
Internet Engineering Task Force (IETF) M. Mathis
Request for Comments: 6937 N. Dukkipati
Category: Experimental Y. Cheng
ISSN: 2070-1721 Google, Inc.
 May 2013

 Proportional Rate Reduction for TCP

Abstract

 This document describes an experimental Proportional Rate Reduction
 (PRR) algorithm as an alternative to the widely deployed Fast
 Recovery and Rate-Halving algorithms. These algorithms determine the
 amount of data sent by TCP during loss recovery. PRR minimizes
 excess window adjustments, and the actual window size at the end of
 recovery will be as close as possible to the ssthresh, as determined
 by the congestion control algorithm.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6937.

Mathis, et al. Experimental [Page 1]

RFC 6937 Proportional Rate Reduction May 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..2
 2. Definitions ...5
 3. Algorithms ..6
 3.1. Examples ...6
 4. Properties ..9
 5. Measurements ...11
 6. Conclusion and Recommendations12
 7. Acknowledgements ...13
 8. Security Considerations ..13
 9. References ...13
 9.1. Normative References13
 9.2. Informative References14
 Appendix A. Strong Packet Conservation Bound15

1. Introduction

 This document describes an experimental algorithm, PRR, to improve
 the accuracy of the amount of data sent by TCP during loss recovery.

 Standard congestion control [RFC5681] requires that TCP (and other
 protocols) reduce their congestion window (cwnd) in response to
 losses. Fast Recovery, described in the same document, is the
 reference algorithm for making this adjustment. Its stated goal is
 to recover TCP’s self clock by relying on returning ACKs during
 recovery to clock more data into the network. Fast Recovery
 typically adjusts the window by waiting for one half round-trip time
 (RTT) of ACKs to pass before sending any data. It is fragile because
 it cannot compensate for the implicit window reduction caused by the
 losses themselves.

Mathis, et al. Experimental [Page 2]

RFC 6937 Proportional Rate Reduction May 2013

 RFC 6675 [RFC6675] makes Fast Recovery with Selective Acknowledgement
 (SACK) [RFC2018] more accurate by computing "pipe", a sender side
 estimate of the number of bytes still outstanding in the network.
 With RFC 6675, Fast Recovery is implemented by sending data as
 necessary on each ACK to prevent pipe from falling below slow-start
 threshold (ssthresh), the window size as determined by the congestion
 control algorithm. This protects Fast Recovery from timeouts in many
 cases where there are heavy losses, although not if the entire second
 half of the window of data or ACKs are lost. However, a single ACK
 carrying a SACK option that implies a large quantity of missing data
 can cause a step discontinuity in the pipe estimator, which can cause
 Fast Retransmit to send a burst of data.

 The Rate-Halving algorithm sends data on alternate ACKs during
 recovery, such that after 1 RTT the window has been halved. Rate-
 Halving is implemented in Linux after only being informally published
 [RHweb], including an uncompleted document [RHID]. Rate-Halving also
 does not adequately compensate for the implicit window reduction
 caused by the losses and assumes a net 50% window reduction, which
 was completely standard at the time it was written but not
 appropriate for modern congestion control algorithms, such as CUBIC
 [CUBIC], which reduce the window by less than 50%. As a consequence,
 Rate-Halving often allows the window to fall further than necessary,
 reducing performance and increasing the risk of timeouts if there are
 additional losses.

 PRR avoids these excess window adjustments such that at the end of
 recovery the actual window size will be as close as possible to
 ssthresh, the window size as determined by the congestion control
 algorithm. It is patterned after Rate-Halving, but using the
 fraction that is appropriate for the target window chosen by the
 congestion control algorithm. During PRR, one of two additional
 Reduction Bound algorithms limits the total window reduction due to
 all mechanisms, including transient application stalls and the losses
 themselves.

 We describe two slightly different Reduction Bound algorithms:
 Conservative Reduction Bound (CRB), which is strictly packet
 conserving; and a Slow Start Reduction Bound (SSRB), which is more
 aggressive than CRB by, at most, 1 segment per ACK. PRR-CRB meets
 the Strong Packet Conservation Bound described in Appendix A;
 however, in real networks it does not perform as well as the
 algorithms described in RFC 6675, which prove to be more aggressive
 in a significant number of cases. SSRB offers a compromise by
 allowing TCP to send 1 additional segment per ACK relative to CRB in
 some situations. Although SSRB is less aggressive than RFC 6675

Mathis, et al. Experimental [Page 3]

RFC 6937 Proportional Rate Reduction May 2013

 (transmitting fewer segments or taking more time to transmit them),
 it outperforms it, due to the lower probability of additional losses
 during recovery.

 The Strong Packet Conservation Bound on which PRR and both Reduction
 Bounds are based is patterned after Van Jacobson’s packet
 conservation principle: segments delivered to the receiver are used
 as the clock to trigger sending the same number of segments back into
 the network. As much as possible, PRR and the Reduction Bound
 algorithms rely on this self clock process, and are only slightly
 affected by the accuracy of other estimators, such as pipe [RFC6675]
 and cwnd. This is what gives the algorithms their precision in the
 presence of events that cause uncertainty in other estimators.

 The original definition of the packet conservation principle
 [Jacobson88] treated packets that are presumed to be lost (e.g.,
 marked as candidates for retransmission) as having left the network.
 This idea is reflected in the pipe estimator defined in RFC 6675 and
 used here, but it is distinct from the Strong Packet Conservation
 Bound as described in Appendix A, which is defined solely on the
 basis of data arriving at the receiver.

 We evaluated these and other algorithms in a large scale measurement
 study presented in a companion paper [IMC11] and summarized in
 Section 5. This measurement study was based on RFC 3517 [RFC3517],
 which has since been superseded by RFC 6675. Since there are slight
 differences between the two specifications, and we were meticulous
 about our implementation of RFC 3517, we are not comfortable
 unconditionally asserting that our measurement results apply to RFC
 6675, although we believe this to be the case. We have instead
 chosen to be pedantic about describing measurement results relative
 to RFC 3517, on which they were actually based. General discussions
 of algorithms and their properties have been updated to refer to RFC
 6675.

 We found that for authentic network traffic, PRR-SSRB outperforms
 both RFC 3517 and Linux Rate-Halving even though it is less
 aggressive than RFC 3517. We believe that these results apply to RFC
 6675 as well.

 The algorithms are described as modifications to RFC 5681 [RFC5681],
 "TCP Congestion Control", using concepts drawn from the pipe
 algorithm [RFC6675]. They are most accurate and more easily
 implemented with SACK [RFC2018], but do not require SACK.

Mathis, et al. Experimental [Page 4]

RFC 6937 Proportional Rate Reduction May 2013

2. Definitions

 The following terms, parameters, and state variables are used as they
 are defined in earlier documents:

 RFC 793: snd.una (send unacknowledged)

 RFC 5681: duplicate ACK, FlightSize, Sender Maximum Segment Size
 (SMSS)

 RFC 6675: covered (as in "covered sequence numbers")

 Voluntary window reductions: choosing not to send data in response to
 some ACKs, for the purpose of reducing the sending window size and
 data rate

 We define some additional variables:

 SACKd: The total number of bytes that the scoreboard indicates have
 been delivered to the receiver. This can be computed by scanning
 the scoreboard and counting the total number of bytes covered by
 all SACK blocks. If SACK is not in use, SACKd is not defined.

 DeliveredData: The total number of bytes that the current ACK
 indicates have been delivered to the receiver. When not in
 recovery, DeliveredData is the change in snd.una. With SACK,
 DeliveredData can be computed precisely as the change in snd.una,
 plus the (signed) change in SACKd. In recovery without SACK,
 DeliveredData is estimated to be 1 SMSS on duplicate
 acknowledgements, and on a subsequent partial or full ACK,
 DeliveredData is estimated to be the change in snd.una, minus 1
 SMSS for each preceding duplicate ACK.

 Note that DeliveredData is robust; for TCP using SACK, DeliveredData
 can be precisely computed anywhere in the network just by inspecting
 the returning ACKs. The consequence of missing ACKs is that later
 ACKs will show a larger DeliveredData. Furthermore, for any TCP
 (with or without SACK), the sum of DeliveredData must agree with the
 forward progress over the same time interval.

 We introduce a local variable "sndcnt", which indicates exactly how
 many bytes should be sent in response to each ACK. Note that the
 decision of which data to send (e.g., retransmit missing data or send
 more new data) is out of scope for this document.

Mathis, et al. Experimental [Page 5]

RFC 6937 Proportional Rate Reduction May 2013

3. Algorithms

 At the beginning of recovery, initialize PRR state. This assumes a
 modern congestion control algorithm, CongCtrlAlg(), that might set
 ssthresh to something other than FlightSize/2:

 ssthresh = CongCtrlAlg() // Target cwnd after recovery
 prr_delivered = 0 // Total bytes delivered during recovery
 prr_out = 0 // Total bytes sent during recovery
 RecoverFS = snd.nxt-snd.una // FlightSize at the start of recovery

 On every ACK during recovery compute:

 DeliveredData = change_in(snd.una) + change_in(SACKd)
 prr_delivered += DeliveredData
 pipe = (RFC 6675 pipe algorithm)
 if (pipe > ssthresh) {
 // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
 } else {
 // Two versions of the Reduction Bound
 if (conservative) { // PRR-CRB
 limit = prr_delivered - prr_out
 } else { // PRR-SSRB
 limit = MAX(prr_delivered - prr_out, DeliveredData) + MSS
 }
 // Attempt to catch up, as permitted by limit
 sndcnt = MIN(ssthresh - pipe, limit)
 }

 On any data transmission or retransmission:

 prr_out += (data sent) // strictly less than or equal to sndcnt

3.1. Examples

 We illustrate these algorithms by showing their different behaviors
 for two scenarios: TCP experiencing either a single loss or a burst
 of 15 consecutive losses. In all cases we assume bulk data (no
 application pauses), standard Additive Increase Multiplicative
 Decrease (AIMD) congestion control, and cwnd = FlightSize = pipe = 20
 segments, so ssthresh will be set to 10 at the beginning of recovery.
 We also assume standard Fast Retransmit and Limited Transmit
 [RFC3042], so TCP will send 2 new segments followed by 1 retransmit
 in response to the first 3 duplicate ACKs following the losses.

Mathis, et al. Experimental [Page 6]

RFC 6937 Proportional Rate Reduction May 2013

 Each of the diagrams below shows the per ACK response to the first
 round trip for the various recovery algorithms when the zeroth
 segment is lost. The top line indicates the transmitted segment
 number triggering the ACKs, with an X for the lost segment. "cwnd"
 and "pipe" indicate the values of these algorithms after processing
 each returning ACK. "Sent" indicates how much ’N’ew or
 ’R’etransmitted data would be sent. Note that the algorithms for
 deciding which data to send are out of scope of this document.

 When there is a single loss, PRR with either of the Reduction Bound
 algorithms has the same behavior. We show "RB", a flag indicating
 which Reduction Bound subexpression ultimately determined the value
 of sndcnt. When there are minimal losses, "limit" (both algorithms)
 will always be larger than ssthresh - pipe, so the sndcnt will be
 ssthresh - pipe, indicated by "s" in the "RB" row.

 RFC 6675
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
 pipe: 19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10
 sent: N N R N N N N N N N N

 Rate-Halving (Linux)
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11
 pipe: 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10
 sent: N N R N N N N N N N N

 PRR
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 pipe: 19 19 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10
 sent: N N R N N N N N N N N
 RB: s s

 Cwnd is not shown because PRR does not use it.

 Key for RB
 s: sndcnt = ssthresh - pipe // from ssthresh
 b: sndcnt = prr_delivered - prr_out + SMSS // from banked
 d: sndcnt = DeliveredData + SMSS // from DeliveredData
 (Sometimes, more than one applies.)

 Note that all 3 algorithms send the same total amount of data.
 RFC 6675 experiences a "half window of silence", while the
 Rate-Halving and PRR spread the voluntary window reduction across an
 entire RTT.

Mathis, et al. Experimental [Page 7]

RFC 6937 Proportional Rate Reduction May 2013

 Next, we consider the same initial conditions when the first 15
 packets (0-14) are lost. During the remainder of the lossy RTT, only
 5 ACKs are returned to the sender. We examine each of these
 algorithms in succession.

 RFC 6675
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 11 11 11
 pipe: 19 19 4 10 10
 sent: N N 7R R R

 Rate-Halving (Linux)
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 5 5 5
 pipe: 19 19 4 4 4
 sent: N N R R R

 PRR-CRB
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 pipe: 19 19 4 4 4
 sent: N N R R R
 RB: b b b

 PRR-SSRB
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 pipe: 19 19 4 5 6
 sent: N N 2R 2R 2R
 RB: bd d d

 In this specific situation, RFC 6675 is more aggressive because once
 Fast Retransmit is triggered (on the ACK for segment 17), TCP
 immediately retransmits sufficient data to bring pipe up to cwnd.
 Our measurement data (see Section 5) indicates that RFC 6675
 significantly outperforms Rate-Halving, PRR-CRB, and some other
 similarly conservative algorithms that we tested, showing that it is
 significantly common for the actual losses to exceed the window
 reduction determined by the congestion control algorithm.

 The Linux implementation of Rate-Halving includes an early version of
 the Conservative Reduction Bound [RHweb]. In this situation, the 5
 ACKs trigger exactly 1 transmission each (2 new data, 3 old data),
 and cwnd is set to 5. At a window size of 5, it takes 3 round trips
 to retransmit all 15 lost segments. Rate-Halving does not raise the
 window at all during recovery, so when recovery finally completes,
 TCP will slow start cwnd from 5 up to 10. In this example, TCP
 operates at half of the window chosen by the congestion control for
 more than 3 RTTs, increasing the elapsed time and exposing it to
 timeouts in the event that there are additional losses.

Mathis, et al. Experimental [Page 8]

RFC 6937 Proportional Rate Reduction May 2013

 PRR-CRB implements a Conservative Reduction Bound. Since the total
 losses bring pipe below ssthresh, data is sent such that the total
 data transmitted, prr_out, follows the total data delivered to the
 receiver as reported by returning ACKs. Transmission is controlled
 by the sending limit, which is set to prr_delivered - prr_out. This
 is indicated by the RB:b tagging in the figure. In this case,
 PRR-CRB is exposed to exactly the same problems as Rate-Halving; the
 excess window reduction causes it to take excessively long to recover
 the losses and exposes it to additional timeouts.

 PRR-SSRB increases the window by exactly 1 segment per ACK until pipe
 rises to ssthresh during recovery. This is accomplished by setting
 limit to one greater than the data reported to have been delivered to
 the receiver on this ACK, implementing slow start during recovery,
 and indicated by RB:d tagging in the figure. Although increasing the
 window during recovery seems to be ill advised, it is important to
 remember that this is actually less aggressive than permitted by RFC
 5681, which sends the same quantity of additional data as a single
 burst in response to the ACK that triggered Fast Retransmit.

 For less extreme events, where the total losses are smaller than the
 difference between FlightSize and ssthresh, PRR-CRB and PRR-SSRB have
 identical behaviors.

4. Properties

 The following properties are common to both PRR-CRB and PRR-SSRB,
 except as noted:

 PRR maintains TCP’s ACK clocking across most recovery events,
 including burst losses. RFC 6675 can send large unclocked bursts
 following burst losses.

 Normally, PRR will spread voluntary window reductions out evenly
 across a full RTT. This has the potential to generally reduce the
 burstiness of Internet traffic, and could be considered to be a type
 of soft pacing. Hypothetically, any pacing increases the probability
 that different flows are interleaved, reducing the opportunity for
 ACK compression and other phenomena that increase traffic burstiness.
 However, these effects have not been quantified.

 If there are minimal losses, PRR will converge to exactly the target
 window chosen by the congestion control algorithm. Note that as TCP
 approaches the end of recovery, prr_delivered will approach RecoverFS
 and sndcnt will be computed such that prr_out approaches ssthresh.

Mathis, et al. Experimental [Page 9]

RFC 6937 Proportional Rate Reduction May 2013

 Implicit window reductions, due to multiple isolated losses during
 recovery, cause later voluntary reductions to be skipped. For small
 numbers of losses, the window size ends at exactly the window chosen
 by the congestion control algorithm.

 For burst losses, earlier voluntary window reductions can be undone
 by sending extra segments in response to ACKs arriving later during
 recovery. Note that as long as some voluntary window reductions are
 not undone, the final value for pipe will be the same as ssthresh,
 the target cwnd value chosen by the congestion control algorithm.

 PRR with either Reduction Bound improves the situation when there are
 application stalls, e.g., when the sending application does not queue
 data for transmission quickly enough or the receiver stops advancing
 rwnd (receiver window). When there is an application stall early
 during recovery, prr_out will fall behind the sum of the
 transmissions permitted by sndcnt. The missed opportunities to send
 due to stalls are treated like banked voluntary window reductions;
 specifically, they cause prr_delivered - prr_out to be significantly
 positive. If the application catches up while TCP is still in
 recovery, TCP will send a partial window burst to catch up to exactly
 where it would have been had the application never stalled. Although
 this burst might be viewed as being hard on the network, this is
 exactly what happens every time there is a partial RTT application
 stall while not in recovery. We have made the partial RTT stall
 behavior uniform in all states. Changing this behavior is out of
 scope for this document.

 PRR with Reduction Bound is less sensitive to errors in the pipe
 estimator. While in recovery, pipe is intrinsically an estimator,
 using incomplete information to estimate if un-SACKed segments are
 actually lost or merely out of order in the network. Under some
 conditions, pipe can have significant errors; for example, pipe is
 underestimated when a burst of reordered data is prematurely assumed
 to be lost and marked for retransmission. If the transmissions are
 regulated directly by pipe as they are with RFC 6675, a step
 discontinuity in the pipe estimator causes a burst of data, which
 cannot be retracted once the pipe estimator is corrected a few ACKs
 later. For PRR, pipe merely determines which algorithm, PRR or the
 Reduction Bound, is used to compute sndcnt from DeliveredData. While
 pipe is underestimated, the algorithms are different by at most 1
 segment per ACK. Once pipe is updated, they converge to the same
 final window at the end of recovery.

 Under all conditions and sequences of events during recovery, PRR-CRB
 strictly bounds the data transmitted to be equal to or less than the
 amount of data delivered to the receiver. We claim that this Strong
 Packet Conservation Bound is the most aggressive algorithm that does

Mathis, et al. Experimental [Page 10]

RFC 6937 Proportional Rate Reduction May 2013

 not lead to additional forced losses in some environments. It has
 the property that if there is a standing queue at a bottleneck with
 no cross traffic, the queue will maintain exactly constant length for
 the duration of the recovery, except for +1/-1 fluctuation due to
 differences in packet arrival and exit times. See Appendix A for a
 detailed discussion of this property.

 Although the Strong Packet Conservation Bound is very appealing for a
 number of reasons, our measurements summarized in Section 5
 demonstrate that it is less aggressive and does not perform as well
 as RFC 6675, which permits bursts of data when there are bursts of
 losses. PRR-SSRB is a compromise that permits TCP to send 1 extra
 segment per ACK as compared to the Packet Conserving Bound. From the
 perspective of a strict Packet Conserving Bound, PRR-SSRB does indeed
 open the window during recovery; however, it is significantly less
 aggressive than RFC 6675 in the presence of burst losses.

5. Measurements

 In a companion IMC11 paper [IMC11], we describe some measurements
 comparing the various strategies for reducing the window during
 recovery. The experiments were performed on servers carrying Google
 production traffic and are briefly summarized here.

 The various window reduction algorithms and extensive instrumentation
 were all implemented in Linux 2.6. We used the uniform set of
 algorithms present in the base Linux implementation, including CUBIC
 [CUBIC], Limited Transmit [RFC3042], threshold transmit (Section 3.1
 in [FACK]) (this algorithm was not present in RFC 3517, but a similar
 algorithm has been added to RFC 6675), and lost retransmission
 detection algorithms. We confirmed that the behaviors of Rate-
 Halving (the Linux default), RFC 3517, and PRR were authentic to
 their respective specifications and that performance and features
 were comparable to the kernels in production use. All of the
 different window reduction algorithms were all present in a common
 kernel and could be selected with a sysctl, such that we had an
 absolutely uniform baseline for comparing them.

 Our experiments included an additional algorithm, PRR with an
 unlimited bound (PRR-UB), which sends ssthresh-pipe bursts when pipe
 falls below ssthresh. This behavior parallels RFC 3517.

 An important detail of this configuration is that CUBIC only reduces
 the window by 30%, as opposed to the 50% reduction used by
 traditional congestion control algorithms. This accentuates the
 tendency for RFC 3517 and PRR-UB to send a burst at the point when
 Fast Retransmit gets triggered because pipe is likely to already be
 below ssthresh. Precisely this condition was observed for 32% of the

Mathis, et al. Experimental [Page 11]

RFC 6937 Proportional Rate Reduction May 2013

 recovery events: pipe fell below ssthresh before Fast Retransmit was
 triggered, thus the various PRR algorithms started in the Reduction
 Bound phase, and RFC 3517 sent bursts of segments with the Fast
 Retransmit.

 In the companion paper, we observe that PRR-SSRB spends the least
 time in recovery of all the algorithms tested, largely because it
 experiences fewer timeouts once it is already in recovery.

 RFC 3517 experiences 29% more detected lost retransmissions and 2.6%
 more timeouts (presumably due to undetected lost retransmissions)
 than PRR-SSRB. These results are representative of PRR-UB and other
 algorithms that send bursts when pipe falls below ssthresh.

 Rate-Halving experiences 5% more timeouts and significantly smaller
 final cwnd values at the end of recovery. The smaller cwnd sometimes
 causes the recovery itself to take extra round trips. These results
 are representative of PRR-CRB and other algorithms that implement
 strict packet conservation during recovery.

6. Conclusion and Recommendations

 Although the Strong Packet Conservation Bound used in PRR-CRB is very
 appealing for a number of reasons, our measurements show that it is
 less aggressive and does not perform as well as RFC 3517 (and by
 implication RFC 6675), which permits bursts of data when there are
 bursts of losses. RFC 3517 and RFC 6675 are conservative in the
 original sense of Van Jacobson’s packet conservation principle, which
 included the assumption that presumed lost segments have indeed left
 the network. PRR-CRB makes no such assumption, following instead a
 Strong Packet Conservation Bound in which only packets that have
 actually arrived at the receiver are considered to have left the
 network. PRR-SSRB is a compromise that permits TCP to send 1 extra
 segment per ACK relative to the Strong Packet Conservation Bound, to
 partially compensate for excess losses.

 From the perspective of the Strong Packet Conservation Bound,
 PRR-SSRB does indeed open the window during recovery; however, it is
 significantly less aggressive than RFC 3517 (and RFC 6675) in the
 presence of burst losses. Even so, it often outperforms RFC 3517
 (and presumably RFC 6675) because it avoids some of the self-
 inflicted losses caused by bursts.

 At this time, we see no reason not to test and deploy PRR-SSRB on a
 large scale. Implementers worried about any potential impact of
 raising the window during recovery may want to optionally support
 PRR-CRB (which is actually simpler to implement) for comparison

Mathis, et al. Experimental [Page 12]

RFC 6937 Proportional Rate Reduction May 2013

 studies. Furthermore, there is one minor detail of PRR that can be
 improved by replacing pipe by total_pipe, as defined by Laminar TCP
 [Laminar].

 One final comment about terminology: we expect that common usage will
 drop "Slow Start Reduction Bound" from the algorithm name. This
 document needed to be pedantic about having distinct names for PRR
 and every variant of the Reduction Bound. However, we do not
 anticipate any future exploration of the alternative Reduction
 Bounds.

7. Acknowledgements

 This document is based in part on previous incomplete work by Matt
 Mathis, Jeff Semke, and Jamshid Mahdavi [RHID] and influenced by
 several discussions with John Heffner.

 Monia Ghobadi and Sivasankar Radhakrishnan helped analyze the
 experiments.

 Ilpo Jarvinen reviewed the code.

 Mark Allman improved the document through his insightful review.

8. Security Considerations

 PRR does not change the risk profile for TCP.

 Implementers that change PRR from counting bytes to segments have to
 be cautious about the effects of ACK splitting attacks [Savage99],
 where the receiver acknowledges partial segments for the purpose of
 confusing the sender’s congestion accounting.

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October
 1996.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

Mathis, et al. Experimental [Page 13]

RFC 6937 Proportional Rate Reduction May 2013

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo,
 M., and Y. Nishida, "A Conservative Loss Recovery
 Algorithm Based on Selective Acknowledgment (SACK) for
 TCP", RFC 6675, August 2012.

9.2. Informative References

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [IMC11] Dukkipati, N., Mathis, M., Cheng, Y., and M. Ghobadi,
 "Proportional Rate Reduction for TCP", Proceedings of
 the 11th ACM SIGCOMM Conference on Internet Measurement
 2011, Berlin, Germany, November 2011.

 [FACK] Mathis, M. and J. Mahdavi, "Forward Acknowledgment:
 Refining TCP Congestion Control", ACM SIGCOMM SIGCOMM96,
 August 1996.

 [RHID] Mathis, M., Semke, J., and J. Mahdavi, "The Rate-Halving
 Algorithm for TCP Congestion Control", Work in Progress,
 August 1999.

 [RHweb] Mathis, M. and J. Mahdavi, "TCP Rate-Halving with
 Bounding Parameters", Web publication, December 1997,
 <http://www.psc.edu/networking/papers/FACKnotes/current/>.

 [CUBIC] Rhee, I. and L. Xu, "CUBIC: A new TCP-friendly high-
 speed TCP variant", PFLDnet 2005, February 2005.

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM Comput. Commun. Rev. 18(4), August 1988.

 [Savage99] Savage, S., Cardwell, N., Wetherall, D., and T.
 Anderson, "TCP congestion control with a misbehaving
 receiver", SIGCOMM Comput. Commun. Rev. 29(5), October
 1999.

 [Laminar] Mathis, M., "Laminar TCP and the case for refactoring
 TCP congestion control", Work in Progress, July 2012.

Mathis, et al. Experimental [Page 14]

RFC 6937 Proportional Rate Reduction May 2013

Appendix A. Strong Packet Conservation Bound

 PRR-CRB is based on a conservative, philosophically pure, and
 aesthetically appealing Strong Packet Conservation Bound, described
 here. Although inspired by Van Jacobson’s packet conservation
 principle [Jacobson88], it differs in how it treats segments that are
 missing and presumed lost. Under all conditions and sequences of
 events during recovery, PRR-CRB strictly bounds the data transmitted
 to be equal to or less than the amount of data delivered to the
 receiver. Note that the effects of presumed losses are included in
 the pipe calculation, but do not affect the outcome of PRR-CRB, once
 pipe has fallen below ssthresh.

 We claim that this Strong Packet Conservation Bound is the most
 aggressive algorithm that does not lead to additional forced losses
 in some environments. It has the property that if there is a
 standing queue at a bottleneck that is carrying no other traffic, the
 queue will maintain exactly constant length for the entire duration
 of the recovery, except for +1/-1 fluctuation due to differences in
 packet arrival and exit times. Any less aggressive algorithm will
 result in a declining queue at the bottleneck. Any more aggressive
 algorithm will result in an increasing queue or additional losses if
 it is a full drop tail queue.

 We demonstrate this property with a little thought experiment:

 Imagine a network path that has insignificant delays in both
 directions, except for the processing time and queue at a single
 bottleneck in the forward path. By insignificant delay, we mean when
 a packet is "served" at the head of the bottleneck queue, the
 following events happen in much less than one bottleneck packet time:
 the packet arrives at the receiver; the receiver sends an ACK that
 arrives at the sender; the sender processes the ACK and sends some
 data; the data is queued at the bottleneck.

 If sndcnt is set to DeliveredData and nothing else is inhibiting
 sending data, then clearly the data arriving at the bottleneck queue
 will exactly replace the data that was served at the head of the
 queue, so the queue will have a constant length. If queue is drop
 tail and full, then the queue will stay exactly full. Losses or
 reordering on the ACK path only cause wider fluctuations in the queue
 size, but do not raise its peak size, independent of whether the data
 is in order or out of order (including loss recovery from an earlier
 RTT). Any more aggressive algorithm that sends additional data will
 overflow the drop tail queue and cause loss. Any less aggressive
 algorithm will under-fill the queue. Therefore, setting sndcnt to
 DeliveredData is the most aggressive algorithm that does not cause
 forced losses in this simple network. Relaxing the assumptions

Mathis, et al. Experimental [Page 15]

RFC 6937 Proportional Rate Reduction May 2013

 (e.g., making delays more authentic and adding more flows, delayed
 ACKs, etc.) is likely to increase the fine grained fluctuations in
 queue size but does not change its basic behavior.

 Note that the congestion control algorithm implements a broader
 notion of optimal that includes appropriately sharing the network.
 Typical congestion control algorithms are likely to reduce the data
 sent relative to the Packet Conserving Bound implemented by PRR,
 bringing TCP’s actual window down to ssthresh.

Authors’ Addresses

 Matt Mathis
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 EMail: mattmathis@google.com

 Nandita Dukkipati
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 EMail: nanditad@google.com

 Yuchung Cheng
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 EMail: ycheng@google.com

Mathis, et al. Experimental [Page 16]

