I nt ernet Engi neering Task Force (I ETF) B. Laurie

Request for Comments: 6962 A. Langl ey
Cat egory: Experi nental E. Kasper
| SSN: 2070-1721 Googl e

June 2013

Certificate Transparency
Abstr act

Thi s docunent describes an experinental protocol for publicly |ogging
t he existence of Transport Layer Security (TLS) certificates as they
are issued or observed, in a manner that allows anyone to audit
certificate authority (CA) activity and notice the issuance of
suspect certificates as well as to audit the certificate |ogs
thenselves. The intent is that eventually clients would refuse to
honor certificates that do not appear in a |log, effectively forcing
CAs to add all issued certificates to the |ogs.

Logs are network services that inplenent the protocol operations for
submi ssions and queries that are defined in this docunent.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
conmunity. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering G oup (IESG. Not
al |l docunents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6962

Laurie, et al. Experi ment al [Page 1]

RFC 6962 Certificate Transparency June 2013

Copyright Notice

Copyright (c) 2013 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1

Informal Introduction 3
1.1. Requirenents Languagettt 4
1.2, Data StrUCtUINeS ... e e e 4
Cryptographi ¢ ComponNent S 4
2.1. Merkle Hash Trees e 4
2.1.1. Merkle Audit Paths i, 5
2.1.2. Merkle Consistency Proofs 6
2.1.3. Exanpl e e 7
2.1.4. SignatUures ... 8
Log Format and Operation 9
3.1, Log ENntries ... 9
3.2. Structure of the Signed Certificate Tinestanp 12
3.3. Including the Signed Certificate Tinestanp in the
TLS Handshake 13
3.3.1. TLS EXtension i e 15
3.4, Merkl e Tree ... 15
3.5. Signed Tree Head i 16
Log Cient MeSSaAgeSttt e 17
4.1, Add Chain to LOgot e e 17
4.2, Add PreCertChain to LOQy 18
4.3. Retrieve Latest Signed Tree Head 18
4.4. Retrieve Merkle Consistency Proof between Two
Signed Tree Heads 19
4.5. Retrieve Merkle Audit Proof fromLog by Leaf Hash 19
4.6. Retrieve Entries fromLog i, 20
4.7. Retrieve Accepted Root Certificates 21
4.8. Retrieve Entry+Merkle Audit Proof fromLog 21
ANt S L 21
5.1, Submitters ... 22
5.2, TLS Qi ent ... 22
B 3, NN L Or 22

Laurie, et al. Experi ment al [Page 2]

RFC 6962 Certificate Transparency June 2013

5.4, AUdi tOr o 23
6. TANA Considerati ONSttt e e e e 23
7. Security Considerati ONS 23
7.1. Msissued Certificates i 24
7.2. Detection of M SIiSSUE i e 24
7.3. Mshehaving LOgS i e e 24
8. Efficiency Considerati onsy 25
9. Future Changes 25
10. AcknowW edgemBnt St 25
11, Ref BrENCES .. o o e 25
11.1. Normative Reference i i 25
11. 2. Informative References 26
1. Informal Introduction

Certificate transparency ains to nitigate the problem of m sissued
certificates by providing publicly auditable, append-only, untrusted
|l ogs of all issued certificates. The logs are publicly auditable so
that it is possible for anyone to verify the correctness of each |og
and to nonitor when new certificates are added to it. The logs do
not thensel ves prevent m sissue, but they ensure that interested
parties (particularly those naned in certificates) can detect such

m si ssuance. Note that this is a general mechanism but in this
docunent, we only describe its use for public TLS server certificates
i ssued by public certificate authorities (CAs).

Each | og consists of certificate chains, which can be subnmitted by
anyone. It is expected that public CAs will contribute all their
newly issued certificates to one or nore logs; it is also expected
that certificate holders will contribute their own certificate
chains. In order to avoid | ogs being spanmed into usel essness, it is
required that each chain is rooted in a known CA certificate. Wen a
chain is subnitted to a log, a signed tinmestanp is returned, which
can |l ater be used to provide evidence to clients that the chain has
been submitted. TLS clients can thus require that all certificates

t hey see have been | ogged.

Those who are concerned about nisissue can nonitor the |ogs, asking
themregularly for all new entries, and can thus check whether
domai ns they are responsible for have had certificates issued that
they did not expect. Wiat they do with this information
particularly when they find that a m sissuance has happened, is
beyond the scope of this docunment, but broadly speaking, they can

i nvoke existing business nmechanisnms for dealing with m sissued
certificates. O course, anyone who wants can nonitor the | ogs and,
if they believe a certificate is incorrectly issued, take action as
they see fit.

Laurie, et al. Experi ment al [Page 3]

RFC 6962 Certificate Transparency June 2013

Simlarly, those who have seen signed tinestanps froma particul ar
log can later demand a proof of inclusion fromthat log. |If the |og
is unable to provide this (or, indeed, if the corresponding
certificate is absent fromnonitors’ copies of that log), that is

evi dence of the incorrect operation of the log. The checking
operation is asynchronous to allow TLS connections to proceed w t hout
del ay, despite network connectivity issues and the vagaries of
firewalls.

The append-only property of each log is technically achi eved using
Merkl e Trees, which can be used to show that any particul ar version
of the log is a superset of any particul ar previous version

Li kewi se, Merkle Trees avoid the need to blindly trust logs: if a log
attenpts to show different things to different people, this can be
efficiently detected by conparing tree roots and consi stency proofs.
Simlarly, other nisbehaviors of any log (e.g., issuing signed
timestanps for certificates they then don't |log) can be efficiently
detected and proved to the world at |arge.

1.1. Requirenments Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

1. 2. Data Structures

Data structures are defined according to the conventions laid out in
Section 4 of [RFC5246].

2. Cryptographi ¢ Conponents
2.1. Merkle Hash Trees

Logs use a binary Merkle Hash Tree for efficient auditing. The
hashing algorithmis SHA-256 [FIPS.180-4] (note that this is fixed
for this experinent, but it is anticipated that each | og would be
able to specify a hash algorithm. The input to the Merkle Tree Hash
is alist of data entries; these entries will be hashed to formthe

| eaves of the Merkle Hash Tree. The output is a single 32-byte
Merkl e Tree Hash. G ven an ordered list of n inputs, D[n] = {d(0),
d(1), ..., d(n-1)}, the Merkle Tree Hash (MIH) is thus defined as
fol | ows:

The hash of an enpty list is the hash of an enpty string:

MIH({}) = SHA-256().

Laurie, et al. Experi ment al [Page 4]

RFC 6962 Certificate Transparency June 2013

The hash of a list with one entry (al so known as a | eaf hash) is:
MIH({d(0)}) = SHA-256(0x00 || d(0)).

For n > 1, let k be the I argest power of two smaller than n (i.e.
k < n<=2k). The Merkle Tree Hash of an n-elenent list Dn] is then
defined recursively as

MTH(D[n]) = SHA-256(0x01 || MIH(D[0:k]) || MIH(D k:n])),

where || is concatenation and D k1: k2] denotes the list {d(k1l),
d(ki+1),..., d(k2-1)} of length (k2 - k1). (Note that the hash
calculations for |eaves and nodes differ. This domain separation is
required to give second preinage resistance.)

Note that we do not require the length of the input list to be a
power of two. The resulting Merkle Tree may thus not be bal anced;
however, its shape is uniquely deternined by the nunber of |eaves.
(Note: This Merkle Tree is essentially the sanme as the history tree
[CrosbyWal | ach] proposal, except our definition handles non-ful
trees differently.)

2.1.1. Mer kl e Audit Paths

A Merkle audit path for a leaf in a Merkle Hash Tree is the shortest
list of additional nodes in the Merkle Tree required to conpute the
Merkl e Tree Hash for that tree. Each node in the tree is either a

| eaf node or is conputed fromthe two nodes i medi ately below it
(i.e., towards the leaves). At each step up the tree (towards the
root), a node fromthe audit path is conbined with the node conputed

so far. In other words, the audit path consists of the |ist of
m ssing nodes required to conpute the nodes leading froma leaf to
the root of the tree. |f the root conputed fromthe audit path

mat ches the true root, then the audit path is proof that the |eaf
exists in the tree.

Gven an ordered list of ninputs to the tree, OJn] = {d(0), ...,
d(n-1)}, the Merkle audit path PATH(m D{n]) for the (m+l)th input
d(m, 0 <= m<n, is defined as foll ows:

The path for the single leaf in a tree with a one-elenent input |ist
D 1] = {d(0)} is enpty:

PATH(O, {d(0)}) = {}

Laurie, et al. Experi ment al [Page 5]

RFC 6962 Certificate Transparency June 2013

For n > 1, let k be the largest power of two snmaller than n. The
path for the (mtl)th elenment d(n) in alist of n > melenents is then
defined recursively as

PATH(m D[n]) PATH(m D[0:k]) : MIH(D k:n]) for m< k; and

PATH(m - k, D k:n]) : MIH D 0:k]) for m>= Kk,

PATH(m D[n])

where : is concatenation of lists and D kl: k2] denotes the |length
(k2 - k1) list {d(k1), d(ki+1),..., d(k2-1)} as before.

2.1.2. Merkle Consistency Proofs

Mer kl e consi stency proofs prove the append-only property of the tree.
A Merkl e consistency proof for a Merkle Tree Hash MTH(D[n]) and a
previously advertised hash MTH(D[O0:m) of the first mleaves, m<= n,
is the list of nodes in the Merkle Tree required to verify that the
first minputs DJ0:n] are equal in both trees. Thus, a consistency
proof nmust contain a set of internediate nodes (i.e., comitnents to
i nputs) sufficient to verify MIH(D[n]), such that (a subset of) the
sane nodes can be used to verify MIH(D[O:nmi). W define an algorithm
that outputs the (unique) mnimal consistency proof.

Gven an ordered list of ninputs to the tree, OJn] = {d(0), ...,
d(n-1)}, the Merkle consistency proof PROOF(m D[n]) for a previous
Merkl e Tree Hash MTH(D[O:nm), O < m< n, is defined as:

PROOF(m D[n]) = SUBPROOF(m D[n], true)

The subproof for m=nis enpty if mis the value for which PROOF was
originally requested (neaning that the subtree Merkle Tree Hash
MIH(D[0: n]) is known):

SUBPROOF(m D[m, true) = {}

The subproof for m= nis the Merkle Tree Hash committing inputs
D{0:mM; otherw se:

SUBPROOF(m D[nj, false) = {MH(D[n)}

For m< n, let k be the largest power of two smaller than n. The
subproof is then defined recursively.

If m<=k, the right subtree entries D k:n] only exist in the current
tree. W prove that the left subtree entries D 0:k] are consistent
and add a conmitnent to D[k:n]:

SUBPROOF(m D[n], b) = SUBPROOF(m D[0:k], b) : MIH(D{k:n])

Laurie, et al. Experi ment al [Page 6]

RFC 6962 Certificate Transparency June 2013

If m> Kk, the left subtree entries DJ0:k] are identical in both
trees. W prove that the right subtree entries D k:n] are consistent
and add a commitnment to D 0:k].

SUBPROOF(m D[n], b) = SUBPROOF(m - k, D[k:n], false) : MIH(D 0:k])

Here, : is a concatenation of lists, and D[kl: k2] denotes the length
(k2 - k1) list {d(k1l), d(ki+l),..., d(k2-1)} as before.

The nunber of nodes in the resulting proof is bounded above by
ceil (log2(n)) + 1.

2.1.3. Exanple

The binary Merkle Tree with 7 | eaves

hash
/ \
/ \
/ \
/ \
/ \
k |
[\ [\
/ \ / \
/ \ / \
g h [i
[\ [\ [\ |
ab c d e f (o[§]
| | | | | 1
do di1 d2 d3 d4 d5

The audit path for dO is [b, h, I].
The audit path for d3 is [c, g, I].
The audit path for d4 is [f, j, K].

The audit path for d6 is [i, K].

Laurie, et al. Experi ment al [Page 7]

RFC 6962 Certificate Transparency June 2013
The sane tree, built increnentally in four steps:

hashO hashl=k
[\ [\

I\ I\

ab cd

| | | |
d

—Qa —

[\ / [\
ab c e f
|| | ||
do di1 2 d3 do d1 d2 d3 d4 d5
The consi stency proof between hashO and hash is PROOF(3, D[7]) = [c,

d g, I]. ¢, g are used to verify hashO, and d, | are additionally
used to show hash is consistent wth hashO.

The consi stency proof between hashl and hash is PROOF(4, D[7]) =1[I].
hash can be verified using hashl=k and I

The consi stency proof between hash2 and hash is PROOF(6, D[7]) = [i
i, kl. k, i are used to verify hash2, and j is additionally used to
show hash is consistent with hash2.

2.1.4. Signatures

Various data structures are signed. A log MJST use either elliptic
curve signatures using the NI ST P-256 curve (Section D.1.2.3 of the
Digital Signature Standard [DSS]) or RSA signatures (RSASSA-PKCS1-

V1 5 with SHA- 256, Section 8.2 of [RFC3447]) using a key of at |east
2048 bits.

Laurie, et al. Experi ment al [Page 8]

RFC 6962 Certificate Transparency June 2013

3.

3.

Log Format and Operation

Anyone can subnit certificates to certificate logs for public
audi ti ng; however, since certificates will not be accepted by TLS
clients unless logged, it is expected that certificate owners or
their CAs will usually submit them A log is a single, ever-grow ng,
append-only Merkle Tree of such certificates.

When a valid certificate is subnmitted to a log, the | og MIST

i Mmediately return a Signed Certificate Timestanp (SCT). The SCT is
the log's promise to incorporate the certificate in the Merkle Tree
within a fixed anount of time known as the Maxi num Merge Delay (MVD).
If the log has previously seen the certificate, it MAY return the
sane SCT as it returned before. TLS servers MJST present an SCT from
one or nore logs to the TLS client together with the certificate.

TLS clients MJST reject certificates that do not have a valid SCT for
the end-entity certificate.

Periodically, each | og appends all its new entries to the Merkle Tree
and signs the root of the tree. Auditors can thus verify that each
certificate for which an SCT has been issued i ndeed appears in the
log. The log MIST incorporate a certificate inits Merkle Tree

wi thin the Maxi mum Merge Del ay period after the issuance of the SCT

Log operators MJST NOT i npose any conditions on retrieving or sharing
data fromthe | og

1. Log Entries

Anyone can subnit a certificate to any log. In order to enable
attribution of each logged certificate to its issuer, the | og SHALL
publish a list of acceptable root certificates (this list night
usefully be the union of root certificates trusted by major browser
vendors). Each subnitted certificate MJST be acconpani ed by al
additional certificates required to verify the certificate chain up
to an accepted root certificate. The root certificate itself MAY be
omtted fromthe chain subnitted to the | og server

Alternatively, (root as well as internediate) certificate authorities
may submit a certificate to logs prior to issuance. To do so, the CA
submits a Precertificate that the log can use to create an entry that
will be valid against the issued certificate. The Precertificate is
constructed fromthe certificate to be issued by addi ng a specia
critical poison extension (OD 1.3.6.1.4.1.11129.2.4.3, whose

ext nVal ue OCTET STRING contains ASN.1 NULL data (0x05 0x00)) to the
end-entity TBSCertificate (this extension is to ensure that the
Precertificate cannot be validated by a standard X 509v3 client) and
signing the resulting TBSCertificate [RFC5280] with either

Laurie, et al. Experi ment al [Page 9]

RFC 6962 Certificate Transparency June 2013

0 a special-purpose (CA true, Extended Key Usage: Certificate
Transparency, O D 1.3.6.1.4.1.11129.2.4.4) Precertificate Signing
Certificate. The Precertificate Signing Certificate MJST be
directly certified by the (root or internediate) CA certificate
that will ultimately sign the end-entity TBSCertificate yielding
the end-entity certificate (note that the |log nmay rel ax standard
validation rules to allow this, so long as the issued certificate
will be valid),

o or, the CAcertificate that will sign the final certificate.

As above, the Precertificate subnission MJUST be acconpani ed by the
Precertificate Signing Certificate, if used, and all additiona
certificates required to verify the chain up to an accepted root
certificate. The signature on the TBSCertificate indicates the
certificate authority’s intent to issue a certificate. This intent
is considered binding (i.e., msissuance of the Precertificate is
consi dered equal to msissuance of the final certificate). Each |og
verifies the Precertificate signature chain and issues a Signed
Certificate Tinestanp on the correspondi ng TBSCertifi cate.

Logs MUST verify that the subnmitted end-entity certificate or
Precertificate has a valid signature chain |eading back to a trusted
root CA certificate, using the chain of internediate CA certificates
provided by the subnmitter. Logs MAY accept certificates that have
expired, are not yet valid, have been revoked, or are otherw se not
fully valid according to X 509 verification rules in order to
acconmodate quirks of CA certificate-issuing software. However, |o0gs
MUST refuse to publish certificates without a valid chain to a known
root CA. If acertificate is accepted and an SCT issued, the
accepting | og MIST store the entire chain used for verification,
including the certificate or Precertificate itself and including the
root certificate used to verify the chain (even if it was omtted
fromthe subm ssion), and MJST present this chain for auditing upon
request. This chain is required to prevent a CA from avoi di ng bl ane
by logging a partial or enpty chain. (Note: This effectively

excl udes sel f-signed and DANE-based certificates until sonme nmechani sm
to control spamfor those certificates is found. The authors wel come
suggestions.)

Laurie, et al. Experi ment al [Page 10]

RFC 6962 Certificate Transparency June 2013

Each certificate entry in a |log MJST include the foll ow ng
conponent s:

enum { x509 entry(0), precert_entry(1l), (65535) } LogEntryType;

struct {
LogEntryType entry_type;
select (entry type) {
case x509_entry: X509Chai nEntry;
case precert_entry: PrecertChai nEntry;
} entry;
} LogEntry;

opaque ASN. 1Cert<1..2724-1>;

struct {

ASN. 1Cert | eaf certificate;

ASN. 1Cert certificate_chai n<0..2"24-1>;
} X509Chai nEntry;

struct {

ASN. 1Cert pre_certificate;

ASN. 1Cert precertificate_chai n<0..2"24-1>;
} PrecertChai nEntry;

Logs MAY Iimit the length of chain they will accept.

"entry type" is the type of this entry. Future revisions of this
prot ocol version may add new LogEntryType val ues. Section 4 explains
how clients should handl e unknown entry types.

"leaf _certificate" is the end-entity certificate subnitted for
audi ti ng.

"certificate_chain" is a chain of additional certificates required to
verify the end-entity certificate. The first certificate MJST
certify the end-entity certificate. Each followi ng certificate MJST
directly certify the one preceding it. The final certificate MJST be
a root certificate accepted by the |og.

"pre_certificate" is the Precertificate submtted for auditing.

"precertificate _chain" is a chain of additional certificates required
to verify the Precertificate submission. The first certificate MAY
be a valid Precertificate Signing Certificate and MJST certify the
first certificate. Each following certificate MJST directly certify
the one preceding it. The final certificate MJST be a root
certificate accepted by the Iog.

Laurie, et al. Experi ment al [Page 11]

RFC 6962 Certificate Transparency June 2013

3.2. Structure of the Signed Certificate Tinestanp

enum { certificate_tinmestanp(0), tree_hash(1l), (255) }
Si gnat ur eType

enum { v1(0), (255) }
Ver si on;

struct {
opaque key_id[32];
} Logl b

opaque TBSCertificate<l..2"24-1>;

struct {
opaque i ssuer_key hash[32];
TBSCertificate tbs_certificate;
} PreCert;

opaque Ct Extensions<0..2716-1>;

"key_id" is the SHA-256 hash of the log' s public key, calcul ated over
the DER encodi ng of the key represented as Subj ect PublicKeyl nfo.

"i ssuer_key hash" is the SHA-256 hash of the certificate issuer’s
public key, calculated over the DER encoding of the key represented
as Subj ect PublicKeylnfo. This is needed to bind the issuer to the
final certificate.

"tbs_certificate" is the DER-encoded TBSCertificate (see [RFC5280])
component of the Precertificate -- that is, without the signature and
t he poison extension. |If the Precertificate is not signed with the
CA certificate that will issue the final certificate, then the
TBSCertificate also has its issuer changed to that of the CA that

will issue the final certificate. Note that it is also possible to
reconstruct this TBSCertificate fromthe final certificate by
extracting the TBSCertificate fromit and deleting the SCT extension
Al so note that since the TBSCertificate contains an

Al gorithm dentifier that nust match both the Precertificate signature
algorithmand final certificate signature algorithm they must be
signed with the same algorithmand paraneters. |If the Precertificate
is issued using a Precertificate Signing Certificate and an Authority
Key ldentifier extension is present in the TBSCertificate, the
correspondi ng extension nust al so be present in the Precertificate
Signing Certificate -- in this case, the TBSCertificate also has its
Authority Key ldentifier changed to match the final issuer.

Laurie, et al. Experi ment al [Page 12]

RFC 6962 Certificate Transparency June 2013

struct {
Versi on sct_version
Logl D id;
ui nt 64 ti mestanp;
Ct Ext ensi ons ext ensi ons;
digitally-signed struct {
Versi on sct_version;
Si gnatureType signhature_type = certificate_tinmestanp;
ui nt 64 ti mestanp;
LogEntryType entry_type;
select(entry_type) {
case x509 _entry: ASN. 1Cert;
case precert_entry: PreCert;
} signed_entry;
Ct Ext ensi ons ext ensi ons;
s
} SignedCertificateTi mestanp

The encoding of the digitally-signed elenent is defined in [RFC5246].

"sct_version" is the version of the protocol to which the SCT
conforms. This version is vl.

"timestanp" is the current NTP Tinme [RFC5905], neasured since the
epoch (January 1, 1970, 00:00), ignoring |leap seconds, in
m | 1iseconds.

"entry type" may be inplicit fromthe context in which the SCT is
pr esent ed.

"signed _entry" is the "leaf _certificate" (in the case of an
X509Chai nEntry) or is the PreCert (in the case of a
Precert Chai nEntry), as described above.

"extensions" are future extensions to this protocol version (vl).
Currently, no extensions are specified.

3.3. Including the Signed Certificate Timestanp in the TLS Handshake

The SCT data corresponding to the end-entity certificate from at

| east one log nust be included in the TLS handshake, either by using
an X509v3 certificate extension as described below, by using a TLS
extension (Section 7.4.1.4 of [RFC5246]) with type

"signed certificate tinestanp", or by using Online Certificate Status
Protocol (OCSP) Stapling (also known as the "Certificate Status

Laurie, et al. Experi ment al [Page 13]

RFC 6962 Certificate Transparency June 2013

Request" TLS extension; see [RFC6066]), where the response includes
an OCSP extension with OD 1.3.6.1.4.1.11129.2.4.5 (see [RFC2560])
and body:

Si gnedCertificateTi mestanplLi st ::= OCTET STRI NG

At | east one SCT MJST be included. Server operators MAY include nore
t han one SCT.

Simlarly, a certificate authority MAY subnit a Precertificate to
nmore than one |log, and all obtained SCTs can be directly enbedded in
the final certificate, by encoding the SignedCertificateTi nestanpLi st
structure as an ASN. 1 OCTET STRING and inserting the resulting data
in the TBSCertificate as an X 509v3 certificate extension (AOD
1.3.6.1.4.1.11129.2.4.2). Upon receiving the certificate, clients
can reconstruct the original TBSCertificate to verify the SCT

si gnature.

The contents of the ASN.1 OCTET STRI NG enbedded in an OCSP extension
or X509v3 certificate extension are as foll ows:

opaque SerializedSCT<1..2"16-1>;

struct {
SerializedSCT sct_list <1..2716-1>;
} SignedCertificateTi nestanpli st;

Here, "SerializedSCT" is an opaque byte string that contains the
serialized TLS structure. This encoding ensures that TLS clients can
decode each SCT individually (i.e., if there is a version upgrade,
out-of-date clients can still parse old SCTs whil e skipping over new
SCTs whose versions they don't understand).

Li kewi se, SCTs can be enbedded in a TLS extension. See bel ow for
detail s.

TLS clients MJST inplenent all three nechanisns. Servers MJST

i mpl ement at | east one of the three nechanisns. Note that existing
TLS servers can generally use the certificate extension nechani sm
wi t hout nodification.

TLS servers should send SCTs fromnultiple logs in case one or nore

| ogs are not acceptable to the client (for exanple, if a |og has been
struck off for msbehavior or has had a key conprom se).

Laurie, et al. Experi ment al [Page 14]

RFC 6962 Certificate Transparency June 2013

3.3.1. TLS Extension

The SCT can be sent during the TLS handshake using a TLS extension
with type "signed_certificate_tinestanp”.

Cients that support the extension SHOULD send a ClientHello
extension with the appropriate type and enpty "extension_data"

Servers MJST only send SCTs to clients who have indicated support for
the extension in the CientHello, in which case the SCTs are sent by
setting the "extension_data” to a "SignedCertificateTi mestanpList”.

Session resunption uses the original session information: clients
SHOULD i nclude the extension type in the ClientHello, but if the
session is resuned, the server is not expected to process it or

i nclude the extension in the ServerHell o.

3.4. Merkle Tree
The hashing algorithmfor the Merkle Tree Hash is SHA- 256.
Structure of the Merkle Tree input:

enum { tinestanped entry(0), (255) }
Mer kil eLeaf Type;

struct {
ui nt 64 ti mestanp;
LogEntryType entry_type;
select(entry_type) {
case x509 _entry: ASN. 1Cert;
case precert_entry: PreCert;
} signed_entry;
Ct Ext ensi ons ext ensi ons;
} TimestanpedEntry;

struct {
Ver si on version
Mer kl eLeaf Type | eaf _type
select (leaf_type) {
case timestanped_entry: TinmestanpedEntry;

}
} Merkl eTreelLeaf;

Here, "version" is the version of the protocol to which the
Mer kl eTreeLeaf corresponds. This version is v1.

Laurie, et al. Experi ment al [Page 15]

RFC 6962 Certificate Transparency June 2013

"l eaf type" is the type of the leaf input. Currently, only
"timestanped_entry" (corresponding to an SCT) is defined. Future
revisions of this protocol version may add new Merkl eLeaf Type types
Section 4 explains how clients should handl e unknown | eaf types.

"timestanp" is the tinestanp of the corresponding SCT issued for this
certificate.

"signed_entry" is the "signed_entry" of the correspondi ng SCT
"extensions" are "extensions" of the correspondi ng SCT.

The | eaves of the Merkle Tree are the | eaf hashes of the
correspondi ng "Merkl eTreeLeaf" structures.

3.5. Signed Tree Head

Every tine a | og appends new entries to the tree, the |l og SHOULD sign
the corresponding tree hash and tree infornmation (see the
correspondi ng Signed Tree Head client nessage in Section 4.3). The
signature for that data is structured as foll ows:

digitally-signed struct {
Ver si on versi on;
Si gnat ureType signhature_type = tree_hash
ui nt 64 ti nmestanp;
ui nt 64 tree_size;
opaque sha256_root _hash[32];
} TreeHeadSi gnat ure;

"version" is the version of the protocol to which the
Tr eeHeadSi gnature conforns. This version is vl.

"timestanp" is the current time. The tinestanp MIUST be at |east as
recent as the nost recent SCT tinmestanp in the tree. Each subsequent
ti mestanp MJUST be nore recent than the tinestanp of the previous
updat e.

"tree_size" equals the nunber of entries in the new tree.
"sha256_root _hash" is the root of the Merkle Hash Tree.

Each | og MJUST produce on denmand a Signed Tree Head that is no ol der
than the Maxi num Merge Delay. |In the unlikely event that it receives

no new subni ssions during an MVD period, the log SHALL sign the same
Merkl e Tree Hash with a fresh tinmestanp.

Laurie, et al. Experi ment al [Page 16]

RFC 6962 Certificate Transparency June 2013

4.

4.

Log dient Messages

Messages are sent as HITPS GET or POST requests. Paraneters for
POSTs and all responses are encoded as JavaScri pt Object Notation
(JSON) objects [RFC4627]. Paraneters for GETs are encoded as order-

i ndependent key/val ue URL paraneters, using the "application/

x-ww form url encoded" format described in the "HTM. 4. 01

Speci fication" [HTM.401]. Binary data is base64 encoded [RFC4648] as
specified in the individual nessages.

Note that JSON objects and URL paraneters may contain fields not
specified here. These extra fields should be ignored.

The <l og server> prefix can include a path as well as a server nane
and a port.

In general, where needed, the "version"” is vl and the "id" is the log
id for the | og server queried.

Any errors will be returned as HTTP 4xx or 5xx responses, w th hunan-
readabl e error nessages

1. Add Chain to Log
PCST https://<log server>/ct/vl/ add-chain
I nput s:
chain: An array of base64-encoded certificates. The first
element is the end-entity certificate; the second chains to the
first and so on to the last, which is either the root

certificate or a certificate that chains to a known root
certificate.

Cut put s:
sct_version: The version of the SignedCertificateTi nestanp
structure, in decimal. A conpliant vl inplenentation MJST NOT
expect this to be 0 (i.e., v1).
id: The log ID, base64 encoded. Since log clients who request an
SCT for inclusion in TLS handshakes are not required to verify
it, we do not assune they know the I D of the Iog.

ti mestanp: The SCT timestanp, in decimal

Laurie, et al. Experi ment al [Page 17]

RFC 6962 Certificate Transparency June 2013

extensions: An opaque type for future expansion. It is likely
that not all participants will need to understand data in this
field. Logs should set this to the enpty string. Cients
shoul d decode the base64-encoded data and include it in the
SCT.

signature: The SCT signature, base64 encoded.
If the "sct_version” is not vl, then a vl client may be unable to

verify the signature. |t MJST NOT construe this as an error. (Note:
Log clients don’t need to be able to verify this structure; only TLS

clients do. If we were to serve the structure as a binary blob, then
we coul d conpletely change it w thout requiring an upgrade to vl
clients.)

4.2. Add PreCertChain to Log
PCST https://<log server>/ct/vl/ add-pre-chain
I nputs:
chain: An array of base64-encoded Precertificates. The first
element is the end-entity certificate; the second chains to the
first and so on to the last, which is either the root
certificate or a certificate that chains to a known root
certificate.
Qut puts are the same as in Section 4.1.
4.3. Retrieve Latest Signed Tree Head
CET https://<log server>/ct/vl/get-sth
No i nputs.
Qut put s:
tree_size: The size of the tree, in entries, in decinal.
ti mestanp: The timestanp, in decinmal.

sha256 root _hash: The Merkle Tree Hash of the tree, in base64.

tree_head_signature: A TreeHeadSi gnature for the above data.

Laurie, et al. Experi ment al [Page 18]

RFC 6962 Certificate Transparency June 2013

4.4, Retrieve Merkle Consistency Proof between Two Signed Tree Heads
CET https://<log server>/ct/vl/get-sth-consistency
| nput s:
first: The tree_size of the first tree, in decinal.
second: The tree_size of the second tree, in decinmal
Both tree sizes nust be fromexisting vl STHs (Signed Tree Heads).
CQut put s:
consi stency: An array of Merkle Tree nodes, base64 encoded.

Note that no signature is required on this data, as it is used to
verify an STH, which is signed.

4.5. Retrieve Merkle Audit Proof from Log by Leaf Hash
CET https://<log server>/ct/vl/get-proof-by-hash
I nput s:
hash: A base64-encoded v1 | eaf hash

tree_size: The tree_size of the tree on which to base the proof,
in decimal.

The "hash" nust be cal cul ated as defined in Section 3.4. The
"tree_size" nust designhate an existing vl STH.

Cut put s:

| eaf i ndex: The 0-based index of the end entity corresponding to
the "hash" paraneter.

audit _path: An array of base64-encoded Merkle Tree nodes proving
the inclusion of the chosen certificate.

Laurie, et al. Experi ment al [Page 19]

RFC 6962 Certificate Transparency June 2013

4.6. Retrieve Entries from Log

CET https://<log server>/ct/vl/get-entries

| nput s:
start: O-based index of first entry to retrieve, in decinal.
end: O-based index of last entry to retrieve, in decinal

Cut put s:
entries: An array of objects, each consisting of

| eaf _input: The base64-encoded Merkl eTreelLeaf structure.

extra_data: The base64-encoded unsi gned data pertaining to the
log entry. In the case of an X509Chai nEntry, this is the
"certificate _chain". In the case of a PrecertChainEntry,
this is the whole "PrecertChainEntry".

Note that this message is not signed -- the retrieved data can be
verified by constructing the Merkle Tree Hash corresponding to a
retrieved STH Al |eaves MJST be vl. However, a conpliant vl
client MJUST NOT construe an unrecogni zed Merkl eLeaf Type or

LogEnt ryType value as an error. This nmeans it may be unable to parse
sone entries, but note that each client can inspect the entries it
does recogni ze as well as verify the integrity of the data by
treating unrecogni zed | eaves as opaque input to the tree.

The "start" and "end" paraneters SHOULD be within the range 0 <= x <
"tree_size" as returned by "get-sth" in Section 4.3.

Logs MAY honor requests where 0 <= "start" < "tree_size" and "end" >=
"tree_size" by returning a partial response covering only the valid
entries in the specified range. Note that the following restriction
may al so apply:

Logs MAY restrict the nunber of entries that can be retrieved per
"get-entries" request. If a client requests nore than the pernmitted
nunber of entries, the log SHALL return the nmaxi mrum nunber of entries
perm ssible. These entries SHALL be sequential beginning with the
entry specified by "start".

Laurie, et al. Experi ment al [Page 20]

RFC 6962 Certificate Transparency June 2013

4.7. Retrieve Accepted Root Certificates
GET https://<log server>/ct/vl/get-roots
No i nputs.
CQut put s:

certificates: An array of base64-encoded root certificates that
are acceptable to the |og.

4.8. Retrieve Entry+Merkle Audit Proof from Log
CET https://<log server>/ct/vl/ get-entry-and-proof
| nput s:
| eaf _index: The index of the desired entry.

tree_size: The tree_size of the tree for which the proof is
desired.

The tree size nust designate an existing STH
Qut put s:
| eaf _input: The base64-encoded Merkl eTreelLeaf structure.

extra_data: The base64-encoded unsi gned data, same as in
Section 4.6.

audit _path: An array of base64-encoded Merkle Tree nodes proving
the inclusion of the chosen certificate.

This APl is probably only useful for debugging.
5. dients

There are various different functions clients of |ogs nmight perform
We describe here sone typical clients and how they could function
Any inconsistency may be used as evidence that a | og has not behaved
correctly, and the signatures on the data structures prevent the |og
from denyi ng that m sbehavi or

Al clients should gossip with each other, exchanging STHs at |east;
this is all that is required to ensure that they all have a

consi stent view The exact mechanismfor gossip will be described in
a separate docunent, but it is expected there will be a variety.

Laurie, et al. Experi ment al [Page 21]

RFC 6962 Certificate Transparency June 2013

5.1. Submtters

Submitters subnmit certificates or Precertificates to the log as
descri bed above. They may go on to use the returned SCT to construct
a certificate or use it directly in a TLS handshake.

5.2. TLS dient

TLS clients are not directly clients of the log, but they receive
SCTs al ongside or in server certificates. In addition to nornmal
validation of the certificate and its chain, they should validate the
SCT by conputing the signature input fromthe SCT data as well as the
certificate and verifying the signature, using the correspondi ng
log’s public key. Note that this document does not describe how
clients obtain the logs’ public keys.

TLS clients MJST reject SCTs whose tinestanp is in the future
5.3. Monitor

Moni tors watch | ogs and check that they behave correctly. They also
watch for certificates of interest.

A nonitor needs to, at least, inspect every newentry in each log it
wat ches. It may al so want to keep copies of entire logs. |n order
to do this, it should follow these steps for each |og:

1. Fetch the current STH (Section 4.3).

2. Verify the STH signature.

3. Fetch all the entries in the tree corresponding to the STH
(Section 4.6).

4. Confirmthat the tree made fromthe fetched entries produces the
sanme hash as that in the STH

5. Fetch the current STH (Section 4.3). Repeat until the STH
changes.

6. Verify the STH signature.

7. Fetch all the newentries in the tree corresponding to the STH

(Section 4.6). |If they renmain unavail able for an extended
period, then this should be viewed as misbehavior on the part of
t he 1 og.

Laurie, et al. Experi ment al [Page 22]

RFC 6962 Certificate Transparency June 2013

8. Either:

1. Verify that the updated list of all entries generates a tree
with the same hash as the new STH

O, if it is not keeping all log entries

2. Fetch a consistency proof for the new STH with the previous
STH (Section 4.4).

3. Verify the consistency proof.

4. Verify that the new entries generate the correspondi ng
el enents in the consistency proof.

9. CGoto Step 5.
5.4. Auditor

Auditors take partial information about a log as input and verify
that this information is consistent with other partial information
they have. An auditor mght be an integral component of a TLS
client; it mght be a standal one service; or it mght be a secondary
function of a nonitor

Any pair of STHs fromthe sanme |l og can be verified by requesting a
consi stency proof (Section 4.4).

A certificate acconpanied by an SCT can be verified against any STH
dated after the SCT tinestanp + the Maxi num Merge Del ay by requesting
a Merkle audit proof (Section 4.5).

Auditors can fetch STHs fromtinme to tine of their own accord, of
course (Section 4.3).

6. | ANA Consi derati ons

| ANA has all ocated an RFC 5246 ExtensionType value (18) for the SCT
TLS extension. The extension name is "signed_certificate_timestanp".

7. Security Considerations

Wth CAs, logs, and servers perform ng the actions described here,
TLS clients can use | ogs and signed tinmestanps to reduce the
likelihood that they will accept msissued certificates. |If a server
presents a valid signed tinmestanp for a certificate, then the client
knows that the certificate has been published in a log. Fromthis,
the client knows that the subject of the certificate has had sone

Laurie, et al. Experi ment al [Page 23]

RFC 6962 Certificate Transparency June 2013

time to notice the nisissue and take sone action, such as asking a CA
to revoke a misissued certificate. A signed tinestanp is not a
guarantee that the certificate is not m sissued, since the subject of
the certificate m ght not have checked the I ogs or the CA m ght have
refused to revoke the certificate.

In addition, if TLS clients will not accept unlogged certificates,
then site owners will have a greater incentive to subnit certificates
to logs, possibly with the assistance of their CA, increasing the
overal | transparency of the system

7.1. Msissued Certificates

M sissued certificates that have not been publicly |ogged, and thus
do not have a valid SCT, will be rejected by TLS clients. M sissued
certificates that do have an SCT froma log will appear in that
public log within the Maxi num Merge Del ay, assuming the log is
operating correctly. Thus, the maxi mnum period of tinme during which a
m si ssued certificate can be used w thout being available for audit
is the M\D

7. 2. Det ecti on of M sissue

The | ogs do not thensel ves detect msissued certificates; they rely
instead on interested parties, such as donmain owners, to nonitor them
and take corrective action when a misissue is detected.

7.3. M sbehaving Logs

A log can mi sbehave in tw ways: (1) by failing to incorporate a
certificate with an SCT in the Merkle Tree within the MVD and (2) by
violating its append-only property by presenting two different,
conflicting views of the Merkle Tree at different tinmes and/or to
different parties. Both fornms of violation will be pronptly and
publicly detectable.

Violation of the MVD contract is detected by log clients requesting a
Merkl e audit proof for each observed SCT. These checks can be
asynchronous and need only be done once per each certificate. In
order to protect the clients’ privacy, these checks need not revea
the exact certificate to the log. Cients can instead request the
proof froma trusted auditor (since anyone can conpute the audit
proofs fromthe I og) or request Merkle proofs for a batch of
certificates around the SCT tinestanp.

Viol ation of the append-only property is detected by gl oba

gossiping, i.e., everyone auditing | ogs conparing their versions of
the | atest Signed Tree Heads. As soon as two conflicting Signed Tree

Laurie, et al. Experi ment al [Page 24]

RFC 6962 Certificate Transparency June 2013

8.

10.

11.

11.

Heads for the sane | og are detected, this is cryptographic proof of
that |1 og’s m sbehavi or

Ef fici ency Considerations

The Merkle Tree design serves the purpose of keeping communi cation
over head | ow

Auditing logs for integrity does not require third parties to

mai ntain a copy of each entire log. The Signed Tree Heads can be
updated as new entries becone avail able, w thout reconputing entire
trees. Third-party auditors need only fetch the Merkl e consistency
proofs against a log’'s existing STHto efficiently verify the append-
only property of updates to their Merkle Trees, w thout auditing the
entire tree.

Fut ure Changes

This section lists things we m ght address in a Standards Track
versi on of this docunent.

o Rather than forcing a | og operator to create a newlog in order to
change the |l og signing key, we may all ow sone key roll mechani sm

o W may add hash and signing algorithmagility.
0o W may describe sonme gossip protocols.
Acknowl edgenent s
The authors would like to thank Erwann Abel ea, Robin Al den, A
Cutter, Francis Dupont, Stephen Farrell, Brad Hll, Jeff Hodges, Paul
Hof f man, Jeffrey Hutzel man, SM Al exey Mel ni kov, Chris Palnmer, Trevor
Perrin, Ryan Sleevi, Rob Stradling, and Carl \Wallace for their
val uabl e contri buti ons.
Ref erences

1. Normative Reference

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

Laurie, et al. Experi ment al [Page 25]

RFC 6962 Certificate Transparency June 2013

11.2. Informative References

[CrosbyWal ach] Crosby, S. and D. Wallach, "Efficient Data
Structures for Tanper-Evident Logging", Proceedi ngs
of the 18th USEN X Security Synposium Montreal,
August 2009, <http://static.usenix.org/event/sec09/
tech/full _papers/crosby. pdf >.

[DSS] National Institute of Standards and Technol ogy,
"Digital Signature Standard (DSS)", FIPS 186-3,
June 2009, <http://csrc.nist.gov/publications/fips/
fipsl186-3/fips_186- 3. pdf >.

[FI PS. 180- 4] National Institute of Standards and Technol ogy,
"Secure Hash Standard", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fipsl80-4/
fips-180-4. pdf >.

[HTML401] Raggett, D., Le Hors, A, and |. Jacobs, "HTM. 4.01
Specification", Wrld Wde Wb Consortium
Recommendati on REC- ht nl 401- 19991224, Decenber 1999,
<htt p://ww. w3. or g/ TR/ 1999/ REC- ht m 401-19991224>.

[RFC2560] MWers, M, Ankney, R, Mlpani, A, Glperin, S,
and C. Adans, "X. 509 Internet Public Key
Infrastructure Online Certificate Status Protocol -
OCSP', RFC 2560, June 1999.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

[RFCA4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON) ", RFC 4627,
July 2006.

[RFCA4648] Josefsson, S., "The Basel6, Base32, and Base64 Data

Encodi ngs", RFC 4648, Cctober 2006.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", RFC 5246,
August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 5280, May 2008.

Laurie, et al. Experi ment al [Page 26]

RFC 6962

[RFC5905]

[RFC6066]

Aut hor s’

Addr esses

Ben Laurie

Googl
EMai |
Adam
Googl

EMni |

Emli

e UK Ltd.

Certificate Transparency June 2013

MIls, D, Martin, J., Burbank, J., and W Kasch
"Network Tine Protocol Version 4: Protocol and
Al gorithms Specification", RFC 5905, June 2010.

East| ake, D., "Transport Layer Security (TLS)
Ext ensi ons: Extension Definitions", RFC 6066,
January 2011.

: benl @oogl e. com

Langl ey
e Inc.

. agl @oogl e. com

a Kasper

Googl e Switzerland GrbH

EMni |

Lauri e,

. ekasper @oogl e. com

et al.

Experi ment al [Page 27]

