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Abstr act

Thi s docunent describes an experinmental Proportional Rate Reduction
(PRR) algorithmas an alternative to the wi dely depl oyed Fast
Recovery and Rate-Hal ving al gorithns. These algorithns determ ne the
anount of data sent by TCP during | oss recovery. PRR ninimzes
excess w ndow adj ustnents, and the actual w ndow size at the end of
recovery will be as close as possible to the ssthresh, as deternined
by the congestion control algorithm

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exami nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
community. This docunent is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
community. 1t has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
al |l docunents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc6937
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1. Introduction

Thi s docunent describes an experinmental algorithm PRR to inprove
the accuracy of the anmpbunt of data sent by TCP during | oss recovery.

St andard congestion control [RFC5681] requires that TCP (and ot her
protocol s) reduce their congestion wi ndow (cwnd) in response to

| osses. Fast Recovery, described in the sane docunent, is the
reference algorithmfor making this adjustment. |Its stated goal is
to recover TCP's self clock by relying on returning ACKs during
recovery to clock nore data into the network. Fast Recovery
typically adjusts the window by waiting for one half round-trip tine
(RTT) of ACKs to pass before sending any data. It is fragile because
it cannot conpensate for the inplicit w ndow reduction caused by the
| osses thensel ves.
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RFC 6675 [ RFC6675] nmakes Fast Recovery with Sel ective Acknow edgenent
(SACK) [ RFC2018] nore accurate by conputing "pipe", a sender side
estimate of the nunber of bytes still outstanding in the network.
Wth RFC 6675, Fast Recovery is inplenented by sending data as
necessary on each ACK to prevent pipe fromfalling bel ow sl owstart
threshol d (ssthresh), the wi ndow size as deternined by the congestion
control algorithm This protects Fast Recovery fromtinmeouts in nmany
cases where there are heavy | osses, although not if the entire second
hal f of the wi ndow of data or ACKs are lost. However, a single ACK
carrying a SACK option that inplies a large quantity of m ssing data
can cause a step discontinuity in the pipe estimator, which can cause
Fast Retransnmit to send a burst of data.

The Rate-Hal ving al gorithm sends data on alternate ACKs during
recovery, such that after 1 RTT the w ndow has been hal ved. Rate-
Halving is inplenented in Linux after only being informally published
[ RHweb], including an unconpl eted docunent [RHI D]. Rate-Halving also
does not adequately conpensate for the inplicit wi ndow reduction
caused by the | osses and assunes a net 50% wi ndow reduction, which
was conpletely standard at the tinme it was witten but not
appropriate for nmodern congestion control algorithms, such as CUBIC
[CuBI C], which reduce the window by | ess than 50% As a consequence,
Rat e- Hal ving often allows the window to fall further than necessary,
reduci ng perfornance and increasing the risk of tineouts if there are
addi tional | osses.

PRR avoi ds these excess w ndow adj ustnents such that at the end of
recovery the actual wi ndow size will be as close as possible to
ssthresh, the wi ndow size as determ ned by the congestion control
algorithm It is patterned after Rate-Halving, but using the
fraction that is appropriate for the target w ndow chosen by the
congestion control algorithm During PRR one of two additional
Reduction Bound algorithns lints the total w ndow reduction due to
al |l nechani sns, including transient application stalls and the |osses
t hensel ves.

We describe two slightly different Reduction Bound al gorithns:
Conservative Reduction Bound (CRB), which is strictly packet
conserving; and a Slow Start Reduction Bound (SSRB), which is nore
aggressive than CRB by, at nobst, 1 segnent per ACK. PRR-CRB neets
the Strong Packet Conservation Bound described in Appendix A
however, in real networks it does not performas well as the

al gorithns described in RFC 6675, which prove to be nore aggressive
in a significant nunber of cases. SSRB offers a conprom se by
allowing TCP to send 1 additional segnment per ACK relative to CRB in
some situations. Although SSRB is | ess aggressive than RFC 6675
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(transmitting fewer segnents or taking nore tine to transnit theny,
it outperforns it, due to the lower probability of additional |osses
during recovery.

The Strong Packet Conservation Bound on which PRR and bot h Reduction
Bounds are based is patterned after Van Jacobson’s packet
conservation principle: segnents delivered to the receiver are used
as the clock to trigger sending the sane nunber of segments back into
the network. As much as possible, PRR and the Reduction Bound
algorithnms rely on this self clock process, and are only slightly

af fected by the accuracy of other estimators, such as pipe [ RFC6675]
and cwnd. This is what gives the algorithns their precision in the
presence of events that cause uncertainty in other estimators.

The original definition of the packet conservation principle

[ Jacobson88] treated packets that are presuned to be lost (e.g.

mar ked as candi dates for retransm ssion) as having |l eft the network.
This idea is reflected in the pipe estimator defined in RFC 6675 and
used here, but it is distinct fromthe Strong Packet Conservation
Bound as described in Appendix A which is defined solely on the
basis of data arriving at the receiver.

We eval uated these and other algorithns in a | arge scal e measurenent
study presented in a conpani on paper [IMCl1l] and sunmarized in
Section 5. This neasurenent study was based on RFC 3517 [ RFC3517],
whi ch has since been superseded by RFC 6675. Since there are slight
di fferences between the two specifications, and we were neticul ous
about our inplenentation of RFC 3517, we are not confortable

uncondi tionally asserting that our nmeasurement results apply to RFC
6675, although we believe this to be the case. W have instead
chosen to be pedantic about describing neasurenent results relative
to RFC 3517, on which they were actually based. General discussions
of algorithms and their properties have been updated to refer to RFC
6675.

We found that for authentic network traffic, PRR-SSRB out perforns
both RFC 3517 and Li nux Rate-Hal ving even though it is |ess
aggressive than RFC 3517. W believe that these results apply to RFC
6675 as wel | .

The algorithms are described as nodifications to RFC 5681 [ RFC5681],
"TCP Congestion Control", using concepts drawn fromthe pipe

al gorithm [ RFC6675]. They are nost accurate and nore easily

i mpl emented wi th SACK [ RFC2018], but do not require SACK
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2. Definitions

The following ternms, paraneters, and state variables are used as they
are defined in earlier docunents:

RFC 793: snd. una (send unacknow edged)

RFC 5681: duplicate ACK, FlightSize, Sender Maxi mum Segnent Size
( SMsS)

RFC 6675: covered (as in "covered sequence nunbers")

Vol untary w ndow reductions: choosing not to send data in response to

some ACKs, for the purpose of reducing the sending wi ndow size and

data rate

We define some additional variables:

SACKd: The total nunber of bytes that the scoreboard indicates have
been delivered to the receiver. This can be conputed by scanning
the scoreboard and counting the total nunber of bytes covered by
all SACK bl ocks. If SACK is not in use, SACKd is not defined.

De

i veredDat a: The total nunber of bytes that the current ACK

i ndi cates have been delivered to the receiver. Wen not in
recovery, DeliveredData is the change in snd.una. Wth SACK

Del i veredDat a can be conputed precisely as the change in snd. una
plus the (signed) change in SACKd. In recovery w thout SACK
DeliveredData is estimated to be 1 SM5S on duplicate

acknow edgenents, and on a subsequent partial or full ACK
DeliveredData is estinated to be the change in snd.una, nminus 1
SMBS for each preceding duplicate ACK

Note that DeliveredData is robust; for TCP using SACK, DeliveredData
can be precisely conputed anywhere in the network just by inspecting
the returning ACKs. The consequence of nissing ACKs is that later
ACKs will show a | arger DeliveredData. Furthernore, for any TCP
(with or without SACK), the sum of DeliveredData nust agree with the
forward progress over the sane tinme interval

We introduce a local variable "sndcnt”, which indicates exactly how
many bytes should be sent in response to each ACK. Note that the
deci si on of which data to send (e.g., retransmt missing data or send
nore new data) is out of scope for this docunment.
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3.

Al gorithns

At the beginning of recovery, initialize PRR state. This assunmes a
nmodern congestion control algorithm CongCrl A g(), that night set
ssthresh to sonething other than FlightSize/2:

ssthresh = CongCtrl Alg() // Target cwnd after recovery
prr_delivered =0 /1 Total bytes delivered during recovery
prr_out =0 /1 Total bytes sent during recovery
Recover FS = snd. nxt-snd.una // FlightSize at the start of recovery

On every ACK during recovery conpute:

Del i veredDat a = change_i n(snd. una) + change_i n( SACKd)
prr_delivered += DeliveredData
pi pe = (RFC 6675 pipe algorithm
if (pipe > ssthresh) {
/1 Proportional Rate Reduction
sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
} else {
/'l Two versions of the Reduction Bound
if (conservative) { /'l PRR-CRB
limt = prr_delivered - prr_out
} else { /1 PRR- SSRB
limt = MAX(prr_delivered - prr_out, DeliveredData) + MsS

/1l Attenpt to catch up, as pernmitted by limt

sndecnt = M N(ssthresh - pipe, limt)
}

On any data transnission or retransm ssion

prr_out += (data sent) // strictly less than or equal to sndcnt

Exanpl es
We illustrate these algorithns by showing their different behaviors
for two scenarios: TCP experiencing either a single loss or a burst
of 15 consecutive losses. 1In all cases we assunme bul k data (no

application pauses), standard Additive Increase Miltiplicative
Decrease (Al MD) congestion control, and cwnd = FlightSize = pipe = 20
segnments, so ssthresh will be set to 10 at the begi nning of recovery.
W al so assunme standard Fast Retransmit and Limted Transmit

[ RFC3042], so TCP will send 2 new segnments followed by 1 retransnit
in response to the first 3 duplicate ACKs follow ng the |osses.
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Each of the diagrans bel ow shows the per ACK response to the first
round trip for the various recovery al gorithns when the zeroth
segment is lost. The top line indicates the transmitted segnent

nunber triggering the ACKs, with an X for the |lost segnent. "cwnd"
and "pipe" indicate the values of these algorithns after processing
each returning ACK. "Sent" indicates how nuch 'N ew or

"R etransmitted data would be sent. Note that the algorithns for
deci di ng which data to send are out of scope of this docunent.

When there is a single loss, PRRwith either of the Reduction Bound
al gorithnms has the sanme behavior. W show "RB', a flag indicating
whi ch Reduction Bound subexpression ultinmately determ ned the val ue
of sndcnt. When there are mininmal |losses, "linmt" (both algorithns)
will always be larger than ssthresh - pipe, so the sndent will be
ssthresh - pipe, indicated by "s" in the "RB" row

RFC 6675

ack# X1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
cwnd: 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
pi pe: 19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10
sent: N N R N NN N NN N N

Rat e- Hal vi ng (Li nux)
ack# X 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19

cwnd: 20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11
pi pe: 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10
sent: N N R N N N N N N N N
PRR

ack# X 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
pi pe: 19 19 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10
sent: N N R N N N N N N N N
RB: s s

owmnd i s not shown because PRR does not use it.

Key for RB

s: sndcnt = ssthresh - pipe /1 from ssthresh

b: sndcnt = prr_delivered - prr_out + SMSS // from banked

d: sndcnt = DeliveredData + SMSS /1 from DeliveredData

(Sonetines, nore than one applies.)

Note that all 3 algorithns send the sane total ampunt of data

RFC 6675 experiences a "half wi ndow of silence", while the

Rat e- Hal vi ng and PRR spread the voluntary wi ndow reduction across an
entire RTT.
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Next, we consider the sane initial conditions when the first 15
packets (0-14) are lost. During the renmainder of the |ossy RIT, only
5 ACKs are returned to the sender. W exam ne each of these

al gorithms in succession.

RFC 6675

ack# X X X X X X X X X X X X X X X15 16 17 18 19
cwnd: 20 20 11 11 11
pi pe: 19 19 4 10 10
sent: N N7R R R

Rat e- Hal vi ng (Li nux)

ack# X X X X X X X X X X X X X X X15 16 17 18 19
cwnd: 2020 5 5 5
pi pe: 19 19 4 4 4
sent: N N R R R
PRR- CRB

ack# X X X X X X X X X X X X X X X15 16 17 18 19
pi pe: 19 19 4 4 4
sent: N NR R R
RB: b b b
PRR- SSRB

ack# X X X X X X X X X X X X X X X15 16 17 18 19
pi pe: 1919 4 5 6
sent: N N 2R 2R 2R
RB: bd d d

In this specific situation, RFC 6675 is nore aggressive because once
Fast Retransmit is triggered (on the ACK for segnent 17), TCP
imMmediately retransnits sufficient data to bring pipe up to cwnd.

Qur neasurenment data (see Section 5) indicates that RFC 6675
significantly outperfornms Rate-Halving, PRR-CRB, and sonme ot her
simlarly conservative algorithms that we tested, showing that it is
significantly comon for the actual |osses to exceed the w ndow
reduction determ ned by the congestion control algorithm

The Linux inplenentation of Rate-Halving includes an early version of
the Conservative Reduction Bound [RHweb]. In this situation, the 5
ACKs trigger exactly 1 transm ssion each (2 new data, 3 old data),
and cwnd is set to 5. At a window size of 5, it takes 3 round trips
to retransmit all 15 |ost segnents. Rate-Halving does not raise the
wi ndow at all during recovery, so when recovery finally conpletes,
TCP will slow start cwnd from5 up to 10. 1In this exanple, TCP
operates at half of the wi ndow chosen by the congestion control for
nmore than 3 RTTs, increasing the elapsed tinme and exposing it to
timeouts in the event that there are additional |osses.
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PRR- CRB i npl enents a Conservative Reduction Bound. Since the total

| osses bring pipe below ssthresh, data is sent such that the total
data transmitted, prr_out, follows the total data delivered to the
receiver as reported by returning ACKs. Transm ssion is controlled
by the sending limt, which is set to prr_delivered - prr_out. This
is indicated by the RB:b tagging in the figure. In this case,
PRR-CRB i s exposed to exactly the sane problens as Rate-Halving; the
excess w ndow reduction causes it to take excessively long to recover
the | osses and exposes it to additional tineouts.

PRR- SSRB i ncreases the wi ndow by exactly 1 segnent per ACK until pipe
rises to ssthresh during recovery. This is acconplished by setting
limt to one greater than the data reported to have been delivered to
the receiver on this ACK, inplementing slow start during recovery,
and indicated by RB:d tagging in the figure. Although increasing the
wi ndow during recovery seens to be ill advised, it is inportant to
renmenber that this is actually | ess aggressive than permtted by RFC
5681, which sends the sanme quantity of additional data as a single
burst in response to the ACK that triggered Fast Retransmt.

For |l ess extrene events, where the total |osses are smaller than the
di fference between FlightSize and ssthresh, PRR-CRB and PRR- SSRB have
i dentical behaviors.

4. Properties

The followi ng properties are common to both PRR-CRB and PRR- SSRB
except as noted:

PRR nmi ntains TCP's ACK cl ocki ng across npbst recovery events,
i ncluding burst |osses. RFC 6675 can send | arge uncl ocked bursts
foll owi ng burst | osses.

Normal Iy, PRR will spread voluntary w ndow reducti ons out evenly
across a full RTT. This has the potential to generally reduce the
burstiness of Internet traffic, and could be considered to be a type
of soft pacing. Hypothetically, any pacing increases the probability
that different flows are interleaved, reducing the opportunity for
ACK conpressi on and ot her phenonena that increase traffic burstiness.
However, these effects have not been quantified.

If there are mininal |osses, PRRwill converge to exactly the target
wi ndow chosen by the congestion control algorithm Note that as TCP
approaches the end of recovery, prr_delivered will approach RecoverFS
and sndcnt will be conputed such that prr_out approaches ssthresh.
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Implicit window reductions, due to nultiple isolated | osses during
recovery, cause later voluntary reductions to be skipped. For snall
nunmbers of |osses, the wi ndow size ends at exactly the wi ndow chosen
by the congestion control algorithm

For burst |osses, earlier voluntary wi ndow reductions can be undone
by sending extra segnents in response to ACKs arriving |later during
recovery. Note that as long as sonme voluntary w ndow reductions are
not undone, the final value for pipe will be the same as ssthresh
the target cwnd val ue chosen by the congestion control al gorithm

PRR with either Reduction Bound inproves the situation when there are
application stalls, e.g., when the sending application does not queue
data for transm ssion quickly enough or the receiver stops advancing
rwnd (receiver window). Wen there is an application stall early
during recovery, prr_out will fall behind the sumof the

transm ssions pernmtted by sndcnt. The m ssed opportunities to send
due to stalls are treated |ike banked vol untary wi ndow reducti ons;
specifically, they cause prr_delivered - prr_out to be significantly
positive. |f the application catches up while TCP is still in
recovery, TCP will send a partial wi ndow burst to catch up to exactly
where it woul d have been had the application never stalled. Although
this burst m ght be viewed as being hard on the network, this is
exactly what happens every tine there is a partial RTT application
stall while not in recovery. W have nade the partial RTT stal
behavior uniformin all states. Changing this behavior is out of
scope for this docunent.

PRR with Reduction Bound is |less sensitive to errors in the pipe
estinmator. Wile in recovery, pipe is intrinsically an estinmator,
using inconplete information to estinmate if un- SACKed segnents are
actually lost or nerely out of order in the network. Under some
condi tions, pipe can have significant errors; for exanple, pipe is
underesti mated when a burst of reordered data is prematurely assuned
to be lost and nmarked for retransmssion. |If the transm ssions are
regulated directly by pipe as they are with RFC 6675, a step

di scontinuity in the pipe estinmator causes a burst of data, which
cannot be retracted once the pipe estinmator is corrected a few ACKs
later. For PRR, pipe nerely determines which algorithm PRR or the
Reducti on Bound, is used to conpute sndcnt from DeliveredData. Wile
pipe is underestimted, the algorithns are different by at nost 1
segrment per ACK. Once pipe is updated, they converge to the sane
final window at the end of recovery.

Under all conditions and sequences of events during recovery, PRR-CRB
strictly bounds the data transmtted to be equal to or less than the
anount of data delivered to the receiver. W claimthat this Strong
Packet Conservation Bound is the nost aggressive algorithmthat does
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not lead to additional forced |osses in sone environments. |t has
the property that if there is a standing queue at a bottleneck with
no cross traffic, the queue will maintain exactly constant |ength for
the duration of the recovery, except for +1/-1 fluctuation due to
differences in packet arrival and exit times. See Appendix A for a
detail ed di scussion of this property.

Al t hough the Strong Packet Conservation Bound is very appealing for a
nunmber of reasons, our neasurenments sumarized in Section 5
denmonstrate that it is | ess aggressive and does not performas wel

as RFC 6675, which permts bursts of data when there are bursts of

| osses. PRR-SSRB is a conpronise that pernits TCP to send 1 extra
segment per ACK as conpared to the Packet Conserving Bound. Fromthe
perspective of a strict Packet Conserving Bound, PRR-SSRB does indeed
open the w ndow during recovery; however, it is significantly |ess
aggressive than RFC 6675 in the presence of burst |osses.

5. Measur enent s

In a conpani on | MC11 paper [IMC11], we describe some neasurenents
comparing the various strategies for reducing the w ndow during
recovery. The experinments were perforned on servers carrying Google
production traffic and are briefly summari zed here.

The various w ndow reduction al gorithns and extensive instrunentation
were all inplenented in Linux 2.6. W used the uniformset of

al gorithms present in the base Linux inplenentation, including CUBIC
[CUBIC], Linmted Transmit [RFC3042], threshold transmt (Section 3.1
in [FACK]) (this algorithmwas not present in RFC 3517, but a simlar
al gorithm has been added to RFC 6675), and | ost retransm ssion
detection algorithns. W confirned that the behaviors of Rate-

Hal ving (the Linux default), RFC 3517, and PRR were authentic to
their respective specifications and that performance and features
were conparable to the kernels in production use. Al of the

di fferent wi ndow reduction algorithns were all present in a conmon
kernel and could be selected with a sysctl, such that we had an

absol utely uni form baseline for conparing them

Qur experinents included an additional algorithm PRR with an
unlimted bound (PRR-UB), which sends ssthresh-pi pe bursts when pipe
falls bel ow ssthresh. This behavior parallels RFC 3517.

An inmportant detail of this configuration is that CUBIC only reduces
the wi ndow by 30% as opposed to the 50% reducti on used by
traditional congestion control algorithms. This accentuates the
tendency for RFC 3517 and PRR-UB to send a burst at the point when
Fast Retransmit gets triggered because pipe is likely to already be
bel ow ssthresh. Precisely this condition was observed for 32% of the

Mathis, et al. Experi ment al [ Page 11]



RFC 6937 Proportional Rate Reduction May 2013

recovery events: pipe fell bel ow ssthresh before Fast Retransnit was
triggered, thus the various PRR algorithms started in the Reduction
Bound phase, and RFC 3517 sent bursts of segnents with the Fast
Retransmt.

In the conpani on paper, we observe that PRR-SSRB spends the | east
time in recovery of all the algorithns tested, |argely because it
experiences fewer timeouts once it is already in recovery.

RFC 3517 experiences 29% nore detected | ost retransm ssions and 2. 6%
nmore tineouts (presunmably due to undetected | ost retransm ssions)
than PRR-SSRB. These results are representative of PRR-UB and ot her
al gorithns that send bursts when pipe falls bel ow ssthresh

Rat e- Hal vi ng experiences 5% nore timeouts and significantly smaller
final cwnd values at the end of recovery. The smaller cwnd sonetines
causes the recovery itself to take extra round trips. These results
are representative of PRR-CRB and other algorithns that inplenent
strict packet conservation during recovery.

6. Conclusi on and Recommendat i ons

Al t hough the Strong Packet Conservation Bound used in PRR-CRB is very
appeal ing for a nunber of reasons, our neasurenents show that it is

| ess aggressive and does not performas well as RFC 3517 (and by

i mplication RFC 6675), which pernits bursts of data when there are
bursts of |losses. RFC 3517 and RFC 6675 are conservative in the
original sense of Van Jacobson’s packet conservation principle, which
i ncluded the assunption that presunmed | ost segnents have indeed |eft
the network. PRR-CRB nakes no such assunption, following instead a
Strong Packet Conservation Bound in which only packets that have
actually arrived at the receiver are considered to have left the
network. PRR-SSRB is a conprom se that permits TCP to send 1 extra
segment per ACK relative to the Strong Packet Conservation Bound, to
partially conpensate for excess |osses.

From the perspective of the Strong Packet Conservation Bound,

PRR- SSRB does i ndeed open the w ndow during recovery; however, it is
significantly | ess aggressive than RFC 3517 (and RFC 6675) in the
presence of burst |osses. Even so, it often outperforns RFC 3517
(and presumably RFC 6675) because it avoids sone of the self-
inflicted | osses caused by bursts.

At this time, we see no reason not to test and depl oy PRR- SSRB on a
| arge scale. Inplenmenters worried about any potential inpact of

rai sing the wi ndow during recovery may want to optionally support
PRR-CRB (which is actually sinpler to inplement) for conparison
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9.

9.

1.

studies. Furthernore, there is one mnor detail of PRR that can be
i mproved by replacing pipe by total pipe, as defined by Laninar TCP
[ Lam nar].

One final conment about term nol ogy: we expect that common usage wil|l
drop "Slow Start Reduction Bound" fromthe al gorithmnane. This
docunent needed to be pedantic about having distinct names for PRR
and every variant of the Reduction Bound. However, we do not
anticipate any future exploration of the alternative Reduction
Bounds.
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Security Considerations

PRR does not change the risk profile for TCP

| mpl enenters that change PRR from counting bytes to segnents have to
be cautious about the effects of ACK splitting attacks [Savage99],
where the receiver acknow edges partial segnents for the purpose of
confusing the sender’s congestion accounti ng.
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Appendi x A, Strong Packet Conservation Bound

PRR-CRB i s based on a conservative, philosophically pure, and
aesthetically appealing Strong Packet Conservation Bound, described
here. Al though inspired by Van Jacobson’ s packet conservation
principle [Jacobson88], it differs in howit treats segnents that are
m ssing and presuned |l ost. Under all conditions and sequences of
events during recovery, PRR-CRB strictly bounds the data transnmtted
to be equal to or less than the amount of data delivered to the
receiver. Note that the effects of presuned |osses are included in
the pipe cal culation, but do not affect the outconme of PRR-CRB, once
pi pe has fallen bel ow ssthresh

W claimthat this Strong Packet Conservation Bound is the nost
aggressive algorithmthat does not |lead to additional forced | osses
in sone environnents. It has the property that if there is a
standi ng queue at a bottleneck that is carrying no other traffic, the
queue will maintain exactly constant length for the entire duration
of the recovery, except for +1/-1 fluctuation due to differences in
packet arrival and exit times. Any |ess aggressive algorithmwill
result in a declining queue at the bottleneck. Any nore aggressive
algorithmw Il result in an increasing queue or additional |osses if
it is a full drop tail queue.

We denonstrate this property with a little thought experinent:

| magi ne a network path that has insignificant delays in both
directions, except for the processing tine and queue at a single
bottleneck in the forward path. By insignificant delay, we nmean when
a packet is "served" at the head of the bottleneck queue, the

foll owi ng events happen in nuch | ess than one bottl eneck packet tine:
the packet arrives at the receiver; the receiver sends an ACK t hat
arrives at the sender; the sender processes the ACK and sends sone
data; the data is queued at the bottl eneck

If sndcnt is set to DeliveredData and nothing else is inhibiting
sending data, then clearly the data arriving at the bottl eneck queue
will exactly replace the data that was served at the head of the
gueue, so the queue will have a constant length. |If queue is drop
tail and full, then the queue will stay exactly full. Losses or
reordering on the ACK path only cause wi der fluctuations in the queue
size, but do not raise its peak size, independent of whether the data
is in order or out of order (including | oss recovery froman earlier
RTT). Any nore aggressive algorithmthat sends additional data wll
overflow the drop tail queue and cause | oss. Any |ess aggressive
algorithmw Il under-fill the queue. Therefore, setting sndcnt to
DeliveredData is the nbst aggressive algorithmthat does not cause
forced losses in this sinple network. Relaxing the assunptions
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(e.g., neaking delays nore authentic and adding nore flows, del ayed
ACKs, etc.) is likely to increase the fine grained fluctuations in
gueue size but does not change its basic behavior.

Note that the congestion control algorithminplements a broader

noti on of optimal that includes appropriately sharing the network.
Typi cal congestion control algorithns are likely to reduce the data
sent relative to the Packet Conserving Bound inplenented by PRR
bringing TCP' s actual wi ndow down to ssthresh.
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