
Network Working Group J.E. Donnelley
Request for Comments: 712 Lawrence Livermore Laboratory
 February 1976

 A Distributed Capability Computing System (DCCS)

 This paper was prepared for submission to the international
 Conference on Computer Communication, ICCC-76, August 3, 1976,
 Toronto, Canada.

 This is a preprint of a paper intended for publication in a journal
 of proceedings. Since changes may be made before publication, this
 preprint is made available with the understanding that it will not be
 cited without the permission of the author.

 The work reported in this paper was supported in part under contract
 #EPA-IAG-D5-E681-DB with the Environmental Protection Agency and in
 part under contract #[RA] 76-12 with the Department Of
 Transportation. The report was prepared for the U.S. Energy Research
 and Development Agency under contract #W-7405-Eng-48.

A Distributed Capability Computing System (DCCS)

 This paper describes a distributed computing system. The first
 portion introduces an idealized operating system called CCS
 (Capability Computing System). In the second portion, the DCCS
 protocols are defined and the processes necessary to support the DCCS
 on a CCS are described. The remainder of the paper discusses
 utilizing the DCCS protocol in a computer network involving
 heterogeneous systems and presents some applications. The
 applications presented are to optimally solve the single copy problem
 for distributed data access and to construct a transparent network
 resource optimization mechanism.

The Capability Computing System (CCS)

 The CCS, though not exactly like any existing operating system, is
 much like some of the existing capability list (C-list) operating
 systems described in the literature [1-7]. Many of the features of
 the CCS come from a proposed modification to the RATS operating
 system [1-3].

 In the documentation for most computer systems there are many
 references to different types of objects. Typical objects discussed
 are: files, processes, jobs, accounts, semaphores, tasks, words,
 devices, forks, events, etc. etc.. One of the intents of C-list

Donnelley [Page 1]

RFC 712 A Distributed Capability Computing System February 1976

 systems is to provide a uniform method of access to all such objects.
 Having all CCS objects accessed through a uniform mechanism allow
 DCCS to be implemented in a type independent manner.

 The CCS is a multiprocessing system supporting an active element
 called a process. For most purposes, the reader’s intuitive notion
 of what a process is should suffice. A process is capable of
 executing instructions like those in commercially available
 computers. It has a memory area associated with it and has some
 status indicators like "RUN" and "WAIT". In C-list systems, however,
 a process also has a capability list (C-list). This list is an area
 in which pointers to the objects that the process is allowed to
 access are maintained. These pointers are protected by the system.
 The process itself is only allowed to use its C-list as a source of
 capabilities to access and as a repository for capabilities that it
 has been granted. Figure 1 diagrams some typical processes that are
 discussed later. In the diagrams, the left half of a process box is
 the C-list and the right half is the memory.

 The key to the uniform access method in the CCS is the invocation
 mechanism. This is the mechanism by which a process makes a request
 on a capability in its C-list. An invocation is closely analogous to
 a subroutine call on most computer systems. When a request is made,
 the invoking process passes some parameters to a service routine and
 receives some parameters in return.

 There are, however, several major differences between the invocation
 mechanism and the usual subroutine calling mechanisms. The first
 difference is that the service routine called is generally not in the
 process’s memory space. The service routine is pointed to by the
 protected capability and can be implemented in hardware, microcode,
 system kernel code, in another arbitrary process, or, as we shall see
 in the DCCS, in another computer system. In Fig. 1. for example, the
 serving process is servicing on invocation on the semaphore
 requestor.

 A second difference is that, when invoking a capability, other
 capabilities can be passed and returned along with strictly data
 parameters. In the DCCS, capabilities and data can also be passed
 through a communication network.

 The final important distinction of the invocation mechanism can best
 be illustrated by considering the analogy to the outside teller
 windows often seen at banks. These windows usually contain a drawer
 that can be opened by the customer and teller are not both. Except
 for this drawer, the customer and teller are physically isolated. In
 the case of the invocation mechanism, the invoking process explicitly
 passes certain capabilities and information to the service routine

Donnelley [Page 2]

RFC 712 A Distributed Capability Computing System February 1976

 and designated C-list locations and memory areas for the return
 parameters. Except for these parameters, the invoking process and
 the serving routine are isolated. In the DCCS, this protection
 mechanism is extended throughout a network of systems.

 In the CCS, invoking a capability is the only way that a process can
 pass or receive information or capabilities. All of what are often
 referred to as system calls on a typical operating system are
 invocations on appropriate capabilities in the CCS. A CCs C-list
 envelopes its process. This fact is needed in order to transparently
 move processes as described in the second application on network
 optimization (page 23).

CCS Capabilities

 To build the DCCS, we will assume certain primitive capabilities in
 the CCS. The invocations below are represented for simplicity rather
 than for efficiency or practicality. In practice, capabilities
 generally have more highly optimized invocations with various error
 returns, etc.. To characterize a capability, it suffices to describe
 what it returns as a function of what it is passed. In the notation
 used below, the passed parameter list is followed by a ">" and then
 the returned parameter list. In each parameter list the data
 parameters are followed by a "" and then the capability parameters.

 1. File Capability

 a. "Read", index; > data;

 "Read" the data at the specified index. "Read" and the index
 are passed. Data is returned.

 b. "Write", index, data; > ;

 Write the data into the area at the specified index. "Write",
 the index, and the data are passed. Nothing is returned.

 2. Directory Capability

 a. "Take", index; > ; capability

 "Take" the capability from the specified index in the
 directory. "Take" and the index are passed. The capability is
 returned.

Donnelley [Page 3]

RFC 712 A Distributed Capability Computing System February 1976

 b. "Give", index; capability> ;

 "Give" the capability to the directory at the index specified.
 "Give" and the index are passed information. The capability is
 also passed. Nothing is returned.

 c. "Find"; capability> result, index;

 A directory, like a process C-list, is a repository for
 capabilities. The first two invocations are analogous to the
 two file invocations presented except that they involve
 capability parameters moved between directory and C-list
 instead of between file and memory. The last invocation
 searches the directory for the passed capability. If an
 identical capability is found, "Yes" and the smallest index of
 such a capability are returned. Otherwise "No" and 0 are
 returned.

 3. Nil Capability

 When a directory is initially created, it contains only nil
 capabilities. Nil always returns "Empty".

 4. Process Capability

 a. "Read", index; > data;

 b. "Write", index, data; > ;

 c. "Take", index; > ; capability

 d. "Give", index; capability> ;

 e. "Find"; capability> result, index;

 f. "Start"; > ;

 g. "Stop"; > ;

 The a. and b. invocations go to the process’s memory space. C., d.,
 and e. go to its C-list. F. and g. start and stop process execution.

The CCS Extension Mechanism

 There is one more basic capability mechanism needed for the CCS
 implementation of the DCCS. This mechanism allows processes to set
 themselves up to create new capabilities that they can service. Such

Donnelley [Page 4]

RFC 712 A Distributed Capability Computing System February 1976

 mechanisms differ widely on existing C-list systems. A workable
 mechanism is described. Another primitive capability is needed to
 start things off:

 5. Server Capability

 a. "Create requestor", requestor number; > ; requestor

 b. "My requestor?"; capability> answer, requestor number;

 c. "Wait"; > reason, requestor number, PD; request

 Two capabilities were introduced above besides the server, the
 requestor and request capabilities. These capabilities will be
 described as the invocations on a server are described.

 The first invocation creates and returns a requestor capability. The
 number that is passed is associated with the requestor. The
 requestor capability is the new capability being created. Any sort
 of invocation can be performed on a requestor. This is their whole
 reason for existence. A process with a server capability can make a
 requestor look like any kind of capability.

 The "My requestor?" invocation can be used to determine if a
 capability is a requestor on the invoked server, it returns either:

 "Yes", requestor number; or "No",0;

 The last invocation "Wait"s until something that requires the
 server’s attention happens. There are two important events that a
 service routine needs to be notified about. If the last capability
 to a requestor is overwritten so that the requestor cannot again be
 invoked until a new one is created, the "wait" returns:

 "Deleted", requestor number, 0; Nil

 The last two parameters, 0 and Nil, are just filler for the returned
 PD and request (see 5c). When a "wait" returns "Deleted", the
 service routine can recycle any resources being used to service the
 numbered requestor (e.g., the requestor number).

 The most important event that causes a "wait" to return is when one
 of the requestors for the server is invoked. In this case the server
 returns:

 "Invoked", requestor number, PD; request

Donnelley [Page 5]

RFC 712 A Distributed Capability Computing System February 1976

 The third parameter, labeled PD, stands for Parameter Descriptor. It
 describes the number of each kind of parameter passing each way
 during a requestor invocation. Specifically, it consists of four
 numbers: Data bits passed, capabilities passed, data bits requested,
 and capabilities requested.

 The last parameter received, the request capability, is used by the
 serving process to retrieve the passed parameters and to return the
 requested parameters to the requesting process. Accordingly, it has
 the following invocations:

 6. Request Capability

 a. "Read parameters"; > {The passed parameters

 b. "Return", {The return parameters}> ;

 The "Return" invocation has the additional effect of restarting the
 requesting process.

 One thing that should be noted about the server mechanism is that
 invocations on a server’s requestors are queued until the server is
 "wait"ed upon. This is one reason that a request is given a separate
 capability. The serving process can, if it chooses, give the request
 to some other process for servicing, while it goes back and waits on
 its server for more requests. The corresponding situation in the
 outside bank window analogy would be the case where the teller gives
 the request to someone else for service so that the teller can return
 to waiting customers. The request capability points back to the
 requesting process so that the return can be properly effected.

 A sample service, that of the well known semaphore [8] service
 routine keeps a table containing the semaphore values for each
 semaphore that it is servicing. It also keeps a list of queued
 requests that represent the processes that become hung in the
 semaphore by "P"ing the semaphore when it has a value less than or
 equal to zero. The invocations on a semaphore are:

 7. Semaphore

 a. "P"; > ;

 b. "V"; > ;

 A diagram and flow chart for the semaphore serving process is given
 in Figures 1. and 2. The flow charts are given include most of the
 basic capability invocations, but do not include detailed
 descriptions of table searches. The table structure for the

Donnelley [Page 6]

RFC 712 A Distributed Capability Computing System February 1976

 semaphore service routine includes entries for each supported
 semaphore. Each entry contains the semaphore value and a link into a
 list of pointers to the requests hung in the semaphore (if any).

 The most important feature of the server mechanism is that, by using
 it, the functioning of any capability can be emulated.

 This property, similar to the insertion property discussed in [9], is
 the cornerstone of the DCCS. The basic idea of the emulation is to
 have the server "wait" for requests and pass them on to the
 capability being emulated. Such emulation of a single capability is
 flow charted in Figure 3. The emulation flow charted is an overview
 that doesn’t handle all situations correctly. For example, a
 capability may not return to invocations in the same order that they
 are received. These situations also appear in the DCCS, so their
 handling will be discussed there rather than here. It is important
 to note that, except for delays due to processing and communication,
 the emulation done in the DCCS is exact.

The DCCS Implementation

 The DCCS will initially be described on a network of CCS systems. We
 will assume that there exists a network capability:

 8. Network Capability

 a. "Input"; > Host no., message;

 b. "Output", Host no., message > ;

 It is assumed that the "Output" invocation returns immediately
 after queuing the message for output and that the "input"
 invocation waits until message is available.

 For pedagogical purposes, the description of the DCCS will be broken
 into two parts. First a brief overview of the important mechanisms
 will be given. The overview will gloss over some important issues
 that will be resolved individually in the more complete description
 that follows the overview.

 The intent of the DCCS is to allow capabilities on one host to be
 referenced by processes on other hosts having the appropriate
 capabilities. To do this, each host keeps a list of capabilities
 that it supports for use by other hosts. Each host also supports a
 server, which gives out requestors that are made to appear as if they
 were the corresponding capability supported by the remote host. When
 one of these emulated requestors is invoked, its parameters are
 passed by the emulating host through the network to the supporting

Donnelley [Page 7]

RFC 712 A Distributed Capability Computing System February 1976

 host. The supporting host then sees to it that the proper capability
 is invoked and passed the parameters. When the invoked parameters
 are passed back through the network to the emulating host. The
 emulating host then returns the return parameters to the requesting
 process.

 For example, let us take the "Read" request on a file diagrammed in
 figure 4. When the emulated file (a requestor) is invoked, the
 emulating process receives "invoke", requestor number, PD; request.
 The requestor number that is returned is actually a descriptor
 consisting of two numbers: Host number, capability number. These
 descriptors are called Remote Capability Descriptors (RCDs). An RCD
 identifies a host and a capability in the list of capabilities
 supported by that host. After receiving a request, the emulating
 process reads the parameters passed by the requesting process and
 sends them along with the Parameters Descriptor to the remote host in
 an "invoke" message.

 When the remote host receives this information, it passes the
 parameters to the supported file capability by invoking it and
 specifies the proper return parameters as noted in the Parameter
 Descriptor. When the invoked file return parameters, the returned
 data is passed back through the network to the emulating host in a
 "Return" message. The returned data is then returned to the
 requesting process by performing a "Return" invocation on the request
 capability initially received by the emulating host. When the
 requesting process is awakened by the return, it will appear to it
 exactly as if a local file had been invoked.

 This works fine when the parameters being passed and returned consist
 simply of information, but what happens when there are capabilities
 involved? In this case the routines use the existing remote
 capability access mechanism and pass the appropriate descriptor. As
 an example, the "Take" invocation on a directory is diagrammed in
 figure 5. The only essential difference is the fact that a
 capability has to be returned. When the capability is returned by
 the invoked directory (or whatever it really is), the supporting host
 allocates a new slot in its supported capability list for the
 capability and returns a new descriptor to the emulating host. When
 the emulating host receives the descriptor, it creates a new
 requestor with the returned descriptor as its requestor number and
 returns the requestor to the invoking process. The requestor so
 returned acts as the capability taken from the remotely accessed
 directory and can be invoked exactly as if were the real capability.

 One important thing to notice about this mechanism is that neither
 the emulating host nor the supporting host need to have any idea what
 kind of capabilities they are supporting. The mechanism is

Donnelley [Page 8]

RFC 712 A Distributed Capability Computing System February 1976

 independent of their type. Also important is the fact that neither
 host need trust the other host with anything more than the
 capabilities that it has been rightfully granted. Even the DCCS
 processes themselves need only be trusted with the network
 capabilities and with the supported capabilities. Finally, note that
 no secret passwords which might be disclosed are needed for security.
 The DCCS directly extends the CCS protection mechanisms,

 A more complete description of the DCCS will now be given. To avoid
 unnecessary complication, however, several issues such as error
 indications, system restart and recovery, network malfunctions,
 message size limitations, resource problems, etc. are not discussed.
 These issues are not unique to the DCCS and their solutions are not
 pertinent here.

 As noted earlier, the complete DCCS must address several issues that
 were glossed over in the initial overview. As these issues are
 discussed, several message types are introduced beyond the "Invoke"
 and "Return" messages discussed in the overview. The formats for all
 the DCCS messages are summarized in figure 6.

 A. Timing -

 Invocations can take a very long time to complete. We saw an
 example in the semaphore capability earlier. An even more graphic
 example might be a clock capability that was requested to return
 nothing AFTER 100 years had passed. Clearly we don’t want to have
 the emulating process wait until it receives a "Return" message
 from the remote host before servicing more invocations.

 What is done in the emulating host is to add the request
 capability to a list of pending requests after sending the
 "invoke" message to the supporting host (this is somewhat like the
 semaphore example earlier). The emulator can then go back and
 wait for more local requests.

 There is a similar problem on the supporting side. We don’t want
 the process waiting on the network input capability to simply
 invoke the supported capability and wait for return. What it must
 do is to set up an invocation process to actually invoke the
 supported capability so that pending network input can be promptly
 serviced. The invoking process must then return the parameters
 after it receives them.

 These additional mechanisms add complication of multiple requests
 active between hosts. These requests are identified by a Remote
 Request Number (RRN). The RRN is an index into the list of
 pending requests.

Donnelley [Page 9]

RFC 712 A Distributed Capability Computing System February 1976

 B. Loops -

 If host A passes a capability to host B, and B is requested to
 pass the requestor that is being used to emulate the capability
 back to host A, should B simply add the requestor to its support
 list and allow A to access it remotely? If it did, when the new
 requestor was invoked on A, the parameters would be passed to B
 where they would be passed to the requestor by the invoking
 process. Invoking the requestor would cause the parameters to be
 passed back through the network to A where the real capability
 would finally be invoked. Then the return parameters would have
 to go through the reverse procedure to get back A via B. This is
 clearly not an optimal mechanism,

 The solution to this problem makes use of the "My requestor?"
 invocation on a server capability described in 5b. When B checks
 a capability that is to be returned to A with the "My requestor?"
 invocation and finds that the capability is one of its requestors
 with a requestor number indicating that it is supported on A, it
 can simply return the requestor number (recall that is this is
 really a Remote Capability Descriptor, RCD) to A, containing the
 fact that the capability specified is one that is local to A and
 giving A the index to the capability in its supported capability
 list.

 C. Security

 The mechanism presented in B. brings up something of a security
 issue. If B. tries to invoke a capability in A’s supported list,
 should A allow B access without question? If it did, any host on
 the network could maliciously invoke any capability supported by
 any other host. To allow access only if it has been granted
 through the standard invocation mechanism, each host can maintain
 a bit vector indicating which hosts have access to a given
 capability. If a host does receive an invalid request, it is an
 error condition.

 D. Indirection

 There is an additional twist on a Loop problem noted in B.. This
 variation comes up when A passes a capability to B who then wants
 to pass it to C. Here again B may unambiguously specify which
 capability is to be passed by simply sending the Remote Capability
 Descriptor (RCD) that is knows it by. The RCD indicates that the
 capability, however, A would probably not believe that C should
 have access to it.

Donnelley [Page 10]

RFC 712 A Distributed Capability Computing System February 1976

 B must tell A. "1, who have access to your 1’th capability, want
 to grant it to host C". To do this, another message type is used.
 The "Give" message specifies the supported capability and the host
 that it should be given to (refer to figure 6). Here again,
 giving away a capability that you don’t have is an error
 condition.

 E. Acknowledgement -

 There is one last problem with the "Give" message. If B sends the
 "Give" message to A and then continues to send the Remote
 Capability Descriptor (RCD) to C, C may try to use the RCD before
 the "Give" is received by A. For this reason, B must wait until A
 has "ACK"nowledged the "Give" message before sending the RCD to C.
 This mechanism requires that hosts queue un"ACK"nowledged "Give"s.
 The format for an "ACK" is given in figure 6. This queueing may
 be avoided for most "Give"s after the first for a given RCD, but
 only at the cost of much additional memory and broadcasting
 "Delete"s (See F. below).

 F. Deletion -

 If all the requestors on A for a given capability supported on B
 are deleted. A may tell B so that B may:

 a. Delete A’s validation bit in the bit vector for the specified
 capability and

 b. If there are no hosts left that require support of the given
 capability, the capability may be deleted from the supported
 capability list.

 This function requires a new "Delete" message.

 Figure 6 is a summary of the message formats. Figure7-11 flow chart
 the complete DCCS. In the flow charts, abbreviations are used to
 indicates the directories:

 CSL - Capability Support List

 RRL - Remote Request List

 IPL - Invocation Process List

 The table manipulation is not given in detail. Three tables are
 needed. The first is associated with the CSL and contains the bit
 vectors indicating access as noted in C. above. The second table is
 associated with the RRL. It contains a host number for each active

Donnelley [Page 11]

RFC 712 A Distributed Capability Computing System February 1976

 request. An attempted return on a request by a host other that the
 requested host is an error. The final table is a message buffer
 containing the pending "Invoke" and "Return" requests.

 In order to avoid hazards in referencing the CSL and its table, a
 semaphore called the CSLS is used. A message buffer semaphore, MBS,
 is similarly used to lock the message buffer. For the RRL and IPL no
 locks are needed with the algorithms given.

Generalization and Application

 To implement the DCCS, we assumed a network of CCS systems. The
 specifications of the CCS were, however, very loose. For example, no
 mention was made of instruction sets. Any CCS-like implementation
 could use the mechanisms described herein to snare their objects. A
 process passed to system with a different instruction set, for
 example, could be used as an efficient emulator.

 The most important generalization of the DCCS is to note that a given
 implementation has no idea what kind of host it is talking to over
 the network. Any sort of host could implement a protocol using the
 messages given. For example, a single user system might allow its
 user to perform arbitrary invocations on remote capabilities and keep
 a table of returned capabilities. Such a system might also support
 some kind of standard terminal capability that could be given to
 remote processes. On a multi-user system, similar functions could be
 performed for each user.

 In some sense, any system implementing the DCCS protocol becomes a
 C-list system. The single user system could, for example, set up
 remote processes servicing remote server capabilities giving out
 requestors to the single user system or any other systems. Returns
 from invocations could appear on the single user’s terminal by remote
 invocation of the terminal capability, etc..

 Implementing the DCCS on non-C-list systems is similar in some
 respects to what happened with some host to host protocol
 implementations on the Department Of Defense’s ARPA network [10].
 The ARPA network host to host protocols allows a process on one
 system to communicate with a process on another. Many of the ARPA
 net protocol implementations had the effect of introducing local
 process to process communication in hosts that formerly had none.

Donnelley [Page 12]

RFC 712 A Distributed Capability Computing System February 1976

 Applications

 I. Single Copy

 The first application is a solution to what I have dubbed the
 single copy problem for information resources. Whenever a
 process receives information from a information resource, it
 can only receive a local copy of the information. This fact is
 apparent when the information come from a distributed data
 base, but is also true in tightly coupled virtual memory
 situations where information from shared memory must be copied
 into local registers for processing. Once a process has a
 local copy of some information, it might like to try to insure
 that the information remains current, i.e., that it is the
 single copy.

 The traditional solution to this problem is to lock the
 information resource with a semaphore before making a local
 copy and then invalidate the local copy before unlocking the
 resource. This solution suffers from the fact that, even
 though other processes may not be requesting the copied data,
 the data must be unlocked quickly just in case. This can
 result in many needless copies being made.

 What is needed is a mechanism for invalidating local copies
 exactly when requests by other processes would force
 invalidation. To offer such a mechanism, an information
 resource can have, in addition to the usual reading and writing
 invocations, the following:

 "White lock", portion; > ; write notify

 "RW lock", portion; >; RW notify

 The important invocation on the notify capabilities is:

 "Wait for notification"; > reason;

 The basic idea is to allow a process to request that it be
 notified if an attempt is being made to invalidate its copy.
 If the copy is used for reading only, the process need only
 request notifications of attempted modifications of the data
 ("Write lock"). When a process is so notified, it is expected
 to invalidate its copy and delete its write notify capability
 to inform the information resource server that the pending
 write access may proceed.

Donnelley [Page 13]

RFC 712 A Distributed Capability Computing System February 1976

 In the read write lock case, the RW notify capability may also
 be used for reading and writing the portion. Any other access
 to the portion will cause notification. When notified, the
 process with the RW notify capability is expected to write back
 the latest copy of the information before deleting its RW
 notify capability.

 Space does not permit presenting more details for this
 mechanism. The important fact to notice is that it permits an
 information resource to be shared in such a way that, though
 the information may be widely distributed, it is made to appear
 as a single copy. This mechanism has important applications to
 distributed data bases.

 II. Network Resource Optimization

 The application that probably best demonstrates the usefulness
 of the DCCS is the sort of network optimization capability that
 can be used to create at least the primitive capabilities
 introduced earlier:

 9. Account Capability

 a. "Create", type; >; capability

 The passed type parameter could at least be any of: "File",
 "Directory", "Process", or "Server". The appropriate type
 of capability would be returned. The resources used for the
 capability are charged to the particular account.

 Now suppose that a user on one CCS system within a DCCS network
 has remote access to account capabilities on several other CCS
 systems. This user could create what might be called a super
 account capability to optimize use of his network resources.
 The super account capability would actually be a requestor
 serviced by a process with optimization desired would be
 completely under user control, but some of the more obvious
 examples are presented:

 1. Static Object Creation Optimization

 a. When a new file is requested, create it on the system
 with the fastest access or the least cost per bit.

 b. When a process is requested, create it on the system with
 the fastest current response or with the least cost per
 instruction.

Donnelley [Page 14]

RFC 712 A Distributed Capability Computing System February 1976

 2. Dynamic optimization.

 To do dynamic optimization, the super account would not give
 the requesting process the capability that it received from
 the remote account after its static optimization, but would
 give out a requestor that it would make function like the
 actual capability except optimized.

 a. When network conditions or user needs charges, files can
 be moved to more effective systems. changes in cost
 conditions might result in file movement. Charges in
 reliability conditions might result in movement of files
 and/or in addition or deletion of multiple copies.

 b. If system load conditions or CPU charges change, it might
 be effective to relocate a process. The super account
 service process could: create a new process on a more
 effective system, stop the old process, move the old C-
 list and memory to the new process and start the new
 process up. The emulation process given to the user
 would never appear to change.

 c. Similar optimizations can be done on any other
 capabilities.

 Such a super account can automatically optimize a user’s
 network resources to suit the user’s needs without changing
 the functional characteristics of the objects being
 optimized.

Final Note

 The DCCS mechanisms defined in this paper are currently being
 implemented on a Digital Equipment Corporation PDP-11/45 computer for
 use as an experimental protocol on the ARPA computer network [10].
 The DCCS protocol will also form the basis for a gateway between the
 ARPA network and Energy Research and Developement Agency’s CTR
 network [11]. It is the authors hope that the DCCS mechanism will
 hasten the approach of the kind of networks that are needed to create
 a truly free market in computational resources.

 Acknowledgements

 The author would like to thank the administrators and staff of the
 Computer Research Project at the Lawrence Livemore Laboratory for
 creating the kind of environment conductive to the ideas presented in
 this paper. Special thanks are due to Charles Landau for many of the
 C-list ideas as implemented in the current RATS system.

Donnelley [Page 15]

RFC 712 A Distributed Capability Computing System February 1976

References

 1. C. R. Landau, The RATS Operating System, Lawrence Livermore
 Laboratory, Report UCRL-77378 (1975)

 2. C. R. Landau, An Introduction to RATS (RISOS/ARPA Terminal
 System): An Operating System for the DEC PDP-11/45, Lawrence
 Livermore Laboratory, Report UCRL-51582 (1974)

 3. J. E. Donnelley, Notes on RATS and Capability List Operating
 Systems, Lawrence Livermore Laboratory, Report UCID-16902 (1975)

 4. B. W. Lampson, "On Reliable and Extendable Operating Systems",
 Techniques in Software Engineering, NATO Sci Comm. Workshop Material,
 Vol. II (1969)

 5. W. Wulf, et. al., "HYDRA: The Kernel of a Multiprocessor Operating
 System", Communications of the ACM 17 6 (1974)

 6. P. Neumann et. al., "On the Design of a Provably Secure Operating
 System" International Workshop on Protection in Operating Systems,
 IRIA (1974)

 7. R. S. Fabry, "Capability-Based Addressing", CACM 17 7 (1974)

 8. E. W. Dijkstra, "Cooperating Sequential Processes", published in
 Programming Languages, F. Genuys, editor, Academic Press, pp. 43-112
 (1968)

 9. F. A. Akkoyunlu, et. al., "Some Constraints and Tradeoffs in the
 Design of Network Communications", Proceedings of the Fifth Symposium
 on Operating System Principles, Vol. 9 No. 5 pp. 67-74 (1975)

 10. L. G. Roberts and B. D. Wessler, "Computer Network Development to
 Achieve Resource Sharing", AFLPS Conference Proceedings 36, pp.
 543-549 (1970)

 11. "National CTR Computer Center", Lawrence Livermore Laboratory
 Energy and Technology Review, Lawrence Livermore Laboratory UCRL-
 52000-75-12, December (1975)

Donnelley [Page 16]

RFC 712 A Distributed Capability Computing System February 1976

 The figures are not included in the online version. Interested
 readers can obtain a hardcopy version of the documents including the
 figures by requesting a copy of UCRL-77800 from:

 Technical Information Department
 Lawrence Livermore Laboratory
 University of California Livermore, California 94550

 Questions or comments would be appreciated and should be directed to
 the author:

 Though the U.S. mail:

 James E. Donnelley
 Lawrence Livermore Laboratory L-307
 P. O. Box 808
 Livermore, California 94550

 By telephone:
 (415)447-1100 ext. 3406

 Via ARPA net mail:
 JED@BBN

 "This report was prepared as an account of work sponsored by the
 United States Government. Neither the United States nor the United
 States Energy Research & Development Administration, nor any of their
 employees, nor any of their contractors, subcontractors or their
 employees, makes any warranty, express or implied, or assumes any
 legal liability or responsibility for the accuracy, completeness or
 usefulness of any information, apparatus, product or process
 disclosed, or represents that its use would not infringe privately-
 owned rights."

Donnelley [Page 17]

