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A Distributed Capability Computing System (DCCS)

   This paper describes a distributed computing system.  The first
   portion introduces an idealized operating system called CCS
   (Capability Computing System).  In the second portion, the DCCS
   protocols are defined and the processes necessary to support the DCCS
   on a CCS are described.  The remainder of the paper discusses
   utilizing the DCCS protocol in a computer network involving
   heterogeneous systems and presents some applications.  The
   applications presented are to optimally solve the single copy problem
   for distributed data access and to construct a transparent network
   resource optimization mechanism.

The Capability Computing System (CCS)

   The CCS, though not exactly like any existing operating system, is
   much like some of the existing capability list (C-list) operating
   systems described in the literature [1-7].  Many of the features of
   the CCS come from a proposed modification to the RATS operating
   system [1-3].

   In the documentation for most computer systems there are many
   references to different types of objects.  Typical objects discussed
   are: files, processes, jobs, accounts, semaphores, tasks, words,
   devices, forks, events, etc. etc.. One of the intents of C-list
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   systems is to provide a uniform method of access to all such objects.
   Having all CCS objects accessed through a uniform mechanism allow
   DCCS to be implemented in a type independent manner.

   The CCS is a multiprocessing system supporting an active element
   called a process.  For most purposes, the reader’s intuitive notion
   of what a process is should suffice.  A process is capable of
   executing instructions like those in commercially available
   computers.  It has a memory area associated with it and has some
   status indicators like "RUN" and "WAIT".  In C-list systems, however,
   a process also has a capability list (C-list).  This list is an area
   in which pointers to the objects that the process is allowed to
   access are maintained.  These pointers are protected by the system.
   The process itself is only allowed to use its C-list as a source of
   capabilities to access and as a repository for capabilities that it
   has been granted.  Figure 1 diagrams some typical processes that are
   discussed later.  In the diagrams, the left half of a process box is
   the C-list and the right half is the memory.

   The key to the uniform access method in the CCS is the invocation
   mechanism.  This is the mechanism by which a process makes a request
   on a capability in its C-list.  An invocation is closely analogous to
   a subroutine call on most computer systems.  When a request is made,
   the invoking process passes some parameters to a service routine and
   receives some parameters in return.

   There are, however, several major differences between the invocation
   mechanism and the usual subroutine calling mechanisms.  The first
   difference is that the service routine called is generally not in the
   process’s memory space.  The service routine is pointed to by the
   protected capability and can be implemented in hardware, microcode,
   system kernel code, in another arbitrary process, or, as we shall see
   in the DCCS, in another computer system.  In Fig. 1. for example, the
   serving process is servicing on invocation on the semaphore
   requestor.

   A second difference is that, when invoking a capability, other
   capabilities can be passed and returned along with strictly data
   parameters.  In the DCCS, capabilities and data can also be passed
   through a communication network.

   The final important distinction of the invocation mechanism can best
   be illustrated by considering the analogy to the outside teller
   windows often seen at banks.  These windows usually contain a drawer
   that can be opened by the customer and teller are not both.  Except
   for this drawer, the customer and teller are physically isolated.  In
   the case of the invocation mechanism, the invoking process explicitly
   passes certain capabilities and information to the service routine

Donnelley                                                       [Page 2]



RFC 712        A Distributed Capability Computing System   February 1976

   and designated C-list locations and memory areas for the return
   parameters.  Except for these parameters, the invoking process and
   the serving routine are isolated.  In the DCCS, this protection
   mechanism is extended throughout a network of systems.

   In the CCS, invoking a capability is the only way that a process can
   pass or receive information or capabilities.  All of what are often
   referred to as system calls on a typical operating system are
   invocations on appropriate capabilities in the CCS.  A CCs C-list
   envelopes its process.  This fact is needed in order to transparently
   move processes as described in the second application on network
   optimization (page 23).

CCS Capabilities

   To build the DCCS, we will assume certain primitive capabilities in
   the CCS.  The invocations below are represented for simplicity rather
   than for efficiency or practicality.  In practice, capabilities
   generally have more highly optimized invocations with various error
   returns, etc..  To characterize a capability, it suffices to describe
   what it returns as a function of what it is passed.  In the notation
   used below, the passed parameter list is followed by a ">" and then
   the returned parameter list.  In each parameter list the data
   parameters are followed by a "" and then the capability parameters.

   1. File Capability

      a. "Read", index; > data;

         "Read" the data at the specified index.  "Read" and the index
         are passed.  Data is returned.

      b. "Write", index, data; > ;

         Write the data into the area at the specified index.  "Write",
         the index, and the data are passed.  Nothing is returned.

   2. Directory Capability

      a. "Take", index; > ; capability

         "Take" the capability from the specified index in the
         directory.  "Take" and the index are passed.  The capability is
         returned.
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      b. "Give", index; capability> ;

         "Give" the capability to the directory at the index specified.
         "Give" and the index are passed information.  The capability is
         also passed.  Nothing is returned.

      c. "Find"; capability> result, index;

         A directory, like a process C-list, is a repository for
         capabilities.  The first two invocations are analogous to the
         two file invocations presented except that they involve
         capability parameters moved between directory and C-list
         instead of between file and memory.  The last invocation
         searches the directory for the passed capability.  If an
         identical capability is found, "Yes" and the smallest index of
         such a capability are returned.  Otherwise "No" and 0 are
         returned.

   3. Nil Capability

      When a directory is initially created, it contains only nil
      capabilities.  Nil always returns "Empty".

   4. Process Capability

      a. "Read", index; > data;

      b. "Write", index, data; > ;

      c. "Take", index; > ; capability

      d. "Give", index; capability> ;

      e. "Find"; capability> result, index;

      f. "Start"; > ;

      g. "Stop"; > ;

   The a. and b. invocations go to the process’s memory space.  C., d.,
   and e. go to its C-list. F. and g. start and stop process execution.

The CCS Extension Mechanism

   There is one more basic capability mechanism needed for the CCS
   implementation of the DCCS.  This mechanism allows processes to set
   themselves up to create new capabilities that they can service.  Such
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   mechanisms differ widely on existing C-list systems.  A workable
   mechanism is described.  Another primitive capability is needed to
   start things off:

   5. Server Capability

      a. "Create requestor", requestor number; > ; requestor

      b. "My requestor?"; capability> answer, requestor number;

      c. "Wait"; > reason, requestor number, PD; request

   Two capabilities were introduced above besides the server, the
   requestor and request capabilities.  These capabilities will be
   described as the invocations on a server are described.

   The first invocation creates and returns a requestor capability.  The
   number that is passed is associated with the requestor.  The
   requestor capability is the new capability being created.  Any sort
   of invocation can be performed on a requestor.  This is their whole
   reason for existence.  A process with a server capability can make a
   requestor look like any kind of capability.

   The "My requestor?" invocation can be used to determine if a
   capability is a requestor on the invoked server, it returns either:

      "Yes", requestor number; or "No",0;

   The last invocation "Wait"s until something that requires the
   server’s attention happens.  There are two important events that a
   service routine needs to be notified about.  If the last capability
   to a requestor is overwritten so that the requestor cannot again be
   invoked until a new one is created, the "wait" returns:

      "Deleted", requestor number, 0; Nil

   The last two parameters, 0 and Nil, are just filler for the returned
   PD and request (see 5c).  When a "wait" returns "Deleted", the
   service routine can recycle any resources being used to service the
   numbered requestor (e.g., the requestor number).

   The most important event that causes a "wait" to return is when one
   of the requestors for the server is invoked.  In this case the server
   returns:

      "Invoked", requestor number, PD; request
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   The third parameter, labeled PD, stands for Parameter Descriptor.  It
   describes the number of each kind of parameter passing each way
   during a requestor invocation.  Specifically, it consists of four
   numbers: Data bits passed, capabilities passed, data bits requested,
   and capabilities requested.

   The last parameter received, the request capability, is used by the
   serving process to retrieve the passed parameters and to return the
   requested parameters to the requesting process.  Accordingly, it has
   the following invocations:

   6. Request Capability

      a. "Read parameters"; > {The passed parameters

      b. "Return", {The return parameters}> ;

   The "Return" invocation has the additional effect of restarting the
   requesting process.

   One thing that should be noted about the server mechanism is that
   invocations on a server’s requestors are queued until the server is
   "wait"ed upon.  This is one reason that a request is given a separate
   capability.  The serving process can, if it chooses, give the request
   to some other process for servicing, while it goes back and waits on
   its server for more requests.  The corresponding situation in the
   outside bank window analogy would be the case where the teller gives
   the request to someone else for service so that the teller can return
   to waiting customers.  The request capability points back to the
   requesting process so that the return can be properly effected.

   A sample service, that of the well known semaphore [8] service
   routine keeps a table containing the semaphore values for each
   semaphore that it is servicing.  It also keeps a list of queued
   requests that represent the processes that become hung in the
   semaphore by "P"ing the semaphore when it has a value less than or
   equal to zero.  The invocations on a semaphore are:

   7. Semaphore

      a. "P"; > ;

      b. "V"; > ;

   A diagram and flow chart for the semaphore serving process is given
   in Figures 1. and 2. The flow charts are given include most of the
   basic capability invocations, but do not include detailed
   descriptions of table searches.  The table structure for the
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   semaphore service routine includes entries for each supported
   semaphore.  Each entry contains the semaphore value and a link into a
   list of pointers to the requests hung in the semaphore (if any).

   The most important feature of the server mechanism is that, by using
   it, the functioning of any capability can be emulated.

   This property, similar to the insertion property discussed in [9], is
   the cornerstone of the DCCS.  The basic idea of the emulation is to
   have the server "wait" for requests and pass them on to the
   capability being emulated.  Such emulation of a single capability is
   flow charted in Figure 3.  The emulation flow charted is an overview
   that doesn’t handle all situations correctly.  For example, a
   capability may not return to invocations in the same order that they
   are received.  These situations also appear in the DCCS, so their
   handling will be discussed there rather than here.  It is important
   to note that, except for delays due to processing and communication,
   the emulation done in the DCCS is exact.

The DCCS Implementation

   The DCCS will initially be described on a network of CCS systems.  We
   will assume that there exists a network capability:

   8. Network Capability

      a. "Input"; > Host no., message;

      b. "Output", Host no., message > ;

      It is assumed that the "Output" invocation returns immediately
      after queuing the message for output and that the "input"
      invocation waits until message is available.

   For pedagogical purposes, the description of the DCCS will be broken
   into two parts.  First a brief overview of the important mechanisms
   will be given.  The overview will  gloss over some important issues
   that will be resolved individually in the more complete description
   that follows the overview.

   The intent of the DCCS is to allow capabilities on one host to be
   referenced by processes on other hosts having the appropriate
   capabilities.  To do this, each host keeps a list of capabilities
   that it supports for use by other hosts.  Each host also supports a
   server, which gives out requestors that are made to appear as if they
   were the corresponding capability supported by the remote host.  When
   one of these emulated requestors is invoked, its parameters are
   passed by the emulating host through the network to the supporting
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   host.  The supporting host then sees to it that the proper capability
   is invoked and passed the parameters.  When the invoked parameters
   are passed back through the network to the emulating host.  The
   emulating host then returns the return parameters to the requesting
   process.

   For example, let us take the "Read" request on a file diagrammed in
   figure 4.  When the emulated file (a requestor) is invoked, the
   emulating process receives "invoke", requestor number, PD; request.
   The requestor number that is returned is actually a descriptor
   consisting of two numbers: Host number, capability number.  These
   descriptors are called Remote Capability Descriptors (RCDs).  An RCD
   identifies a host and a capability in the list of capabilities
   supported by that host.  After receiving a request, the emulating
   process reads the parameters passed by the requesting process and
   sends them along with the Parameters Descriptor to the remote host in
   an "invoke" message.

   When the remote host receives this information, it passes the
   parameters to the supported file capability by invoking it and
   specifies the proper return parameters as noted in the Parameter
   Descriptor.  When the invoked file return parameters, the returned
   data is passed back through the network to the emulating host in a
   "Return" message.  The returned data is then returned to the
   requesting process by performing a "Return" invocation on the request
   capability initially received by the emulating host.  When the
   requesting process is awakened by the return, it will appear to it
   exactly as if a local file had been invoked.

   This works fine when the parameters being passed and returned consist
   simply of information, but what happens when there are capabilities
   involved? In this case the routines use the existing remote
   capability access mechanism and pass the appropriate descriptor.  As
   an example, the "Take" invocation on a directory is diagrammed in
   figure 5.  The only essential difference is the fact that a
   capability has to be returned.  When the capability is returned by
   the invoked directory (or whatever it really is), the supporting host
   allocates a new slot in its supported capability list for the
   capability and returns a new descriptor to the emulating host.  When
   the emulating host receives the descriptor, it creates a new
   requestor with the returned descriptor as its requestor number and
   returns the requestor to the invoking process.  The requestor so
   returned acts as the capability taken from the remotely accessed
   directory and can be invoked exactly as if were the real capability.

   One important thing to notice about this mechanism is that neither
   the emulating host nor the supporting host need to have any idea what
   kind of capabilities they are supporting.  The mechanism is
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   independent of their type.  Also important is the fact that neither
   host need trust the other host with anything more than the
   capabilities that it has been rightfully granted.  Even the DCCS
   processes themselves need only be trusted with the network
   capabilities and with the supported capabilities.  Finally, note that
   no secret passwords which might be disclosed are needed for security.
   The DCCS directly extends the CCS protection mechanisms,

   A more complete description of the DCCS will now be given.  To avoid
   unnecessary complication, however, several issues such as error
   indications, system restart and recovery, network malfunctions,
   message size limitations, resource problems, etc. are not discussed.
   These issues are not unique to the DCCS and their solutions are not
   pertinent here.

   As noted earlier, the complete DCCS must address several issues that
   were glossed over in the initial overview.  As these issues are
   discussed, several message types are introduced beyond the "Invoke"
   and "Return" messages discussed in the overview.  The formats for all
   the DCCS messages are summarized in figure 6.

   A. Timing -

      Invocations can take a very long time to complete.  We saw an
      example in the semaphore capability earlier.  An even more graphic
      example might be a clock capability that was requested to return
      nothing AFTER 100 years had passed.  Clearly we don’t want to have
      the emulating process wait until it receives a "Return" message
      from the remote host before servicing more invocations.

      What is done in the emulating host is to add the request
      capability to a list of pending requests after sending the
      "invoke" message to the supporting host (this is somewhat like the
      semaphore example earlier).  The emulator can then go back and
      wait for more local requests.

      There is a similar problem on the supporting side.  We don’t want
      the process waiting on the network input capability to simply
      invoke the supported capability and wait for return.  What it must
      do is to set up an invocation process to actually invoke the
      supported capability so that pending network input can be promptly
      serviced.  The invoking process must then return the parameters
      after it receives them.

      These additional mechanisms add complication of multiple requests
      active between hosts.  These requests are identified by a Remote
      Request Number (RRN).  The RRN is an index into the list of
      pending requests.
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   B. Loops -

      If host A passes a capability to host B, and B is requested to
      pass the requestor that is being used to emulate the capability
      back to host A, should B simply add the requestor to its support
      list and allow A to access it remotely? If it did, when the new
      requestor was invoked on A, the parameters would be passed to B
      where they would be passed to the requestor by the invoking
      process.  Invoking the requestor would cause the parameters to be
      passed back through the network to A where the real capability
      would finally be invoked.  Then the return parameters would have
      to go through the reverse procedure to get back A via B.  This is
      clearly not an optimal mechanism,

      The solution to this problem makes use of the "My requestor?"
      invocation on a server capability described in 5b.  When B checks
      a capability that is to be returned to A with the "My requestor?"
      invocation and finds that the capability is one of its requestors
      with a requestor number indicating that it is supported on A, it
      can simply return the requestor number (recall that is this is
      really a Remote Capability Descriptor, RCD) to A, containing the
      fact that the capability specified is one that is local to A and
      giving A the index to the capability in its supported capability
      list.

   C. Security

      The mechanism presented in B. brings up something of a security
      issue.  If B. tries to invoke a capability in A’s supported list,
      should A allow B access without question? If it did, any host on
      the network could maliciously invoke any capability supported by
      any other host.  To allow access only if it has been granted
      through the standard invocation mechanism, each host can maintain
      a bit vector indicating which hosts have access to a given
      capability.  If a host does receive an invalid request, it is an
      error condition.

   D. Indirection

      There is an additional twist on a Loop problem noted in B..  This
      variation comes up when A passes a capability to B who then wants
      to pass it to C.  Here again B may unambiguously specify which
      capability is to be passed by simply sending the Remote Capability
      Descriptor (RCD) that is knows it by.  The RCD indicates that the
      capability, however, A would probably not believe that C should
      have access to it.
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      B must tell A. "1, who have access to your 1’th capability, want
      to grant it to host C".  To do this, another message type is used.
      The "Give" message specifies the supported capability and the host
      that it should be given to (refer to figure 6).  Here again,
      giving away a capability that you don’t have is an error
      condition.

   E. Acknowledgement -

      There is one last problem with the "Give" message.  If B sends the
      "Give" message to A and then continues to send the Remote
      Capability Descriptor (RCD) to C, C may try to use the RCD before
      the "Give" is received by A.  For this reason, B must wait until A
      has "ACK"nowledged the "Give" message before sending the RCD to C.
      This mechanism requires that hosts queue un"ACK"nowledged "Give"s.
      The format for an "ACK" is given in figure 6.  This queueing may
      be avoided for most "Give"s after the first for a given RCD, but
      only at the cost of much additional memory and broadcasting
      "Delete"s (See F. below).

   F. Deletion -

      If all the requestors on A for a given capability supported on B
      are deleted.  A may tell B so that B may:

      a. Delete A’s validation bit in the bit vector for the specified
      capability and

      b. If there are no hosts left that require support of the given
      capability, the capability may be deleted from the supported
      capability list.

      This function requires a new "Delete" message.

   Figure 6 is a summary of the message formats.  Figure7-11 flow chart
   the complete DCCS.  In the flow charts, abbreviations are used to
   indicates the directories:

      CSL - Capability Support List

      RRL - Remote Request List

      IPL - Invocation Process List

   The table manipulation is not given in detail.  Three tables are
   needed.  The first is associated with the CSL and contains the bit
   vectors indicating access as noted in C. above.  The second table is
   associated with the RRL.  It contains a host number for each active
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   request.  An attempted return on a request by a host other that the
   requested host is an error.  The final table is a message buffer
   containing the pending "Invoke" and "Return" requests.

   In order to avoid hazards in referencing the CSL and its table, a
   semaphore called the CSLS is used.  A message buffer semaphore, MBS,
   is similarly used to lock the message buffer.  For the RRL and IPL no
   locks are needed with the algorithms given.

Generalization and Application

   To implement the DCCS, we assumed a network of CCS systems.  The
   specifications of the CCS were, however, very loose.  For example, no
   mention was made of instruction sets.  Any CCS-like implementation
   could use the mechanisms described herein to snare their objects.  A
   process passed to system with a different instruction set, for
   example, could be used as an efficient emulator.

   The most important generalization of the DCCS is to note that a given
   implementation has no idea what kind of host it is talking to over
   the network.  Any sort of host could implement a protocol using the
   messages given.  For example, a single user system might allow its
   user to perform arbitrary invocations on remote capabilities and keep
   a table of returned capabilities.  Such a system might also support
   some kind of standard terminal capability that could be given to
   remote processes.  On a multi-user system, similar functions could be
   performed for each user.

   In some sense, any system implementing the DCCS protocol becomes a
   C-list system.  The single user system could, for example, set up
   remote processes servicing remote server capabilities giving out
   requestors to the single user system or any other systems.  Returns
   from invocations could appear on the single user’s terminal by remote
   invocation of the terminal capability, etc..

   Implementing the DCCS on non-C-list systems is similar in some
   respects to what happened with some host to host protocol
   implementations on the Department Of Defense’s ARPA network [10].
   The ARPA network host to host protocols allows a process on one
   system to communicate with a process on another.  Many of the ARPA
   net protocol implementations had the effect of introducing local
   process to process communication in hosts that formerly had none.
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   Applications

      I. Single Copy

         The first application is a solution to what I have dubbed the
         single copy problem for information resources.  Whenever a
         process receives information from a information resource, it
         can only receive a local copy of the information.  This fact is
         apparent when the information come from a distributed data
         base, but is also true in tightly coupled virtual memory
         situations where information from shared memory must be copied
         into local registers for processing.  Once a process has a
         local copy of some information, it might like to try to insure
         that the information remains current, i.e., that it is the
         single copy.

         The traditional solution to this problem is to lock the
         information resource with a semaphore before making a local
         copy and then invalidate the local copy before unlocking the
         resource.  This solution suffers from the fact that, even
         though other processes may not be requesting the copied data,
         the data must be unlocked quickly just in case.  This can
         result in many needless copies being made.

         What is needed is a mechanism for invalidating local copies
         exactly when requests by other processes would force
         invalidation.  To offer such a mechanism, an information
         resource can have, in addition to the usual reading and writing
         invocations, the following:

            "White lock", portion; > ; write notify

            "RW lock", portion; >; RW notify

         The important invocation on the notify capabilities is:

            "Wait for notification"; > reason;

         The basic idea is to allow a process to request that it be
         notified if an attempt is being made to invalidate its copy.
         If the copy is used for reading only, the process need only
         request notifications of attempted modifications of the data
         ("Write lock").  When a process is so notified, it is expected
         to invalidate its copy and delete its write notify capability
         to inform the information resource server that the pending
         write access may proceed.
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         In the read write lock case, the RW notify capability may also
         be used for reading and writing the portion.  Any other access
         to the portion will cause notification.  When notified, the
         process with the RW notify capability is expected to write back
         the latest copy of the information before deleting its RW
         notify capability.

         Space does not permit presenting more details for this
         mechanism.  The important fact to notice is that it permits an
         information resource to be shared in such a way that, though
         the information may be widely distributed, it is made to appear
         as a single copy.  This mechanism has important applications to
         distributed data bases.

      II. Network Resource Optimization

         The application that probably best demonstrates the usefulness
         of the DCCS is the sort of network optimization capability that
         can be used to create at least the primitive capabilities
         introduced earlier:

         9. Account Capability

            a. "Create", type; >; capability

            The passed type parameter could at least be any of: "File",
            "Directory", "Process", or "Server".  The appropriate type
            of capability would be returned.  The resources used for the
            capability are charged to the particular account.

         Now suppose that a user on one CCS system within a DCCS network
         has remote access to account capabilities on several other CCS
         systems.  This user could create what might be called a super
         account capability to optimize use of his network resources.
         The super account capability would actually be a requestor
         serviced by a process with optimization desired would be
         completely under user control, but some of the more obvious
         examples are presented:

         1. Static Object Creation Optimization

            a. When a new file is requested, create it on the system
               with the fastest access or the least cost per bit.

            b. When a process is requested, create it on the system with
               the fastest current response or with the least cost per
               instruction.
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         2. Dynamic optimization.

            To do dynamic optimization, the super account would not give
            the requesting process the capability that it received from
            the remote account after its static optimization, but would
            give out a requestor that it would make function like the
            actual capability except optimized.

            a. When network conditions or user needs charges, files can
               be moved to more effective systems.  changes in cost
               conditions might result in file movement.  Charges in
               reliability conditions might result in movement of files
               and/or in addition or deletion of multiple copies.

            b. If system load conditions or CPU charges change, it might
               be effective to relocate a process.  The super account
               service process could: create a new process on a more
               effective system, stop the old process, move the old C-
               list and memory to the new process and start the new
               process up.  The emulation process given to the user
               would never appear to change.

            c. Similar optimizations can be done on any other
               capabilities.

            Such a super account can automatically optimize a user’s
            network resources to suit the user’s needs without changing
            the functional characteristics of the objects being
            optimized.

Final Note

   The DCCS mechanisms defined in this paper are currently being
   implemented on a Digital Equipment Corporation PDP-11/45 computer for
   use as an experimental protocol on the ARPA computer network [10].
   The DCCS protocol will also form the basis for a gateway between the
   ARPA network and Energy Research and Developement Agency’s CTR
   network [11].  It is the authors hope that the DCCS mechanism will
   hasten the approach of the kind of networks that are needed to create
   a truly free market in computational resources.
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