
Internet Architecture Board (IAB) D. Thaler, Ed.
Request for Comments: 6943 Microsoft
Category: Informational May 2013
ISSN: 2070-1721

 Issues in Identifier Comparison for Security Purposes

Abstract

 Identifiers such as hostnames, URIs, IP addresses, and email
 addresses are often used in security contexts to identify security
 principals and resources. In such contexts, an identifier presented
 via some protocol is often compared using some policy to make
 security decisions such as whether the security principal may access
 the resource, what level of authentication or encryption is required,
 etc. If the parties involved in a security decision use different
 algorithms to compare identifiers, then failure scenarios ranging
 from denial of service to elevation of privilege can result. This
 document provides a discussion of these issues that designers should
 consider when defining identifiers and protocols, and when
 constructing architectures that use multiple protocols.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Architecture Board (IAB)
 and represents information that the IAB has deemed valuable to
 provide for permanent record. It represents the consensus of the
 Internet Architecture Board (IAB). Documents approved for
 publication by the IAB are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6943.

Thaler Informational [Page 1]

RFC 6943 Identifier Comparison May 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction ..3
 1.1. Classes of Identifiers5
 1.2. Canonicalization ...5
 2. Identifier Use in Security Policies and Decisions6
 2.1. False Positives and Negatives7
 2.2. Hypothetical Example8
 3. Comparison Issues with Common Identifiers9
 3.1. Hostnames ..9
 3.1.1. IPv4 Literals11
 3.1.2. IPv6 Literals12
 3.1.3. Internationalization13
 3.1.4. Resolution for Comparison14
 3.2. Port Numbers and Service Names14
 3.3. URIs ..15
 3.3.1. Scheme Component16
 3.3.2. Authority Component16
 3.3.3. Path Component17
 3.3.4. Query Component17
 3.3.5. Fragment Component17
 3.3.6. Resolution for Comparison18
 3.4. Email Address-Like Identifiers18
 4. General Issues ...19
 4.1. Conflation ..19
 4.2. Internationalization20
 4.3. Scope ...21
 4.4. Temporality ...21
 5. Security Considerations ..22
 6. Acknowledgements ...22
 7. IAB Members at the Time of Approval23
 8. Informative References ...23

Thaler Informational [Page 2]

RFC 6943 Identifier Comparison May 2013

1. Introduction

 In computing and the Internet, various types of "identifiers" are
 used to identify humans, devices, content, etc. This document
 provides a discussion of some security issues that designers should
 consider when defining identifiers and protocols, and when
 constructing architectures that use multiple protocols. Before
 discussing these security issues, we first give some background on
 some typical processes involving identifiers. Terms such as
 "identifier", "identity", and "principal" are used as defined in
 [RFC4949].

 As depicted in Figure 1, there are multiple processes relevant to our
 discussion.

 1. An identifier is first generated. If the identifier is intended
 to be unique, the generation process must include some mechanism,
 such as allocation by a central authority or verification among
 the members of a distributed authority, to help ensure
 uniqueness. However, the notion of "unique" involves determining
 whether a putative identifier matches any other identifier that
 has already been allocated. As we will see, for many types of
 identifiers, this is not simply an exact binary match.

 After generating the identifier, it is often stored in two
 locations: with the requester or "holder" of the identifier, and
 with some repository of identifiers (e.g., DNS). For example, if
 the identifier was allocated by a central authority, the
 repository might be that authority. If the identifier identifies
 a device or content on a device, the repository might be that
 device.

 2. The identifier is distributed, either by the holder of the
 identifier or by a repository of identifiers, to others who could
 use the identifier. This distribution might be electronic, but
 sometimes it is via other channels such as voice, business card,
 billboard, or other form of advertisement. The identifier itself
 might be distributed directly, or it might be used to generate a
 portion of another type of identifier that is then distributed.
 For example, a URI or email address might include a server name,
 and hence distributing the URI or email address also inherently
 distributes the server name.

 3. The identifier is used by some party. Generally, the user
 supplies the identifier, which is (directly or indirectly) sent
 to the repository of identifiers. The repository of identifiers
 must then attempt to match the user-supplied identifier with an
 identifier in its repository.

Thaler Informational [Page 3]

RFC 6943 Identifier Comparison May 2013

 For example, using an email address to send email to the holder
 of an identifier may result in the email arriving at the holder’s
 email server, which has access to the mail stores.

 +------------+
 | Holder of | 1. Generation
 | identifier +<---------+
 +----+-------+ |
 | | Match
 | v/
 | +-------+-------+
 +----------+ Repository of |
 | | identifiers |
 | +-------+-------+
 2. Distribution | ^\
 | | Match
 v |
 +---------+-------+ |
 | User of | |
 | identifier +----------+
 +-----------------+ 3. Use

 Figure 1: Typical Identifier Processes

 Another variation is where a user is given the identifier of a
 resource (e.g., a web site) to access securely, sometimes known as a
 "reference identifier" [RFC6125], and the server hosting the resource
 then presents its identity at the time of use. In this case, the
 user application attempts to match the presented identity against the
 reference identifier.

 One key aspect is that the identifier values passed in generation,
 distribution, and use may all be in different forms. For example, an
 identifier might be exchanged in printed form at generation time,
 distributed to a user via voice, and then used electronically. As
 such, the match process can be complicated.

 Furthermore, in many cases, the relationship between holder,
 repositories, and users may be more involved. For example, when a
 hierarchy of web caches exists, each cache is itself a repository of
 a sort, and the match process is usually intended to be the same as
 on the origin server.

 Another aspect to keep in mind is that there can be multiple
 identifiers that refer to the same object (i.e., resource, human,
 device, etc.). For example, a human might have a passport number and
 a drivers license number, and an RFC might be available at multiple
 locations (rfc-editor.org and ietf.org). In this document, we focus

Thaler Informational [Page 4]

RFC 6943 Identifier Comparison May 2013

 on comparing two identifiers to see whether they are the same
 identifier, rather than comparing two different identifiers to see
 whether they refer to the same entity (although a few issues with the
 latter are touched on in several places, such as Sections 3.1.4 and
 3.3.6).

1.1. Classes of Identifiers

 In this document, we will refer to the following classes of
 identifiers:

 o Absolute: identifiers that can be compared byte-by-byte for
 equality. Two identifiers that have different bytes are defined
 to be different. For example, binary IP addresses are in this
 class.

 o Definite: identifiers that have a single well-defined comparison
 algorithm. For example, URI scheme names are required to be
 US-ASCII [USASCII] and are defined to match in a case-insensitive
 way; the comparison is thus definite, since there is a well-
 specified algorithm (Section 9.2.1 of [RFC4790]) on how to do a
 case-insensitive match among ASCII strings.

 o Indefinite: identifiers that have no single well-defined
 comparison algorithm. For example, human names are in this class.
 Everyone might want the comparison to be tailored for their
 locale, for some definition of "locale". In some cases, there may
 be limited subsets of parties that might be able to agree (e.g.,
 ASCII users might all agree on a common comparison algorithm,
 whereas users of other Roman-derived scripts, such as Turkish, may
 not), but identifiers often tend to leak out of such limited
 environments.

1.2. Canonicalization

 Perhaps the most common algorithm for comparison involves first
 converting each identifier to a canonical form (a process known as
 "canonicalization" or "normalization") and then testing the resulting
 canonical representations for bitwise equality. In so doing, it is
 thus critical that all entities involved agree on the same canonical
 form and use the same canonicalization algorithm so that the overall
 comparison process is also the same.

 Note that in some contexts, such as in internationalization, the
 terms "canonicalization" and "normalization" have a precise meaning.
 In this document, however, we use these terms synonymously in their
 more generic form, to mean conversion to some standard form.

Thaler Informational [Page 5]

RFC 6943 Identifier Comparison May 2013

 While the most common method of comparison includes canonicalization,
 comparison can also be done by defining an equivalence algorithm,
 where no single form is canonical. However, in most cases, a
 canonical form is useful for other purposes, such as output, and so
 in such cases defining a canonical form suffices to define a
 comparison method.

2. Identifier Use in Security Policies and Decisions

 Identifiers such as hostnames, URIs, and email addresses are used in
 security contexts to identify security principals (i.e., entities
 that can be authenticated) and resources as well as other security
 parameters such as types and values of claims. Those identifiers are
 then used to make security decisions based on an identifier presented
 via some protocol. For example:

 o Authentication: a protocol might match a security principal’s
 identifier to look up expected keying material and then match
 keying material.

 o Authorization: a protocol might match a resource name against some
 policy. For example, it might look up an access control list
 (ACL) and then look up the security principal’s identifier (or a
 surrogate for it) in that ACL.

 o Accounting: a system might create an accounting record for a
 security principal’s identifier or resource name, and then might
 later need to match a presented identifier to (for example) add
 new filtering rules based on the records in order to stop an
 attack.

 If the parties involved in a security decision use different matching
 algorithms for the same identifiers, then failure scenarios ranging
 from denial of service to elevation of privilege can result, as we
 will see.

 This is especially complicated in cases involving multiple parties
 and multiple protocols. For example, there are many scenarios where
 some form of "security token service" is used to grant to a requester
 permission to access a resource, where the resource is held by a
 third party that relies on the security token service (see Figure 2).
 The protocol used to request permission (e.g., Kerberos or OAuth) may
 be different from the protocol used to access the resource (e.g.,
 HTTP). Opportunities for security problems arise when two protocols
 define different comparison algorithms for the same type of
 identifier, or when a protocol is ambiguously specified and two
 endpoints (e.g., a security token service and a resource holder)
 implement different algorithms within the same protocol.

Thaler Informational [Page 6]

RFC 6943 Identifier Comparison May 2013

 +----------+
 | security |
 | token |
 | service |
 +----------+
 ^
 | 1. supply credentials and
 | get token for resource
 | +--------+
 +----------+ 2. supply token and access resource |resource|
 |requester |=------------------------------------->| holder |
 +----------+ +--------+

 Figure 2: Simple Security Exchange

 In many cases, the situation is more complex. With X.509 Public Key
 Infrastructure (PKIX) certificates [RFC6125], for example, the name
 in a certificate gets compared against names in ACLs or other things.
 In the case of web site security, the name in the certificate gets
 compared to a portion of the URI that a user may have typed into a
 browser. The fact that many different people are doing the typing,
 on many different types of systems, complicates the problem.

 Add to this the certificate enrollment step, and the certificate
 issuance step, and two more parties have an opportunity to adjust the
 encoding, or worse, the software that supports them might make
 changes that the parties are unaware are happening.

2.1. False Positives and Negatives

 It is first worth discussing in more detail the effects of errors in
 the comparison algorithm. A "false positive" results when two
 identifiers compare as if they were equal but in reality refer to two
 different objects (e.g., security principals or resources). When
 privilege is granted on a match, a false positive thus results in an
 elevation of privilege -- for example, allowing execution of an
 operation that should not have been permitted otherwise. When
 privilege is denied on a match (e.g., matching an entry in a
 block/deny list or a revocation list), a permissible operation is
 denied. At best, this can cause worse performance (e.g., a cache
 miss or forcing redundant authentication) and at worst can result in
 a denial of service.

Thaler Informational [Page 7]

RFC 6943 Identifier Comparison May 2013

 A "false negative" results when two identifiers that in reality refer
 to the same thing compare as if they were different, and the effects
 are the reverse of those for false positives. That is, when
 privilege is granted on a match, the result is at best worse
 performance and at worst a denial of service; when privilege is
 denied on a match, elevation of privilege results.

 Figure 3 summarizes these effects.

 | "Grant on match" | "Deny on match"
 ---------------+------------------------+-----------------------
 False positive | Elevation of privilege | Denial of service
 ---------------+------------------------+-----------------------
 False negative | Denial of service | Elevation of privilege
 ---------------+------------------------+-----------------------

 Figure 3: Worst Effects of False Positives/Negatives

 When designing a comparison algorithm, one can typically modify it to
 increase the likelihood of false positives and decrease the
 likelihood of false negatives, or vice versa. Which outcome is
 better depends on the context.

 Elevation of privilege is almost always seen as far worse than denial
 of service. Hence, for URIs, for example, Section 6.1 of [RFC3986]
 states that "comparison methods are designed to minimize false
 negatives while strictly avoiding false positives".

 Thus, URIs were defined with a "grant privilege on match" paradigm in
 mind, where it is critical to prevent elevation of privilege while
 minimizing denial of service. Using URIs in a "deny privilege on
 match" system can thus be problematic.

2.2. Hypothetical Example

 In this example, both security principals and resources are
 identified using URIs. Foo Corp has paid example.com for access to
 the Stuff service. Foo Corp allows its employees to create accounts
 on the Stuff service. Alice gets the account
 "http://example.com/Stuff/FooCorp/alice" and Bob gets
 "http://example.com/Stuff/FooCorp/bob". It turns out, however, that
 Foo Corp’s URI canonicalizer includes URI fragment components in
 comparisons whereas example.com’s does not, and Foo Corp does not
 disallow the # character in the account name. So Chuck, who is a
 malicious employee of Foo Corp, asks to create an account at
 example.com with the name alice#stuff. Foo Corp’s URI logic checks
 its records for accounts it has created with stuff and sees that
 there is no account with the name alice#stuff. Hence, in its

Thaler Informational [Page 8]

RFC 6943 Identifier Comparison May 2013

 records, it associates the account alice#stuff with Chuck and will
 only issue tokens good for use with
 "http://example.com/Stuff/FooCorp/alice#stuff" to Chuck.

 Chuck, the attacker, goes to a security token service at Foo Corp and
 asks for a security token good for
 "http://example.com/Stuff/FooCorp/alice#stuff". Foo Corp issues the
 token, since Chuck is the legitimate owner (in Foo Corp’s view) of
 the alice#stuff account. Chuck then submits the security token in a
 request to "http://example.com/Stuff/FooCorp/alice".

 But example.com uses a URI canonicalizer that, for the purposes of
 checking equality, ignores fragments. So when example.com looks in
 the security token to see if the requester has permission from Foo
 Corp to access the given account, it successfully matches the URI in
 the security token, "http://example.com/Stuff/FooCorp/alice#stuff",
 with the requested resource name
 "http://example.com/Stuff/FooCorp/alice".

 Leveraging the inconsistencies in the canonicalizers used by Foo Corp
 and example.com, Chuck is able to successfully launch an elevation-
 of-privilege attack and access Alice’s resource.

 Furthermore, consider an attacker using a similar corporation, such
 as "foocorp" (or any variation containing a non-ASCII character that
 some humans might expect to represent the same corporation). If the
 resource holder treats them as different but the security token
 service treats them as the same, then elevation of privilege can
 occur in this scenario as well.

3. Comparison Issues with Common Identifiers

 In this section, we walk through a number of common types of
 identifiers and discuss various issues related to comparison that may
 affect security whenever they are used to identify security
 principals or resources. These examples illustrate common patterns
 that may arise with other types of identifiers.

3.1. Hostnames

 Hostnames (composed of dot-separated labels) are commonly used either
 directly as identifiers, or as components in identifiers such as in
 URIs and email addresses. Another example is in Sections 7.2 and 7.3
 of [RFC5280] (and updated in Section 3 of [RFC6818]), which specify
 use in PKIX certificates.

 In this section, we discuss a number of issues in comparing strings
 that appear to be some form of hostname.

Thaler Informational [Page 9]

RFC 6943 Identifier Comparison May 2013

 It is first worth pointing out that the term "hostname" itself is
 often ambiguous, and hence it is important that any use clarify which
 definition is intended. Some examples of definitions include:

 a. A Fully Qualified Domain Name (FQDN),

 b. An FQDN that is associated with address records in the DNS,

 c. The leftmost label in an FQDN, or

 d. The leftmost label in an FQDN that is associated with address
 records.

 The use of different definitions in different places results in
 questions such as whether "example" and "example.com" are considered
 equal or not, and hence it is important when writing new
 specifications to be clear about which definition is meant.

 Section 3 of [RFC6055] discusses the differences between a "hostname"
 and a "DNS name", where the former is a subset of the latter by using
 a restricted set of characters (letters, digits, and hyphens). If
 one canonicalizer uses the "DNS name" definition whereas another uses
 a "hostname" definition, a name might be valid in the former but
 invalid in the latter. As long as invalid identifiers are denied
 privilege, this difference will not result in elevation of privilege.

 Section 3.1 of [RFC1034] discusses the difference between a
 "complete" domain name, which ends with a dot (such as
 "example.com."), and a multi-label relative name such as
 "example.com" that assumes the root (".") is in the suffix search
 list. In most contexts, these are considered equal, but there may be
 issues if different entities in a security architecture have
 different interpretations of a relative domain name.

 [IAB1123] briefly discusses issues with the ambiguity around whether
 a label will be "alphabetic" -- including, among other issues, how
 "alphabetic" should be interpreted in an internationalized
 environment -- and whether a hostname can be interpreted as an IP
 address. We explore this last issue in more detail below.

Thaler Informational [Page 10]

RFC 6943 Identifier Comparison May 2013

3.1.1. IPv4 Literals

 Section 2.1 of [RFC1123] states:

 Whenever a user inputs the identity of an Internet host, it SHOULD
 be possible to enter either (1) a host domain name or (2) an IP
 address in dotted-decimal ("#.#.#.#") form. The host SHOULD check
 the string syntactically for a dotted-decimal number before
 looking it up in the Domain Name System.

 and

 This last requirement is not intended to specify the complete
 syntactic form for entering a dotted-decimal host number; that is
 considered to be a user-interface issue.

 In specifying the inet_addr() API, the Portable Operating System
 Interface (POSIX) standard [IEEE-1003.1] defines "IPv4 dotted decimal
 notation" as allowing not only strings of the form "10.0.1.2" but
 also allowing octal and hexadecimal, and addresses with less than
 four parts. For example, "10.0.258", "0xA000102", and "012.0x102"
 all represent the same IPv4 address in standard "IPv4 dotted decimal"
 notation. We will refer to this as the "loose" syntax of an IPv4
 address literal.

 In Section 6.1 of [RFC3493], getaddrinfo() is defined to support the
 same (loose) syntax as inet_addr():

 If the specified address family is AF_INET or AF_UNSPEC, address
 strings using Internet standard dot notation as specified in
 inet_addr() are valid.

 In contrast, Section 6.3 of the same RFC states, specifying
 inet_pton():

 If the af argument of inet_pton() is AF_INET, the src string shall
 be in the standard IPv4 dotted-decimal form:

 ddd.ddd.ddd.ddd

 where "ddd" is a one to three digit decimal number between 0 and
 255. The inet_pton() function does not accept other formats (such
 as the octal numbers, hexadecimal numbers, and fewer than four
 numbers that inet_addr() accepts).

Thaler Informational [Page 11]

RFC 6943 Identifier Comparison May 2013

 As shown above, inet_pton() uses what we will refer to as the
 "strict" form of an IPv4 address literal. Some platforms also use
 the strict form with getaddrinfo() when the AI_NUMERICHOST flag is
 passed to it.

 Both the strict and loose forms are standard forms, and hence a
 protocol specification is still ambiguous if it simply defines a
 string to be in the "standard IPv4 dotted decimal form". And, as a
 result of these differences, names such as "10.11.12" are ambiguous
 as to whether they are an IP address or a hostname, and even
 "10.11.12.13" can be ambiguous because of the "SHOULD" in the above
 text from RFC 1123, making it optional whether to treat it as an
 address or a DNS name.

 Protocols and data formats that can use addresses in string form for
 security purposes need to resolve these ambiguities. For example,
 for the host component of URIs, Section 3.2.2 of [RFC3986] resolves
 the first ambiguity by only allowing the strict form and resolves the
 second ambiguity by specifying that it is considered an IPv4 address
 literal. New protocols and data formats should similarly consider
 using the strict form rather than the loose form in order to better
 match user expectations.

 A string might be valid under the "loose" definition but invalid
 under the "strict" definition. As long as invalid identifiers are
 denied privilege, this difference will not result in elevation of
 privilege. Some protocols, however, use strings that can be either
 an IP address literal or a hostname. Such strings are at best
 Definite identifiers, and often turn out to be Indefinite
 identifiers. (See Section 4.1 for more discussion.)

3.1.2. IPv6 Literals

 IPv6 addresses similarly have a wide variety of alternate but
 semantically identical string representations, as defined in
 Section 2.2 of [RFC4291] and Section 2 of [RFC6874]. As discussed in
 Section 3.2.5 of [RFC5952], this fact causes problems in security
 contexts if comparison (such as in PKIX certificates) is done between
 strings rather than between the binary representations of addresses.

 [RFC5952] specified a recommended canonical string format as an
 attempt to solve this problem, but it may not be ubiquitously
 supported at present. And, when strings can contain non-ASCII
 characters, the same issues (and more, since hexadecimal and colons
 are allowed) arise as with IPv4 literals.

Thaler Informational [Page 12]

RFC 6943 Identifier Comparison May 2013

 Whereas (binary) IPv6 addresses are Absolute identifiers, IPv6
 address literals are Definite identifiers, since string-to-address
 conversion for IPv6 address literals is unambiguous.

3.1.3. Internationalization

 The IETF policy on character sets and languages [RFC2277] requires
 support for UTF-8 in protocols, and as a result many protocols now do
 support non-ASCII characters. When a hostname is sent in a UTF-8
 field, there are a number of ways it may be encoded. For example,
 hostname labels might be encoded directly in UTF-8, or they might
 first be Punycode-encoded [RFC3492] or even percent-encoded from
 UTF-8.

 For example, in URIs, Section 3.2.2 of [RFC3986] specifically allows
 for the use of percent-encoded UTF-8 characters in the hostname as
 well as the use of Internationalized Domain Names in Applications
 (IDNA) encoding [RFC3490] using the Punycode algorithm.

 Percent-encoding is unambiguous for hostnames, since the percent
 character cannot appear in the strict definition of a "hostname",
 though it can appear in a DNS name.

 Punycode-encoded labels (or "A-labels"), on the other hand, can be
 ambiguous if hosts are actually allowed to be named with a name
 starting with "xn--", and false positives can result. While this may
 be extremely unlikely for normal scenarios, it nevertheless provides
 a possible vector for an attacker.

 A hostname comparator thus needs to decide whether a Punycode-encoded
 label should or should not be considered a valid hostname label, and
 if so, then whether it should match a label encoded in some other
 form such as a percent-encoded Unicode label (U-label).

 For example, Section 3 of "Transport Layer Security (TLS) Extensions:
 Extension Definitions" [RFC6066] states:

 "HostName" contains the fully qualified DNS hostname of the
 server, as understood by the client. The hostname is represented
 as a byte string using ASCII encoding without a trailing dot.
 This allows the support of internationalized domain names through
 the use of A-labels defined in [RFC5890]. DNS hostnames are case-
 insensitive. The algorithm to compare hostnames is described in
 [RFC5890], Section 2.3.2.4.

 For some additional discussion of security issues that arise with
 internationalization, see Section 4.2 and [TR36].

Thaler Informational [Page 13]

RFC 6943 Identifier Comparison May 2013

3.1.4. Resolution for Comparison

 Some systems (specifically Java URLs [JAVAURL]) use the rule that if
 two hostnames resolve to the same IP address(es) then the hostnames
 are considered equal. That is, the canonicalization algorithm
 involves name resolution with an IP address being the canonical form.

 For example, if resolution was done via DNS, and DNS contained:

 example.com. IN A 10.0.0.6
 example.net. CNAME example.com.
 example.org. IN A 10.0.0.6

 then the algorithm might treat all three names as equal, even though
 the third name might refer to a different entity.

 With the introduction of dynamic IP addresses; private IP addresses;
 multiple IP addresses per name; multiple address families (e.g., IPv4
 vs. IPv6); devices that roam to new locations; commonly deployed DNS
 tricks that result in the answer depending on factors such as the
 requester’s location and the load on the server whose address is
 returned; etc., this method of comparison cannot be relied upon.
 There is no guarantee that two names for the same host will resolve
 the name to the same IP addresses; nor that the addresses resolved
 refer to the same entity, such as when the names resolve to private
 IP addresses; nor even that the system has connectivity (and the
 willingness to wait for the delay) to resolve names at the time the
 answer is needed. The lifetime of the identifier, and of any cached
 state from a previous resolution, also affects security (see
 Section 4.4).

 In addition, a comparison mechanism that relies on the ability to
 resolve identifiers such as hostnames to other identifiers such as IP
 addresses leaks information about security decisions to outsiders if
 these queries are publicly observable. (See [PRIVACY-CONS] for a
 deeper discussion of information disclosure.)

 Finally, it is worth noting that resolving two identifiers to
 determine if they refer to the same entity can be thought of as a use
 of such identifiers, as opposed to actually comparing the identifiers
 themselves, which is the focus of this document.

3.2. Port Numbers and Service Names

 Port numbers and service names are discussed in depth in [RFC6335].
 Historically, there were port numbers, service names used in SRV
 records, and mnemonic identifiers for assigned port numbers (known as
 port "keywords" at [IANA-PORT]). The latter two are now unified, and

Thaler Informational [Page 14]

RFC 6943 Identifier Comparison May 2013

 various protocols use one or more of these types in strings. For
 example, the common syntax used by many URI schemes allows port
 numbers but not service names. Some implementations of the
 getaddrinfo() API support strings that can be either port numbers or
 port keywords (but not service names).

 For protocols that use service names that must be resolved, the
 issues are the same as those for resolution of addresses in
 Section 3.1.4. In addition, Section 5.1 of [RFC6335] clarifies that
 service names/port keywords must contain at least one letter. This
 prevents confusion with port numbers in strings where both are
 allowed.

3.3. URIs

 This section looks at issues related to using URIs for security
 purposes. For example, Section 7.4 of [RFC5280] specifies comparison
 of URIs in certificates. Examples of URIs in security-token-based
 access control systems include WS-*, SAML 2.0 [OASIS-SAMLv2-CORE],
 and OAuth Web Resource Authorization Profiles (WRAP) [OAuth-WRAP].
 In such systems, a variety of participants in the security
 infrastructure are identified by URIs. For example, requesters of
 security tokens are sometimes identified with URIs. The issuers of
 security tokens and the relying parties who are intended to consume
 security tokens are frequently identified by URIs. Claims in
 security tokens often have their types defined using URIs, and the
 values of the claims can also be URIs.

 URIs are defined with multiple components, each of which has its own
 rules. We cover each in turn below. However, it is also important
 to note that there exist multiple comparison algorithms. Section 6.2
 of [RFC3986] states:

 A variety of methods are used in practice to test URI equivalence.
 These methods fall into a range, distinguished by the amount of
 processing required and the degree to which the probability of
 false negatives is reduced. As noted above, false negatives
 cannot be eliminated. In practice, their probability can be
 reduced, but this reduction requires more processing and is not
 cost-effective for all applications.

 If this range of comparison practices is considered as a ladder,
 the following discussion will climb the ladder, starting with
 practices that are cheap but have a relatively higher chance of
 producing false negatives, and proceeding to those that have
 higher computational cost and lower risk of false negatives.

Thaler Informational [Page 15]

RFC 6943 Identifier Comparison May 2013

 The ladder approach has both pros and cons. On the pro side, it
 allows some uses to optimize for security, and other uses to optimize
 for cost, thus allowing URIs to be applicable to a wide range of
 uses. A disadvantage is that when different approaches are taken by
 different components in the same system using the same identifiers,
 the inconsistencies can result in security issues.

3.3.1. Scheme Component

 [RFC3986] defines URI schemes as being case-insensitive US-ASCII and
 in Section 6.2.2.1 specifies that scheme names should be normalized
 to lowercase characters.

 New schemes can be defined over time. In general, however, two URIs
 with an unrecognized scheme cannot be safely compared. This is
 because the canonicalization and comparison rules for the other
 components may vary by scheme. For example, a new URI scheme might
 have a default port of X, and without that knowledge, a comparison
 algorithm cannot know whether "example.com" and "example.com:X"
 should be considered to match in the authority component. Hence, for
 security purposes, it is safest for unrecognized schemes to be
 treated as invalid identifiers. However, if the URIs are only used
 with a "grant access on match" paradigm, then unrecognized schemes
 can be supported by doing a generic case-sensitive comparison, at the
 expense of some false negatives.

3.3.2. Authority Component

 The authority component is scheme-specific, but many schemes follow a
 common syntax that allows for userinfo, host, and port.

3.3.2.1. Host

 Section 3.1 discusses issues with hostnames in general. In addition,
 Section 3.2.2 of [RFC3986] allows future changes using the IPvFuture
 production. As with IPv4 and IPv6 literals, IPvFuture formats may
 have issues with multiple semantically identical string
 representations and may also be semantically identical to an IPv4 or
 IPv6 address. As such, false negatives may be common if IPvFuture is
 used.

3.3.2.2. Port

 See discussion in Section 3.2.

Thaler Informational [Page 16]

RFC 6943 Identifier Comparison May 2013

3.3.2.3. Userinfo

 [RFC3986] defines the userinfo production that allows arbitrary data
 about the user of the URI to be placed before ’@’ signs in URIs. For
 example, "ftp://alice:bob@example.com/bar" has the value "alice:bob"
 as its userinfo. When comparing URIs in a security context, one must
 decide whether to treat the userinfo as being significant or not.
 Some URI comparison services, for example, treat
 "ftp://alice:ick@example.com" and "ftp://example.com" as being equal.

 When the userinfo is treated as being significant, it has additional
 considerations (e.g., whether or not it is case sensitive), which we
 cover in Section 3.4.

3.3.3. Path Component

 [RFC3986] supports the use of path segment values such as "./" or
 "../" for relative URIs. As discussed in Section 6.2.2.3 of
 [RFC3986], they are intended only for use within a reference relative
 to some other base URI, but Section 5.2.4 of [RFC3986] nevertheless
 defines an algorithm to remove them as part of URI normalization.

 Unless a scheme states otherwise, the path component is defined to be
 case sensitive. However, if the resource is stored and accessed
 using a filesystem using case-insensitive paths, there will be many
 paths that refer to the same resource. As such, false negatives can
 be common in this case.

3.3.4. Query Component

 There is the question as to whether "http://example.com/foo",
 "http://example.com/foo?", and "http://example.com/foo?bar" are each
 considered equal or different.

 Similarly, it is unspecified whether the order of values matters.
 For example, should "http://example.com/blah?ick=bick&foo=bar" be
 considered equal to "http://example.com/blah?foo=bar&ick=bick"? And
 if a domain name is permitted to appear in a query component (e.g.,
 in a reference to another URI), the same issues in Section 3.1 apply.

3.3.5. Fragment Component

 Some URI formats include fragment identifiers. These are typically
 handles to locations within a resource and are used for local
 reference. A classic example is the use of fragments in HTTP URIs
 where a URI of the form "http://example.com/blah.html#ick" means
 retrieve the resource "http://example.com/blah.html" and, once it has
 arrived locally, find the HTML anchor named "ick" and display that.

Thaler Informational [Page 17]

RFC 6943 Identifier Comparison May 2013

 So, for example, when a user clicks on the link
 "http://example.com/blah.html#baz", a browser will check its cache by
 doing a URI comparison for "http://example.com/blah.html" and, if the
 resource is present in the cache, a match is declared.

 Hence, comparisons for security purposes typically ignore the
 fragment component and treat all fragments as equal to the full
 resource. However, if one were actually trying to compare the piece
 of a resource that was identified by the fragment identifier,
 ignoring it would result in potential false positives.

3.3.6. Resolution for Comparison

 It may be tempting to define a URI comparison algorithm based on
 whether URIs resolve to the same content, along the lines of
 resolving hostnames as described in Section 3.1.4. However, such an
 algorithm would result in similar problems, including content that
 dynamically changes over time or that is based on factors such as the
 requester’s location, potential lack of external connectivity at the
 time or place that comparison is done, introduction of potentially
 undesirable delay, etc.

 In addition, as noted in Section 3.1.4, resolution leaks information
 about security decisions to outsiders if the queries are publicly
 observable.

3.4. Email Address-Like Identifiers

 Section 3.4.1 of [RFC5322] defines the syntax of an email address-
 like identifier, and Section 3.2 of [RFC6532] updates it to support
 internationalization. Section 7.5 of [RFC5280] further discusses the
 use of internationalized email addresses in certificates.

 Regarding the security impact of internationalized email headers,
 [RFC6532] points to Section 14 of [RFC6530], which contains a
 discussion of many issues resulting from internationalization.

 Email address-like identifiers have a local part and a domain part.
 The issues with the domain part are essentially the same as with
 hostnames, as covered earlier in Section 3.1.

 The local part is left for each domain to define. People quite
 commonly use email addresses as usernames with web sites such as
 banks or shopping sites, but the site doesn’t know whether
 foo@example.com is the same person as FOO@example.com. Thus, email
 address-like identifiers are typically Indefinite identifiers.

Thaler Informational [Page 18]

RFC 6943 Identifier Comparison May 2013

 To avoid false positives, some security mechanisms (such as those
 described in [RFC5280]) compare the local part using an exact match.
 Hence, like URIs, email address-like identifiers are designed for use
 in grant-on-match security schemes, not in deny-on-match schemes.

 Furthermore, when such identifiers are actually used as email
 addresses, Section 2.4 of [RFC5321] states that the local part of a
 mailbox must be treated as case sensitive, but if a mailbox is stored
 and accessed using a filesystem using case-insensitive paths, there
 may be many paths that refer to the same mailbox. As such, false
 negatives can be common in this case.

4. General Issues

4.1. Conflation

 There are a number of examples (some in the preceding sections) of
 strings that conflate two types of identifiers, using some heuristic
 to try to determine which type of identifier is given. Similarly,
 two ways of encoding the same type of identifier might be conflated
 within the same string.

 Some examples include:

 1. A string that might be an IPv4 address literal or an IPv6 address
 literal

 2. A string that might be an IP address literal or a hostname

 3. A string that might be a port number or a service name

 4. A DNS label that might be literal or be Punycode-encoded

 Strings that allow such conflation can only be considered Definite if
 there exists a well-defined rule to determine which identifier type
 is meant. One way to do so is to ensure that the valid syntax for
 the two is disjoint (e.g., distinguishing IPv4 vs. IPv6 address
 literals by the use of colons in the latter). A second way to do so
 is to define a precedence rule that results in some identifiers being
 inaccessible via a conflated string (e.g., a host literally named
 "xn--de-jg4avhby1noc0d" may be inaccessible due to the "xn--" prefix
 denoting the use of Punycode encoding). In some cases, such
 inaccessible space may be reserved so that the actual set of
 identifiers in use is unambiguous. For example, Section 2.5.5.2 of
 [RFC4291] defines a range of the IPv6 address space for representing
 IPv4 addresses.

Thaler Informational [Page 19]

RFC 6943 Identifier Comparison May 2013

4.2. Internationalization

 In addition to the issues with hostnames discussed in Section 3.1.3,
 there are a number of internationalization issues that apply to many
 types of Definite and Indefinite identifiers.

 First, there is no DNS mechanism for identifying whether
 non-identical strings would be seen by a human as being equivalent.
 There are problematic examples even with US-ASCII (Basic Latin)
 strings, including regional spelling variations such as "color" and
 "colour", and with many non-English cases, including partially
 numeric strings in Arabic script contexts, Chinese strings in
 Simplified and Traditional forms, and so on. Attempts to produce
 such alternate forms algorithmically could produce false positives
 and hence have an adverse effect on security.

 Second, some strings are visually confusable with others, and hence
 if a security decision is made by a user based on visual inspection,
 many opportunities for false positives exist. As such, using visual
 inspection for security is unreliable. In addition to the security
 issues, visual confusability also adversely affects the usability of
 identifiers distributed via visual media. Similar issues can arise
 with audible confusability when using audio (e.g., for radio
 distribution, accessibility to the blind, etc.) in place of a visual
 medium. Furthermore, when strings conflate two types of identifiers
 as discussed in Section 4.1, allowing non-ASCII characters can cause
 one type of identifier to appear to a human as another type of
 identifier. For example, characters that may look like digits and
 dots may appear to be an IPv4 literal to a human (especially to one
 who might expect digits to appear in his or her native script).
 Hence, conflation often increases the chance of confusability.

 Determining whether a string is a valid identifier should typically
 be done after, or as part of, canonicalization. Otherwise, an
 attacker might use the canonicalization algorithm to inject (e.g.,
 via percent encoding, Normalization Form KC (NFKC), or non-shortest-
 form UTF-8) delimiters such as ’@’ in an email address-like
 identifier, or a ’.’ in a hostname.

 Any case-insensitive comparisons need to define how comparison is
 done, since such comparisons may vary by the locale of the endpoint.
 As such, using case-insensitive comparisons in general often results
 in identifiers being either Indefinite or, if the legal character set
 is restricted (e.g., to US-ASCII), Definite.

 See also [WEBER] for a more visual discussion of many of these
 issues.

Thaler Informational [Page 20]

RFC 6943 Identifier Comparison May 2013

 Finally, the set of permitted characters and the canonical form of
 the characters (and hence the canonicalization algorithm) sometimes
 vary by protocol today, even when the intent is to use the same
 identifier, such as when one protocol passes identifiers to the
 other. See [RFC6885] for further discussion.

4.3. Scope

 Another issue arises when an identifier (e.g., "localhost",
 "10.11.12.13", etc.) is not globally unique. Section 1.1 of
 [RFC3986] states:

 URIs have a global scope and are interpreted consistently
 regardless of context, though the result of that interpretation
 may be in relation to the end-user’s context. For example,
 "http://localhost/" has the same interpretation for every user of
 that reference, even though the network interface corresponding to
 "localhost" may be different for each end-user: interpretation is
 independent of access.

 Whenever an identifier that is not globally unique is passed to
 another entity outside of the scope of uniqueness, it will refer to a
 different resource and can result in a false positive. This problem
 is often addressed by using the identifier together with some other
 unique identifier of the context. For example, "alice" may uniquely
 identify a user within a system but must be used with "example.com"
 (as in "alice@example.com") to uniquely identify the context outside
 of that system.

 It is also worth noting that IPv6 addresses that are not globally
 scoped can be written with, or otherwise associated with, a "zone ID"
 to identify the context (see [RFC4007] for more information).
 However, zone IDs are only unique within a host, so they typically
 narrow, rather than expand, the scope of uniqueness of the resulting
 identifier.

4.4. Temporality

 Often, identifiers are not unique across all time but have some
 lifetime associated with them after which they may be reassigned to
 another entity. For example, bob@example.com might be assigned to an
 employee of the Example company, but if he leaves and another Bob is
 later hired, the same identifier might be reused. As another
 example, IP address 203.0.113.1 might be assigned to one subscriber
 and then later reassigned to another subscriber. Security issues can
 arise if updates are not made in all entities that store the
 identifier (e.g., in an access control list as discussed in
 Section 2, or in a resolution cache as discussed in Section 3.1.4).

Thaler Informational [Page 21]

RFC 6943 Identifier Comparison May 2013

 This issue is similar to the issue of scope discussed in Section 4.3,
 except that the scope of uniqueness is temporal rather than
 topological.

5. Security Considerations

 This entire document is about security considerations.

 To minimize issues related to elevation of privilege, any system that
 requires the ability to use both deny and allow operations within the
 same identifier space should avoid the use of Indefinite identifiers
 in security comparisons.

 To minimize future security risks, any new identifiers being designed
 should specify an Absolute or Definite comparison algorithm, and if
 extensibility is allowed (e.g., as new schemes in URIs allow), then
 the comparison algorithm should remain invariant so that unrecognized
 extensions can be compared. That is, security risks can be reduced
 by specifying the comparison algorithm, making sure to resolve any
 ambiguities pointed out in this document (e.g., "standard dotted
 decimal").

 Some issues (such as unrecognized extensions) can be mitigated by
 treating such identifiers as invalid. Validity checking of
 identifiers is further discussed in [RFC3696].

 Perhaps the hardest issues arise when multiple protocols are used
 together, such as in Figure 2, where the two protocols are defined or
 implemented using different comparison algorithms. When constructing
 an architecture that uses multiple such protocols, designers should
 pay attention to any differences in comparison algorithms among the
 protocols in order to fully understand the security risks. How to
 deal with such security risks in current systems is an area for
 future work.

6. Acknowledgements

 Yaron Goland contributed to the discussion on URIs. Patrik Faltstrom
 contributed to the background on identifiers. John Klensin
 contributed text in a number of different sections. Additional
 helpful feedback and suggestions came from Bernard Aboba, Fred Baker,
 Leslie Daigle, Mark Davis, Jeff Hodges, Bjoern Hoehrmann, Russ
 Housley, Christian Huitema, Magnus Nystrom, Tom Petch, and Chris
 Weber.

Thaler Informational [Page 22]

RFC 6943 Identifier Comparison May 2013

7. IAB Members at the Time of Approval

 Bernard Aboba
 Jari Arkko
 Marc Blanchet
 Ross Callon
 Alissa Cooper
 Spencer Dawkins
 Joel Halpern
 Russ Housley
 David Kessens
 Danny McPherson
 Jon Peterson
 Dave Thaler
 Hannes Tschofenig

8. Informative References

 [IAB1123] Internet Architecture Board, "IAB Statement: ’The
 interpretation of rules in the ICANN gTLD Applicant
 Guidebook’", February 2012, <http://www.iab.org/documents/
 correspondence-reports-documents/2012-2/iab-statement-the-
 interpretation-of-rules-in-the-icann-gtld-applicant-
 guidebook>.

 [IANA-PORT]
 IANA, "Service Name and Transport Protocol Port Number
 Registry", March 2013,
 <http://www.iana.org/assignments/service-names-port-
 numbers/>.

 [IEEE-1003.1]
 IEEE and The Open Group, "The Open Group Base
 Specifications, Issue 6, IEEE Std 1003.1, 2004 Edition",
 IEEE Std 1003.1, 2004.

 [JAVAURL] Oracle, "Class URL", Java(TM) Platform Standard Ed. 7,
 2013, <http://docs.oracle.com/javase/7/docs/api/java/net/
 URL.html>.

 [OASIS-SAMLv2-CORE]
 Cantor, S., Ed., Kemp, J., Ed., Philpott, R., Ed., and E.
 Maler, Ed., "Assertions and Protocols for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard saml-core-2.0-os, March 2005,
 <http://docs.oasis-open.org/security/saml/v2.0/
 saml-core-2.0-os.pdf>.

Thaler Informational [Page 23]

RFC 6943 Identifier Comparison May 2013

 [OAuth-WRAP]
 Hardt, D., Ed., Tom, A., Eaton, B., and Y. Goland, "OAuth
 Web Resource Authorization Profiles", Work in Progress,
 January 2010.

 [PRIVACY-CONS]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", Work in Progress,
 April 2013.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC2277] Alvestrand, H.T., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, February 2003.

 [RFC3696] Klensin, J., "Application Techniques for Checking and
 Transformation of Names", RFC 3696, February 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 March 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

Thaler Informational [Page 24]

RFC 6943 Identifier Comparison May 2013

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 March 2007.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 RFC 4949, August 2007.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC6055] Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on
 Encodings for Internationalized Domain Names", RFC 6055,
 February 2011.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, August 2011.

 [RFC6530] Klensin, J. and Y. Ko, "Overview and Framework for
 Internationalized Email", RFC 6530, February 2012.

 [RFC6532] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, February 2012.

Thaler Informational [Page 25]

RFC 6943 Identifier Comparison May 2013

 [RFC6818] Yee, P., "Updates to the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 6818, January 2013.

 [RFC6874] Carpenter, B., Cheshire, S., and R. Hinden, "Representing
 IPv6 Zone Identifiers in Address Literals and Uniform
 Resource Identifiers", RFC 6874, February 2013.

 [RFC6885] Blanchet, M. and A. Sullivan, "Stringprep Revision and
 Problem Statement for the Preparation and Comparison of
 Internationalized Strings (PRECIS)", RFC 6885, March 2013.

 [TR36] Unicode Consortium, "Unicode Security Considerations",
 Unicode Technical Report #36, Revision 11, July 2012,
 <http://www.unicode.org/reports/tr36/>.

 [USASCII] American National Standards Institute, "Coded Character
 Sets -- 7-bit American Standard Code for Information
 Interchange (7-bit ASCII)", ANSI X3.4, 1986.

 [WEBER] Weber, C., "Attacking Software Globalization", March 2010,
 <http://www.lookout.net/files/
 Chris_Weber_Character%20Transformations%20v1.7_IUC33.pdf>.

Author’s Address

 Dave Thaler (editor)
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 8835
 EMail: dthaler@microsoft.com

Thaler Informational [Page 26]

