
Internet Engineering Task Force (IETF)                        P. Kewisch
Request for Comments: 7095                                       Mozilla
Category: Standards Track                                   January 2014
ISSN: 2070-1721

                    jCard: The JSON Format for vCard

Abstract

   This specification defines "jCard", a JSON format for vCard data.
   The vCard data format is a text format for representing and
   exchanging information about individuals and other entities, for
   example, telephone numbers, email addresses, structured names, and
   delivery addresses.  JSON is a lightweight, text-based, language-
   independent data interchange format commonly used in Internet
   applications.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7095.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Kewisch                      Standards Track                    [Page 1]



RFC 7095                          jCard                     January 2014

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Conventions Used in This Document . . . . . . . . . . . . . .   3
   3.  Converting from vCard to jCard  . . . . . . . . . . . . . . .   4
     3.1.  Pre-processing  . . . . . . . . . . . . . . . . . . . . .   4
     3.2.  jCard Object and Syntactic Entities (RFC 6350, Sections
           6.1.1 and 6.1.2)  . . . . . . . . . . . . . . . . . . . .   5
     3.3.  Properties (RFC 6350, Section 6)  . . . . . . . . . . . .   5
       3.3.1.  Special Cases for Properties  . . . . . . . . . . . .   7
         3.3.1.1.  The VERSION Property  . . . . . . . . . . . . . .   7
         3.3.1.2.  Grouping of Properties  . . . . . . . . . . . . .   7
         3.3.1.3.  Structured Property Values  . . . . . . . . . . .   8
     3.4.  Parameters (RFC 6350, Section 5)  . . . . . . . . . . . .  10
       3.4.1.  VALUE Parameter . . . . . . . . . . . . . . . . . . .  10
       3.4.2.  Multi-Valued Parameters . . . . . . . . . . . . . . .  11
     3.5.  Values (RFC 6350, Section 4)  . . . . . . . . . . . . . .  11
       3.5.1.  Text (RFC 6350, Section 4.1)  . . . . . . . . . . . .  12
       3.5.2.  URI (RFC 6350, Section 4.2) . . . . . . . . . . . . .  12
       3.5.3.  Date (RFC 6350, Section 4.3.1)  . . . . . . . . . . .  12
       3.5.4.  Time (RFC 6350, Section 4.3.2)  . . . . . . . . . . .  13
       3.5.5.  Date-Time (RFC 6350, Section 4.3.3) . . . . . . . . .  14
       3.5.6.  Date and/or Time (RFC 6350, Section 4.3.4)  . . . . .  16
       3.5.7.  Timestamp (RFC 6350, Section 4.3.5) . . . . . . . . .  16
       3.5.8.  Boolean (RFC 6350, Section 4.4) . . . . . . . . . . .  17
       3.5.9.  Integer (RFC 6350, Section 4.5) . . . . . . . . . . .  17
       3.5.10. Float (RFC 6350, Section 4.6) . . . . . . . . . . . .  17
       3.5.11. UTC Offset (RFC 6350, Section 4.7)  . . . . . . . . .  18
       3.5.12. Language Tag (RFC 6350, Section 4.8)  . . . . . . . .  18
     3.6.  Extensions (RFC 6350, Section 6.10) . . . . . . . . . . .  18
   4.  Converting from jCard into vCard  . . . . . . . . . . . . . .  19
   5.  Handling Unrecognized Properties or Parameters  . . . . . . .  19
     5.1.  Converting vCard into jCard . . . . . . . . . . . . . . .  19
     5.2.  Converting jCard into vCard . . . . . . . . . . . . . . .  20
     5.3.  Examples  . . . . . . . . . . . . . . . . . . . . . . . .  20
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
     7.1.  GROUP vCard Parameter . . . . . . . . . . . . . . . . . .  23
     7.2.  UNKNOWN vCard Value Data Type . . . . . . . . . . . . . .  24
   8.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  24
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  24
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  24
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  25
   Appendix A.  ABNF Syntax  . . . . . . . . . . . . . . . . . . . .  26
   Appendix B.  Examples . . . . . . . . . . . . . . . . . . . . . .  27
     B.1.  Example: vCard of the Author of RFC 6350  . . . . . . . .  27
       B.1.1.  vCard Data  . . . . . . . . . . . . . . . . . . . . .  27
       B.1.2.  jCard Data  . . . . . . . . . . . . . . . . . . . . .  28

Kewisch                      Standards Track                    [Page 2]



RFC 7095                          jCard                     January 2014

1.  Introduction

   The vCard data format [RFC6350] provides for the capture and exchange
   of information normally stored within an address book or directory
   application.  The vCard format has gone through multiple revisions,
   most recently vCard 4.

   As certain similarities exist between vCard and the iCalendar data
   format [RFC5545], there is also an effort to define a JSON-based data
   format for calendar information called jCal [JCAL] that parallels the
   format defined in this specification.  The term "JSON" describes the
   JavaScript Object Notation defined in [RFC4627].

   The purpose of this specification is to define "jCard", a JSON format
   for vCard data.  One main advantage to using a JSON-based format over
   the classic vCard format is easier processing for JavaScript-based
   widgets and libraries, especially in the scope of web-based
   applications.

   The key design considerations are essentially the same as those for
   [JCAL] and [RFC6321], that is:

      Round-tripping (converting a vCard instance to jCard and back)
      will give the same semantic result as the starting point.  For
      example, all components, properties, and property parameters are
      guaranteed to be preserved.

      The Ordering of elements and the case of property and parameter
      names will not necessarily be preserved.

      The vCard data semantics are to be preserved, allowing a simple
      consumer to easily browse the data in jCard.  A full understanding
      of vCard is still required in order to modify and/or fully
      comprehend the directory data.

      Extensions to the underlying vCard specification must not lead to
      requiring an update to jCard.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The underlying format used for jCard is JSON.  Consequently, the
   terms "object" and "array" as well as the four primitive types
   (strings, numbers, booleans, and null) are to be interpreted as
   described in Section 1 of [RFC4627].

Kewisch                      Standards Track                    [Page 3]



RFC 7095                          jCard                     January 2014

   Some examples in this document contain "partial" JSON documents used
   for illustrative purposes.  In these examples, three periods "..."
   are used to indicate a portion of the document that has been removed
   for compactness.

3.  Converting from vCard to jCard

   This section describes how vCard objects are converted to jCard using
   a simple mapping between the vCard data model and JSON elements.

   In [RFC6350], vCard objects are comprised of a set of "properties",
   "parameters", and "values".  The top level of a vCard object contains
   "properties".  A "property" has a "value" and a set of zero or more
   "parameters".  Each of these entities has a representation in jCard,
   defined in the following sections.  The representation of a vCard
   object in JSON will be named "jCard object" throughout this document.

3.1.  Pre-processing

   vCard uses a line-folding mechanism to limit lines of data to a
   maximum line length (typically 75 octets) to ensure maximum
   likelihood of preserving data integrity as it is transported via
   various means (e.g., email) -- see Section 3.2 of [RFC6350].

   vCard data uses an "escape" character sequence for text values and
   property parameter values.  See Section 3.4 of [RFC6350] as well as
   [RFC6868].

   When converting from vCard to jCard, first vCard lines MUST be
   unfolded.  Afterwards, any vCard escaping MUST be unescaped.
   Finally, JSON escaping (e.g., for control characters) MUST be
   applied.

   The reverse order applies when converting from jCard to vCard.
   First, JSON escaping MUST be unescaped.  Afterwards, vCard escaping
   MUST be applied.  Finally, long lines SHOULD be folded as described
   in [RFC6350].

   One key difference in the formatting of values used in vCard and
   jCard is that in jCard the specification uses date/time values
   aligned with the extended format of [ISO.8601.2004], which is more
   commonly used in Internet applications that make use of the JSON
   format.  The sections of this document describing the various date
   and time formats contain more information on the use of the complete
   representation, reduced accuracy, or truncated representation.

Kewisch                      Standards Track                    [Page 4]



RFC 7095                          jCard                     January 2014

3.2.  jCard Object and Syntactic Entities (RFC 6350, Sections 6.1.1 and
      6.1.2)

   In Sections 6.1.1 and 6.1.2 of [RFC6350], the BEGIN and END
   properties delimit a syntactic vCard entity.  In jCard, each
   syntactic entity is represented by an array with two elements and is
   named "jCard object".  The first element is the string "vcard", and
   the second element is an array of jCard properties as described in
   Section 3.3, belonging to the entity.

   Although [RFC6350] defines BEGIN and END to be properties, they MUST
   NOT appear as properties of the jCard.  Instead, the jCard object is
   sufficient to define a vCard entity.  When converting from jCard to
   vCard, the BEGIN and END properties MUST be added to enclose the
   properties of the jCard object.

   Example:

   ["vcard", [
     /* Add properties in place of this comment */
     ]
   ]

   Consumers of this format wishing to define content that can represent
   multiple jCard objects within the same JSON document can use a simple
   JSON array, each element being a single jCard object.

3.3.  Properties (RFC 6350, Section 6)

   Each individual vCard property is represented in jCard by an array
   with three fixed elements, followed by one or more additional
   elements, depending on if the property is a multi-valued property as
   described in Section 3.3 of [RFC6350].

   The array consists of the following fixed elements:

   1.  The name of the property, as a lowercase string.  The vCard
       format specifies that property names are case insensitive and
       recommends that they be rendered in uppercase.  In jCard, they
       MUST be in lowercase.

   2.  An object containing the parameters as described in Section 3.4.
       If the property has no parameters, an empty object is used to
       represent that.

Kewisch                      Standards Track                    [Page 5]



RFC 7095                          jCard                     January 2014

   3.  The type identifier string of the value, in lowercase.  It is
       important that parsers check this to determine the data type of
       the value and that they do not rely on assumptions.  For example,
       for structured values, the data type will be "array".

   The remaining elements of the array are used for one or more values
   of the property.  For single-value properties, the array has exactly
   four elements; for multi-valued properties, each value is another
   element, and there can be any number of additional elements.

   In the following example, the "categories" property is multi-valued
   and has two values, while all other properties are single-valued:

   ["vcard",
     [
       ["version", {}, "text", "4.0"],
       ["fn", {}, "text", "John Doe"],
       ["gender", {}, "text", "M"],
       ["categories", {}, "text", "computers", "cameras"],
       ...
     ]
   ]

   As described in Section 3.3.1.3, a property value may be a structured
   property value, in which case it is represented as an array
   encapsulated in the array that represents the overall property.

   Strictly speaking, this means that the property value is not
   represented in the format indicated by the type identifier but by an
   array instead.  However, the values inside the encapsulated array are
   of the format identified by the type identifier.

   The above also holds for multi-valued properties, where some of the
   values may be structured property values and therefore are
   represented as an encapsulated array.

   A special case is where a value in an encapsulated array consists of
   multiple components itself, in which case it is represented as yet
   another nested array, with elements matching the value type.
   Section 3.3.1.3 describes this in more detail.

   The above illustrates that it’s important for the parser to check the
   format of each property value, as it might either directly match the
   value type, or it might be a structured value where nested
   subelements match the value type.

Kewisch                      Standards Track                    [Page 6]



RFC 7095                          jCard                     January 2014

3.3.1.  Special Cases for Properties

   This section describes some properties that have special handling
   when converting to jCard.

3.3.1.1.  The VERSION Property

   The vCard format specification [RFC6350] defines the "VERSION"
   property to be mandatory.  The jCard "version" property MUST be
   represented in the corresponding jCard component, with the same value
   as in the vCard. vCards that conform to RFC 6350 will contain the
   value "4.0".

   Also in accordance to [RFC6350], the "version" property MUST be the
   first element of the array containing the properties of a jCard.

3.3.1.2.  Grouping of Properties

   In vCard [RFC6350], related properties can be grouped together using
   a grouping construct.  The grouping is accomplished by adding a
   prefix (which consists of the group name followed by a dot) to the
   property name.

   In jCard, the same grouping is achieved through a "group" parameter
   that holds the group name.  In jCard, a property name therefore MUST
   NOT be prefixed by a group name.

   The "GROUP" parameter MUST NOT be used in vCard; as per [RFC6350], it
   is merely registered to reserve the parameter, avoiding collisions.
   Formal registration of the "GROUP" parameter is described in
   Section 7.1.

3.3.1.2.1.  Group Conversion Rules

   In jCard, the parameter’s value is a single opaque string.
   Conversion rules are as follows:

   o  From vCard to jCard, the group construct (see [RFC6350],
      Section 3.3) is removed.  In its place, the "group" parameter is
      used.  Its value is a string corresponding to the group name,
      which is case insensitive both in vCard and jCard.  The name’s
      case SHOULD be converted into lowercase.

   o  When converting from jCard to vCard, the value of the "group"
      parameter followed by a dot is prefixed to the property name, and
      the "group" parameter is discarded.  The "GROUP" parameter MUST
      NOT appear in the resulting vCard.  Following the recommendations
      in [RFC6350], the name’s case SHOULD be converted into uppercase.

Kewisch                      Standards Track                    [Page 7]



RFC 7095                          jCard                     January 2014

   Example:

   CONTACT.FN:Mr. John Q. Public\, Esq.

   is equivalent to:

   [ "fn", { "group": "CONTACT" }, "text", "Mr. John Q. Public, Esq." ]

3.3.1.3.  Structured Property Values

   The vCard specification defines properties with structured values,
   for example, "GENDER" or "ADR".  In vCard, a structured text value
   consists of one or multiple text components, delimited by the
   SEMICOLON character.  Its equivalent in jCard is a structured
   property value, which is an array containing one element for each
   text component, with empty/missing text components represented by
   zero-length strings.

   vCard Example:

   ADR:;;123 Main Street;Any Town;CA;91921-1234;U.S.A.

   jCard Example:

   ["adr", {}, "text",
     [
     "", "", "123 Main Street",
     "Any Town", "CA", "91921-1234", "U.S.A."
     ]
   ]

   Some vCard properties, for example, ADR, also allow a structured
   value element that itself has multiple values.  In this case, the
   element of the array describing the structured value is itself an
   array with one element for each of the component’s multiple values.

   vCard Example:

   ADR:;;My Street,Left Side,Second Shack;Hometown;PA;18252;U.S.A.

Kewisch                      Standards Track                    [Page 8]



RFC 7095                          jCard                     January 2014

   jCard Example:

   ["adr", {}, "text",
     [
     "", "",
     ["My Street", "Left Side", "Second Shack"],
     "Hometown", "PA", "18252", "U.S.A."
     ]
   ]

   In both cases, the array element values MUST have the primitive type
   that matches the jCard type identifier.  In [RFC6350], there are only
   structured text values and thus only JSON strings are used.  For
   example, extensions may define structured number or boolean values,
   where JSON number or boolean types MUST be used.

   Although it is allowed for a structured property value to hold just
   one component, it is RECOMMENDED to represent it as a single text
   value instead, omitting the array completely.  Nevertheless, a simple
   implementation MAY choose to retain the array, with a single text
   value as its element.

   Similarly, structured values that consist of two text components with
   one being optional (for example, "GENDER") can be represented as a
   single text value.  Therefore, parsers of jCard data SHOULD check
   even known property values for structured information by considering
   the JSON data type of the value, which can be an array or a primitive
   value.  This is especially important for languages where accessing
   array members is done by the same construct as accessing characters
   of a string.

   Examples:

   ["gender", {}, "text", ["F", "grrrl"] ],
   ["gender", {}, "text", "M" ]

   Per Section 6.3.1 of [RFC6350], the component separator MUST be
   specified even if the component value is missing.  Similarly, the
   jCard array containing the structured data MUST contain all required
   elements, even if they are empty.

   vCard Example:

   ADR;LABEL="123 Maple Ave\nSuite 901\nVancouver BC\nA1B 2C9\nCan
    ada":;;;;;;

Kewisch                      Standards Track                    [Page 9]



RFC 7095                          jCard                     January 2014

   jCard Example:

   ["adr",
    {"label":"123 Maple Ave\nSuite 901\nVancouver BC\nA1B 2C9\nCanada"},
    "text",
    ["", "", "", "", "", "", ""]
   ]

3.4.  Parameters (RFC 6350, Section 5)

   Property parameters are represented as a JSON object where each key-
   value pair represents the vCard parameter name and its value.  The
   name of the parameter MUST be in lowercase; the original case of the
   parameter value MUST be preserved.  For example, the "LANGUAGE"
   property parameter is represented in jCard by the "language" key.
   Any new vCard parameters added in the future will be converted in the
   same way.

   Example:

   ["role", { "language": "tr" }, "text", "roca"],

3.4.1.  VALUE Parameter

   vCard defines a "VALUE" property parameter (Section 5.2 of
   [RFC6350]).  This property parameter MUST NOT be added to the
   parameters object.  Instead, the value type is signaled through the
   type identifier in the third element of the array describing the
   property.  When converting a property from vCard to jCard, the value
   type is determined as follows:

   1.  If the property has a "VALUE" parameter, that parameter’s value
       is used as the value type.

   2.  If the property has no "VALUE" parameter but has a default value
       type, the default value type is used.

   3.  If the property has no "VALUE" parameter and has no default value
       type, "unknown" is used.

   Converting from jCard into vCard is done as follows:

   1.  If the property’s value type is "unknown", no "VALUE" parameter
       is included.

   2.  If the property’s value type is the default type for that
       property, no "VALUE" parameter is included.

Kewisch                      Standards Track                   [Page 10]



RFC 7095                          jCard                     January 2014

   3.  Otherwise, a "VALUE" parameter is included, and the value type is
       used as the parameter value.

   See Section 5 for information on handling unknown value types.

3.4.2.  Multi-Valued Parameters

   In [RFC6350], some parameters allow using a comma-separated list of
   values.  To ease processing in jCard, the value for such parameters
   MUST be represented in an array containing the separated values.  The
   array elements MUST be string values.  Single-value parameters SHOULD
   be represented using a single string value, although a more simple
   implementation might prefer an array with one string element.  An
   example of such a parameter is the vCard "SORT-AS" parameter; more
   such parameters may be added in extensions.

   The vCard specification requires encapsulation between DQUOTE
   characters if a parameter value contains a colon, a semicolon, or a
   comma.  These extra DQUOTE characters do not belong to the actual
   parameter value and hence are not included when the parameter is
   converted to jCard.

   Example:

   ["vcard",
     [
       ["version", {}, "text", "4.0"],
       ["n",
        { "sort-as": ["Harten", "Rene"] },
        "text",
        ["van der Harten", "Rene", "J.", "Sir", "R.D.O.N."]
       ],
       ["fn", {}, "text", "Rene van der Harten"]
       ...
     ]
   ]

3.5.  Values (RFC 6350, Section 4)

   The following subsections specify how vCard property value data types
   (which are defined in Section 4 of [RFC6350]) are represented in
   jCard.

Kewisch                      Standards Track                   [Page 11]



RFC 7095                          jCard                     January 2014

3.5.1.  Text (RFC 6350, Section 4.1)

   Description:  vCard "TEXT" property values are represented by a
      property with the type identifier "text".  The value elements are
      JSON strings.  For details on structured text values, see
      Section 3.3.1.3.

   Example:

   ["kind", {}, "text", "group"]

3.5.2.  URI (RFC 6350, Section 4.2)

   Description:  vCard "URI" property values are represented by a
      property with the type identifier "uri".  The value elements are
      JSON strings.

   Example:

   ["source", {}, "uri", "ldap://ldap.example.com/cn=babs%20jensen"]

3.5.3.  Date (RFC 6350, Section 4.3.1)

   Description:  vCard "DATE" property values are represented by a
      property with the type identifier "date".  The value elements are
      JSON strings with the same date value specified by [RFC6350], but
      represented using the extended format specified in
      [ISO.8601.2004], Section 4.1.2.  If the complete representation is
      not used, the same date format restrictions regarding reduced
      accuracy, truncated representation, and expanded representation
      noted in [RFC6350], Section 4.3.1 apply.  Whenever the extended
      format is not applicable, the basic format MUST be used.

   ABNF syntax:

   date-complete = year "-" month "-" day ;YYYY-MM-DD

   date-noreduc = date-complete
              / "--" month "-" day ; --MM-DD
              / "---" day          ; ---DDD

   date = date-noreduc
      / year; YYYY
      / year "-" month ; YYYY-MM
      / "--" month     ; --MM

Kewisch                      Standards Track                   [Page 12]



RFC 7095                          jCard                     January 2014

   Examples:

   ["bday", {}, "date", "1985-04-12"],
   ["bday", {}, "date", "1985-04"],
   ["bday", {}, "date", "1985"],
   ["bday", {}, "date", "--04-12"],
   ["bday", {}, "date", "---12"]

   This table contains possible conversions between the vCard DATE
   format and jCard date.  This information is just an example and not a
   formal specification of the syntax.  The specification can be found
   in [ISO.8601.2000] and [ISO.8601.2004].

                   +-----------+----------+------------+
                   |           | vCard    | jCard      |
                   +-----------+----------+------------+
                   | Complete  | 19850412 | 1985-04-12 |
                   |           |          |            |
                   | Reduced   | 1985-04  | 1985-04    |
                   |           |          |            |
                   | Reduced   | 1985     | 1985       |
                   |           |          |            |
                   | Truncated | --0412   | --04-12    |
                   |           |          |            |
                   | Truncated | --04     | --04       |
                   |           |          |            |
                   | Truncated | ---12    | ---12      |
                   +-----------+----------+------------+

3.5.4.  Time (RFC 6350, Section 4.3.2)

   Description:  vCard "TIME" property values are represented by a
      property with the type identifier "time".  The value elements are
      JSON strings with the same time value specified by [RFC6350], but
      represented using the extended format specified in
      [ISO.8601.2004], Section 4.2.  If the complete representation is
      not used, the same time format restrictions regarding reduced
      accuracy, decimal fraction, and truncated representation noted in
      [RFC6350], Section 4.3.2 apply.  Whenever the extended format is
      not applicable, the basic format MUST be used.  The seconds value
      of 60 MUST only be used to account for positive "leap" seconds,
      and the midnight hour is always represented by 00, never 24.
      Fractions of a second are not supported by this format.  In jCard,
      UTC offsets are permitted within a time value; note that this
      differs from jCal [JCAL], where they are not permitted.

Kewisch                      Standards Track                   [Page 13]



RFC 7095                          jCard                     January 2014

   ABNF syntax:

   time-notrunc =  hour [":" minute [":" second]] [zone]

   time = time-notrunc
      / "-" minute ":" second [zone]; -mm:ss
      / "-" minute [zone]; -mm
      / "--" second [zone]; --ss

   Examples:

   ["x-time-local", {}, "time", "12:30:00"],
   ["x-time-utc", {}, "time", "12:30:00Z"],
   ["x-time-offset", {}, "time", "12:30:00-08:00"],
   ["x-time-reduced", {}, "time", "23"],
   ["x-time-truncated", {}, "time", "-30"]

   This table contains possible conversions between the vCard TIME
   format and jCard time.  This information is just an example and not a
   formal specification of the syntax.  The specification can be found
   in [ISO.8601.2000] and [ISO.8601.2004].

                     +-----------+--------+----------+
                     |           | vCard  | jCard    |
                     +-----------+--------+----------+
                     | Complete  | 232050 | 23:20:50 |
                     |           |        |          |
                     | Reduced   | 2320   | 23:20    |
                     |           |        |          |
                     | Reduced   | 23     | 23       |
                     |           |        |          |
                     | Truncated | -2050  | -20:50   |
                     |           |        |          |
                     | Truncated | -20    | -20      |
                     |           |        |          |
                     | Truncated | --50   | --50     |
                     +-----------+--------+----------+

   Also, all combinations may have any zone designator appended, as in
   the complete representation.

3.5.5.  Date-Time (RFC 6350, Section 4.3.3)

   Description:  vCard "DATE-TIME" property values are represented by a
      property with the type identifier "date-time".  The value elements
      are JSON strings with the same date value specified by [RFC6350],
      but represented using the extended format specified in
      [ISO.8601.2004], Section 4.3.  If the complete representation is

Kewisch                      Standards Track                   [Page 14]



RFC 7095                          jCard                     January 2014

      not used, the same date and time format restrictions noted in
      Sections 3.5.3 and 3.5.4 apply.  Just as described in [RFC6350],
      truncation of the date part is permitted.

   Example:

   ["anniversary", {}, "date-time", "2013-02-14T12:30:00"],
   ["anniversary", {}, "date-time", "2013-01-10T19:00:00Z"],
   ["anniversary", {}, "date-time", "2013-08-15T09:45:00+01:00"],
   ["anniversary", {}, "date-time", "---15T09:45:00+01:00"]

   This table contains possible conversions between the vCard DATE-TIME
   format and jCard date-time.  This information is just an example and
   not a formal specification of the syntax.  The specification can be
   found in [ISO.8601.2000] and [ISO.8601.2004].

   +----------------+----------------------+---------------------------+
   | Representation | vCard                | jCard                     |
   +----------------+----------------------+---------------------------+
   | Complete       | 19850412T232050      | 1985-04-12T23:20:50       |
   |                |                      |                           |
   | Complete       | 19850412T232050Z     | 1985-04-12T23:20:50Z      |
   |                |                      |                           |
   | Complete       | 19850412T232050+0400 | 1985-04-12T23:20:50+04:00 |
   |                |                      |                           |
   | Complete       | 19850412T232050+04   | 1985-04-12T23:20:50+04    |
   |                |                      |                           |
   | Reduced        | 19850412T2320        | 1985-04-12T23:20          |
   |                |                      |                           |
   | Reduced        | 19850412T23          | 1985-04-12T23             |
   |                |                      |                           |
   | Truncated and  | --0412T2320          | --04-12T23:20             |
   | Reduced        |                      |                           |
   |                |                      |                           |
   | Truncated and  | --04T2320            | --04T23:20                |
   | Reduced        |                      |                           |
   |                |                      |                           |
   | Truncated and  | ---12T2320           | ---12T23:20               |
   | Reduced        |                      |                           |
   |                |                      |                           |
   | Truncated and  | --0412T2320          | --04-12T23:20             |
   | Reduced        |                      |                           |
   |                |                      |                           |
   | Truncated and  | --04T23              | --04T23                   |
   | Reduced        |                      |                           |
   +----------------+----------------------+---------------------------+

Kewisch                      Standards Track                   [Page 15]



RFC 7095                          jCard                     January 2014

   As specified in [ISO.8601.2000], the lower-order components may not
   be omitted in the date part (reduced accuracy) and the higher-order
   components may not be omitted in the time part (truncation).  Also,
   all combinations may have any zone designator appended, as in the
   complete representation.

3.5.6.  Date and/or Time (RFC 6350, Section 4.3.4)

   Description:  vCard "DATE-AND-OR-TIME" property values are
      represented by a property with the type identifier "date-and-or-
      time".  The value elements are either a date-time (Section 3.5.5),
      a date (Section 3.5.3), or a time (Section 3.5.4) value.  Just as
      described in Section 4.3.4 of [RFC6350], a stand-alone time value
      MUST always be preceded by a "T".

   Example:

   ["bday", {}, "date-and-or-time", "2013-02-14T12:30:00"],
   ["bday", {}, "date-and-or-time", "---22T14:00"]
   ["bday", {}, "date-and-or-time", "1985"],
   ["bday", {}, "date-and-or-time", "T12:30"]

3.5.7.  Timestamp (RFC 6350, Section 4.3.5)

   Description:  vCard "TIMESTAMP" property values are represented by a
      property with the type identifier "timestamp".  The value elements
      are JSON strings with the same timestamp value specified by
      [RFC6350], but represented using the extended format and complete
      representation specified in [ISO.8601.2004], Section 4.3.2.

   Example:

   ["rev", {}, "timestamp", "2013-02-14T12:30:00"],
   ["rev", {}, "timestamp", "2013-02-14T12:30:00Z"],
   ["rev", {}, "timestamp", "2013-02-14T12:30:00-05"],
   ["rev", {}, "timestamp", "2013-02-14T12:30:00-05:00"]

   This table contains possible conversions between the vCard TIMESTAMP
   format and jCard timestamp.  This information is just an example and
   not a formal specification of the syntax.  The specification can be
   found in [ISO.8601.2000] and [ISO.8601.2004].

Kewisch                      Standards Track                   [Page 16]



RFC 7095                          jCard                     January 2014

   +----------------+----------------------+---------------------------+
   | Representation | vCard                | jCard                     |
   +----------------+----------------------+---------------------------+
   | Complete       | 19850412T232050      | 1985-04-12T23:20:50       |
   |                |                      |                           |
   | Complete       | 19850412T232050Z     | 1985-04-12T23:20:50Z      |
   |                |                      |                           |
   | Complete       | 19850412T232050+0400 | 1985-04-12T23:20:50+04:00 |
   |                |                      |                           |
   | Complete       | 19850412T232050+04   | 1985-04-12T23:20:50+04    |
   +----------------+----------------------+---------------------------+

3.5.8.  Boolean (RFC 6350, Section 4.4)

   Description:  vCard "BOOLEAN" property values are represented by a
      property with the type identifier "boolean".  The value element is
      a JSON boolean value.

   Example:

   ["x-non-smoking", {}, "boolean", true]

3.5.9.  Integer (RFC 6350, Section 4.5)

   Description:  vCard "INTEGER" property values are represented by a
      property with the type identifier "integer".  The value elements
      are JSON primitive number values.

   Examples:

   ["x-karma-points", {}, "integer", 42]

   JSON allows decimals (e.g., 3.14) and exponents (e.g., 2e10) to be
   used in numeric values.  jCard does not prohibit this for "integer"
   property values.  However, since vCard does not support decimals or
   exponents in integers, any decimals and exponents MUST be eliminated
   when converting an "integer" value type property from jCard to vCard.

3.5.10.  Float (RFC 6350, Section 4.6)

   Description:  vCard "FLOAT" property values are represented by a
      property with the type identifier "float".  The value elements are
      JSON primitive number values.

   Example:

   ["x-grade", {}, "float", 1.3]

Kewisch                      Standards Track                   [Page 17]



RFC 7095                          jCard                     January 2014

   JSON allows exponents (e.g., 2e10) to be used in numeric values.
   jCard does not prohibit this for "float" property values.  However,
   since vCard does not support exponents in floats, any exponents MUST
   be eliminated when converting a "float" value type property from
   jCard to vCard.

3.5.11.  UTC Offset (RFC 6350, Section 4.7)

   Description:  vCard "UTC-OFFSET" property values are represented by a
      property with the type identifier "utc-offset".  The value
      elements are JSON strings with the same UTC offset value specified
      by [RFC6350], with the exception that the hour and minute
      components are separated by a ":" character, for consistency with
      the [ISO.8601.2004] timezone offset, extended format.

   Example:

   // Note: [RFC6350] mentions use of utc-offset
   // for the TZ property as NOT RECOMMENDED
   ["tz", {}, "utc-offset", "-05:00"]

3.5.12.  Language Tag (RFC 6350, Section 4.8)

   Description:  vCard "LANGUAGE-TAG" property values are represented by
      a property with the type identifier "language-tag".  The value
      elements are JSON strings containing a single language-tag, as
      defined in [RFC5646].

   Example:

   ["lang", {}, "language-tag", "de"]

3.6.  Extensions (RFC 6350, Section 6.10)

   vCard extension properties and property parameters (those with an
   "X-" prefix in their name) are handled in the same way as other
   properties and property parameters: the property is represented by an
   array, the property parameter represented by an object.  The property
   or parameter name uses the same name as for the vCard extension, but
   in lowercase.  For example, the "X-FOO" property in vCard turns into
   the "x-foo" jCard property.  See Section 5 for how to deal with
   default values for unrecognized extension properties or property
   parameters.

Kewisch                      Standards Track                   [Page 18]



RFC 7095                          jCard                     January 2014

4.  Converting from jCard into vCard

   When converting property and property parameter values, the names
   SHOULD be converted to uppercase.  Although vCard names are case
   insensitive, common practice is to keep them all uppercase following
   the actual definitions in [RFC6350].

   Character escaping and line folding MUST be applied to the resulting
   vCard data as required by [RFC6350] and [RFC6868].

   When converting to vCard, the "VALUE" parameter MUST be added to
   properties whose default value type is unknown but do not have a
   jCard type identifier "unknown".  The "VALUE" parameter MAY be
   omitted for properties using the default value type.  The "VALUE"
   parameter MUST be omitted for properties that have the jCard type
   identifier "unknown".

5.  Handling Unrecognized Properties or Parameters

   In vCard, properties can have one or more value types as specified by
   their definition, with one of those values being defined as the
   default.  When a property uses its default value type, the "VALUE"
   property parameter does not need to be specified on the property.
   For example, "BDAY"’s default value type is "date-and-or-time", so
   "VALUE=date-and-or-time" need not be set as a property parameter.
   However, "BDAY" also allows a "text" value to be specified, and if
   that is used, "VALUE=text" has to be set as a property parameter.

   When new properties are defined or "X-" properties used, a vCard-to-
   jCard converter might not recognize them, and not know what the
   appropriate default value types are, yet it needs to be able to
   preserve the values.  A similar issue arises for unrecognized
   property parameters.

   In jCard, a new "unknown" property value type is introduced.  Its
   purpose is to allow preserving unknown property values when round-
   tripping between jCard and vCard.  To avoid collisions, this
   specification reserves the "UNKNOWN" property value type in vCard.
   It MUST NOT be used in any vCard as specified by [RFC6350], nor any
   extensions to it.  The type is hence registered to the "vCard Value
   Data Types" registry; see Section 7.2.

5.1.  Converting vCard into jCard

   Any property that does not include a "VALUE" property parameter and
   whose default value type is not known MUST be converted to a
   primitive JSON string.  The content of that string is the unprocessed
   value text.  Also, value type MUST be set to "unknown".

Kewisch                      Standards Track                   [Page 19]



RFC 7095                          jCard                     January 2014

   To correctly implement this format, it’s critical to use the value
   type "unknown" when the default value type is not known.  If this
   requirement is ignored and, for example, "text" is used, additional
   escaping may occur that breaks round-tripping values.

   Any unrecognized property parameter MUST be converted to a string
   value, with its content set to the property parameter value text,
   treated as if it were a "TEXT" value.

5.2.  Converting jCard into vCard

   In jCard, the value type is always explicitly specified.  It is
   converted to vCard using the vCard "VALUE" parameter, except in the
   following two cases:

   o  If the value type specified in jCard matches the default value
      type in vCard, the "VALUE" parameter MAY be omitted.

   o  If the value type specified in jCard is set to "unknown", the
      "VALUE" parameter MUST NOT be specified.  The value MUST be taken
      over in vCard without processing.

5.3.  Examples

   The following is an example of an unrecognized vCard property (that
   uses a "URI" value as its default), and the equivalent jCard
   representation of that property.

   vCard:

   X-COMPLAINT-URI:mailto:abuse@example.org

   jCard:

   ["x-complaint-uri", {}, "unknown", "mailto:abuse@example.org"]

   The following is an example of how to cope with jCard data where the
   parser was unable to identify the value type.  Note how the "unknown"
   value type is not added to the vCard data, and escaping, aside from
   standard JSON string escaping, is not processed.

   jCard:

   ["x-coffee-data", {}, "unknown", "Stenophylla;Guinea\\,Africa"]

   vCard:

   X-COFFEE-DATA:Stenophylla;Guinea\,Africa

Kewisch                      Standards Track                   [Page 20]



RFC 7095                          jCard                     January 2014

   There are no standard properties in [RFC6350] that have a default
   type of integer.  Consequently, this example uses the following
   extended property that we treat as having a default type (namely,
   integer) known to the parser in order to illustrate how a property
   with a known default type would be transformed.

   jCard:

   ["x-karma-points", {}, "integer", 95]

   vCard:

   X-KARMA-POINTS:95

   The following is an example of an unrecognized vCard property
   parameter (that uses a "FLOAT" value as its default) specified on a
   recognized vCard property, and the equivalent jCard representation of
   that property and property parameter.

   vCard:

   GENDER;X-PROBABILITY=0.8:M

   jCard:

   ["gender", { "x-probability": "0.8" }, "text", "M"]

6.  Security Considerations

   This specification defines how vCard data can be "translated" between
   two different data formats -- the original text format and JSON --
   with a one-to-one mapping to ensure all the semantic data in one
   format (properties, parameters, and values) are preserved in the
   other.  It does not change the semantic meaning of the underlying
   data itself, or impose or remove any security considerations that
   apply to the underlying data.

   The use of JSON as a format does have its own inherent security risks
   as discussed in Section 7 of [RFC4627].  Even though JSON is
   considered a safe subset of JavaScript, it should be kept in mind
   that a flaw in the parser for JSON data could still impose a threat
   that doesn’t arise with conventional vCard data.

   With this in mind when using jCard, the parser for JSON data should
   be aware of the security implications.  For example, the use of
   JavaScript’s eval() function is only allowed using the regular
   expression in Section 6 of [RFC4627].  A native parser with full
   awareness of the JSON format should be preferred.

Kewisch                      Standards Track                   [Page 21]



RFC 7095                          jCard                     January 2014

   In addition, it is expected that this new format will result in vCard
   data being more widely disseminated (e.g., with use in web
   applications rather than just dedicated "contact managers").

   In all cases, application developers have to conform to the semantics
   of the vCard data as defined by [RFC6350] and associated extensions,
   and all of the security considerations described in Section 9 of
   [RFC6350], or any associated extensions, are applicable.

7.  IANA Considerations

   This document defines a MIME media type for use with vCard in JSON
   data.  This media type SHOULD be used for the transfer of calendaring
   data in JSON.

   Type name:  application

   Subtype name:  vcard+json

   Required parameters:  none

   Optional parameters:  "version", as defined for the text/vcard media
      type in [RFC6350], Section 10.1.

   Encoding considerations:  Same as encoding considerations of
      application/json as specified in [RFC4627], Section 6.

   Security considerations:  See Section 6.

   Interoperability considerations:  This media type provides an
      alternative format for vCard data based on JSON.

   Published specification:  This specification.

   Applications which use this media type:  Applications that currently
      make use of the text/vcard media type can use this as an
      alternative.  Similarly, applications that use the application/
      json media type to transfer directory data can use this to further
      specify the content.

   Fragment identifier considerations:  N/A

Kewisch                      Standards Track                   [Page 22]



RFC 7095                          jCard                     January 2014

   Additional information:

      Deprecated alias names for this type:  N/A

      Magic number(s):  N/A

      File extension(s):  N/A

      Macintosh file type code(s):  N/A

   Person & email address to contact for further information:
      vcarddav@ietf.org

   Intended usage:  COMMON

   Restrictions on usage:  There are no restrictions on where this media
      type can be used.

   Author:  See the "Author’s Address" section of this document.

   Change controller:  IETF

7.1.  GROUP vCard Parameter

   IANA has added the "GROUP" parameter to the "vCard Parameters"
   registry, initialized in Section 10.3.2 of [RFC6350].  Usage of the
   "GROUP" parameter is further described in Section 3.3.1.2 of this
   document.

   Namespace:  <empty>

   Parameter name:  GROUP

   Purpose:  To simplify the jCard format.

   Description:  The "GROUP" parameter is reserved for the exclusive use
      of the jCard format described in this document.  It MUST NOT be
      used in plain vCard [RFC6350], nor in xCard [RFC6351].

   Format definition:  When converting from jCard to vCard, the value of
      the "GROUP" parameter is used as part of the property name.
      Therefore, the value is restricted to characters allowed in
      property names, namely ALPHA, DIGIT, and "-" characters.  When
      used, the "GROUP" parameter MUST NOT be empty.

Kewisch                      Standards Track                   [Page 23]



RFC 7095                          jCard                     January 2014

   Example:  As this registration serves as a reservation of the "GROUP"
      parameter so that it is not used in vCard, there is no applicable
      vCard example.  Examples of its usage in jCard can be found in
      this document.

7.2.  UNKNOWN vCard Value Data Type

   IANA has added the "UNKNOWN" value data type to the "vCard Value Data
   Types" registry, initialized in Section 10.3.3 of [RFC6350].  Usage
   of the "UNKNOWN" type is further described in Section 5 of this
   document.

   Value name:  UNKNOWN

   Purpose:  To allow preserving property values whose default value
      type is not known during round-tripping between jCard and vCard.

   Format definition:  (Not applicable)

   Description:  The "UNKNOWN" value data type is reserved for the
      exclusive use of the jCard format.  It MUST NOT be used in plain
      vCard [RFC6350].

   Example:  As this registration serves as a reservation of the
      "UNKNOWN" type so that it is not used in vCard, there is no
      applicable vCard example.  Examples of its usage in jCard can be
      found in this document.

8.  Acknowledgments

   The author would like to thank the following for their valuable
   contributions: Cyrus Daboo, Mike Douglass, William Gill, Erwin Rehme,
   Dave Thewlis, Simon Perreault, Michael Angstadt, Peter Saint-Andre,
   Bert Greevenbosch, and Javier Godoy.  This specification originated
   from the work of the XML-JSON technical committee of the Calendaring
   and Scheduling Consortium.

9.  References

9.1.  Normative References

   [ISO.8601.2000]
              International Organization for Standardization, "Data
              elements and interchange formats -- Information
              interchange -- Representation of dates and times", ISO
              8601, December 2000.

Kewisch                      Standards Track                   [Page 24]



RFC 7095                          jCard                     January 2014

   [ISO.8601.2004]
              International Organization for Standardization, "Data
              elements and interchange formats -- Information
              interchange -- Representation of dates and times", ISO
              8601, December 2004.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4627]  Crockford, D., "The application/json Media Type for
              JavaScript Object Notation (JSON)", RFC 4627, July 2006.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5646]  Phillips, A. and M. Davis, "Tags for Identifying
              Languages", BCP 47, RFC 5646, September 2009.

   [RFC6350]  Perreault, S., "vCard Format Specification", RFC 6350,
              August 2011.

   [RFC6868]  Daboo, C., "Parameter Value Encoding in iCalendar and
              vCard", RFC 6868, February 2013.

9.2.  Informative References

   [JCAL]     Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
              format for iCalendar", Work in Progress, December 2013.

   [RFC5545]  Desruisseaux, B., "Internet Calendaring and Scheduling
              Core Object Specification (iCalendar)", RFC 5545,
              September 2009.

   [RFC6321]  Daboo, C., Douglass, M., and S. Lees, "xCal: The XML
              Format for iCalendar", RFC 6321, August 2011.

   [RFC6351]  Perreault, S., "xCard: vCard XML Representation", RFC
              6351, August 2011.

   [calconnect-artifacts]
              The Calendaring and Scheduling Consortium, "Code Artifacts
              and Schemas", <http://www.calconnect.org/artifacts.shtml>.

Kewisch                      Standards Track                   [Page 25]



RFC 7095                          jCard                     January 2014

Appendix A.  ABNF Syntax

   Below is the ABNF syntax as per [RFC5234] for vCard in JSON.  ABNF
   symbols not described here are taken from [RFC4627].  The syntax is
   non-normative and given for reference only.

   The numeric section numbers given in the comments refer to sections
   in [RFC6350].  Additional semantic restrictions apply, especially
   regarding the allowed properties and subcomponents per component.
   Details on these restrictions can be found in this document and
   [RFC6350].

   Additional ABNF syntax may be available on the Internet at
   [calconnect-artifacts].

   ; A jCard object uses the name "vcard" and a properties array.
   ; Restrictions to which properties may be specified are to
   ; be taken from RFC 6350.
   jcardobject = begin-array
                 DQUOTE component-name DQUOTE value-separator
                 properties-array
                 end-array

   ; A jCard property consists of the name string, parameters object,
   ; type string, and one or more values as specified in this document.
   property = begin-array
              DQUOTE property-name DQUOTE value-separator
              params-object value-separator
              DQUOTE type-name DQUOTE
              property-value *(value-separator property-value)
              end-array
   properties-array = begin-array
                      [ property *(value-separator property) ]
                      end-array

   ; Property values depend on the type-name. Aside from the value types
   ; mentioned here, extensions may make use of other JSON value types.
   property-value = simple-prop-value / structured-prop-value
   simple-prop-value = string / number / true / false
   structured-prop-value =
       begin-array
       [ structured-element *(value-separator structured-element) ]
       end-array

   ; Each structured element may have multiple values if
   ; semantically allowed.
   structured-element = simple-prop-value / structured-multi-prop

Kewisch                      Standards Track                   [Page 26]



RFC 7095                          jCard                     January 2014

   structured-multi-prop =
       begin-array
       [ simple-prop-value *(value-separator simple-prop-value) ]
       end-array

   ; The jCard params-object is a JSON object that follows the semantic
   ; guidelines described in this document.
   params-object = begin-object
                   [ params-member *(value-separator params-member) ]
                   end-object
   params-member = DQUOTE param-name DQUOTE name-separator param-value
   param-value = string / param-multi
   param-multi = begin-array
                 [ string *(value-separator string) ]
                 end-array

   ; The type MUST be a valid type as described by this document. New
   ; value types can be added by extensions.
   type-name = "text" / "uri" / "date" / "time" / "date-time" /
               "boolean" / "integer" / "float" / "utc-offset" /
               "language-tag" / x-type

   ; Property, parameter, and type names MUST be lowercase. Additional
   ; semantic restrictions apply as described by this document and
   ; RFC 6350.
   component-name = lowercase-name
   property-name = lowercase-name
   param-name = lowercase-name
   x-type = lowercase-name
   lowercase-name = 1*(%x61-7A / DIGIT / "-")

Appendix B.  Examples

   This section contains an example of a vCard object with its jCard
   representation.

B.1.  Example: vCard of the Author of RFC 6350

B.1.1.  vCard Data

   BEGIN:VCARD
   VERSION:4.0
   FN:Simon Perreault
   N:Perreault;Simon;;;ing. jr,M.Sc.
   BDAY:--0203
   ANNIVERSARY:20090808T1430-0500
   GENDER:M
   LANG;PREF=1:fr

Kewisch                      Standards Track                   [Page 27]



RFC 7095                          jCard                     January 2014

   LANG;PREF=2:en
   ORG;TYPE=work:Viagenie
   ADR;TYPE=work:;Suite D2-630;2875 Laurier;
    Quebec;QC;G1V 2M2;Canada
   TEL;VALUE=uri;TYPE="work,voice";PREF=1:tel:+1-418-656-9254;ext=102
   TEL;VALUE=uri;TYPE="work,cell,voice,video,text":tel:+1-418-262-6501
   EMAIL;TYPE=work:simon.perreault@viagenie.ca
   GEO;TYPE=work:geo:46.772673,-71.282945
   KEY;TYPE=work;VALUE=uri:
    http://www.viagenie.ca/simon.perreault/simon.asc
   TZ:-0500
   URL;TYPE=home:http://nomis80.org
   END:VCARD

B.1.2.  jCard Data

   ["vcard",
     [
       ["version", {}, "text", "4.0"],
       ["fn", {}, "text", "Simon Perreault"],
       ["n",
         {},
         "text",
         ["Perreault", "Simon", "", "", ["ing. jr", "M.Sc."]]
       ],
       ["bday", {}, "date-and-or-time", "--02-03"],
       ["anniversary",
         {},
         "date-and-or-time",
         "2009-08-08T14:30:00-05:00"
       ],
       ["gender", {}, "text", "M"],
       ["lang", { "pref": "1" }, "language-tag", "fr"],
       ["lang", { "pref": "2" }, "language-tag", "en"],
       ["org", { "type": "work" }, "text", "Viagenie"],
       ["adr",
          { "type": "work" },
          "text",
          [
           "",
           "Suite D2-630",
           "2875 Laurier",
           "Quebec",
           "QC",
           "G1V 2M2",
           "Canada"
          ]
       ],

Kewisch                      Standards Track                   [Page 28]



RFC 7095                          jCard                     January 2014

       ["tel",
         { "type": ["work", "voice"], "pref": "1" },
         "uri",
         "tel:+1-418-656-9254;ext=102"
       ],
       ["tel",
         { "type": ["work", "cell", "voice", "video", "text"] },
         "uri",
         "tel:+1-418-262-6501"
       ],
       ["email",
         { "type": "work" },
         "text",
         "simon.perreault@viagenie.ca"
       ],
       ["geo", { "type": "work" }, "uri", "geo:46.772673,-71.282945"],
       ["key",
         { "type": "work" },
         "uri",
         "http://www.viagenie.ca/simon.perreault/simon.asc"
       ],
       ["tz", {}, "utc-offset", "-05:00"],
       ["url", { "type": "home" }, "uri", "http://nomis80.org"]
     ]
   ]

Author’s Address

   Philipp Kewisch
   Mozilla Corporation
   650 Castro Street, Suite 300
   Mountain View, CA  94041
   USA

   EMail: mozilla@kewis.ch
   URI:   http://www.mozilla.org/

Kewisch                      Standards Track                   [Page 29]


