Net wor k Wor ki ng Group Janes E. Wite
Request for Comments: 708 Augnent ati on Research Center

El ements of a Distributed Programm ng System

January 5, 1976

Janes E. Wite
Augment ati on Research Center

Stanford Research Institute
Menl o Park, California 94025

(415) 326- 6200 X2960

Thi s paper suggests sonme extensions to the sinple Procedure Call Protocol
described in a previous paper (27197). By expanding the procedure call
nodel and standardi zi ng other common forms of inter-process interaction,
such extensions would provide the applications programer with an even
nore powerful distributed programm ng system

The work reported here was supported by the Advanced Research Projects
Agency of the Departnment of Defense, and by the Rone Air Devel opnment
Center of the Air Force.

This paper will be subnitted to publication in the Journal of Conputer
Languages.

Net wor k Wor ki ng Group Janes E. Wite
Request for Comments: 708 El enents of a Distributed Progranmm ng System

I NTRODUCT! ON

In a conpani on paper [i], the author proposes a sinple protocol and
software framework that would facilitate the construction of distributed
systenms within a resource-sharing conputer network by enabling distant
processes to conmuni cate with one another at the procedure call |evel

Al t hough of great utility even in its present form this rudinentary
"distributed programr ng system (DPS)" supports only the nost fundanental
aspects of renote procedure calling. |In particular, it pernits the
caller to identify the renote procedure to be called, supply the
necessary argunents, deternine the outcone of the procedure, and recover
its results. The present paper extends this sinple procedure call nodel
and standardi zes other common forns of process interaction to provide

a nore powerful and conprehensive distributed progranm ng system The
particul ar extensions proposed in this paper serve hopefully to reveal the
DPS concept’s potential, and are offered not as dogna but rather as
stimulus for further research.

The first section of this paper summarizes the basic distributed
programm ng systemderived in [1]. The second section describes the
general strategy to be followed in extending it. The third and | ongest
section identifies and explores sone of the aspects of process interaction
that are sufficiently conmon to warrant standardization, and suggests

met hods for incorporating themin the DPS nodel .

REVI EW NG THE BASI C SYSTEM

The distributed progranm ng systemderived in [1] assunes the existence
of and is built upon a network-w de "inter-process comuni cation (IPC)"
facility. As depicted in Figure 1, DPS consists of a high-1evel nodel of
conmput er processes and a sinple, application-independent "procedure

call protocol (PCP)" that inplements the nodel by regulating the dialog
bet ween two processes interconnected by neans of an |IPC comunication
"channel." DPS is inplenmented by an installation-provided "run-tinme
environnent (RTE)," which is link |l oaded with (or otherw se nade
avai l abl e to) each applications program

Net wor k Wor ki ng G oup Janmes E. Wite
Requests for Comments: 708 El enents of a Distributed Progranm ng System
Revi ewi ng the Basic System

The Model

The procedure call nodel (hereafter terned the Mddel) views a process as a
collection of renotely callable subroutines or "procedures." Each procedure
is invoked by name, can be supplied a list of arguments, and returns to its
caller both a bool ean outcone, indicating whether it succeeded or failed,
and a list of results. The Mddel pernmits the process at either end of the

| PC channel to invoke procedures in its neighbor, and further permts a
process to accept two or nore procedure calls for concurrent execution

The arguments and results of procedures are nodeled froma small set of
primtive "data types," listed bel ow

LIST: A list is an ordered sequence of N data objects called
"el enents" (here and throughout these descriptions, Nis
confined to the range [0, 2**15-1]). A LIST nay contain
other LISTs as elenments, and can therefore be enployed to
construct arbitrarily conplex, conposite argunents or results.

CHARSTR: A character string is an ordered sequence of N ASCl
characters, and conveniently nodels a variety of textua
entities, fromshort user nanmes to whol e paragraphs of text.

BITSTR. A bit string is an ordered sequence of N bits and,
therefore, provides a neans for representing arbitrary
binary data (for exanple, the contents of a word of nenory).

I NTEGER An integer is a fixed-point nunber in the range
[-2**31, 2**31-1], and conveniently nodels various kinds of
nunerical data, including tine intervals, distances, and so on

INDEX: An index is an integer in the range [1, 2**15-1]. As
its nane and val ue range suggest, an | NDEX can be used to
address a particular bit of character within a string, or
element within a list. Furthernore, many of the protoco
extensions to be proposed in this paper will enploy | NDEXES as
handl es for objects within the DPS environment (for exanple,
processes and channel s).

BOOLEAN: A bool ean represents a single bit of information
and has either the value true or false.

EMPTY: An enpty is a val uel ess place holder within a LI ST of
paraneter |ist.

Net wor k Wor ki ng G oup Janmes E. Wite
Requests for Comments: 708 El enents of a Distributed Progranm ng System
Revi ewi ng the Basic System

The Protoco

The procedure call protocol (hereafter terns the Protocol), which

i mpl enents the Model, defines a "transmission fornmat" (like those suggested
in Appendi x A) for each of the seven data types |listed above, and

requires that paraneters be encoded in that format whenever they are
transported between processes.

The Protocol also specified the inter-process nessages by which renote
procedures are invoked. These nessages can be described synbolically as
fol | ows:

nmessage-t ype=CALL [tid] procedure-nane argunents
message-t ype=RETURN tid outcone results

The first nessage i nvokes the procedure whose NAME is specified using the
ARGUMENTS provided. The second is returned in eventual response to the
first and reports the OQUTCOVE and RESULTS of the conpl eted procedure.
Whenever OUTCOME indicates that a procedure has failed, the procedure’s
RESULTS are required to be an error nunber and di agnostic nessage, the
former to help the invoking programdeternine what to do next, the

latter for possible presentation to the user. The presence of an
optional "transaction identifier (TID" in the CALL nmessage constitutes

a request by the caller for an acknow edgi ng RETURN nessage echoi ng the
identifier.

Al t hough data types and their transnmission formats serve prinmarily as
vehicles for representing the argunents and results of renote procedures,
they can just as readily and effectively be enployed to represent the
nmessages by which those paraneters are transnitted. The Protocol
therefore, represents each of the two nmessages descri bed above as a PCP
data object, nanmely, a LIST whose first elenent is an | NDEX nmessage

type. The follow ng concise statenent of the Protocol results:

LI ST (CALL, tid, procedure, argunents)
| NDEX=1 [| NDEX] CHARSTR LI ST
LI ST (RETURN, tid, out cone, results)

| NDEX=2 | NDEX BOOLEAN LI ST

Here and i n subsequent protocol descriptions, elenents enclosed in square
brackets are optional (that is, may be EMPTY). The RESULTS of an
unsuccessful procedure would be represented as foll ows:

LI ST (error, diagnostic)
| NDEX CHARSTR

Net wor k Wor ki ng G oup Janmes E. Wite
Requests for Comments: 708 El enents of a Distributed Progranm ng System
Revi ewi ng the Basic System

The Run-Ti me Environnent

The run-tinme environnment (hereafter termed the environnent) interfaces the
applications programto a renote process via an | PC channel. |n doing so,
it provides the applications programw th a collection of "primtives,"

i npl ement ed either as subroutines or systemcalls, that the applications
program can enploy to mani pul ate the renote process to which the channe
connects it. The environnent inplenents these primtives by sending

and receiving various protocol nessages via the channel

Inits present rudimentary form the Protocol enables the environment to
make a single, renote procedure calling primtive like the follow ng
available to the applications program

CALLPROCEDURE (procedure, argunents -> outcone, results)
CHARSTR LI ST BOOLEAN LI ST

This primtive invokes the indicated renpte PROCEDURE using the ARGUVENTS
provided and returns its OUTCOVE and RESULTS. Wiile this primtive

bl ocks the invoking applications programuntil the renote procedure
returns, a variant that sinply initiates the call and allows the
applications programto collect the outcome and results in a second
operation can al so be provided.

Since the interface between the environment and the applications program
i s machi ne- and possi bly even | anguage- dependent, environnent-provi ded
primtives can only be described in this paper synbolically. Al though
PCP data types provide a convenient vehicle for describing their
argunents and results are therefore used for that purpose above and

t hroughout the paper, such paraneters will normally be transmitted

bet ween the environnment and the applications programin some interna
format.

BOOTSTRAPPI NG THE NEW PROTOCOL FUNCTI ONS

Since the Protocol already provides a nechanismfor invoking arbitrary
renote procedures, the Mddel extensions to be proposed in this paper
will be inplenented whenever possible as procedures, rather than as
addi ti onal nmessages. Unlike applications procedures, these special
"system procedures” will be called and inplemented by run-tinme environments,
rather than by the applications prograns they serve. Although inaccessible
to the renote applications programvia the nornmal environnment-provided
renote procedure calling primtive, system procedures will enable the
environnent to inplenent and offer new prinmitives to its applications
pr ogr am

-4-

Net wor k Wor ki ng Group Janes E. Wite
Requests for Comments: 708 El enents of a Distributed Progranmm ng System
Boot strappi ng the New Protocol Functions

The cal ling sequences of many of these new primtives will closely
correspond to those of the renpte system procedures by which they are

i mpl emented. COther prinmtives will be nore conplex and require for their
i npl enmentation calls to several system procedures, possibly in different
processes. Besides describing the Protocol additions required by various
Mbdel extensions proposed, the author will, throughout this paper, suggest
calling sequences for the new primtives that becone available to the
applications program

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde

SOME POSSI BLE EXTENSI ONS TO THE MODEL

1. Creating Renobte Processes

Before a programin one machi ne can use resources in another, it nust either
create a new process in the renpte machine, or gain access to an existing
one. In either case, the local process nust establish an I PC channel to a
resi dent dispatching process within the renote system specify the program
to be started or contacted. and identify itself so that its access to the
program can be established and billing carried out. After these prelininary
steps have been acconplished, the requested process assunes responsibility
for the I PC channel and substantive communi cati on begins.

The manner in which the environment carries out the above scenario is
largely dictated by the IPC facility upon which the distributed systemis
based. |If the IPC facility itself provides single primitive that
acconpl i shes the entire task, then the environnent need only invoke that
primtive. |If, on the other hand, it only provides a nechani sm by which
the environnent can establish a channel to the renote dispatcher, as is
the case within the ARPA conputer Network (the ARPANET), then the Protoco
itself nust contain provisions for nanming the programto be run and
presenting the required credenti al

Adding to the Protocol the foll owi ng system procedure enables the |oca
environnent to provide the renote dispatcher with the necessary infornation
inthis latter case:

I Nl PROCESS (program credential)
CHARSTR LI ST (user, password, account)
CHARSTR CHARSTR CHARSTR

Its argunents include the nane of the applications PROGRAMto be run; and
t he USER nane, PASSWORD, and ACCOUNT of the local user to whomits use is
to be billed.

This new procedure effectively adds to the Model the notion of "creation,"” and enab
Il es the environnent to offer the following primtives
to its applications program

CRTPROCESS (conputer, program credential -> ph)
CHARSTR CHARSTR (as above) | NDEX
DELPROCESS (ph)
| NDEX

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El enrents of a Distributed Programm ng System
Some Possi bl e Extensions to the Mde

Creating Renote Processes

The first primtive creates a new process or establishes contact with an
existing one by first creating a channel to the dispatcher within the

i ndi cated COWUTER and t hen invoking the renote system procedure | N PROCESS
with the specified PROGRAM nane and CREDENTI ALS as argunents. The primtive
returns a "process handle PH' by which the applications programcan refer to
the newly created process in subsequent dialog with the [ocal environnent

by the IPC facility, an index into a table within the environnent, or anything
el se the environment’s inplementor may find convenient.

The second prinitive "del etes"” the previously created process whose handl e
PH is specified by sinply deleting the I PC channel to the renote process and
reclaimng any internal table space that nmay have been allocated to the
process.

2. Introducing Processes to One Another

The sinplest distributed systens begin with a single process that creates,
via the CRTPROCESS prinitive descri bed above, one or nore "inferior"
processes whose resources it requires. Sone or all of these inferiors may
in turn require other renote resources and so create interiors of their
own. This creative activity can proceed, in principle, to arbitrary depth
The distributed systemis thus a tree structure whose nodes are processes
and whose branches are | PC channels.

Al though a distributed systemcan include an arbitrarily |arge nunber of
processes, each process is cognizant of only the process that created it
and those it itself creates, that is, its parent and sons. The radius
wi thin which a process can access the resources of the tree is thus
artificially small. This limted sharing range, which prevents the
conveni ent inplenmentation of many distributed systens, can be overcone
by extending the Model to pernmit an arbitrarily conpl ex network of
communi cati on paths to be superinposed upon the process tree.

One of the many ways by which the Protocol can provide for such comruni cation
paths is to permit one process to "introduce" and thereby nmake known to one
anot her any two processes it itself knows (for exanple, two of its sons,

or its parent and son). Once introduced, the two processes woul d be able

to invoke one another’s procedures with the sane freedom the introducing
process enjoys. They could also introduce one another to other processes,
and so create even | onger conmunication paths.

Net wor k Wor ki ng G oup Janmes E. Wite

Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde

I ntroduci ng Processes to One Anot her

2.1 Introductions Wthin a Honbgeneous Environnent

Provi ded one remains within a "honbgeneous environment" (that is, the domain
of a single IPCfacility), the introduction of two processes requires little
nmore than the formation of an | PC channel between them Adding to the
Protocol the followi ng system procedures, which mani pulate I PC "ports,"”
enabl es the run-tine environnment of the process performng the introduction
to negotiate such a channel

ALOPORT (-> ph, COWPUTER, PORT)
| NDEX CHARSTR any
CNNPORT (ph, conmput er, port)
| NDEX CHARSTR any
DCNPORT (ph)
| NDEX

The detailed calling sequences for these procedures are dictated by the I PC
facility that underlies the distributed system Those above are therefore
only representative of what may be required within any particul ar network,
but are only slightly less conplicated than those required, for exanple,

wi thin the ARPANET.

To create the channel, the introducing process’ run-tinme environment

all ocates a PORT in each target process via ALOPORT, and then instructs

each process via CNNPORT to connect its port to the other’s via the IPC
facility. The process handle PH returned by ALOPCORT serves as a handl e

both initially for the allocated port, and then later for the process to

whi ch the attached channel provides access. To "separate" the two processes,
the introduci ng process’ environnent need only invoke the DCNPORT procedure
in each process, thereby dissolving the channel, rel easing the associ ated
ports, and deal |l ocating the process handl es.

Armed with these three new system procedures, the environment can provide
the following new prinitives to its applications program

| TDPROCESS (phl, ph2 -> phl12, PH21, ih)
I NDEX | NDEX | NDEX | NDEX | NDEX
SEPPROCESS (i h)
| NDEX

Net wor k Wor ki ng G oup Janmes E. Wite

Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde

I ntroduci ng Process to One Anot her

The first primtive introduces the two processes whose handl es PHL and PH2
are specified. Each handle nay designate either a son, in which case the
handl e is one returned by CRTPROCESS; the parent process, for which a
special handle (for example, 1) nust always be defined; or a previously

i ntroduced process, in which case the handle is one obtained in a previous
i nvocati on of | TDPROCESS.

| TDPROCESS returns handl es PH12 and PH21 by which the two processes will

know one another, as well as an "introduction handle |H' that the applications
program can | ater enploy to separate the two processes via SEPPROCESS. The
applications programinitiating the introduction assumes responsibility for
communi cating to each introduced applications programits handle for the

ot her.

2.2 Introductions Wthin a Heterogeneous Environnent

VWhile their interconnection via an |IPC channel is sufficient to introduce

two processes to one another, in a heterogeneous environnent the creation

of such a channel is inpossible. Suppose, as depicted in Figure 2, that
processes P1 and P2 (in conputers Cl and C2, respectively) are interconnected
within a distributed system by nmeans of a network IPC facility. Assume
further that P2 attaches to the system another process P3 in a m niconputer

Mt hat although attached to C2 is not formally a part of the network. Wth
this configuration, it is inpossible for P2 to introduce processes P1 and P3
to one another by sinply establishing an | PC channel between them since

they are not within the domain of a single IPC facility.

One way of overconming this problemis to extend the Mddel to enbrace the
noti on of a conposite or "logical channel" conposed of two or nore physica
(that is, I1PC) channels. A nessage transmtted by process Pl via the |ogica
channel to Pn (n=3 in the exanpl e above) woul d be rel ayed over successive
physi cal channels by the environnents of internediate processes P2 through
Pn-1. Although nore expensive than physical channels, since each nessage
must traverse at |east two physical channels and be handl ed by all the
environnents al ong the way, |ogical channels woul d neverthel ess enable
processes that could not otherwi se do so to access one another’s resources.
Since the relaying of nessages is a responsibility of the environnment, the
applications program need never be aware of it.

Net wor k Wor ki ng Group Janmes E. Wite
Request for Comments: 708 El ements of a Distributed Progranm ng System
Some Possi bl e Extensions to the NModel

I ntroduci ng Processes to One Anot her

As depicted in Figure 3, a logical channel would consist of table entries
mai nt ai ned by the environnent of each process P1 through Pn, plus the
environment to forward nmessages that arrive with a "routing code" addressing
the local table entry. Each table entry would contain process handles for
the two adj acent processes, as well as the routing code recogni zed by each
To comuni cate a nmessage to its distant nei ghbor, the source process (say
P1) would transmit it via its IPC channel to P2, with a routing code
addressing the appropriate table entry within P2. Upon receipt of the
message, P2 would locate its table entry via the routing code, update the
message with the routing code recognized by P3, and forward the nessage

to P3. Eventually the nessage would reach its final destination, Pn.

Adding to the Protocol the foll owi ng system procedures enabl es the
environnment to construct a |ogical channel |ike that described above:

CRTROUTE (mycode, ol dcode -> code, ph)

I NDEX [| NDEX] | NDEX | NDEX
DELRQUTE (your code)
| NDEX

The sinplest |ogical channel (n=3) is created by P2, which invokes CRTROUTE
in both P1 and P3, specifying in each case the routing code MYCODE it has
assigned to its segnent of the | ogical channel, and receiving in return

the routing CODES and process handl es PHs assigned by the two processes.
OLDCODE is not required in this sinple case and is therefore EMPTY.

More conplicated |ogical channels (n>3) are required when one or both

of the processes to be introduced is already |inked, by a |ogical channel
to the process performng the introduction. In such cases, a portion of

t he new channel to be constructed nust replicate the existing channel, and
hence the routing code OLDCODE for the table entry that represents that
channel within the target process is specified as an additional argunent

of the system procedure. The target process nust call CRTROUTE recursively
in the adjacent process to replicate the rest of the nodel channel

-10-

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El enents of a Distributed Progranmm ng System
Some Possi bl e Extensions to the Mde

I ntroduci ng Processes to One Anot her

The process Pi that creates a | ogical channel assunes responsibility for
insuring that it is eventually dismantled. It deletes the |ogical channe
by invoking DELROUTE in Pi-1 and Pi +1, each of which propagates the cal
toward its end of the channel

3. Controlling Access to Local Resources

The process introduction prinmitive proposed above effectively permts
access to a process to be transnmitted fromone process to another. Any
process P2 that already possesses a handle to a process Pl can obtain a
handl e for use by a third process P3. Once P1 and P3 have been introduced,
P3 can freely call procedures in Pl (and vice versa).

Al t hough a process can, by aborting the ALOPORT system procedure, prevent
its introduction to another process and so restrict the set of processes
that gain access to it, finer access controls may sonetines be required.

A process may, for exanple, house two separate resources, one of which

is to be made available only to its parent (for exanple), and the other

to any process to which the parent introduces it. Before such a strategy
can be conveniently inplenented, the Mdel nust be extended to permt
access controls to be independently applied to individual resources within
a single process.

Al t hough a single procedure can be considered a resource, it is nore practical and
conveni ent to conceive of larger, conposite resources

consi sting of a nunber of related procedures. A sinple data base

managenment nodul e contai ni ng procedures for creating, deleting, assigning

val ues to, reading, and searching for data objects exenplifies such

conmposite resources. Although each procedure is useless in isolating, the

whol e fanily of procedures provides a neani ngful service. Such "package"

of logically related procedures mght thus be the nost reasonabl e object

of the finer access controls to be defined.

Access controls can be applied to packages by requiring that a process

first "open" and obtain a handle for a renote package before it may cal

any of the procedures it contains. Wen the process attenpts to open

t he package, its right to do so can be verified and the attenpt aborted if
necessary. Challenging the open attenpt would, of course, be | ess expensive
than chal | engi ng every procedure call. The opening of a package would al so
provide a convenient tine for package-dependent state information to be
initialized.

-11-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde
Controlling Access to Local Resources

Adding to the Protocol the followi ng pair of system procedures enables the
environnent to open and cl ose packages within another process. For
efficiency, these procedures mani pulate an arbitrary nunber of packages

in a single transaction.

OPNPACKACGE (packages -> pkhs)
LI STof CHARSTRs LI STof | NDEXs
CLSPACKACE (pkhs)
(as above)

The first procedure opens and returns "package handl es PKHS" for the
speci fi ed PACKAGES; the second cl oses one or nore packages and rel eases
t he handl es PKHS previously obtained for them

Besi des incorporating these two new system procedures, the Protocol nust
further require that a package handl e acconpany the procedure nane in every
CALL nmessage (an EMPTY handl e perhaps designating a system procedure). Note
that this requirement has the side effect of nmking the package the domain
wi t hi n whi ch procedure names nust be unique.

The system procedures descri bed above enabl e the environnent to nake
available to its applications program primtives that have calling
sequences sinilar to those of the correspondi ng system procedures but

whi ch accept the process handle of the target process as an additiona
argunent. Their inplenentation requires only that the environnent
identify the renpte process fromits internal tables and i nvoke OPNPACKAGE
or CLSPACKAGE in that process

4. Standardi zi ng Access to d obal Variables

Conventional systens often maintain global "variables" that can be accessed
by nodul es throughout the system Such variables are typically nanipul ated
using prinmtives of the form

(1) Return the current value of V.
(2) Replace the current contents of V with a new val ue.

These primtives are either provided as | anguage constructs or inplenented
by specialized procedures. The fornmer approach encourages uniform
treatnent of all variables within the system

Those distributed systens that naintain renotely-accessible variabl es nust

al so select a strategy for inplenenting the required access primtives.
Whil e such prinitives can, of course, be inplenmented as specialized

-12-

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El ements of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde

St andardi zi ng Access to d obal Variabl es

applications procedures, adding to the Protocol the followi ng new system
procedures insures a uniformrun-tine access mechani sm

RDVARI ABLE (pkh, variable -> val ue)
| NDEX CHARSTR any
VWRVARI ABLE (pkh, variable, value)
| NDEX CHARSTR any

These procedures effectively define variables as naned data objects nodel ed
from PCP data types, and suggest that they be clustered in packages with

rel ated procedures. The system procedures return and specify, respectively,
the VALUE of the VARI ABLE whose nane and package handl e PKH are specifi ed.

These new procedures enable the environment to make available its applications
program prinitives that have calling sequences similar to those of the
correspondi ng system procedures but which accept the process handle of the
target process as an additional argunment. These primtives provide a basis
upon which a suitably nodified conpiler can reestablish the conpile-tine
uniformty that characterizes the mani pul ation of variables in conventiona
programi ng environnents. Their inplenmentation requires only that the |oca
environnment identify the renote process fromits internal tables and invoke
RDVARI ABLE or WRVARI ABLE in that process.

Most variables will restrict the range of data types and val ues that nmay be
assigned to them sone nmay even be read-only. But because they are nodel ed
using PCP data types, their values can, in principle, be arbitrarily conpl ex
(for example, a LIST of LISTS) and the programer may sometines wish to
mani pul ate only a single elenent of the variable (or, if the elenent is
itself a LIST, just one of its elements; and so on, to arbitrary depth).

Adding the following argunent to their calling sequences extends the system
procedures proposed above to optionally mani pulate a single elenent of a
vari abl e’ s conposite val ue:

substructure
(LI STof | NDEXs)

At successive levels of the value's tree structure, the | NDEX of the desired

element is identified; the resulting list of indices identifies the
SUBSTRUCTURE whose value is to be returned or repl aced.

-13-

Net wor k Wor ki ng G oup Janmes E. Wite

Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde
Routi ng Paraneters Between Procedures

5. Routing Paraneters Between Procedures

In conventional progranm ng systems, the results of procedures are used in a
variety of ways, depending upon the context of the calls nade upon them A
result may, for exanple:

(1) Provide the basis for a branch decision within the calling
program

(2) Becone an argunent to a subsequent procedure call

(3) Be ignored and thus effectively discarded.

At run-time, the know edge of a result’s intended use usually lies solely
within the calling program which exam nes the results, passes it to a
second procedure, or ignores it as it chooses.

In a distributed system the transportation of results fromcallee to caller
carried out by nmeans of one of nore inter-process nessages, can be an
expensi ve operation, especially when the results are |arge. Data novenent
can be reduced in Cases 2 and 3 above by extending the Mdel to pernit the

i nt ended di sposition of each procedure result to be nade known in advance

to the callee’s environnent. |In Case 2, provided both callees reside
within the sane process, the result can be held at its source and later
locally supplied to the next procedure. |In Case 3, the result can be

di scarded at its source (perhaps not even computed), rather than sent and
di scarded at its destination

5.1 Specifying Paraneters Indirectly

Variabl es offer potential for the elim nating the inefficiencies involved in
Case 2 above by providing a place within the callees’ process where results
generated by one procedure can be held until required by another. The

Prot ocol can be extended to pernit variables to be used in this way by

all owing the caller of any procedure to include optional "argunent- and
result-list mask" like the followi ng as additional paraneters of the CALL
nessage

paraneter |ist mask
[LIST variable, ...)]
[CHARSTR]

A paraneter list mask would permit each paraneter to be transnitted either

directly, via the paraneter list, or indirectly via a VAR ABLE within the
callee’s process. Thus each elenent of the mask specifies how the callee's

-14-

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El ements of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde
Rout i ng Paraneters Between Procedures

environnent is to obtain or dispose of the correspondi ng paraneter. To supply
the result of one procedure as an argunent to another, the caller need only
then appropriately set corresponding el ements of the result and argunent

list masks in the first and second calls, respectively. The result list

mask should be ignored if the procedure fails, and the error nunber and

di agnostic nessage returned directly to the caller

5.2 Providing Scratch Variables for Paranmeter Routing

Al t hough each applications program coul d provide variables for use as described
above, a nore economical approach is to extend the Mbdel to permt special
"scratch variables,"” nmintained by the environnent w thout assistance from

its applications program to be created and del eted as necessary at run-tine.
Adding to the Protocol the followi ng pair of system procedures enables the

| ocal environnment to create and del ete such variables in a renote process:

CRTVARI ABLE (vari abl e, val ue)
CHARSTR any

DELVARI ABLE (vari abl e)
CHARSTR

These procedures create and del ete the specified VAR ABLE, respectively.
CRTVARI ABLE al so assigns an initial VALUE to the new y-created vari abl e.

These new procedures enabl e the environnent to nake available to its
applications program prinitives that have calling sequences simlar to

those of the correspondi ng system procedures but which accept the process
handl e of the target process as an additional argument. Their inplenentation
required only that the environnent identify the renote process fromits
internal tables and i nvoke CRTVARI ABLE or DELVARI ABLE in that process.

5.3 Discarding Results
The inefficiencies that result in Case 3 above are conveniently elim nated
by allowing the caller to identify via the result list mask (for exanple,

via a zero-length CHARSTR) that a result will be ignored and therefore need
not be returned to the caller

-15-

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El ements of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde

Supporting a Richer Spectrum of Control Transfers

6. Supporting a Richer Spectrum of Control Transfers

As currently defined by the Mdel, a procedure call is a sinple two-stage
dialog in which the caller first describes the operation it w shes perforned
and the callee, after perform ng the operation, reports its outcone.

Al though this sinple dialog formis sufficient to conveniently inplenent

a large class of distributed systens, nore conplex forns are soneti nes
required. The Mddel can be extended to adnit a variety of nore powerful
di al og forns, of which the four described bel ow are exanpl es.

6.1 Transferring Control Between Caller and Callee

Many conventional progranm ng systens permit caller and callee to exchange
control any nunber of tinmes before the callee returns. Such "coroutine

I i nkages" provide a neans, for exanple, by which the callee can obtain
help with a problemthat it has encountered or deliver the results of one
suboperati on and obtain the arguments for the next.

Adding to the Protocol the foll owi ng system procedure, whose invocation
relinqui shes control of another, previously initiated procedure, enables
the environnent to effect a coroutine |inkage between caller and callee:

TAKEPROCEDURE (tid, yourtid, paraneters)
| NDEX BOOLEAN LI ST

Its argunents include the identifier TID of the affected transaction, an

i ndi cati on YOURTID of from whose nane space the identifier was assigned

(that is, whether the process relinquishing control is the caller or callee),
and PARAMETERS provi ded by the procedure surrendering control. By exploiting
an existing provision of the Protocol (that is, by declining acknow edgnent
of its calls to TAKEPROCEDURE) the invoking environnent can effect the
control transfer with a single inter-process nessage.

The addition of this new procedure to the Protocol enables the environnment
to provide the following new prinmtive to its applications program

LI NKPROCEDURE (tid, argunments -> outcone, results)
| NDEX LI ST [BOOLEAN] LI ST

-16-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Sone Possi bl e Extensions to the Mde
Supporting a Ri cher Spectrum of Control Transfers

This primtive assunes that the CALLPROCEDURE prinmitive is also nodified to
return the pertinent transaction identifier should the callee initiate a
coroutine linkage rather than return. |nvocation of LINKPROCEDURE then
continues the dialog by supplying ARGUMENTS and returning control to the renmote
procedure, and then awaiting the next transfer of control and the RESULTS t hat
acconpany it. |If the renote procedure then returns, rather than initiating
anot her coroutine |linkage, the primtive reports its OUICOVE and invali dates
the transaction identifier

While this prinitive blocks the applications programuntil the renoter
procedure relinquishes control, a variant that sinply initiates the coroutine
I i nkage and allows the applications programto collect the outcome and
results in a second operation can al so be provided.

6.2 Signaling the Caller/Callee

A nonolog is often nore appropriate than the dialog initiated by a coroutine
I inkage. The caller or callee night wish, for exanple, to report an event it
has detected or send | arge paraneters pieceneal to mnimze buffering
requirenents. Since no return paraneters are required in such cases, the
initiating procedure need only "signal" its partner, while retaining contro
of the call.

Adding to the Protocol the foll owi ng system procedure extends the Mdel to
support signals and enables the environment to transnmt paraneters to or
fromanother, previously initiated procedure without relinquishing contro
of the call:

SGNLPROCEDURE (tid, vyourtid, paraneters)
| NDEX BOOLEAN LI ST

Li ke the TAKEPROCEDURE procedure al ready described, its argunents include
the identifier TID of the affected transaction, an indication YOURTID of
from whose nane space the identifier was assigned, and the PARAMETERS

t hensel ves

Thi s new procedure enables the environment to nake available to its
applications programa printive that has a calling sequence simlar to that
of the system procedure but which does not require YOURTID as an argunent.
Its inplenmentation requires only that the environment identify the renote
process via its internal tables and i nvoke SGNLPROCEDURE in that process.

-17-

Net wor k Wor ki ng Group Janes E. Wite

Request for Comments: 708 El enents of a Distributed Progranmm ng System
Some Possi bl e Extensions to the Mde

Supporting a Richer Spectrum of Control Transfers

By requesting the acknow edgnent of each call to SGNLPROCEDURE and, if
necessary, del aying subsequent calls affecting the same transaction unti

t he acknow edgnent arrives, the invoking environnment effects a crude form of
flow control and so prevents the renote process’ buffers from being overrun

6.3 Soliciting Help from Superiors

As in conventional programm ng systens, renotely callable procedures within

a distributed systemw Il sometinmes call upon others to carry out portions

of their task. Each procedure along the "thread of control" resulting from
such nested calls is, in a sense, responsible to not only its i mediate caller
but also to all those procedures that |lie above it along the control thread.
To properly discharge its responsibilities, a procedure nust sonetines

communi cate with these "superiors."

Cccasionally a procedure reaches a point in its execution beyond which it
cannot proceed w thout external assistance. It mght, for exanple, require
addi tional resources or further direction fromthe human user upon whose
behal f it is executing. Before reaching this inpasse, the procedure nay
have invested considerable real and/or processing tinme that will be | ost

if it aborts.

Adding to the Protocol the follow ng system procedure mnimzes such
i nefficiencies by enabling the environnent to solicit help froma callee’s
superiors:

HELPPROCEDURE (tid, number, information -> solution)
| NDEX | NDEX any any

Its argunents include the identifier TID of the affected transaction (the
direction of the control transfer being inplicit in this case), a NUVBER
i dentifying the probl em encountered, and arbitrary suppl enentary

I NFORVATI ON

The primtive that this new procedure enables the environment to provide

its applications programhas an identical calling sequence. Its inplenmentation
requires only that the environnent identify the renote process fromits
internal tables and i nvoke HELPPROCEDURE i n that process.

The search for help begins with invocation of HELPPROCEDURE in the caller’s
environnment. |If the caller understands the problem (that is, recognizes

-18-

Net wor k Wor ki ng Group Janmes E. Wite
Request for Comments: 708 El ements of a Distributed Progranm ng Mde
Supporting a Richer Spectrum of Control Transfers

its nunber) and is able to solve it, HELPPROCEDURE will sinply return whatever
SCLUTION information the caller provides. Oherw se, HELPPROCEDURE nust give
the next superior an opportunity to respond by calling itself recursively in
that process. The search term nates as soon as a superior responds positively
or when the end of the control thread is reached. 1In the latter case, each of
t he nest ed HELPPROCEDURE procedures returns unsuccessfully to indicate to its
caller that the search failed

6.4 Reporting an Event to Superiors

A procedure sonetinmes w tnesses or causes an event of which its superiors
shoul d be nmade aware (for exanple, the start or conpletion of sone ngjor

step in the procedure’s execution). Adding to the Protocol the follow ng
system procedure enables the environment to notify a callee's superiors of an
arbitrary event:

NOTEPROCEDURE (tid, nunber, infornmation)
I NDEX | NDEX any

Li ke HELPPROCEDURE, its argunents include the identifier TID of the
transaction it affects, a NUMBER identifying the event being reports, and
arbitrary suppl ementary | NFORMATI ON

The prinmitive that this new procedure enables the environment to provide its
applications program has an identical calling sequence. Its inplenentation
requires only that the environment identify the renote process fromits

i nternal tables and i nvoke NOTEPROCEDURE in that process.

By requesting acknow edgnent of each call to NOTEPROCEDURE and, if necessary,
del ayi ng subsequent calls that affect that transaction until the acknow edgnent
arrives, the invoking environment effects a crude formof flow control and so
prevents the renote process’ buffers from being overrun

Notification of the procedure’s superiors begins with invocation of

NOTEPROCEDURE in the caller’s process and works its way recursively up the
thread of control until the top is reached.

-19-

Net wor k Wor ki ng Group Janmes E. Wite
Request for Comments: 708 El ements of a Distributed Progranm ng System
Some Possi bl e Extensions to the NModel

Aborting Executing Procedures

7. Aborting Executing Procedures

Conventional systens that accept commands fromthe user sonmetinmes permt him
to cancel an executing command issued inadvertently or with erroneous
paraneters, or one for whose conpletion he cannot wait. This ability is
particularly inmportant when the command (for exanple, one that conpiles a
source file) has a significant execution tine. In a distributed system the
execution of such a conmand may involve the invocation of one or nore renote
procedures. Its cancellation, therefore, requires the abortion of any

out st andi ng renote procedure calls.

Adding to the Protocol the follow ng system procedure provides the basis
for a command cancellation facility by enabling the environment to abort
anot her, previously invoked procedure:

ABRTPROCEDURE (ti d)
| NDEX

Its sole argunent is the identified TID of the transaction it affects.

The primtive that this new procedure enables the environnment to make
avail able to the applications programhas an identical calling sequence.
Its inplenentation requires only that the |ocal environnent identify the
renote process fromits internal tables and i nvoke ABRTPROCEDURE i n that
process.

-20-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Concl usi ons

CONCLUSI ON

The EXPANDED Protocol and Mbdel that result fromthe extensions proposed in
the present paper are sunmarized in Appendi xes B and C, respectively.

Needl ess to say, many additional fornms and aspects of process interaction,
of whi ch Appendi x D suggests a few, remain to be explored. Nevertheless,
the primtives already nade avail able by the run-time environnent provide
the applications programmer with a powerful and coherent set of tools for
constructing distributed systens.

-21-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Acknowl edgrent s

ACKNOW.EDGVENTS

Many individuals within both SRI's Augnentati on Research Center (ARC) and the

| arger ARPANET community have contributed their time and ideas to the

devel opnent of the Protocol and Model described in this and its conpanion
paper. The contributions of the follow ng individuals are expressly

acknow edged: Dick Watson, Jon Postel, Charles Irby, Ken Victor, Dave Mynard,
Larry Garlick of ARC, and Bob Thomas and Rick Schantz of Bolt, Beranek and
Newran, |nc.

ARC has been working toward a high-1evel framework for network-based

di stributed systens for a nunber of years now [2]. The particular Protoco

and Mbdel result fromresearch begun by ARC in July of 1974. This research

i ncl uded devel opi ng the Model ; designing and docunenting, and inplenenting

a prototype run-tinme environnent for a particular machine [4, 5], specifically
a PDP-10 running the Tenex operating system devel oped by Bolt, Beranek and
Newnan, Inc. [6]. Three design iterations were carried out during a 12-nonth
period and the resulting specification inplenented for Tenex. The Tenex RTE
provi des a superset of the capabilities proposed in this paper

The work reported here was supported by the Advanced Research Project Agency

of the Departnent of Defense, and by the Rone Air Devel opnent Center of the
Air Force.

-22-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Progranm ng System
Appendi x A: Transmi ssion Formats for PCP Data Objects

APPENDI X A

TRANSM SSI ON FORVATS FOR PCP DATA OBJECTS

Dat a obj ects nust be encoded in a standard transm ssion format before they can
be sent from one process to another via the Protocol. An effective strategy
is to define several formats and sel ect the nost appropriate one at run-tine,
adding to the Protocol a nechanismfor format negotiation. Format negotiation
woul d be another responsibility of the environnment and could thus be nade
conpletely invisible to the applications program

Suggested below are two transmi ssion formats. The first is a 36-bit binary
format for use between 36-bit machi nes, the second an 8-bit binary, "universal"”
format for use between dissinmlar machines. Data objects are fully typed in
each format to enable the environnent to autonmatically decode and internalize

i nconming paranmeters should it be desired to provide this service to the
applications program

PCPB36, For Use Between 36-Bit Michi nes

Bits 0-13 Unused (zero)

Bits 14-17 Data type
EMPTY =1 |NTECER=4 LI ST=7
BOOLEAN=2 BI TSTR =5
INDEX -3 CHARSTR=6

Bits 18-20 Unused (zero)

Bits 21-35 Value or length N

EMPTY unused (zero)

BOOLEAN 14 zero-bits + 1-bit val ue (TRUE=1/ FALSE=0)
| NDEX unsi gned val ue

| NTEGER unused (zero)

Bl TSTR unsi gned bit count N

CHARSTR unsi gned character count N

LI ST unsi gned el enent count N

Bits 36- Val ue
EMPTY unused (nonexi stent)
BOOLEAN unused (nonexi stent)
| NDEX unused (nonexi stent)
I NTEGER two's conpl enent full-word val ue
BITSTR bit string + zero padding to word boundary
CHARSTR ASCI| string + zero padding to word boundary
LI ST el ement data objects

-23-

Net wor k Wor ki ng James E. Wite
Request for Comments: 708 El ements of a Distributed Programm ng System
Appendi x A: Transm ssion Formats for PCP Data (bjects

PCPB8, For Use Between Dissinlar Machi nes

Byt e O Data type
EMPTY =1 |NTEGER=4 LI ST=7
BOOLEAN=2 BI TSTR =5
I NDEX =3 CHARSTR=6

Bytes 1- Val ue

EMPTY unused (nonexi stent)

BOOLEAN 7 zero-bits + 1-bit val ue (TRUE=1/ FALSE=0
| NDEX 2 byte unsigned val ue

| NTEGER 4-type two's conpl enent val ue

Bl TSTR 2-byte unsigned bit count N + bit string

+ zero paddi ng to byte boundary
CHARSTR 2-byte unsigned character count N + ASCII string
LI ST 2-byte element count N + el enent data objects

- 24-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El enents of a Distributed Programm ng System
Appendi x B: The Expanded Procedure Call Protocol

APPENDI X B

THE EXPANDED PRCCEDURE CALL PROTOCCL

The Protocol that results fromthe extensions proposed in this paper is
summari zed bel ow. The reader should note the concise syntactic description
made possi ble by the underlying notion of PCP data types.

Paraneter |ist masks have been included not only as additional paraneters
of the CALL nessage, as proposed in the paper, but as argunents of the
TAKEPROCEDURE and SGNLPROCEDURE system procedures as well. Throughout the
Prot ocol description, "MASK" is shorthand for:

[LIST (variable [CHARSTR], ...)]
Messages

LI ST (route | NDEX, opcode | NDEX CALL=1, tid [INDEX],
pkh [1 NDEX], procedure CHARSTR, argunents LI ST,
argunent | i st mask MASK, resultlistnmask MASK)

LI ST (route | NDEX, opcode | NDEX RETURN=2, tid | NDEX,
out come BOOLEAN, results LIST)

If OQUTCOME is FALSE
RESULTS is LIST (error INDEX, diagnostic CHARSTR)

Process- Rel ated System Procedures

I NI PROCESS (pr ogr am CHARSTR,
credentials LIST (error CHARSTR, password CHARSTR
account CHARSTR))
ALOPORT (-> ph I NDEX, conputer CHARSTR, port)
CNNPORT (ph I NDEX, conputer CHARSTR, port)
DCNPORT (ph | NDEX)
CRTROUTE (mycode | NDEX, ol dcode [| NDEX]
-> code | NDEX, ph | NDEX)
DELROUTE (your code | NDEX)

Package- Rel at ed System Procedures

OPNPACKACE (packages LI STof CHARSTRs -> pkhs LI STof | NDEXs)
CLSPACKAGE (pkhs LI STof | NDEXs)

- 25-

Net wor k Wor ki ng Group Janes E. Wite
Request for Comments: 708 El ements of a Distributed Progranmm ng System
Appendi x B: The Expanded Procedure Call Protocol

Vari abl e- Rel at ed System Procedures

CRTVARI ABLE (vari abl e CHARSTR, val ue)

DELVARI ABLE (vari abl e CHARSTR)

RDVARI ABLE (pkh I NDEX, variabl e CHARSTR,
substructure [LI STof | NDEXs] -> val ue)

Procedur e- Rel at ed System Procedures

TAKEPROCEDURE (tid | NDEX, yourtid BOOLEAN, paraneters LI ST,
argunent | i st mask MASK, resultlistmask MASK)
SGNLPROCEDURE (tid I NDEX, yourtid BOOLEAN, parameters LI ST,
par anet er | i st mask MASK)
HELPPROCEDURE (tid | NDEX, nunber |NDEX, information -> solution)
NOTEPROCEDURE (tid | NDEX, nunber | NDEX, information)
ABRTPROCEDURE (tid | NDEX)

-26-

Net wor k Wor ki ng G oup Janmes E. Wite
Request for Comments: 708 El ements of a Distributed Progranm ng
Appendi x C. Summary of RTE Primitives

APPENDI X C

SUMVARY CF RTE PRI M Tl VES

The DPS prinmitives nade available to the applications programas a result of

t he Model extensions proposed in this paper are sunmarized bel ow

Col l ectively, they provide the applications programmer with a powerful

and coherent set of tools for constructing distributed systens. Sone of

the prinmtives (for exanple, CRTPROCESS and DELPROCESS) are necessary el ements
for a "network operating system (NOS)," into which DPS may itself one day

evol ve.
CRTPROCESS (conputer, program credentials -> PH)
DELPROCESS (ph)
| TDPROCESS (phl, ph2 -> phl2, ph21, ih)
SEPPRCCESS (i h)

Packages
OPNPACKACE (ph, packages -> pkhs)
CLSPACKACE (ph, pkhs)

Vari abl es

CRTVARI ABLE (ph, variable, val ue)

DELVARI ABLE (ph, vari able)

RDVARI ABLE (ph, pkh, variable, substructure -> val ue)
WRTVARI ABLE (ph, pkh, variable, substructure, val ue)

Pr ocedur es

CALLPROCEDURE (ph, pkh, procedure, argunents, argunentlistnmask
resultlistmask, -> outcone, results, tid)

LI NKPROCEDURE (tid, argunents, argunentli stnmask,
resultlistnmask, -> outconme, results)

SGNLPROCEDURE (tid, paraneters, paraneterlistmask)

HELPPROCEDURE (tid, nunber, information -> solution)

NOTEPROCEDURE (tid, nunber, information)

ABRTPROCEDURE (ti d)

-27-

Net wor k Wor ki ng G oup El ements of a Distributed Programm ng System
Request for Comments: 708 Appendi x D Additional Areas for Investigation
APPENDI X D
ADDI Tl ONAL AREAS FOR | NVESTI GATI ON

Al t hough t he expanded distributed progranmi ng system devel oped in this paper
and sunmarized in the previous appendix is already very powerful, nmany
addi ti onal aspects of process interaction remain, of course, to be explored.
Anong the additional facilities that the Protocol nust eventually enable the

environnent to provide are nechanisns for

(1) Queuing procedure calls for long periods of tine (for
exanpl e, days).

(2) Broadcasting requests to groups of processes.

(3) Subcontracting work to other processes (w thout remaining
a m ddl eman) .

(4) Supporting brief or infrequent inter-process exchanges
with mninmal startup overhead.

(5) Recovering fromand restarting after systemerrors.

-28-

Net wor k Wor ki ng G oup El ements of a Distributed Programm ng System
Request for Comments: 708 Ref er ences

REFERENCES

1. Wite, J. E., "A Hgh-Level Framework for Network-Based Resource Sharing,"
submitted for publication in the AFIPS Conference Proceedi ngs of the 1976
Nat i onal Conput er Conference.

2. Watson, R W, Sonme Thoughts on System Design to Facilitate Resource
Sharing, ARPA Network Working Goup Request for Coments 592, Augnentation
Research Center, Stanford Research Institute, Menlo Park, California,
Novenber 20, 1973 (SRl - ARC Catal og Item 20391).

3. Wite, J. E., DPS-10 Version 2.5 Inplenentor’s CGuide, Augnentation
Research Center, Stanford Research Institute, Menlo Park, California,
August 15, 1975 (SRl -ARC Catal og Item 26282).

4. Wiite, J. E., DPS-10 Version 2.5 Progranmmer’s QGui de, Augnentation Research
Center, Stanford Research Institute, Menlo Park, California, August 13,
1975 (SRI - ARC Catal og Item 26271).

5. Wite, J. E., DPS-10 Version 2.5 Source Code, Augnentation Research
Center, Stanford Research Institute, Menlo Park, California, August 13,
1975 (SRI-ARC Catal og Item 26267).

6. Bobrow, D. G, Burchfiel, J. D., Murphy, D. L., Tominson, R S., "TENEX

a paged Time Sharing System for the PDP-10," Communications of the ACM
Vol . 15, No. 3, pp. 135-143, March 1972.

-29-

Net wor k Wor ki ng Group El emrents of a Distributed Programm ng System
Request for Comments: 708 Fi gure List

FI GURE LI ST
Fig. 1 Interfacing distant applications prograns via their run-tinme
envi ronnments and an | PC channel .

Fig. 2 Two processes that can only be introduced via a |ogical channel.

Fig. 3 A logical channel.

- 30-

