer
 Protocol (HTTP) [RFC2616]. The MRB Consumer interface does not
 include the In-line Unaware Mode (IUMM), which is further explained
 in Section 5.3. The following sub-sections provide guidance on
 using the Consumer interface, which is represented by the
 ’application/mrb-consumer+xml’ media type in Section 11, with HTTP
 and SIP.

5.2.1. Query Mode/HTTP Consumer Interface Usage

 An appropriate interface for such a ’query’ style interface is in
 fact an HTTP usage. Using HTTP and XML combined reduces complexity
 and encourages the use of common tools that are widely available in
 the industry today. The following information explains the primary
 operations required to request and then receive information from an
 MRB, by making use of HTTP [RFC2616] and HTTPS [RFC2818] as transport
 for a query for a media resource, and the appropriate response.

 The media resource query, as defined by the <mediaResourceRequest>
 element from Section 11, MUST be carried in the body of an HTTP/HTTPS
 POST request. The media type contained in the HTTP/HTTPS request/
 response MUST be ’application/mrb-consumer+xml’. This value MUST be
 reflected in the appropriate HTTP headers, such as ’Content-Type’ and
 ’Accept’. The body of the HTTP/HTTPS POST request MUST only contain
 an <mrbconsumer> root element with only one child
 <mediaResourceRequest> element as defined in Section 11.

 The media resource response to a query, as defined by the
 <mediaResourceResponse> element from Section 11, MUST be carried in
 the body of an HTTP/HTTPS 200 response to the original HTTP/HTTPS
 POST request. The media type contained in the HTTP/HTTPS request/
 response MUST be ’application/mrb-consumer+xml’. This value MUST be
 reflected in the appropriate HTTP headers, such as ’Content-Type’ and
 ’Accept’. The body of the HTTP/HTTPS 200 response MUST only contain
 an <mrbconsumer> root element with only one child
 <mediaResourceResponse> element as defined in Section 11.

 When an Application Server wants to release previously awarded media
 resources granted through a prior request/response exchange with an
 MRB, it will send a new request with an <action> element with value
 ’remove’, as described in Section 5.2.3 ("Consumer Interface Lease
 Mechanism").

Boulton, et al. Standards Track [Page 31]

RFC 6917 Media Resource Brokering April 2013

5.2.2. In-Line Aware Mode/SIP Consumer Interface Usage

 This document provides a complete toolkit for MRB deployment that
 includes the ability to interact with an MRB using SIP for the
 Consumer interface. The following information explains the primary
 operations required to request and then receive information from an
 MRB, by making use of SIP [RFC3261] as transport for a request for
 media resources, and the appropriate response when using IAMM as the
 mode of operation (as discussed in Section 5.2.2.1).

 The use of IAMM, besides having the MRB select appropriate media
 resources on behalf of a client application, includes setting up
 either a Control Framework Control Channel between an Application
 Server and one of the Media Servers (Section 5.2.2.1) or a media
 dialog session between an Application Server and one of the Media
 Servers (Section 5.2.2.2). Note that in either case the SIP URIs of
 the selected Media Servers are made known to the requesting
 Application Server in the SIP 200 OK response by means of one or more
 <media-server-address> child elements in the <response-session-info>
 element (Section 5.2.6).

5.2.2.1. IAMM and Setting Up a Control Framework Control Channel

 The media resource request information, as defined by the
 <mediaResourceRequest> element from Section 11, is carried in a SIP
 INVITE request. The INVITE request will be constructed as it would
 have been to connect to a Media Server, as defined by the Media
 Control Channel Framework [RFC6230]. It should be noted that this
 specification does not exclude the use of an offerless INVITE as
 defined in RFC 3261 [RFC3261]. Using offerless INVITE messages to an
 MRB can potentially cause confusion when applying resource selection
 algorithms, and an MRB, like any other SIP device, can choose to
 reject with a 4xx response. For an offerless INVITE to be treated
 appropriately, additional contextual information would need to be
 provided with the request; this is out of scope for this document.
 The following additional steps MUST be followed when using the
 Consumer interface:

 o The Consumer client will include a payload in the SIP INVITE
 request of type ’multipart/mixed’ [RFC2046]. One of the parts to
 be included in the ’multipart/mixed’ payload MUST be the
 ’application/sdp’ format, which is constructed as specified in the
 Media Control Channel Framework [RFC6230].

 o Another part of the ’multipart/mixed’ payload MUST be of type
 ’application/mrb-consumer+xml’, as specified in this document and
 defined in Section 11. The body part MUST be an XML document
 without prolog and whose root element is <mediaResourceRequest>.

Boulton, et al. Standards Track [Page 32]

RFC 6917 Media Resource Brokering April 2013

 o The INVITE request will then be dispatched to the MRB, as defined
 by [RFC6230].

 On receiving a SIP INVITE request containing the multipart/mixed
 payload as specified previously, the MRB will complete a number of
 steps to fulfill the request. It will:

 o Extract the multipart MIME payload from the SIP INVITE request.
 It will then use the contextual information provided by the client
 in the ’application/mrb-consumer+xml’ part to determine which
 Media Server (or Media Servers, if more than one is deemed to be
 needed) should be selected to service the request.

 o Extract the ’application/sdp’ part from the payload and use it as
 the body of a new SIP INVITE request for connecting the client to
 one of the selected Media Servers, as defined in the Media Channel
 Control Framework [RFC6230]. The policy the MRB follows to pick a
 specific Media Server out of the Media Servers it selects is
 implementation specific and out of scope for this document. It is
 important to configure the SIP elements between the MRB and the
 Media Server in such a way that the INVITE will not fork. In the
 case of a failure in reaching the chosen Media Server, the MRB
 SHOULD proceed to the next one, if available.

 If none of the available Media Servers can be reached, the MRB MUST
 reply with a SIP 503 error message that includes a Retry-After header
 with a non-zero value. The Application Server MUST NOT attempt to
 set up a new session before the time that the MRB asked it to wait
 has passed.

 If at least one Media Server is reachable, the MRB acts as a Back-to-
 Back User Agent (B2BUA) that extracts the ’application/
 mrb-consumer+xml’ information from the SIP INVITE request and then
 sends a corresponding SIP INVITE request to the Media Server it has
 selected, to negotiate a Control Channel as defined in the Media
 Channel Control Framework [RFC6230].

 In the case of a failure in negotiating the Control Channel with the
 Media Server, the MRB SHOULD proceed to the next one, if available,
 as explained above. If none of the available Media Servers can be
 reached, or the negotiations of the Control Channel with all of them
 fail, the MRB MUST reply with a SIP 503 error message that includes a
 Retry-After header with a non-zero value. The Application Server
 MUST NOT attempt to set up a new session before the time that the MRB
 asked it to wait has expired.

Boulton, et al. Standards Track [Page 33]

RFC 6917 Media Resource Brokering April 2013

 Once the MRB receives the SIP response from the selected media
 resource (i.e., Media Server), it will in turn respond to the
 requesting client (i.e., Application Server).

 The media resource response generated by an MRB to a request, as
 defined by the <mediaResourceResponse> element from Section 11, MUST
 be carried in the payload of a SIP 200 OK response to the original
 SIP INVITE request. The SIP 200 OK response will be constructed as
 it would have been to connect from a Media Server, as defined by the
 Media Control Channel Framework [RFC6230]. The following additional
 steps MUST be followed when using the Consumer interface:

 o Include a payload in the SIP 200 response of type ’multipart/
 mixed’ as per RFC 2046 [RFC2046]. One of the parts to be included
 in the ’multipart/mixed’ payload MUST be the ’application/sdp’
 format, which is constructed as specified in the Media Control
 Channel Framework [RFC6230] and based on the incoming response
 from the selected media resource.

 o Another part of the ’multipart/mixed’ payload MUST be of type
 ’application/mrb-consumer+xml’, as specified in this document and
 defined in Section 11. Only the <mediaResourceResponse> and its
 child elements can be included in the payload.

 o The SIP 200 response will then be dispatched from the MRB.

 o A SIP ACK to the 200 response will then be sent back to the MRB.

 Considering that the use of SIP as a transport for Consumer
 transactions may result in failure, the IAMM relies on a successful
 INVITE transaction to address the previously discussed sequence
 (using the ’seq’ XML element) increment mechanism. This means that
 if the INVITE is unsuccessful for any reason, the Application Server
 MUST use the same ’seq’ value as previously used for the next
 Consumer request that it may want to send to the MRB for the same
 session.

 An MRB implementation may be programmed to conclude that the
 requested resources are no longer needed when it receives a SIP BYE
 from the Application Server or Media Server that concludes the SIP
 dialog that initiated the request, or when the lease (Section 5.2.3)
 interval expires.

Boulton, et al. Standards Track [Page 34]

RFC 6917 Media Resource Brokering April 2013

5.2.2.2. IAMM and Setting Up a Media Dialog

 This scenario is identical to the description in the previous section
 for setting up a Control Framework Control Channel, with the
 exception that the application/sdp payload conveys content
 appropriate for setting up the media dialog to the media resource, as
 per RFC 3261 [RFC3261], instead of setting up a Control Channel.

5.2.3. Consumer Interface Lease Mechanism

 The Consumer interface defined in Sections 5.2 and 11 allows a client
 to request an appropriate media resource based on information
 included in the request (either an HTTP POST or SIP INVITE message).
 In the case of success, the response that is returned to the client
 MUST contain a <response-session-info> element in either the SIP 200
 or HTTP 200 response. The success response contains the description
 of certain resources that have been reserved to a specific Consumer
 client in a (new or revised) "resource session", which is identified
 in the <response-session-info>. The resource session is a "lease",
 in that the reservation is scheduled to expire at a particular time
 in the future, releasing the resources to be assigned for other uses.
 The lease may be extended or terminated earlier by future Consumer
 client requests that identify and reference a specific resource
 session.

 Before delving into the details of such a lease mechanism, it is
 worth clarifying its role within the context of the Consumer
 interface. As explained in Section 5.1, the knowledge the MRB has of
 the resources of all the Media Servers it is provisioned to manage is
 not real-time. How an MRB actually manages such resources is
 implementation specific -- for example, an implementation may choose
 to have the MRB keeping track and state of the allocated resources,
 or simply rely on the Media Servers themselves to provide the
 information using the Publish interface. Further information may
 also be inferred by the signaling, in the case where an MRB is in the
 path of media dialogs.

Boulton, et al. Standards Track [Page 35]

RFC 6917 Media Resource Brokering April 2013

 The <mediaResourceResponse> element returned from the MRB contains a
 <response-session-info> element if the request is successful. The
 <response-session-info> element has zero or more of the following
 child elements, which provide the appropriate resource session
 information:

 o <session-id> is a unique identifier that enables a Consumer client
 and MRB to correlate future media resource requests related to an
 initial media resource request. The <session-id> MUST be included
 in all future related requests (see the <session-id> paragraph
 later in this section, where constructing a subsequent request is
 discussed).

 o <seq> is a numeric value returned to the Consumer client. On
 issuing any future requests related to the media resource session
 (as determined by the <session-id> element), the Consumer client
 MUST increment the value returned in the <seq> element and include
 it in the request (see the <seq> paragraph later in this section,
 where constructing a subsequent request is discussed). Its value
 is a non-negative integer that MUST be limited within the
 0..2^31-1 range.

 o <expires> provides a value indicating the number of seconds that
 the request for media resources is deemed alive. The Consumer
 client should issue a refresh of the request, as discussed later
 in this section, if the expiry is due to fire and the media
 resources are still required.

 o <media-server-address> provides information representing an
 assigned Media Server. More instances of this element may appear
 should the MRB assign more Media Servers to a Consumer request.

 The <mediaResourceRequest> element is used in subsequent Consumer
 interface requests if the client wishes to manipulate the session.
 The Consumer client MUST include the <session-info> element, which
 enables the receiving MRB to determine an existing media resource
 allocation session. The <session-info> element has the following
 child elements, which provide the appropriate resource session
 information to the MRB:

 o <session-id> is a unique identifier that allows a Consumer client
 to indicate the appropriate existing media resource session to be
 manipulated by the MRB for this request. The value was provided
 by the MRB in the initial request for media resources, as
 discussed earlier in this section (<session-id> element included
 as part of the <session-info> element in the initial
 <mediaResourceResponse>).

Boulton, et al. Standards Track [Page 36]

RFC 6917 Media Resource Brokering April 2013

 o <seq> is a numeric value returned to the Consumer client in the
 initial request for media resources, as discussed earlier in this
 section (<seq> element included as part of the <session-info>
 element in the initial <mediaResourceResponse>). On issuing any
 future requests related to the specific media resource session (as
 determined by the <session-id> element), the Consumer client MUST
 increment the value returned in the <seq> element from the initial
 response (contained in the <mediaResourceResponse>) for every new
 request. The value of the <seq> element in requests acts as a
 counter and when used in conjunction with the unique <session-id>
 allows for unique identification of a request. As anticipated
 before, the <seq> value is limited to the 0..2^31-1 range: in the
 unlikely case that the counter increases to reach the highest
 allowed value, the <seq> value MUST be set to 0. The first
 numeric value for the <seq> element is not meant to be ’1’ but
 SHOULD be generated randomly by the MRB: this is to reduce the
 chances of a malicious MRB disrupting the session created by this
 MRB, as explained in Section 12.

 o <action> provides the operation to be carried out by the MRB on
 receiving the request:

 * The value of ’update’ is a request by the Consumer client to
 update the existing session on the MRB with alternate media
 resource requirements. If the requested resource information
 is identical to the existing MRB session, the MRB will attempt
 a session refresh. If the information has changed, the MRB
 will attempt to update the existing session with the new
 information. If the operation is successful, the 200 status
 code in the response is returned in the status attribute of the
 <mediaResourceResponseType> element. If the operation is not
 successful, a 409 status code in the response is returned in
 the status attribute of the <mediaResourceResponseType>
 element.

 * The value of ’remove’ is a request by the Consumer client to
 remove the session on the MRB. This provides a mechanism for
 Consumer clients to release unwanted resources before they
 expire. If the operation is successful, a 200 status code in
 the response is returned in the status attribute of the
 <mediaResourceResponseType> element. If the operation is not
 successful, a 410 status code in the response is returned in
 the status attribute of the <mediaResourceResponseType>
 element.

 Omitting the ’action’ attribute means requesting a new set of
 resources.

Boulton, et al. Standards Track [Page 37]

RFC 6917 Media Resource Brokering April 2013

 When used with HTTP, the <session-info> element MUST be included in
 an HTTP POST message (as defined in [RFC2616]). When used with SIP,
 the <session-info> element MUST instead be included in either a SIP
 INVITE or a SIP re-INVITE (as defined in [RFC3261]), or in a SIP
 UPDATE (as defined in [RFC3311]) request: in fact, any SIP dialog, be
 it a new or an existing one, can be exploited to carry leasing
 information, and as such new SIP INVITE messages can update other
 leases as well as request a new one.

 With IAMM, the Application Server or Media Server will eventually
 send a SIP BYE to end the SIP session, whether it was for a Control
 Channel or a media dialog. That BYE contains no Consumer interface
 lease information.

5.2.4. <mrbconsumer>

 This section defines the XML elements for the Consumer interface.
 The formal XML schema definition for the Consumer interface can be
 found in Section 11.

 The root element is <mrbconsumer>. All other XML elements (requests,
 responses) are contained within it. The MRB Consumer interface
 request element is detailed in Section 5.2.5.1. The MRB Consumer
 interface response element is detailed in Section 5.2.6.1.

 The <mrbconsumer> element has the following attributes:

 version: a token specifying the mrb-consumer package version. The
 value is fixed as ’1.0’ for this version of the package. The
 attribute MUST be present.

 The <mrbconsumer> element may have zero or more children of one of
 the following child element types:

 <mediaResourceRequest> for sending a Consumer request. See
 Section 5.2.5.1.

 <mediaResourceResponse> for sending a Consumer response. See
 Section 5.2.6.1.

Boulton, et al. Standards Track [Page 38]

RFC 6917 Media Resource Brokering April 2013

5.2.5. Media Service Resource Request

 This section provides the element definitions for use in Consumer
 interface requests. The requests are carried in the
 <mediaResourceRequest> element.

5.2.5.1. <mediaResourceRequest>

 The <mediaResourceRequest> element provides information for clients
 wishing to query an external MRB entity. The <mediaResourceRequest>
 element has a single mandatory attribute, ’id’: this attribute
 contains a random identifier, generated by the client, that will be
 included in the response in order to map it to a specific request.
 The <mediaResourceRequest> element has <generalInfo>, <ivrInfo>, and
 <mixerInfo> as child elements. These three elements are used to
 describe the requirements of a client requesting a Media Server and
 are covered in Sections 5.2.5.1.1, 5.2.5.1.2, and 5.2.5.1.3,
 respectively.

5.2.5.1.1. <generalInfo>

 The <generalInfo> element provides general Consumer request
 information that is neither IVR specific nor mixer specific. This
 includes session information that can be used for subsequent requests
 as part of the leasing mechanism described in Section 5.2.3. The
 following sub-sections describe the <session-info> and <packages>
 elements, as used by the <generalInfo> element.

5.2.5.1.1.1. <session-info>

 The <session-info> element is included in Consumer requests when an
 update is being made to an existing media resource session. The
 ability to change and remove an existing media resource session is
 described in more detail in Section 5.2.3. The element MAY be
 present.

 The <session-info> element has no attributes.

 The <session-info> element has zero or more of the following child
 elements:

 <session-id>: A unique identifier that explicitly references an
 existing media resource session on the MRB. The identifier is
 included to update the existing session and is described in more
 detail in Section 5.2.3.

Boulton, et al. Standards Track [Page 39]

RFC 6917 Media Resource Brokering April 2013

 <seq>: Used in association with the <session-id> element in a
 subsequent request to update an existing media resource session on
 an MRB. The <seq> number is incremented from its original value
 returned in response to the initial request for media resources.
 Its value is a non-negative integer that MUST be limited within
 the 0..2^31-1 range. In the unlikely case that the counter
 increases to reach the highest allowed value, the <seq> value MUST
 be set to 0. More information about its use is provided in
 Section 5.2.3.

 <action>: Provides the operation that should be carried out on an
 existing media resource session on an MRB:

 * The value of ’update’ instructs the MRB to attempt to update
 the existing media resource session with the information
 contained in the <ivrInfo> and <mixerInfo> elements.

 * The value of ’remove’ instructs the MRB to attempt to remove
 the existing media resource session. More information on its
 use is provided in Section 5.2.3.

5.2.5.1.1.2. <packages>

 The <packages> element provides a list of Media Control Channel
 Framework compliant packages that are required by the Consumer
 client. The element MAY be present.

 The <packages> element has no attributes.

 The <packages> element has a single child element:

 <package>: Contains a string representing the Media Control Channel
 Framework package required by the Consumer client. The <package>
 element can appear multiple times. A valid value is a Control
 Package name compliant with Section 13.1.1 of [RFC6230].

5.2.5.1.2. <ivrInfo>

 The <ivrInfo> element provides information for general Consumer
 request information that is IVR specific. The following sub-sections
 describe the elements of the <ivrInfo> element: <ivr-sessions>,
 <file-formats>, <dtmf>, <tones>, <asr-tts>, <vxml>, <location>,
 <encryption>, <application-data>, <max-prepared-duration>, and
 <file-transfer-modes>.

Boulton, et al. Standards Track [Page 40]

RFC 6917 Media Resource Brokering April 2013

5.2.5.1.2.1. <ivr-sessions>

 The <ivr-sessions> element indicates the number of IVR sessions that
 a Consumer client requires from a media resource. The element MAY be
 present.

 The <ivr-sessions> element has no attributes.

 The <ivr-sessions> element has a single child element:

 <rtp-codec>: Describes a required codec and the number of sessions
 using that codec. The <rtp-codec> element has one attribute. The
 value of the attribute, ’name’, is a media type (which can include
 parameters per [RFC6381]). The <rtp-codec> element has two child
 elements. The child element <decoding> contains the number of RTP
 sessions required for decoding using the specified codec, and the
 child element <encoding> contains the number of RTP sessions
 required for encoding using the specified codec.

5.2.5.1.2.2. <file-formats>

 The <file-formats> element provides a list of file formats required
 for the purpose of playing media. It should be noted that this
 element describes media types and might better have been named
 "media-formats", but due to existing implementations the name
 "file-formats" is being used. The element MAY be present.

 The <file-formats> element has no attributes.

 The <file-formats> element has a single child element:

 <required-format>: Has a single attribute, ’name’, which provides
 the type of file format that is required. A valid value is a
 media type that, depending on its definition, can include
 additional parameters (e.g., [RFC6381]). The <required-format>
 element then has a further child element, <required-file-package>.
 The <required-file-package> element has a single attribute,
 ’required-file-package-name’, which contains the name of the Media
 Control Channel Framework package, compliant with Section 13.1.1
 of [RFC6230], for which the file format support applies.

Boulton, et al. Standards Track [Page 41]

RFC 6917 Media Resource Brokering April 2013

5.2.5.1.2.3. <dtmf>

 The <dtmf> element specifies the required methods to detect DTMF
 tones and to generate them. The element MAY be present.

 The <dtmf> element has no attributes.

 The <dtmf> element has zero or more of the following child elements:

 <detect>: Indicates the required support for DTMF detection. The
 <detect> element has no attributes. The <detect> element has a
 further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes: ’name’ and ’package’. The ’name’ attribute
 provides the type of DTMF required and is a case-insensitive
 string containing either ’RFC4733’ [RFC4733] or ’Media’ (detecting
 tones as signals from the audio stream). The ’package’ attribute
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the DTMF
 type applies.

 <generate>: Indicates the required support for DTMF generation. The
 <generate> element has no attributes. The <generate> element has
 a single child element, <dtmf-type>. The <dtmf-type> element has
 two attributes: ’name’ and ’package’. The ’name’ attribute
 provides the type of DTMF required and is a case-insensitive
 string containing either ’RFC4733’ [RFC4733] or ’Media’
 (generating tones as signals in the audio stream). The ’package’
 attribute provides the name of the Media Control Channel Framework
 package, compliant with Section 13.1.1 of [RFC6230], for which the
 DTMF type applies.

 <passthrough>: Indicates the required support for passing DTMF
 through without re-encoding. The <passthrough> element has no
 attributes. The <passthrough> element then has a further child
 element, <dtmf-type>. The <dtmf-type> element has two attributes:
 ’name’ and ’package’. The ’name’ attribute provides the type of
 DTMF required and is a case-insensitive string containing either
 ’RFC4733’ [RFC4733] or ’Media’ (passing tones as signals through
 the audio stream). The ’package’ attribute provides the name of
 the Media Control Channel Framework package, compliant with
 Section 13.1.1 of [RFC6230], for which the DTMF type applies.

Boulton, et al. Standards Track [Page 42]

RFC 6917 Media Resource Brokering April 2013

5.2.5.1.2.4. <tones>

 The <tones> element provides requested tones that a Media Server must
 support for IVR. In particular, the request refers to both support
 for country codes (ISO 3166-1 [ISO.3166-1]) and requested
 functionality (ITU-T Recommendation Q.1950 [ITU-T.Q.1950]). The
 element MAY be present.

 The <tones> element has no attributes.

 The <tones> element has zero or more of the following child elements:

 <country-codes>: Describes the requested country codes in relation
 to tones. The <country-codes> element has no attributes. The
 <country-codes> element has one child element. The child element,
 <country-code>, requests a specific country code, compliant with
 the ISO 3166-1 [ISO.3166-1] specification. The <country-code>
 element has a single attribute, ’package’. The attribute
 ’package’ provides the name of the Media Control Channel Framework
 package, compliant with Section 13.1.1 of [RFC6230], in which the
 tones from the specified country code are requested.

 <h248-codes>: Describes the requested H.248 codes in relation to
 tones. The <h248-codes> element has no attributes. The
 <h248-codes> element has one child element. The child element,
 <h248-code>, requests a specific H.248 code, compliant with the
 ITU-T Recommendation Q.1950 [ITU-T.Q.1950] specification. The
 codes can be either specific (e.g., cg/dt to only report the Dial
 Tone from the Call Progress Tones package) or generic (e.g., cg/*
 to report all the tones from the Call Progress Tones package),
 using wildcards. The <h248-code> element has a single attribute,
 ’package’. The attribute ’package’ provides the name of the Media
 Control Channel Framework package, compliant with Section 13.1.1
 of [RFC6230], in which the specified codes are requested.

5.2.5.1.2.5. <asr-tts>

 The <asr-tts> element requests information about the support for
 Automatic Speech Recognition (ASR) and Text-to-Speech (TTS)
 functionality in a Media Server. The functionality is requested by
 referring to the supported languages (using ISO 639-1 [ISO.639.2002]
 codes) in relation to both ASR and TTS. The <asr-tts> element has no
 attributes. The <asr-tts> element has zero or more of the following
 child elements:

 <asr-support>: Describes the available languages for ASR. The
 <asr-support> element has no attributes. The <asr-support>
 element has one child element. The child element, <language>,

Boulton, et al. Standards Track [Page 43]

RFC 6917 Media Resource Brokering April 2013

 requests that the Media Server supports ASR for a specific
 language. The <language> element has a single attribute,
 ’xml:lang’. The attribute ’xml:lang’ contains the ISO 639-1
 [ISO.639.2002] code of the supported language.

 <tts-support>: Describes the available languages for TTS. The
 <tts-support> element has no attributes. The <tts-support>
 element has one child element. The child element, <language>,
 requests that the Media Server supports TTS for a specific
 language. The <language> element has a single attribute,
 ’xml:lang’. The attribute ’xml:lang’ contains the ISO 639-1
 [ISO.639.2002] code of the supported language.

5.2.5.1.2.6. <vxml>

 The <vxml> element specifies if the Consumer client requires VoiceXML
 and, if so, which protocols are supported (e.g., via the control
 framework, RFC 4240 [RFC4240], or RFC 5552 [RFC5552]). The element
 MAY be present.

 The <vxml> element has a single child element:

 <vxml-mode>: Has two attributes: ’package’ and ’require’. The
 ’package’ attribute provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the VXML support applies. The ’require’ attribute specifies
 the type of VXML support required by the Consumer client (e.g.,
 RFC 5552 [RFC5552], RFC 4240 [RFC4240], or IVR Package [RFC6231]),
 and valid values are case-insensitive RFC references (e.g.,
 "rfc6231" to specify that the client requests support for VoiceXML
 as provided by the IVR Package [RFC6231]).

 The presence of at least one <vxml> child element would indicate that
 the Consumer client requires VXML support as specified by the child
 element itself. An empty <vxml> element would otherwise indicate
 that the Consumer client does not require VXML support.

5.2.5.1.2.7. <location>

 The <location> element requests a civic location for an IVR Media
 Server. The request makes use of the Civic Address Schema
 standardized in RFC 5139 [RFC5139]. The element MAY be present.
 More precisely, this section is entirely optional and is
 implementation specific in its level of population.

 The <location> element has no attributes.

Boulton, et al. Standards Track [Page 44]

RFC 6917 Media Resource Brokering April 2013

 The <location> element has a single child element:

 <civicAddress>: Describes the civic address location of the
 requested Media Server, whose representation refers to Section 4
 of RFC 5139 [RFC5139].

5.2.5.1.2.8. <encryption>

 The <encryption> element allows a Consumer client to request support
 for encrypting RTP media streams using RFC 3711 [RFC3711]. The
 element MAY be present. If the element is present, then the Media
 Server supports DTLS-SRTP [RFC5763].

 The <encryption> element has no attributes.

 The <encryption> element has no child elements.

5.2.5.1.2.9. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as IVR application-level data. This data is meant to only
 have meaning at the application-level logic and as such is not
 otherwise restricted by this specification. The set of allowed
 characters is the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646
 [ISO.10646.2012] (see also Section 2.2 of
 <http://www.w3.org/TR/xml/>)). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

5.2.5.1.2.10. <max-prepared-duration>

 The <max-prepared-duration> element indicates the amount of time
 required by the Consumer client representing media dialog preparation
 in the system before it is executed. The element MAY be present.

 The <max-prepared-duration> element has no attributes.

 The <max-prepared-duration> element has a single child element:

 <max-time>: Has a single attribute, ’max-time-seconds’, which
 provides the amount of time in seconds that a media dialog can be
 in the prepared state. The <max-time> element then has a further
 child element, <max-time-package>. The <max-time-package> element

Boulton, et al. Standards Track [Page 45]

RFC 6917 Media Resource Brokering April 2013

 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the time
 period applies.

5.2.5.1.2.11. <file-transfer-modes>

 The <file-transfer-modes> element allows the Consumer client to
 specify which scheme names are required for file transfer to a Media
 Server for each Media Control Channel Framework package type. For
 example, does the Media Server support fetching media resources via
 HTTP, HTTPS, NFS, etc.? The element MAY be present.

 The <file-transfer-modes> element has no attributes.

 The <file-transfer-modes> element has a single child element:

 <file-transfer-mode>: Has two attributes: ’name’ and ’package’. The
 ’name’ attribute provides the scheme name of the protocol required
 for fetching resources: valid values are case-insensitive scheme
 names (e.g., HTTP, HTTPS, NFS, etc.). The ’package’ attribute
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the scheme
 name applies.

 The same considerations relating to file transfer and live streaming
 are explained further in Section 5.1.5.15 and apply here as well.

5.2.5.1.3. <mixerInfo>

 The <mixerInfo> element provides information for general Consumer
 request information that is mixer specific. The following
 sub-sections describe the elements of the <mixerInfo> element:
 <mixers>, <file-formats>, <dtmf>, <tones>, <mixing-modes>,
 <application-data>, <location>, and <encryption>.

5.2.5.1.3.1. <mixers>

 The <mixers> element provides information detailing the required
 mixed RTP sessions. The element MAY be present.

 The <mixers> element has no attributes.

 The <mixers> element has a single child element:

 <mix>: Describes the required mixed RTP sessions. The <mix> element
 has one attribute. The value of the attribute, ’users’, is the
 number of participants required in the mix. The <mix> element has

Boulton, et al. Standards Track [Page 46]

RFC 6917 Media Resource Brokering April 2013

 one child element. The child element, <rtp-codec>, contains the
 same information relating to RTP sessions as that defined in
 Section 5.1.5.3. The element MAY be present.

5.2.5.1.3.2. <file-formats>

 The <file-formats> element provides a list of file formats required
 by the Consumer client for the purpose of playing media to a mix.
 The element MAY be present.

 The <file-formats> element has no attributes.

 The <file-formats> element has a single child element:

 <required-format>: Has a single attribute, ’name’, which provides
 the type of file format supported. A valid value is a media type
 that, depending on its definition, can include additional
 parameters (e.g., [RFC6381]). The <required-format> element has a
 child element, <required-file-package>. The
 <required-file-package> element contains a single attribute,
 ’required-file-package-name’, which contains the name of the Media
 Control Channel Framework package, compliant with Section 13.1.1
 of [RFC6230], for which the file format support applies.

5.2.5.1.3.3. <dtmf>

 The <dtmf> element specifies the required methods to detect DTMF
 tones and to generate them in a mix. The element MAY be present.

 The <dtmf> element has no attributes.

 The <dtmf> element has zero or more of the following child elements:

 <detect>: Indicates the required support for DTMF detection. The
 <detect> element has no attributes. The <detect> element then has
 a further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes: ’name’ and ’package’. The ’name’ attribute
 provides the type of DTMF being used and is a case-insensitive
 string containing either ’RFC4733’ [RFC4733] or ’Media’ (detecting
 tones as signals from the audio stream). The ’package’ attribute
 provides the name of the Media Control Channel Framework package,
 compliant with Section 13.1.1 of [RFC6230], for which the DTMF
 type applies.

 <generate>: Indicates the required support for DTMF generation. The
 <generate> element has no attributes. The <generate> element has
 a single child element, <dtmf-type>. The <dtmf-type> element has
 two attributes: ’name’ and ’package’. The ’name’ attribute

Boulton, et al. Standards Track [Page 47]

RFC 6917 Media Resource Brokering April 2013

 provides the type of DTMF being used and is a case-insensitive
 string containing either ’RFC4733’ [RFC4733] or ’Media’
 (generating tones as signals in the audio stream). The ’package’
 attribute provides the name of the Media Control Channel Framework
 package, compliant with Section 13.1.1 of [RFC6230], for which the
 DTMF type applies.

 <passthrough>: Indicates the required support for passing DTMF
 through without re-encoding. The <passthrough> element has no
 attributes. The <passthrough> element has a single child element,
 <dtmf-type>. The <dtmf-type> element has two attributes: ’name’
 and ’package’. The ’name’ attribute provides the type of DTMF
 being used and is a case-insensitive string containing either
 ’RFC4733’ [RFC4733] or ’Media’ (passing tones as signals through
 the audio stream). The ’package’ attribute provides the name of
 the Media Control Channel Framework package, compliant with
 Section 13.1.1 of [RFC6230], for which the DTMF type applies.

5.2.5.1.3.4. <tones>

 The <tones> element provides requested tones that a Media Server must
 support for a mix. In particular, the request refers to both support
 for country codes (ISO 3166-1 [ISO.3166-1]) and requested
 functionality (ITU-T Recommendation Q.1950 [ITU-T.Q.1950]). The
 element MAY be present.

 The <tones> element has no attributes.

 The <tones> element has zero or more of the following child elements:

 <country-codes>: Describes the requested country codes in relation
 to tones. The <country-codes> element has no attributes. The
 <country-codes> element has a single child element. The child
 element, <country-code>, requests a specific country code,
 compliant with the ISO 3166-1 [ISO.3166-1] specification. The
 <country-code> element has a single attribute, ’package’. The
 attribute ’package’ provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), in which the tones from the
 specified country code are requested.

 <h248-codes>: Describes the requested H.248 codes with respect to
 tones. The <h248-codes> element has no attributes. The
 <h248-codes> element has a single child element. The child
 element, <h248-code>, requests a specific H.248 code, compliant
 with the ITU-T Recommendation Q.1950 [ITU-T.Q.1950] specification.
 The codes can be either specific (e.g., cg/dt to only report the
 Dial Tone from the Call Progress Tones package) or generic (e.g.,

Boulton, et al. Standards Track [Page 48]

RFC 6917 Media Resource Brokering April 2013

 cg/* to report all the tones from the Call Progress Tones
 package), using wildcards. The <h248-code> element has a single
 attribute, ’package’. The attribute ’package’ provides the name
 of the Media Control Channel Framework package, compliant with
 Section 13.1.1 of [RFC6230], in which the specified codes are
 requested.

5.2.5.1.3.5. <mixing-modes>

 The <mixing-modes> element requests information relating to support
 for audio and video mixing, more specifically a list of supported
 algorithms to mix audio and a list of supported video presentation
 layouts. The element MAY be present.

 The <mixing-modes> element has no attributes.

 The <mixing-modes> element has zero or more of the following child
 elements:

 <audio-mixing-modes>: Describes the requested algorithms for audio
 mixing. The <audio-mixing-modes> element has no attributes. The
 <audio-mixing-modes> element has one child element. The child
 element, <audio-mixing-mode>, contains a requested mixing
 algorithm. Valid values for the <audio-mixing-mode> element are
 algorithm names, e.g., ’nbest’ and ’controller’ as defined in
 [RFC6505]. The element has a single attribute, ’package’. The
 attribute ’package’ provides the name of the Media Control Channel
 Framework package, compliant with Section 13.1.1 of [RFC6230], for
 which the algorithm support is requested.

 <video-mixing-modes>: Describes the requested video presentation
 layouts for video mixing. The <video-mixing-modes> element has
 two attributes: ’vas’ and ’activespeakermix’. The ’vas’ attribute
 is of type boolean with a value of ’true’ indicating that the
 Consumer client requires automatic Voice Activated Switching. The
 ’activespeakermix’ attribute is of type boolean with a value of
 ’true’ indicating that the Consumer client requires an additional
 video stream for the loudest speaker participant without its
 contribution. The <video-mixing-modes> element has one child
 element. The child element, <video-mixing-mode>, contains the
 name of a specific video presentation layout. The name may refer
 to one of the predefined video layouts defined in the XCON
 conference information data model, or to non-XCON layouts as well,
 as long as they are appropriately prefixed. The
 <video-mixing-mode> element has a single attribute, ’package’.
 The attribute ’package’ provides the name of the Media Control
 Channel Framework package, compliant with Section 13.1.1 of
 [RFC6230], for which the algorithm support is requested.

Boulton, et al. Standards Track [Page 49]

RFC 6917 Media Resource Brokering April 2013

5.2.5.1.3.6. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as mixer application-level data. This data is meant to
 only have meaning at the application-level logic and as such is not
 otherwise restricted by this specification. The set of allowed
 characters is the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646
 [ISO.10646.2012] (see also Section 2.2 of
 <http://www.w3.org/TR/xml/>)). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

5.2.5.1.3.7. <location>

 The <location> element requests a civic location for a mixer Media
 Server. The request makes use of the Civic Address Schema
 standardized in RFC 5139 [RFC5139]. The element MAY be present.
 More precisely, this section is entirely optional, and it’s
 implementation specific to fill it with just the details each
 implementer deems necessary for any optimization that may be needed.

 The <location> element has no attributes.

 The <location> element has a single child element:

 <civicAddress>: Describes the civic address location of the
 requested Media Server, whose representation refers to Section 4
 of RFC 5139 [RFC5139].

5.2.5.1.3.8. <encryption>

 The <encryption> element allows a Consumer client to request support
 for encrypting mixed RTP media streams using RFC 3711 [RFC3711]. The
 element MAY be present. If the element is present, then the Media
 Server supports DTLS-SRTP [RFC5763].

 The <encryption> element has no attributes.

 The <encryption> element has no child elements.

Boulton, et al. Standards Track [Page 50]

RFC 6917 Media Resource Brokering April 2013

5.2.6. Media Service Resource Response

 This section provides the element definitions for use in Consumer
 interface responses. The responses are carried in the
 <mediaResourceResponse> element.

5.2.6.1. <mediaResourceResponse>

 The <mediaResourceResponse> element provides information for clients
 receiving response information from an external MRB entity.

 The <mediaResourceResponse> element has two mandatory attributes:
 ’id’ and ’status’. The ’id’ attribute must contain the same value
 that the client provided in the ’id’ attribute in the
 <mediaResourceRequest> to which the response is mapped. The ’status’
 attribute indicates the status code of the operation. The following
 status codes are defined for ’status’:

 +-----------+---+
 | code | description |
 +-----------+---+
200	OK
400	Syntax error
405	Wrong sequence number
408	Unable to find Resource
409	Unable to update Resource
410	Unable to remove Resource
420	Unsupported attribute or element
 +-----------+---+

 Table 2: <mediaResourceResponse> Status Codes

 If a new media resource request made by a client application has been
 accepted, the MRB MUST reply with a <mediaResourceResponse> with
 status code 200. The same rule applies whenever a request to update
 (action=’update’) or remove (action=’remove’) an existing transaction
 can be fulfilled by the MRB.

 A media resource request, nevertheless, may fail for several reasons.
 In such a case, the status codes defined in Table 2 must be used
 instead. Specifically, if the MRB fails to handle a request due to a
 syntax error in the request itself (e.g., incorrect XML, violation of

Boulton, et al. Standards Track [Page 51]

RFC 6917 Media Resource Brokering April 2013

 the schema constraints, or invalid values in any of the attributes/
 elements), the MRB MUST reply with a <mediaResourceResponse> with
 status code 400. If a syntactically correct request fails because
 the request also includes any attribute/element the MRB doesn’t
 understand, the MRB MUST reply with a <mediaResourceResponse> with
 status code 420. If a syntactically correct request fails because it
 contains a wrong sequence number, that is, a ’seq’ value not
 consistent with the increment the MRB expects according to
 Section 5.2.3, the MRB MUST reply with a <mediaResourceResponse> with
 status code 405. If a syntactically correct request fails because
 the MRB couldn’t find any Media Server able to fulfill the
 requirements presented by the Application Server in its request, the
 MRB MUST reply with a <mediaResourceResponse> with status code 408.
 If a syntactically correct request fails because the MRB couldn’t
 update an existing request according to the new requirements
 presented by the Application Server in its request, the MRB MUST
 reply with a <mediaResourceResponse> with status code 409. If a
 syntactically correct request fails because the MRB couldn’t remove
 an existing request and release the related resources as requested by
 the Application Server, the MRB MUST reply with a
 <mediaResourceResponse> with status code 410.

 Further details on status codes 409 and 410 are included in
 Section 5.2.3, where the leasing mechanism, along with its related
 scenarios, is described in more detail.

 The <mediaResourceResponse> element has <response-session-info> as a
 child element. This element is used to describe the response of a
 Consumer interface query and is covered in the following sub-section.

5.2.6.1.1. <response-session-info>

 The <response-session-info> element is included in Consumer
 responses. This applies to responses to both requests for new
 resources and requests to update an existing media resource session.
 The ability to change and remove an existing media resource session
 is described in more detail in Section 5.2.3. If the request was
 successful, the <mediaResourceResponse> MUST have one
 <response-session-info> child, which describes the media resource
 session addressed by the request. If the request was not successful,
 the <mediaResourceResponse> MUST NOT have a <response-session-info>
 child.

 The <response-session-info> element has no attributes.

Boulton, et al. Standards Track [Page 52]

RFC 6917 Media Resource Brokering April 2013

 The <response-session-info> element has zero or more of the following
 child elements:

 <session-id>: A unique identifier that explicitly references an
 existing media resource session on the MRB. The identifier is
 included to update the existing session and is described in more
 detail in Section 5.2.3.

 <seq>: Used in association with the <session-id> element in a
 subsequent request to update an existing media resource session on
 an MRB. The <seq> number is incremented from its original value
 returned in response to the initial request for media resources.
 More information on its use is provided in Section 5.2.3.

 <expires>: Includes the number of seconds that the media resources
 are reserved as part of this interaction. If the lease is not
 refreshed before expiry, the MRB will reclaim the resources and
 they will no longer be guaranteed. It is RECOMMENDED that a
 minimum value of 300 seconds be used for the value of the
 ’expires’ attribute. It is also RECOMMENDED that a Consumer
 client refresh the lease at an interval that is not too close to
 the expiry time. A value of 80% of the timeout period could be
 used. For example, if the timeout period is 300 seconds, the
 Consumer client would refresh the transaction at 240 seconds.
 More information on its use is provided in Section 5.2.3.

 <media-server-address>: Provides information to reach the Media
 Server handling the requested media resource. One or more
 instances of these elements may appear. The
 <media-server-address> element has a single attribute named ’uri’,
 which supplies a SIP URI that reaches the specified Media Server.
 It also has three optional elements: <connection-id>,
 <ivr-sessions>, and <mixers>. The <ivr-sessions> and <mixers>
 elements are defined in Sections 5.2.5.1.2.1 and 5.2.5.1.3.1,
 respectively, and have the same meaning but are applied to
 individual Media Server instances as a subset of the overall
 resources reported in the <connection-id> element. If multiple
 Media Servers are assigned in an IAMM operation, exactly one
 <media-server-address> element, more specifically the Media Server
 that provided the media dialog or CFW response, will have a
 <connection-id> element. Additional information relating to the
 use of the <connection-id> element for media dialogs is included
 in Section 6.

Boulton, et al. Standards Track [Page 53]

RFC 6917 Media Resource Brokering April 2013

5.3. In-Line Unaware MRB Interface

 An entity acting as an In-line MRB can act in one of two roles for a
 request, as introduced in Section 4.2: the In-line Unaware MRB Mode
 (IUMM) of operation and the In-line Aware MRB Mode (IAMM) of
 operation. This section further describes IUMM.

 It should be noted that the introduction of an MRB entity into the
 network, as specified in this document, requires interfaces to be
 implemented by those requesting Media Server resources (for example,
 an Application Server). This applies when using the Consumer
 interface as discussed in Sections 5.2.1 (Query mode) and 5.2.2
 (IAMM). An MRB entity can also act in a client-unaware mode when
 deployed into the network. This allows any SIP-compliant client
 entity, as defined by RFC 3261 [RFC3261] and its extensions, to send
 requests to an MRB that in turn will select an appropriate Media
 Server based on knowledge of Media Server resources it currently has
 available transparently to the client entity. Using an MRB in this
 mode allows for easy migration of current applications and services
 that are unaware of the MRB concept and would simply require a
 configuration change resulting in the MRB being set as a SIP outbound
 proxy for clients requiring media services.

 With IUMM, the MRB may conclude that an assigned media resource is no
 longer needed when it receives a SIP BYE from the Application Server
 or Media Server that ends the SIP dialog that initiated the request.

 As with IAMM, in IUMM the SIP INVITE from the Application Server
 could convey the application/sdp payload to either set up a media
 dialog or a Control Framework Control Channel. In either case, in
 order to permit the Application Server to associate a media dialog
 with a Control Channel to the same Media Server, using the procedures
 of [RFC6230] Section 6, the MRB should be acting as a SIP proxy (and
 not a B2BUA). This allows the SIP URI of the targeted Media Server
 to be transparently passed back to the Application Server in the SIP
 response, resulting in a direct SIP dialog between the Application
 Server and the Media Server.

 While IUMM has the least impact on legacy Application Servers, it
 also provides the least versatility. See Section 8.

6. MRB Acting as a B2BUA

 An MRB entity can act as a SIP Back-to-Back User Agent (B2BUA) or a
 SIP Proxy Server as defined in RFC 3261 [RFC3261]. When an MRB acts
 as a B2BUA, issues can arise when using Media Control Channel
 packages such as the IVR [RFC6231] and mixer [RFC6505] packages.
 Specifically, the framework attribute ’connectionid’ as provided in

Boulton, et al. Standards Track [Page 54]

RFC 6917 Media Resource Brokering April 2013

 Appendix A ("Common Package Components") of [RFC6230] uses a
 concatenation of the SIP dialog identifiers to be used for
 referencing SIP dialogs within the Media Control Channel. When a
 request traverses an MRB acting as a B2BUA, the SIP dialog
 identifiers change, and so the ’connectionid’ cannot be used as
 intended due to this change. For this reason, when an MRB wishes to
 act as a SIP B2BUA when handling a request from an Application Server
 to set up a media dialog to a Media Server, it MUST include the
 optional <connection-id> element in a Consumer interface response
 with a value that provides the equivalent for the ’connectionid’
 (’Local Dialog Tag’ + ’Remote Dialog Tag’) for the far side of the
 B2BUA. If present, this value MUST be used as the value for the
 ’connectionid’ in packages where the Common Package Components are
 used. The <connection-id> element MUST NOT be included in an HTTP
 Consumer interface response.

 It is important to point out that although more Media Server
 instances may be returned in a Consumer response (i.e., the MRB has
 assigned more than one Media Server to a Consumer request to fulfill
 the Application Server requirements), in IAMM the MRB will only act
 as a B2BUA with a single Media Server. In this case, exactly one
 <media-server-address> element, describing the media dialog or CFW
 response, will have a <connection-id> element that will not be
 included in any additional <media-server-address> elements.

7. Multimodal MRB Implementations

 An MRB implementation may operate multimodally with a collection of
 Application Server clients all sharing the same pool of media
 resources. That is, an MRB may be simultaneously operating in Query
 mode, IAMM, and IUMM. It knows in which mode to act on any
 particular request from a client, depending on the context of the
 request:

 o If the received request is an HTTP POST message with application/
 mrb-consumer+xml content, then the MRB processes it in Query mode.

 o If the received request is a SIP INVITE with application/
 mrb-consumer+xml content and application/sdp content, then the MRB
 processes it in IAMM.

 o If the received request is a SIP INVITE without application/
 mrb-consumer+xml content but with application/sdp content, then
 the MRB processes it in IUMM.

Boulton, et al. Standards Track [Page 55]

RFC 6917 Media Resource Brokering April 2013

8. Relative Merits of Query Mode, IAMM, and IUMM

 At a high level, the possible Application Server MRB interactions can
 be distinguished by the following basic types:

 a. Query mode - the client is requesting the assignment by the MRB
 of suitable Media Server resources;

 b. IAMM/media dialog - the client is requesting the assignment by
 the MRB of suitable Media Server resources and the establishment
 of a media dialog to one of the Media Servers;

 c. IAMM/Control Channel - the client is requesting the assignment by
 the MRB of suitable Media Server resources and the establishment
 of a CFW Control Channel to one of the Media Servers;

 d. IUMM/media dialog - the client is requesting the establishment of
 a media dialog to a Media Server resource;

 e. IUMM/Control Channel - the client is requesting the establishment
 of a CFW Control Channel to a Media Server resource.

 Each type of interaction has advantages and disadvantages, where such
 considerations relate to the versatility of what the MRB can provide,
 technical aspects such as efficiency in different application
 scenarios, complexity, delay, use with legacy Application Servers, or
 use with the Media Control Channel Framework. Depending on the
 characteristics of a particular setting that an MRB is intended to
 support, some of the above interaction types may be more appropriate
 than others. This section provides a few observations on relative
 merits but is not intended to be exhaustive. Some constraints of a
 given interaction type may be subtle.

 o Operation with other types of media control: Any of the types of
 interactions work with the mechanisms described in RFC 4240
 [RFC4240] and RFC 5552 [RFC5552] where initial control
 instructions are conveyed in the SIP INVITE from the Application
 Server for the media dialog to the Media Server and subsequent
 instructions may be fetched using HTTP. Query mode (a), IAMM/
 media dialog (b), and IUMM/media dialog (d) work with the Media
 Server Markup Language (MSML) as per RFC 5707 [RFC5707] or the
 Media Server Control Markup Language (MSCML) as per RFC 5022
 [RFC5022].

 o As stated previously, IUMM has no interface impacts on an
 Application Server. When using IUMM, the Application Server does
 not specify the characteristics of the type of media resource it
 requires, as the <mediaResourceRequest> element is not passed to

Boulton, et al. Standards Track [Page 56]

RFC 6917 Media Resource Brokering April 2013

 the MRB. For IUMM/media dialog (d), the MRB can deduce an
 appropriate media resource on a best-effort basis using
 information gleaned from examining information in the SIP INVITE.
 This includes the SDP information for the media dialog, or initial
 control information in the SIP Request-URI as per RFC 4240
 [RFC4240]. With IUMM/Control Channel (e), there is even less
 information for the MRB to use.

 o If using IUMM/Control Channel (e), the subsequent sending of the
 media dialog to the Media Server should not be done using IUMM/
 media dialog. That is, the SIP signaling to send the media dialog
 to the selected Media Server must be directly between the
 Application Server and that Media Server, and not through the MRB.
 Unless resources can be confidentially identified, the MRB could
 send the media dialog to a different Media Server. Likewise, if
 using IUMM/media dialog (d), the subsequent establishment of a
 Control Channel should not be done with IUMM/Control Channel (e)
 unless definitive information is available.

 o Query mode (a) and IAMM/Control Channel (c) lend themselves to
 requesting a pool of media resources (e.g., a number of IVR or
 conferencing ports) in advance of use and retaining use over a
 period of time, independent of whether there are media dialogs to
 those resources at any given moment, whereas the other types of
 interactions do not. This also applies to making a subsequent
 request to increase or decrease the amount of resources previously
 awarded.

 o While Query mode (a) and IAMM/Control Channel (c) are the most
 versatile interaction types, the former is completely decoupled
 from the use or non-use of a Control Channel, whereas the latter
 requires the use of a Control Channel.

 o When Media Control Channel Framework Control Channels are to be
 used in conjunction with the use of an MRB, Query mode (a) would
 typically result in fewer such channels being established over
 time, as compared to IAMM/Control Channel (c). That is because
 the latter would involve setting up an additional Control Channel
 every time an Application Server has a new request for an MRB for
 media resources.

Boulton, et al. Standards Track [Page 57]

RFC 6917 Media Resource Brokering April 2013

9. Examples

 This section provides examples of both the Publish and Consumer
 interfaces. Both the Query mode and In-line mode are addressed.

 Note that due to RFC formatting conventions, this section often
 splits HTTP, SIP/SDP, and CFW across lines whose content would exceed
 72 characters. A backslash character marks where this line folding
 has taken place. This backslash, and its trailing CRLF and
 whitespace, would not appear in the actual protocol contents. Also
 note that the indentation of the XML content is only provided for
 readability: actual messages will follow strict XML syntax, which
 allows for but does not require indentation.

9.1. Publish Example

 The following example assumes that a Control Channel has been
 established and synced as described in the Media Control Channel
 Framework ([RFC6230]).

Boulton, et al. Standards Track [Page 58]

RFC 6917 Media Resource Brokering April 2013

 Figure 9 shows the subscription/notification mechanism the Publish
 interface is based on, as defined in Section 5.1. The MRB subscribes
 for information at the Media Server (message A1.), and the Media
 Server accepts the subscription (A2.). Notifications are triggered
 by the Media Server (B1.) and acknowledged by the MRB (B2.).

 MRB MS
 | |
 | A1. CONTROL (MRB subscription) |
 |--->|
 | A2. 200 OK |
 |<---|
 | |
 . .
 . .
 | |
 | |--+ collect
 | | | up-to-date
 | |<-+ info
 | B1. CONTROL (MRB notification) |
 |<---|
 | B2. 200 OK |
 |--->|
 | |
 . .
 . .

 Figure 9: Publish Example: Sequence Diagram

 The rest of this section includes a full dump of the messages
 associated with the previous sequence diagram, specifically:

 1. the subscription (A1.), in an <mrbrequest> (CFW CONTROL);

 2. the Media Server accepting the subscription (A2.), in an
 <mrbresponse> (CFW 200);

 3. a notification (B1.), in an <mrbnotification> (CFW CONTROL);

 4. the ack to the notification (B2.), in a framework-level 200
 message (CFW 200).

Boulton, et al. Standards Track [Page 59]

RFC 6917 Media Resource Brokering April 2013

A1. MRB -> MS (CONTROL, publish request)
--
CFW lidc30BZObiC CONTROL
Control-Package: mrb-publish/1.0
Content-Type: application/mrb-publish+xml
Content-Length: 337

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbrequest>
 <subscription action="create" seqnumber="1" id="p0T65U">
 <expires>600</expires>
 <minfrequency>20</minfrequency>
 <maxfrequency>20</maxfrequency>
 </subscription>
 </mrbrequest>
</mrbpublish>

A2. MRB <- MS (200 to CONTROL, request accepted)
--
CFW lidc30BZObiC 200
Timeout: 10
Content-Type: application/mrb-publish+xml
Content-Length: 139

<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbresponse status="200" reason="OK: Request accepted"/>
</mrbpublish>

B1. MRB <- MS (CONTROL, event notification from MS)

CFW 03fff52e7b7a CONTROL
Control-Package: mrb-publish/1.0
Content-Type: application/mrb-publish+xml
Content-Length: 4226

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbpublish version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbnotification seqnumber="1" id="QQ6J3c">
 <media-server-id>a1b2c3d4</media-server-id>
 <supported-packages>
 <package name="msc-ivr/1.0"/>
 <package name="msc-mixer/1.0"/>

Boulton, et al. Standards Track [Page 60]

RFC 6917 Media Resource Brokering April 2013

 <package name="mrb-publish/1.0"/>
 <package name="msc-example-pkg/1.0"/>
 </supported-packages>
 <active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>10</decoding>
 <encoding>20</encoding>
 </rtp-codec>
 </active-rtp-sessions>
 <active-mixer-sessions>
 <active-mix conferenceid="7cfgs43">
 <rtp-codec name="audio/basic">
 <decoding>3</decoding>
 <encoding>3</encoding>
 </rtp-codec>
 </active-mix>
 </active-mixer-sessions>
 <non-active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>50</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </non-active-rtp-sessions>
 <non-active-mixer-sessions>
 <non-active-mix available="15">
 <rtp-codec name="audio/basic">
 <decoding>15</decoding>
 <encoding>15</encoding>
 </rtp-codec>
 </non-active-mix>
 </non-active-mixer-sessions>
 <media-server-status>active</media-server-status>
 <supported-codecs>
 <supported-codec name="audio/basic">
 <supported-codec-package name="msc-ivr/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 <supported-codec-package name="msc-mixer/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 </supported-codec>
 </supported-codecs>
 <application-data>TestbedPrototype</application-data>

Boulton, et al. Standards Track [Page 61]

RFC 6917 Media Resource Brokering April 2013

 <file-formats>
 <supported-format name="audio/x-wav">
 <supported-file-package>
 msc-ivr/1.0
 </supported-file-package>
 </supported-format>
 </file-formats>
 <max-prepared-duration>
 <max-time max-time-seconds="3600">
 <max-time-package>msc-ivr/1.0</max-time-package>
 </max-time>
 </max-prepared-duration>
 <dtmf-support>
 <detect>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </detect>
 <generate>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </generate>
 <passthrough>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </passthrough>
 </dtmf-support>
 <mixing-modes>
 <audio-mixing-modes>
 <audio-mixing-mode package="msc-ivr/1.0">
 nbest
 </audio-mixing-mode>
 </audio-mixing-modes>
 <video-mixing-modes activespeakermix="true" vas="true">
 <video-mixing-mode package="msc-mixer/1.0">
 single-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-crop
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-2x1
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-2x1-crop
 </video-mixing-mode>

Boulton, et al. Standards Track [Page 62]

RFC 6917 Media Resource Brokering April 2013

 <video-mixing-mode package="msc-mixer/1.0">
 quad-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-5x1
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-3x3
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-4x4
 </video-mixing-mode>
 </video-mixing-modes>
 </mixing-modes>
 <supported-tones>
 <supported-country-codes>
 <country-code package="msc-ivr/1.0">GB</country-code>
 <country-code package="msc-ivr/1.0">IT</country-code>
 <country-code package="msc-ivr/1.0">US</country-code>
 </supported-country-codes>
 <supported-h248-codes>
 <h248-code package="msc-ivr/1.0">cg/*</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/ofque</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/erwt</h248-code>
 <h248-code package="msc-mixer/1.0">conftn/*</h248-code>
 </supported-h248-codes>
 </supported-tones>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 <asr-tts-support>
 <asr-support>
 <language xml:lang="en"/>
 </asr-support>
 <tts-support>
 <language xml:lang="en"/>
 </tts-support>
 </asr-tts-support>
 <vxml-support>
 <vxml-mode package="msc-ivr/1.0" support="RFC6231"/>
 </vxml-support>
 <media-server-location>
 <civicAddress xml:lang="it">
 <country>IT</country>
 <A1>Campania</A1>
 <A3>Napoli</A3>
 <A6>Via Claudio</A6>
 <HNO>21</HNO>

Boulton, et al. Standards Track [Page 63]

RFC 6917 Media Resource Brokering April 2013

 <LMK>University of Napoli Federico II</LMK>
 <NAM>Dipartimento di Informatica e Sistemistica</NAM>
 <PC>80210</PC>
 </civicAddress>
 </media-server-location>
 <label>TestbedPrototype-01</label>
 <media-server-address>sip:MS1@ms.example.net</media-server-address>
 <encryption/>
 </mrbnotification>
 </mrbpublish>

B2. MRB -> MS (200 to CONTROL)

CFW 03fff52e7b7a 200

9.2. Consumer Examples

 As specified in Section 5.2, the Consumer interface can be involved
 in two different modes: Query and In-line aware. When in Query mode,
 Consumer messages are transported in HTTP messages: an example of
 such an approach is presented in Section 9.2.1. When in In-line
 aware mode, messages are instead transported as part of SIP
 negotiations: considering that SIP negotiations may be related to
 either the creation of a Control Channel or to a User Agent Client
 (UAC) media dialog, two separate examples of such an approach are
 presented in Section 9.2.2.

9.2.1. Query Example

 The following example assumes that the interested Application Server
 already knows the HTTP URL where an MRB is listening for Consumer
 messages.

Boulton, et al. Standards Track [Page 64]

RFC 6917 Media Resource Brokering April 2013

 Figure 10 shows the HTTP-based transaction between the Application
 Server (AS, as shown in the figure) and the MRB. The Application
 Server sends a Consumer request as payload of an HTTP POST message
 (1.), and the MRB provides an answer in an HTTP 200 OK message (2.).
 Specifically, as will be shown in the examples, the Application
 Server is interested in 100 IVR ports: the MRB finds two Media
 Servers that can satisfy the request (one providing 60 ports and the
 other providing 40 ports) and reports them to the Application Server.

 AS MRB
 | |
 | 1. HTTP POST (Consumer request) |
 |--->|
 | |
 | |
 | |--+ Parse request
 | | | and see if any
 | |<-+ MS applies
 | |
 | 2. 200 OK (Consumer response) |
 |<---|
 | |
 |--+ Parse response and |
 | | start session (SIP/COMEDIA/CFW) |
 |<-+ with first MS reported by MRB |
 | |
 . .
 . .

 Figure 10: Consumer Example (Query): Sequence Diagram

 The rest of this section includes a full dump of the messages
 associated with the previous sequence diagram, specifically:

 1. the Consumer request (1.), in a <mediaResourceRequest> (HTTP
 POST, Content-Type ’application/mrb-consumer+xml’);

 2. the Consumer response (2.), in a <mediaResourceResponse> (HTTP
 200 OK, Content-Type ’application/mrb-consumer+xml’).

Boulton, et al. Standards Track [Page 65]

RFC 6917 Media Resource Brokering April 2013

1. AS -> MRB (HTTP POST, Consumer request)
--
POST /Mrb/Consumer HTTP/1.1
Content-Length: 893
Content-Type: application/mrb-consumer+xml
Host: mrb.example.net:8080
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.0.1 (java 1.5)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="gh11x23v">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
</mrbconsumer>

Boulton, et al. Standards Track [Page 66]

RFC 6917 Media Resource Brokering April 2013

2. AS <- MRB (200 to POST, Consumer response)

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: Sun GlassFish Communications Server 1.5
Content-Type: application/mrb-consumer+xml;charset=ISO-8859-1
Content-Length: 1133
Date: Mon, 12 Apr 2011 14:59:26 GMT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="gh11x23v">
 <response-session-info>
 <session-id>5t3Y4IQ84gY1</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
</mrbconsumer>

 As the example shows, the request and response are associated by
 means of the ’id’ attribute (id="gh11x23v"). The MRB has picked ’9’
 as the random sequence number that needs to be incremented by the
 Application Server for the subsequent request associated with the
 same session.

Boulton, et al. Standards Track [Page 67]

RFC 6917 Media Resource Brokering April 2013

 The rest of the scenario is omitted for brevity. After having
 received the ’mediaResourceResponse’, the Application Server has the
 URIs of two Media Servers able to fulfill its media requirements and
 can start a control dialog with one or both of them.

9.2.2. IAMM Examples

 Two separate examples are presented for the IAMM case: in fact, IAMM
 can take advantage of two different approaches with respect to the
 SIP dialogs to be exploited to carry Consumer messages, i.e., i) a
 SIP control dialog to create a Control Channel, and ii) a UAC media
 dialog to attach to a Media Server. To make things clearer for the
 reader, the same Consumer request as the one presented in the Query
 mode will be sent, in order to clarify how the behavior of the
 involved parties may differ.

9.2.2.1. IAMM Example: CFW-Based Approach

 The following example assumes that the interested Application Server
 already knows the SIP URI of an MRB.

 Figure 11 shows the first approach, i.e., SIP-based transactions
 between the Application Server, the MRB, and one Media Server that
 the MRB chooses from the two that are allocated to fulfill the
 request. The diagram is more complex than before. This is basically
 a scenario envisaging the MRB as a B2BUA. The Application Server
 sends a SIP INVITE (1.) containing both a CFW-related SDP and a
 Consumer request (multipart body). The MRB sends a provisional
 response to the Application Server (2.) and starts working on the
 request. First of all, it makes use of the Consumer request from the
 Application Server to determine which Media Servers should be
 exploited. Once the right Media Servers have been chosen (MS1 and
 MS2 in the example), the MRB sends a new SIP INVITE (3.) to one of
 the Media Servers (MS1 in the example) by just including the SDP part
 of the original request. That Media Server negotiates this INVITE as
 specified in [RFC6230] (4., 5., 6.), providing the MRB with its own
 CFW-related SDP. The MRB replies to the original Application Server
 INVITE preparing a SIP 200 OK with another multipart body (7.): this
 multipart body includes the Consumer response used by the MRB to
 determine the right Media Servers and the SDP returned by the Media
 Server (MS1) in (5.). The Application Server finally acknowledges
 the 200 OK (8.), and can start a CFW connection towards that Media
 Server (MS1). Since the MRB provided the Application Server with two
 Media Server instances to fulfill its requirements, the Application
 Server can use the URI in the <media-server-address> element in the
 <mediaResourceResponse> that describes the other Media Server to
 establish a CFW channel with that Media Server (MS2) as well.

Boulton, et al. Standards Track [Page 68]

RFC 6917 Media Resource Brokering April 2013

 Please note that to ease the reading of the protocol contents a
 simple ’=_Part’ is used whenever a boundary for a ’multipart/mixed’
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

 AS MRB MS1 MS2
1. INVITE			
(multipart/mixed)			
---------------------->			
2. 100 (Trying)			
<----------------------			
	--+ Extract SDP and		
		MRB payloads; handle	
	<-+ Consumer request to		
	pick MSs (MS1 and MS2)		
	3. INVITE		
	(only copy SDP from 1.)		
	-------------------------->		
	4. 100 (Trying)		
	<--------------------------		
		--+ Negotiate	
			CFW Control
		<-+ Channel	
	5. 200 OK		
	<--------------------------		
	6. ACK		
	-------------------------->		
Prepare new +--			
payload with			
SDP from MS and +->			
Consumer reply			
7. 200 OK			
(multipart/mixed)			
<----------------------			
8. ACK			
---------------------->			
--+ Read Cons. reply			
	and use SDP to		
<-+ create CFW Chn.			
Create TCP CFW channel towards MS1 (if needed)			
-->			

Boulton, et al. Standards Track [Page 69]

RFC 6917 Media Resource Brokering April 2013

<<############## TCP CONNECTION #################>>	
CFW SYNC	
++>	
. . . .	
. . . .	
Negotiate SIP control dialog with MS2	
<-->	
Create TCP CFW channel towards MS2 as well (if needed)	
--->	
<<######################## TCP CONNECTION ########################>>	
CFW SYNC	
+++>	

 Figure 11: Consumer Example (IAMM/Control Channel): Sequence Diagram

 The rest of this section includes an almost full trace of the
 messages associated with the previous sequence diagram. Only the
 relevant SIP messages are shown (both the INVITEs and the 200 OKs),
 and only the relevant headers are preserved for brevity (Content-Type
 and multipart-related information). Specifically:

 1. the original INVITE (1.) containing both a CFW-related SDP
 (Connection-Oriented Media (COMEDIA) information to negotiate a
 new Control Channel) and a Consumer <mediaResourceRequest>;

 2. the INVITE sent by the MRB (acting as a B2BUA) to the Media
 Server (3.), containing only the CFW-related SDP from the
 original INVITE;

 3. the 200 OK sent by the Media Server back to the MRB (5.) to
 complete the CFW-related negotiation (SDP only);

 4. the 200 OK sent by the MRB back to the Application Server in
 response to the original INVITE (7.), containing both the
 CFW-related information sent by the Media Server and a Consumer
 <mediaResourceRequest> documenting the MRB’s decision to use that
 Media Server.

Boulton, et al. Standards Track [Page 70]

RFC 6917 Media Resource Brokering April 2013

1. AS -> MRB (INVITE multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="pz78hnq1">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>

Boulton, et al. Standards Track [Page 71]

RFC 6917 Media Resource Brokering April 2013

 </mrbconsumer>

 =_Part

3. MRB -> MS (INVITE sdp only)

 [..]
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0

5. MRB <- MS (200 OK sdp)

 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0
 a=ctrl-package:mrb-publish/1.0
 a=ctrl-package:msc-example-pkg/1.0

Boulton, et al. Standards Track [Page 72]

RFC 6917 Media Resource Brokering April 2013

7. AS <- MRB (200 OK multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0
 a=ctrl-package:mrb-publish/1.0
 a=ctrl-package:msc-example-pkg/1.0

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="pz78hnq1">
 <response-session-info>
 <session-id>z1skKYZQ3eFu</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">

Boulton, et al. Standards Track [Page 73]

RFC 6917 Media Resource Brokering April 2013

 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 =_Part

 As the previous example illustrates, the only difference in the
 response that the MRB provides to the Application Server is in the
 ’connection-id’ attribute that is added to the first allocated Media
 Server instance: this allows the Application Server to understand
 that the MRB has sent the CFW channel negotiation to that specific
 Media Server and that the connection-id to be used is the one
 provided. This will be described in more detail in the following
 section for the media dialog-based approach.

 The continuation of the scenario (the Application Server connecting
 to MS1 to start the Control Channel and the related SYNC message, the
 Application Server connecting to MS2 as well later on, all the media
 dialogs being attached to either Media Server) is omitted for
 brevity.

9.2.2.2. IAMM Example: Media Dialog-Based Approach

 The following example assumes that the interested Application Server
 already knows the SIP URI of an MRB.

 Figure 12 shows the second approach, i.e., SIP-based transactions
 between a SIP client, the Application Server, the MRB, and the Media
 Server that the MRB chooses. The interaction is basically the same
 as previous examples (e.g., contents of the multipart body), but
 considering that a new party is involved in the communication, the
 diagram is slightly more complex than before. As before, the MRB
 acts as a B2BUA. A UAC sends a SIP INVITE to a SIP URI handled by
 the Application Server, since it is interested to its services (1.).
 The Application Server sends a provisional response (2.) and, since
 it doesn’t have the resources yet, sends to the MRB a new SIP INVITE
 (3.) containing both the UAC media-related SDP and a Consumer request
 (multipart body). The MRB sends a provisional response to the
 Application Server (4.) and starts working on the request. First of
 all, it makes use of the Consumer request from the Application Server
 to determine which Media Servers should be chosen. Once the Media
 Server has been chosen, the MRB sends a new SIP INVITE to one of the
 Media Servers by including the SDP part of the original request (5.).

Boulton, et al. Standards Track [Page 74]

RFC 6917 Media Resource Brokering April 2013

 The Media Server negotiates this INVITE as specified in [RFC6230]
 (6., 7., 8.) to allocate the needed media resources to handle the new
 media dialog, eventually providing the MRB with its own media-related
 SDP. The MRB replies to the original Application Server INVITE
 preparing a SIP 200 OK with a multipart body (9.): this multipart
 body includes the Consumer response from the MRB indicating the
 chosen Media Servers and the SDP returned by the Media Server in
 (7.). The Application Server finally acknowledges the 200 OK (10.)
 and ends the scenario by eventually providing the UAC with the SDP it
 needs to set up the RTP channels with the chosen Media Server: a
 separate direct SIP control dialog may be initiated by the
 Application Server to the same Media Server in order to set up a
 Control Channel to manipulate the media dialog.

 As with the IAMM/Control Channel example in the prior section, this
 example has the MRB selecting Media Server resources across two Media
 Server instances. The convention could be that the MRB sent the SIP
 INVITE to the first Media Server in the list provided to the
 Application Server in the Consumer response information. For the
 sake of brevity, considerations related to connecting to the other
 Media Servers as well are omitted, since they have already been
 addressed in the previous section.

 Please note that to ease the reading of the protocol contents, a
 simple ’=_Part’ is used whenever a boundary for a ’multipart/mixed’
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

Boulton, et al. Standards Track [Page 75]

RFC 6917 Media Resource Brokering April 2013

 UAC AS MRB MS
1. INVITE			
(media SDP)			
-------------->			
2. 100 Trying			
<--------------			
	3. INVITE		
	(multipart/mixed)		
	---------------------->		
	4. 100 (Trying)		
	<----------------------		
		--+ Extract SDP and	
			MRB payloads; handle
		<-+ Consumer request to	
		pick Media Servers	
		5. INVITE	
		(only copy SDP from 3.)	
		-------------------------->	
		6. 100 (Trying)	
		<--------------------------	
		+--	
		Handle media dialog	
		(connection-id) +->	
		7. 200 OK	
		<--------------------------	
		8. ACK	
		-------------------------->	
	Prepare new +--		
	payload with		
	SDP from MS and +->		
	Consumer reply		
	9. 200 OK		
	(multipart/mixed)		
	<----------------------		
	10. ACK		
	---------------------->		
	--+ Read Cons. reply		
		and send SDP	
	<-+ back to UAC		
11. 200 OK			
<--------------			
12. ACK			
-------------->			

Boulton, et al. Standards Track [Page 76]

RFC 6917 Media Resource Brokering April 2013

 | | | |
 |<<*************************** RTP *******************************>>|
	--+ Negotiate		
		CFW channel	
	<-+ towards MS		
	(if needed)		
. . . .			
. . . .			
	Create TCP CFW channel towards MS (if needed)		
	-->		
	<<############## TCP CONNECTION #################>>		
	CFW SYNC		
	++>		

 Figure 12: Consumer Example (IAMM/Media Dialog): Sequence Diagram

 The rest of this section includes a trace of the messages associated
 with the previous sequence diagram. Only the relevant SIP messages
 are shown (both the INVITEs and the 200 OKs), and only the relevant
 headers are preserved for brevity (Content-Type, From/To, and
 multipart-related information). Specifically:

 1. the original INVITE (1.) containing the media-related SDP sent by
 a UAC;

 2. the INVITE sent by the AS to the MRB (3.), containing both the
 media-related SDP and a Consumer <mediaResourceRequest>;

 3. the INVITE sent by the MRB (acting as a B2BUA) to the Media
 Server (5.), containing only the media-related SDP from the
 original INVITE;

 4. the 200 OK sent by the Media Server back to the MRB (7.) to
 complete the media-related negotiation (SDP only);

Boulton, et al. Standards Track [Page 77]

RFC 6917 Media Resource Brokering April 2013

 5. the 200 OK sent by the MRB back to the Application Server in
 response to the original INVITE (9.), containing both the
 media-related information sent by the Media Server and a Consumer
 <mediaResourceRequest> documenting the MRB’s decision to use that
 Media Server;

 6. the 200 OK sent by the Application Server back to the UAC to have
 it set up the RTP channel(s) with the Media Server (11.).

1. UAC -> AS (INVITE with media SDP)

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

3. AS -> MRB (INVITE multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>
 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0

Boulton, et al. Standards Track [Page 78]

RFC 6917 Media Resource Brokering April 2013

 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="ns56g1x0">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

 =_Part

Boulton, et al. Standards Track [Page 79]

RFC 6917 Media Resource Brokering April 2013

5. MRB -> MS (INVITE sdp only)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

7. MRB <- MS (200 OK sdp)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>;tag=KQw677BF
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

Boulton, et al. Standards Track [Page 80]

RFC 6917 Media Resource Brokering April 2013

9. AS <- MRB (200 OK multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>;tag=117652221
 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="ns56g1x0">
 <response-session-info>
 <session-id>z1skKYZQ3eFu</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>

Boulton, et al. Standards Track [Page 81]

RFC 6917 Media Resource Brokering April 2013

 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 =_Part

11. UAC <- AS (200 OK sdp)

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 As the examples illustrate, as in the IAMM/Control Channel example,
 the MRB provides the Application Server with a <media-server-address>
 element in the Consumer response: the ’uri’ attribute identifies the

Boulton, et al. Standards Track [Page 82]

RFC 6917 Media Resource Brokering April 2013

 specific Media Server to which the MRB has sent the SDP media
 negotiation, and the ’connection-id’ enables the Application Server
 to identify to the Media Server the dialog between the MRB and Media
 Server. This attribute is needed, since according to the framework
 specification [RFC6230] the connection-id is built out of the From/To
 tags of the dialog between the MRB and Media Server; since the MRB
 acts as a B2BUA in this scenario, without that attribute the
 Application Server does not know the relevant tags, thus preventing
 the CFW protocol from working as expected.

 The continuation of the scenario (the Application Server connecting
 to the Media Server to start the Control Channel, the SYNC message,
 etc.) is omitted for brevity.

10. Media Service Resource Publisher Interface XML Schema

 This section gives the XML Schema Definition
 [W3C.REC-xmlschema-1-20041028] [W3C.REC-xmlschema-2-20041028] of the
 "application/mrb-publish+xml" format.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:mrb-publish"
 elementFormDefault="qualified" blockDefault="#all"
 xmlns="urn:ietf:params:xml:ns:mrb-publish"
 xmlns:fw="urn:ietf:params:xml:ns:control:framework-attributes"
 xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 IETF MediaCtrl MRB 1.0

 This is the schema of the IETF MediaCtrl MRB package.

 The schema namespace is urn:ietf:params:xml:ns:mrb-publish

 </xsd:documentation>
 </xsd:annotation>

 <!--
 ###

 SCHEMA IMPORTS

 ###
 -->

Boulton, et al. Standards Track [Page 83]

RFC 6917 Media Resource Brokering April 2013

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the XML attributes for
 xml:base, xml:lang, etc.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <xsd:import
 namespace="urn:ietf:params:xml:ns:control:framework-attributes"
 schemaLocation="framework.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the framework attributes for
 conferenceid and connectionid.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <xsd:import
 namespace="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 schemaLocation="civicAddress.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the civicAddress specification
 from RFC 5139.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

<!--
 ###

 Extensible core type

 ###
 -->

 <xsd:complexType name="Tcore">
 <xsd:annotation>
 <xsd:documentation>
 This type is extended by other (non-mixed) component types to
 allow attributes from other namespaces.
 </xsd:documentation>
 </xsd:annotation>

Boulton, et al. Standards Track [Page 84]

RFC 6917 Media Resource Brokering April 2013

 <xsd:sequence/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

<!--
 ###

 TOP-LEVEL ELEMENT: mrbpublish

 ###
 -->

<xsd:complexType name="mrbpublishType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="mrbrequest" />
 <xsd:element ref="mrbresponse" />
 <xsd:element ref="mrbnotification" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="version.datatype"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbpublish" type="mrbpublishType" />

<!--
 ###

 mrbrequest TYPE

 ###
 -->

<!-- mrbrequest -->

 <xsd:complexType name="mrbrequestType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Standards Track [Page 85]

RFC 6917 Media Resource Brokering April 2013

 <xsd:element ref="subscription" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbrequest" type="mrbrequestType" />

<!-- subscription -->

<xsd:complexType name="subscriptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="expires" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="minfrequency" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="maxfrequency" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="id.datatype" use="required" />
 <xsd:attribute name="seqnumber" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:attribute name="action" type="action.datatype"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="subscription" type="subscriptionType" />

Boulton, et al. Standards Track [Page 86]

RFC 6917 Media Resource Brokering April 2013

<!--
 ###

 mrbresponse TYPE

 ###
 -->

<!-- mrbresponse -->

 <xsd:complexType name="mrbresponseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="subscription" minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbresponse" type="mrbresponseType" />

<!--
 ###

 mrbnotification TYPE

 ###
 -->

<!-- mrbnotification -->

<xsd:complexType name="mrbnotificationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="media-server-id"
 type="subscriptionid.datatype"/>
 <xsd:element ref="supported-packages" minOccurs="0" />
 <xsd:element ref="active-rtp-sessions" minOccurs="0" />
 <xsd:element ref="active-mixer-sessions" minOccurs="0" />

Boulton, et al. Standards Track [Page 87]

RFC 6917 Media Resource Brokering April 2013

 <xsd:element ref="non-active-rtp-sessions" minOccurs="0" />
 <xsd:element ref="non-active-mixer-sessions" minOccurs="0" />
 <xsd:element ref="media-server-status" minOccurs="0" />
 <xsd:element ref="supported-codecs" minOccurs="0" />
 <xsd:element ref="application-data" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:element ref="file-formats" minOccurs="0" />
 <xsd:element ref="max-prepared-duration" minOccurs="0" />
 <xsd:element ref="dtmf-support" minOccurs="0" />
 <xsd:element ref="mixing-modes" minOccurs="0" />
 <xsd:element ref="supported-tones" minOccurs="0" />
 <xsd:element ref="file-transfer-modes" minOccurs="0" />
 <xsd:element ref="asr-tts-support" minOccurs="0" />
 <xsd:element ref="vxml-support" minOccurs="0" />
 <xsd:element ref="media-server-location" minOccurs="0" />
 <xsd:element ref="label" minOccurs="0" />
 <xsd:element ref="media-server-address" minOccurs="0" />
 <xsd:element ref="encryption" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="subscriptionid.datatype"
 use="required" />
 <xsd:attribute name="seqnumber" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbnotification" type="mrbnotificationType" />

<!-- supported-packages -->

 <xsd:complexType name="supported-packagesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="package" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Boulton, et al. Standards Track [Page 88]

RFC 6917 Media Resource Brokering April 2013

<xsd:element name="supported-packages" type="supported-packagesType"/>

 <xsd:complexType name="packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="package" type="packageType" />

<!-- active-rtp-sessions -->

 <xsd:complexType name="active-rtp-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="active-rtp-sessions" type="active-rtp-sessionsType"/>

 <xsd:complexType name="rtp-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="decoding" type="xsd:nonNegativeInteger" />
 <xsd:element name="encoding" type="xsd:nonNegativeInteger" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />

Boulton, et al. Standards Track [Page 89]

RFC 6917 Media Resource Brokering April 2013

 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="rtp-codec" type="rtp-codecType" />

<!-- active-mixer-sessions -->

<xsd:complexType name="active-mixer-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="active-mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="active-mixer-sessions"
 type="active-mixer-sessionsType" />

<xsd:complexType name="active-mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attributeGroup ref="fw:framework-attributes" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="active-mix" type="active-mixType" />

Boulton, et al. Standards Track [Page 90]

RFC 6917 Media Resource Brokering April 2013

<!-- non-active-rtp-sessions -->

<xsd:complexType name="non-active-rtp-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-rtp-sessions"
 type="non-active-rtp-sessionsType" />

<!-- non-active-mixer-sessions -->

<xsd:complexType name="non-active-mixer-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="non-active-mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-mixer-sessions"
 type="non-active-mixer-sessionsType" />

 <xsd:complexType name="non-active-mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="available" type="xsd:nonNegativeInteger"
 use="required" />

Boulton, et al. Standards Track [Page 91]

RFC 6917 Media Resource Brokering April 2013

 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-mix" type="non-active-mixType" />

<!-- media-server-status -->

 <xsd:element name="media-server-status" type="msstatus.datatype" />

<!-- supported-codecs -->

<xsd:complexType name="supported-codecsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-codec"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codecs" type="supported-codecsType" />

 <xsd:complexType name="supported-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-codec-package"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codec" type="supported-codecType" />

Boulton, et al. Standards Track [Page 92]

RFC 6917 Media Resource Brokering April 2013

 <xsd:complexType name="supported-codec-packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="supported-action" type="actions.datatype"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codec-package"
 type="supported-codec-packageType" />

<!-- application-data -->

<xsd:element name="application-data" type="appdata.datatype" />

<!-- file-formats -->

<xsd:complexType name="file-formatsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-format"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="file-formats" type="file-formatsType" />

 <xsd:complexType name="supported-formatType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-file-package"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"

Boulton, et al. Standards Track [Page 93]

RFC 6917 Media Resource Brokering April 2013

 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-format" type="supported-formatType" />

 <xsd:element name="supported-file-package"
 type="xsd:string" />

<!-- max-prepared-duration -->

<xsd:complexType name="max-prepared-durationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="max-time" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="max-prepared-duration"
 type="max-prepared-durationType" />

 <xsd:complexType name="max-timeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="max-time-package" type="xsd:string" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="max-time-seconds" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="max-time" type="max-timeType" />

Boulton, et al. Standards Track [Page 94]

RFC 6917 Media Resource Brokering April 2013

<!-- dtmf-support -->

<xsd:complexType name="dtmf-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="detect" />
 <xsd:element ref="generate" />
 <xsd:element ref="passthrough" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmf-support" type="dtmf-supportType" />

 <xsd:complexType name="detectType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="detect" type="detectType" />

 <xsd:complexType name="generateType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Boulton, et al. Standards Track [Page 95]

RFC 6917 Media Resource Brokering April 2013

 <xsd:element name="generate" type="generateType" />

 <xsd:complexType name="passthroughType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="passthrough" type="passthroughType" />

 <xsd:complexType name="dtmf-typeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="dtmf.datatype" use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmf-type" type="dtmf-typeType" />

<!-- mixing-modes -->

<xsd:complexType name="mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="video-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />

Boulton, et al. Standards Track [Page 96]

RFC 6917 Media Resource Brokering April 2013

 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixing-modes" type="mixing-modesType" />

<xsd:complexType name="audio-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="audio-mixing-modes" type="audio-mixing-modesType" />

<xsd:complexType name="audio-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="audio-mixing-mode" type="audio-mixing-modeType" />

<xsd:complexType name="video-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="video-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="vas" type="boolean.datatype"
 default="false" />
 <xsd:attribute name="activespeakermix" type="boolean.datatype"
 default="false" />

Boulton, et al. Standards Track [Page 97]

RFC 6917 Media Resource Brokering April 2013

 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="video-mixing-modes" type="video-mixing-modesType" />

<xsd:complexType name="video-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="video-mixing-mode" type="video-mixing-modeType" />

<!-- supported-tones -->

<xsd:complexType name="supported-tonesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-country-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="supported-h248-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-tones" type="supported-tonesType" />

<xsd:complexType name="supported-country-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>

Boulton, et al. Standards Track [Page 98]

RFC 6917 Media Resource Brokering April 2013

 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-country-codes"
 type="supported-country-codesType" />

<xsd:complexType name="country-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="country-code" type="country-codeType" />

<xsd:complexType name="supported-h248-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="h248-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-h248-codes"
 type="supported-h248-codesType" />

<xsd:complexType name="h248-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="h248-code" type="h248-codeType" />

Boulton, et al. Standards Track [Page 99]

RFC 6917 Media Resource Brokering April 2013

<!-- file-transfer-modes -->

 <xsd:complexType name="file-transfer-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="file-transfer-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="file-transfer-modes"
 type="file-transfer-modesType" />

 <xsd:complexType name="file-transfer-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="transfermode.datatype"
 use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="file-transfer-mode" type="file-transfer-modeType" />

<!-- asr-tts-support -->

<xsd:complexType name="asr-tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="asr-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="tts-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />

Boulton, et al. Standards Track [Page 100]

RFC 6917 Media Resource Brokering April 2013

 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-tts-support" type="asr-tts-supportType" />

<xsd:complexType name="asr-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-support" type="asr-supportType" />

<xsd:complexType name="tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tts-support" type="tts-supportType" />

<xsd:complexType name="languageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute ref="xml:lang" />

Boulton, et al. Standards Track [Page 101]

RFC 6917 Media Resource Brokering April 2013

 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="language" type="languageType" />

<!-- media-server-location -->

<xsd:complexType name="media-server-locationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="civicAddress" type="ca:civicAddress"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="media-server-location"
 type="media-server-locationType" />

<!-- vxml-support -->

 <xsd:complexType name="vxml-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="vxml-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="vxml-support" type="vxml-supportType" />

Boulton, et al. Standards Track [Page 102]

RFC 6917 Media Resource Brokering April 2013

 <xsd:complexType name="vxml-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:attribute name="support" type="vxml.datatype" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="vxml-mode" type="vxml-modeType" />

<!-- label -->

 <xsd:element name="label" type="label.datatype" />

<!-- media-server-address -->

 <xsd:element name="media-server-address" type="xsd:anyURI" />

<!-- encryption -->

 <xsd:complexType name="encryptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="encryption" type="encryptionType" />

Boulton, et al. Standards Track [Page 103]

RFC 6917 Media Resource Brokering April 2013

<!--
 ##

 DATATYPES

 ##
 -->

 <xsd:simpleType name="version.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="1.0" />
 </xsd:restriction>
 </xsd:simpleType>

<xsd:simpleType name="id.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="status.datatype">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9][0-9][0-9]" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="msstatus.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="active" />
 <xsd:enumeration value="deactivated" />
 <xsd:enumeration value="unavailable" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="action.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="create" />
 <xsd:enumeration value="update" />
 <xsd:enumeration value="remove" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="actions.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="encoding" />
 <xsd:enumeration value="decoding" />
 <xsd:enumeration value="passthrough" />
 </xsd:restriction>
 </xsd:simpleType>

Boulton, et al. Standards Track [Page 104]

RFC 6917 Media Resource Brokering April 2013

 <xsd:simpleType name="appdata.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

 <xsd:simpleType name="dtmf.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
 </xsd:simpleType>

 <xsd:simpleType name="transfermode.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="boolean.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="true" />
 <xsd:enumeration value="false" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="vxml.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
 </xsd:simpleType>

 <xsd:simpleType name="label.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="subscriptionid.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

</xsd:schema>

Boulton, et al. Standards Track [Page 105]

RFC 6917 Media Resource Brokering April 2013

11. Media Service Resource Consumer Interface XML Schema

 This section gives the XML Schema Definition
 [W3C.REC-xmlschema-1-20041028] [W3C.REC-xmlschema-2-20041028] of the
 "application/mrb-consumer+xml" format.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:mrb-consumer"
 elementFormDefault="qualified" blockDefault="#all"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer"
 xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 IETF MediaCtrl MRB 1.0

 This is the schema of the IETF MediaCtrl MRB Consumer interface.

 The schema namespace is urn:ietf:params:xml:ns:mrb-consumer

 </xsd:documentation>
 </xsd:annotation>

 <!--
 ###

 SCHEMA IMPORTS

 ###
 -->

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the XML attributes for
 xml:base, xml:lang, etc.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <xsd:import
 namespace="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 schemaLocation="civicAddress.xsd">
 <xsd:annotation>
 <xsd:documentation>

Boulton, et al. Standards Track [Page 106]

RFC 6917 Media Resource Brokering April 2013

 This import brings in the civicAddress specification
 from RFC 5139.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

<!--
 ###

 Extensible core type

 ###
 -->

 <xsd:complexType name="Tcore">
 <xsd:annotation>
 <xsd:documentation>
 This type is extended by other (non-mixed) component types to
 allow attributes from other namespaces.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

<!--
 ###

 TOP-LEVEL ELEMENT: mrbconsumer

 ###
 -->

<xsd:complexType name="mrbconsumerType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="mediaResourceRequest" />
 <xsd:element ref="mediaResourceResponse" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="version.datatype"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Standards Track [Page 107]

RFC 6917 Media Resource Brokering April 2013

 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

 <xsd:element name="mrbconsumer" type="mrbconsumerType" />

<!--
 ###

 mediaResourceRequest TYPE

 ###
 -->

<!-- mediaResourceRequest -->

 <xsd:complexType name="mediaResourceRequestType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="generalInfo" minOccurs="0" />
 <xsd:element ref="ivrInfo" minOccurs="0" />
 <xsd:element ref="mixerInfo" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mediaResourceRequest"
 type="mediaResourceRequestType" />

Boulton, et al. Standards Track [Page 108]

RFC 6917 Media Resource Brokering April 2013

<!--
 ###

 generalInfo TYPE

 ###
-->

<!-- generalInfo -->

<xsd:complexType name="generalInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="session-info" minOccurs="0" />
 <xsd:element ref="packages" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="generalInfo" type="generalInfoType" />

<!-- session-info -->

<xsd:complexType name="session-infoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="session-id" type="id.datatype"/>
 <xsd:element name="seq" type="xsd:nonNegativeInteger"/>
 <xsd:element name="action" type="action.datatype"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="session-info" type="session-infoType" />

Boulton, et al. Standards Track [Page 109]

RFC 6917 Media Resource Brokering April 2013

<!-- packages -->

<xsd:complexType name="packagesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="package" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="packages" type="packagesType"/>

<!--
 ###

 ivrInfo TYPE

 ###
-->

<!-- ivrInfo -->

<xsd:complexType name="ivrInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="ivr-sessions" minOccurs="0" />
 <xsd:element ref="file-formats" minOccurs="0" />
 <xsd:element ref="dtmf-type" minOccurs="0" />
 <xsd:element ref="tones" minOccurs="0" />
 <xsd:element ref="asr-tts" minOccurs="0" />
 <xsd:element ref="vxml" minOccurs="0" />
 <xsd:element ref="location" minOccurs="0" />
 <xsd:element ref="encryption" minOccurs="0" />
 <xsd:element ref="application-data" minOccurs="0" />
 <xsd:element ref="max-prepared-duration" minOccurs="0" />
 <xsd:element ref="file-transfer-modes" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Standards Track [Page 110]

RFC 6917 Media Resource Brokering April 2013

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="ivrInfo" type="ivrInfoType" />

<!--
 ###

 mixerInfo TYPE

 ###
-->

<!-- mixerInfo -->

<xsd:complexType name="mixerInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mixers" minOccurs="0"/>
 <xsd:element ref="file-formats" minOccurs="0"/>
 <xsd:element ref="dtmf-type" minOccurs="0"/>
 <xsd:element ref="tones" minOccurs="0"/>
 <xsd:element ref="mixing-modes" minOccurs="0"/>
 <xsd:element ref="application-data" minOccurs="0"/>
 <xsd:element ref="location" minOccurs="0"/>
 <xsd:element ref="encryption" minOccurs="0"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="mixerInfo" type="mixerInfoType" />

Boulton, et al. Standards Track [Page 111]

RFC 6917 Media Resource Brokering April 2013

<!--
 ###

 mediaResourceResponse TYPE

 ###
 -->

<!-- mediaResourceResponse -->

 <xsd:complexType name="mediaResourceResponseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="response-session-info" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string"
 use="required" />
 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mediaResourceResponse"
 type="mediaResourceResponseType" />

<!--
 ##

 ELEMENTS

 ##
 -->

<!-- response-session-info -->

<xsd:complexType name="response-session-infoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="session-id" type="id.datatype"/>
 <xsd:element name="seq" type="xsd:nonNegativeInteger"/>

Boulton, et al. Standards Track [Page 112]

RFC 6917 Media Resource Brokering April 2013

 <xsd:element name="expires" type="xsd:nonNegativeInteger"/>
 <xsd:element ref="media-server-address"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="response-session-info"
 type="response-session-infoType" />

<!-- media-server-address -->

<xsd:complexType name="media-server-addressTYPE">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="connection-id" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:element ref="ivr-sessions" minOccurs="0"/>
 <xsd:element ref="mixers" minOccurs="0"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="uri" type="xsd:anyURI" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="media-server-address"
 type="media-server-addressTYPE" />

<!-- ivr-sessions -->

<xsd:complexType name="ivr-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Standards Track [Page 113]

RFC 6917 Media Resource Brokering April 2013

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="ivr-sessions" type="ivr-sessionsType" />

<xsd:complexType name="rtp-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="decoding" type="xsd:nonNegativeInteger" />
 <xsd:element name="encoding" type="xsd:nonNegativeInteger" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="rtp-codec" type="rtp-codecType" />

<!-- file-formats -->

<xsd:complexType name="file-formatsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="required-format"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-formats" type="file-formatsType" />

<xsd:complexType name="required-formatType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="required-file-package"
 minOccurs="0" maxOccurs="unbounded" />

Boulton, et al. Standards Track [Page 114]

RFC 6917 Media Resource Brokering April 2013

 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="required-format" type="required-formatType" />

<xsd:complexType name="required-file-packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="required-file-package-name" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="required-file-package"
 type="required-file-packageType" />

<!-- dtmf-type -->

<xsd:complexType name="dtmfType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="detect" />
 <xsd:element ref="generate" />
 <xsd:element ref="passthrough" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="dtmf" type="dtmfType" />

<xsd:complexType name="detectType">

Boulton, et al. Standards Track [Page 115]

RFC 6917 Media Resource Brokering April 2013

 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="detect" type="detectType" />

<xsd:complexType name="generateType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="generate" type="generateType" />

<xsd:complexType name="passthroughType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="passthrough" type="passthroughType" />

<xsd:complexType name="dtmf-typeType">

Boulton, et al. Standards Track [Page 116]

RFC 6917 Media Resource Brokering April 2013

 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="dtmf.datatype" use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="dtmf-type" type="dtmf-typeType" />

<!-- tones -->

<xsd:complexType name="required-tonesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="h248-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tones" type="required-tonesType" />

<xsd:complexType name="required-country-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Boulton, et al. Standards Track [Page 117]

RFC 6917 Media Resource Brokering April 2013

<xsd:element name="country-codes"
 type="required-country-codesType" />

<xsd:complexType name="country-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="country-code" type="country-codeType" />

<xsd:complexType name="required-h248-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="h248-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="h248-codes"
 type="required-h248-codesType" />

<xsd:complexType name="h248-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="h248-code" type="h248-codeType" />

<!-- asr-tts -->

<xsd:complexType name="asr-ttsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Standards Track [Page 118]

RFC 6917 Media Resource Brokering April 2013

 <xsd:element ref="asr-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="tts-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-tts" type="asr-ttsType" />

<xsd:complexType name="asr-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-support" type="asr-supportType" />

<xsd:complexType name="tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tts-support" type="tts-supportType" />

<xsd:complexType name="languageType">
 <xsd:complexContent>

Boulton, et al. Standards Track [Page 119]

RFC 6917 Media Resource Brokering April 2013

 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute ref="xml:lang" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="language" type="languageType" />

<!-- vxml -->

<xsd:complexType name="vxmlType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="vxml-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="vxml" type="vxmlType" />

<xsd:complexType name="vxml-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:attribute name="require" type="vxml.datatype" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="vxml-mode" type="vxml-modeType" />

Boulton, et al. Standards Track [Page 120]

RFC 6917 Media Resource Brokering April 2013

<!-- location -->

<xsd:complexType name="locationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="ca:civicAddress"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="location" type="locationType" />

<!-- encryption -->

 <xsd:complexType name="encryptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="encryption" type="encryptionType" />

<!-- application-data -->

<xsd:element name="application-data" type="appdata.datatype" />

<!-- max-prepared-duration -->

<xsd:complexType name="max-prepared-durationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="max-time" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />

Boulton, et al. Standards Track [Page 121]

RFC 6917 Media Resource Brokering April 2013

 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="max-prepared-duration"
 type="max-prepared-durationType" />

<xsd:complexType name="max-timeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="max-time-package" type="xsd:string" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="max-time-seconds" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="max-time" type="max-timeType" />

<!-- file-transfer-modes -->

<xsd:complexType name="file-transfer-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="file-transfer-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-transfer-modes"
 type="file-transfer-modesType" />

<xsd:complexType name="file-transfer-modeType">

Boulton, et al. Standards Track [Page 122]

RFC 6917 Media Resource Brokering April 2013

 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="transfermode.datatype"
 use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-transfer-mode" type="file-transfer-modeType" />

<!-- mixers -->

<xsd:complexType name="mixerssessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixers" type="mixerssessionsType" />

<xsd:complexType name="mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="users" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>

Boulton, et al. Standards Track [Page 123]

RFC 6917 Media Resource Brokering April 2013

</xsd:complexType>

<xsd:element name="mix" type="mixType" />

<!-- mixing-modes -->

<xsd:complexType name="mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="video-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixing-modes" type="mixing-modesType" />

<xsd:complexType name="audio-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="audio-mixing-modes" type="audio-mixing-modesType" />

<xsd:complexType name="audio-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

Boulton, et al. Standards Track [Page 124]

RFC 6917 Media Resource Brokering April 2013

<xsd:element name="audio-mixing-mode" type="audio-mixing-modeType" />

<xsd:complexType name="video-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="video-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="vas" type="boolean.datatype"
 default="false" />
 <xsd:attribute name="activespeakermix" type="boolean.datatype"
 default="false" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="video-mixing-modes" type="video-mixing-modesType" />

<xsd:complexType name="video-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="video-mixing-mode" type="video-mixing-modeType" />

<!--
 ##

 DATATYPES

 ##
 -->

<xsd:simpleType name="version.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="1.0" />
 </xsd:restriction>
</xsd:simpleType>

Boulton, et al. Standards Track [Page 125]

RFC 6917 Media Resource Brokering April 2013

<xsd:simpleType name="id.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
</xsd:simpleType>

<xsd:simpleType name="status.datatype">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9][0-9][0-9]" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="transfermode.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="action.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="remove" />
 <xsd:enumeration value="update" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="dtmf.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="boolean.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="true" />
 <xsd:enumeration value="false" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="vxml.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="appdata.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

</xsd:schema>

Boulton, et al. Standards Track [Page 126]

RFC 6917 Media Resource Brokering April 2013

12. Security Considerations

 The MRB network entity has two primary interfaces -- Publish and
 Consumer -- that carry sensitive information and must therefore be
 appropriately protected and secured.

 The Publish interface, as defined in and described in Section 5.1,
 uses the Media Control Channel Framework [RFC6230] as a mechanism to
 connect an MRB to a Media Server. It is very important that the
 communication between the MRB and the Media Server is secured: a
 malicious entity may change or even delete subscriptions to a Media
 Server, thus affecting the view the MRB has of the resources actually
 available on a Media Server, leading it to incorrect selection when
 media resources are being requested by an Application Server. A
 malicious entity may even manipulate available resources on a Media
 Server, for example, to make the MRB think no resources are available
 at all. Considering that the Publish interface is a CFW Control
 Package, the same security considerations included in the Media
 Control Channel Framework specification apply here to protect
 interactions between an MRB and a Media Server.

 The Publish interface also allows a Media Server, as explained in
 Section 5.1.5.18, to provide more or less accurate information about
 its geographic location, should Application Servers be interested in
 such details when looking for services at an MRB. While the usage of
 this information is entirely optional and the level of detail to be
 provided is implementation specific, it is important to draw
 attention to the potential security issues that the disclosure of
 such addresses may introduce. As such, it is important to make sure
 MRB implementations don’t disclose this information as is to
 interested Application Servers but only exploit those addresses as
 part of computation algorithms to pick the most adequate resources
 Application Servers may be looking for.

 The Consumer interface, as defined in and described in Section 5.2,
 conceives transactions based on a session ID. These transactions may
 be transported either by means of HTTP messages or SIP dialogs. This
 means that malicious users could be able to disrupt or manipulate an
 MRB session should they have access to the above-mentioned session ID
 or replicate it somehow: for instance, a malicious entity could
 modify an existing session between an Application Server and the MRB,
 e.g., requesting less resources than originally requested to cause
 media dialogs to be rejected by the Application Server, or requesting
 many more resources instead to try and lock as many of (if not all)
 the resources an MRB can provide, thus making them unavailable to
 other legitimate Application Servers in subsequent requests. In
 order to prevent this, it is strongly advised that MRB
 implementations generate session identifiers that are very hard to

Boulton, et al. Standards Track [Page 127]

RFC 6917 Media Resource Brokering April 2013

 replicate, in order to minimize the chances that malicious users
 could gain access to valid identifiers by just guessing or by means
 of brute-force attacks. It is very important, of course, to also
 secure the way that these identifiers are transported by the involved
 parties, in both requests and responses, in order to prevent network
 attackers from intercepting Consumer messages and having access to
 session IDs. The Consumer interface uses either the Hypertext
 Transfer Protocol (HTTP) or the Session Initiation Protocol (SIP) as
 the mechanism for clients to connect to an MRB to request media
 resources. In the case where HTTP is used, any binding using the
 Consumer interface MUST be capable of being transacted over Transport
 Layer Security (TLS), as described in RFC 2818 [RFC2818]. In the
 case where SIP is used, the same security considerations included in
 the Media Control Channel Framework specification apply here to
 protect interactions between a client requesting media resources and
 an MRB.

 Should a valid session ID be compromised somehow (that is,
 intercepted or just guessed by a malicious user), as a further means
 to prevent disruption the Consumer interface also prescribes the use
 of a sequence number in its transactions. This sequence number is to
 be increased after each successful transaction, starting from a first
 value randomly generated by the MRB when the session is first
 created, and it must match in every request/response. While this
 adds complexity to the protocol (implementations must pay attention
 to those sequence numbers, since wrong values will cause "Wrong
 sequence number" errors and the failure of the related requests), it
 is an important added value for security. In fact, considering that
 different transactions related to the same session could be
 transported in different, unrelated HTTP messages (or SIP INVITEs in
 cases where the In-line mode is being used), this sequence number
 protection prevents the chances of session replication or disruption,
 especially in cases where the session ID has been compromised: that
 is, it should make it harder for malicious users to manipulate or
 remove a session for which they have obtained the session ID. It is
 strongly advised that the MRB doesn’t choose 1 as the first sequence
 number for a new session but rather picks a random value to start
 from. The reaction to transactions that are out of sequence is left
 to MRB implementations: a related error code is available, but
 implementations may decide to enforce further limitations or actions
 upon the receipt of too many failed attempts in a row or of what
 looks like blatant attempts to guess what the current, valid sequence
 number is.

 It is also worth noting that in In-line mode (both IAMM and IUMM) the
 MRB may act as a Back-to-Back User Agent (B2BUA). This means that
 when acting as a B2BUA the MRB may modify SIP bodies: it is the case,
 for instance, for the IAMM handling multipart/mixed payloads. This

Boulton, et al. Standards Track [Page 128]

RFC 6917 Media Resource Brokering April 2013

 impacts the ability to use any SIP security feature that protects the
 body (e.g., RFC 4474 [RFC4474], S/MIME, etc.), unless the MRB acts as
 a mediator for the security association. This should be taken into
 account when implementing an MRB compliant with this specification.

 Both the Publishing interface and Consumer interface may address the
 location of a Media Server: the Publishing interface may be used to
 inform the MRB where a Media Server is located (approximately or
 precisely), and the Consumer interface may be used to ask for a Media
 Server located somewhere in a particular region (e.g., a conference
 bridge close to San Francisco). Both Media Server and MRB
 implementers need to take this into account when deciding whether or
 not to make this location information available, and if so how many
 bits of information really need to be made available for brokering
 purposes.

 It is worthwhile to cover authorization issues related to this
 specification. Neither the Publishing interface nor the Consumer
 interface provides an explicit means for implementing authentication,
 i.e., they do not contain specific protocol interactions to ensure
 that authorized Application Servers can make use of the services
 provided by an MRB instance. Considering that both interfaces are
 transported using well-established protocols (HTTP, SIP, CFW),
 support for such functionality can be expressed by means of the
 authentication mechanisms provided by the protocols themselves.
 Therefore, any MRB-aware entity (Application Servers, Media Servers,
 MRBs themselves) MUST support HTTP and SIP Digest access
 authentication. The usage of such Digest access authentications is
 recommended and not mandatory, which means MRB-aware entities MAY
 exploit it in deployment.

 An MRB may want to enforce further constraints on the interactions
 between an Application Server/Media Server and an MRB. For example,
 it may choose to only accept requests associated with a specific
 session ID from the IP address that originated the first request or
 may just make use of pre-shared certificates to assess the identity
 of legitimate Application Servers and/or Media Servers.

Boulton, et al. Standards Track [Page 129]

RFC 6917 Media Resource Brokering April 2013

13. IANA Considerations

 There are several IANA considerations associated with this
 specification.

13.1. Media Control Channel Framework Package Registration

 This section registers a new Media Control Channel Framework package,
 per the instructions in Section 13.1 of [RFC6230].

 Package Name: mrb-publish/1.0

 Published Specification(s): RFC 6917

 Person and email address to contact for further information: IETF
 MediaCtrl working group (mediactrl@ietf.org), Chris Boulton
 (chris@ns-technologies.com).

13.2. application/mrb-publish+xml Media Type

 To: application

 Subject: Registration of media type application/mrb-publish+xml

 Type name: application

 Subtype name: mrb-publish+xml

 Required parameters: none

 Optional parameters: Same as charset parameter of application/xml as
 specified in RFC 3023 [RFC3023].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [RFC3023].

 Security considerations: See Section 10 of RFC 3023 [RFC3023] and
 Section 12 of RFC 6917.

 Interoperability considerations: none.

 Published specification: Section 10 of RFC 6917.

 Applications that use this media type: This media type is used to
 support a Media Resource Broker (MRB) entity.

Boulton, et al. Standards Track [Page 130]

RFC 6917 Media Resource Brokering April 2013

 Additional Information:

 Magic Number: None

 File Extension: .xdf

 Macintosh file type code: "TEXT"

 Person and email address to contact for further information: Chris
 Boulton (chris@ns-technologies.com).

 Intended usage: COMMON

 Author/Change controller: The IETF.

13.3. application/mrb-consumer+xml Media Type

 To: application

 Subject: Registration of media type application/mrb-consumer+xml

 Type name: application

 Subtype name: mrb-consumer+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter of application/xml as
 specified in RFC 3023 [RFC3023].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [RFC3023].

 Security considerations: See Section 10 of RFC 3023 [RFC3023] and
 Section 12 of RFC 6917.

 Interoperability considerations: none.

 Published specification: Section 11 of RFC 6917.

 Applications that use this media type: This media type is used to
 support a Media Resource Broker (MRB) entity.

Boulton, et al. Standards Track [Page 131]

RFC 6917 Media Resource Brokering April 2013

 Additional Information:

 Magic Number: None

 File Extension: .xdf

 Macintosh file type code: "TEXT"

 Person and email address to contact for further information: Chris
 Boulton (chris@ns-technologies.com).

 Intended usage: COMMON

 Author/Change controller: The IETF.

13.4. URN Sub-Namespace Registration for mrb-publish

 IANA has registered the URN "urn:ietf:params:xml:ns:mrb-publish",
 with the ID of "mrb-publish". The schema of the XML namespace named
 urn:ietf:params:xml:ns:mrb-publish is in Section 10.

13.5. URN Sub-Namespace Registration for mrb-consumer

 IANA has registered the URN "urn:ietf:params:xml:ns:mrb-consumer",
 with the ID of "mrb-consumer". The schema of the XML namespace named
 urn:ietf:params:xml:ns:mrb-consumer is in Section 11.

13.6. XML Schema Registration for mrb-publish

 IANA has registered the schema for mrb-publish:

 URI: urn:ietf:params:xml:schema:mrb-publish

 ID: mrb-publish

 Filename: mrb-publish

 Registrant Contact: IETF MediaCtrl working group
 (mediactrl@ietf.org)

 Schema: The XML for the schema is in Section 10 of this document.

Boulton, et al. Standards Track [Page 132]

RFC 6917 Media Resource Brokering April 2013

13.7. XML Schema Registration for mrb-consumer

 Please register the schema for mrb-consumer:

 URI: urn:ietf:params:xml:schema:mrb-consumer

 ID: mrb-consumer

 Filename: mrb-consumer

 Registrant Contact: IETF MediaCtrl working group
 (mediactrl@ietf.org)

 Schema: The XML for the schema is in Section 11 of this document.

14. Acknowledgements

 The authors would like to thank the members of the Publish Interface
 design team, who provided valuable input into this document. The
 design team consisted of Adnan Saleem, Michael Trank, Victor
 Paulsamy, Martin Dolly, and Scott McGlashan. The authors would also
 like to thank John Dally, Bob Epley, Simon Romano, Henry Lum,
 Christian Groves, and Jonathan Lennox for input into this
 specification.

 Ben Campbell carried out the RAI expert review on an early version of
 this specification and provided a great deal of invaluable input.

15. References

15.1. Normative References

 [ISO.10646.2012]
 International Organization for Standardization,
 "Information technology -- Universal Coded Character Set
 (UCS)", ISO Standard 10646, 2012.

 [ISO.3166-1]
 International Organization for Standardization, "Codes for
 the representation of names of countries and their
 subdivisions - Part 1: Country codes", ISO Standard
 3166-1:2006, 2006.

 [ISO.639.2002]
 International Organization for Standardization, "Codes for
 the representation of names of languages -- Part 1:
 Alpha-2 code", ISO Standard 639, 2002.

Boulton, et al. Standards Track [Page 133]

RFC 6917 Media Resource Brokering April 2013

 [ITU-T.Q.1950]
 International Telecommunication Union, "Bearer independent
 call bearer control protocol", ITU-T Recommendation
 Q.1950, December 2002.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3311] Rosenberg, J., "The Session Initiation Protocol (SIP)
 UPDATE Method", RFC 3311, October 2002.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC5139] Thomson, M. and J. Winterbottom, "Revised Civic Location
 Format for Presence Information Data Format Location
 Object (PIDF-LO)", RFC 5139, February 2008.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [W3C.REC-xmlschema-1-20041028]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

Boulton, et al. Standards Track [Page 134]

RFC 6917 Media Resource Brokering April 2013

 [W3C.REC-xmlschema-2-20041028]
 Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

15.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4240] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network
 Media Services with SIP", RFC 4240, December 2005.

 [RFC4474] Peterson, J. and C. Jennings, "Enhancements for
 Authenticated Identity Management in the Session
 Initiation Protocol (SIP)", RFC 4474, August 2006.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 December 2006.

 [RFC5022] Van Dyke, J., Burger, E., and A. Spitzer, "Media Server
 Control Markup Language (MSCML) and Protocol", RFC 5022,
 September 2007.

 [RFC5167] Dolly, M. and R. Even, "Media Server Control Protocol
 Requirements", RFC 5167, March 2008.

 [RFC5552] Burke, D. and M. Scott, "SIP Interface to VoiceXML Media
 Services", RFC 5552, May 2009.

 [RFC5567] Melanchuk, T., "An Architectural Framework for Media
 Server Control", RFC 5567, June 2009.

 [RFC5707] Saleem, A., Xin, Y., and G. Sharratt, "Media Server Markup
 Language (MSML)", RFC 5707, February 2010.

 [RFC6230] Boulton, C., Melanchuk, T., and S. McGlashan, "Media
 Control Channel Framework", RFC 6230, May 2011.

 [RFC6231] McGlashan, S., Melanchuk, T., and C. Boulton, "An
 Interactive Voice Response (IVR) Control Package for the
 Media Control Channel Framework", RFC 6231, May 2011.

 [RFC6381] Gellens, R., Singer, D., and P. Frojdh, "The ’Codecs’ and
 ’Profiles’ Parameters for "Bucket" Media Types", RFC 6381,
 August 2011.

Boulton, et al. Standards Track [Page 135]

RFC 6917 Media Resource Brokering April 2013

 [RFC6501] Novo, O., Camarillo, G., Morgan, D., and J. Urpalainen,
 "Conference Information Data Model for Centralized
 Conferencing (XCON)", RFC 6501, March 2012.

 [RFC6505] McGlashan, S., Melanchuk, T., and C. Boulton, "A Mixer
 Control Package for the Media Control Channel Framework",
 RFC 6505, March 2012.

Authors’ Addresses

 Chris Boulton
 NS-Technologies

 EMail: chris@ns-technologies.com

 Lorenzo Miniero
 Meetecho
 Via Carlo Poerio 89
 Napoli 80100
 Italy

 EMail: lorenzo@meetecho.com

 Gary Munson
 AT&T
 200 Laurel Avenue South
 Middletown, New Jersey 07748
 USA

 EMail: gamunson@gmail.com

Boulton, et al. Standards Track [Page 136]

