Request for Comments: 713 Jack Haverty
NI C #34739

. ABSTRACT

A mechanismis defined for use by nessage servers in
transferring data between hosts. The mechanism called the
MSDTP, is defined in ternms of a nodel of the process as a
translation between two sets of itens, the abstract entities
such as 'strings’ and 'integers’, and the formats used to
represent such data as a byte stream

A proposed organi zati on of a general data transfer
mechani smis described, and the manner in which the NMSDTP
woul d be used in that environnent is presented.

(JFH@M T- DVB)

Apr

1976

I'1. REFERENCES

Bl ack, Edward H., "The DVMS Message Conposer", M T Project
MAC, Programming Technol ogy Divi si on Docunent
SYS. 16. 02.

Burchfiel, Jerry D., Leavitt, Elsie M, Shapiro, Sonya and
Strollo, Theodore R, conpilers, "Tenex Users’ QCuide",

Bolt Beranek and Newnman, Canbridge, Mss., May 1971,

revi sed January 1975, Descriptive sections on the TENEX
subsystens: MAl LER p. 116-11; MAI LSTAT, p. 118-119;
READMAI L, p. 137; and SNDVSG p. 165-170.

Haverty, Jack, "Communications System Overview', MT Project
MAC, Progranmi ng Technol ogy Divi sion Docunent
SYS. 16. 00.

Haverty, Jack, "Conmunications System Daenon Manual ", MT
Project MAC, Progranm ng Technol ogy Division Docunent
SYS. 16. 01.

ISI Information Automation Project, "MIlitary Message
Processi ng System Design," Internal Project
Docunentation (Qut of Print), Jan. 1975

Message Services Conmittee, "lInterim Report", Jan. 28, 1975

Mooers, Charlotte D., "Milsys Message System Manual For
Users", Bolt Beranek and Newman, Canbridge, Mass., June
1975 (draft).

Myer, Theodore H., "Notes On The BBN Mil Systeni, Bolt
Ber anek and Newman, Novenber 8, 1974.

Myer, Theodore H., and Henderson, D. Austin, "Message
Transm ssion Protocol”, Network Whrking G oup RFC 680,
NI C 32116, April 30, 1975.

Postel, Jon, "The PCPB8 Format", NSW Proposal, June 5, 1975
Tugender, R, and D. R Qestreicher, "Basic Functional
Capabilities for a Mlitary Message Processing

Service," | SI?RR-74-23., May 1975

Vezza, A, "Message Services Committee Mnority Report",
Jan. 1975

I11. OVERVI EW

Thi s docunent describes a mechani sm devel oped for use

by nessage servers conmuni cating over an eight-bit

byt e-ori ented network connection to nove data structures and
associ ated data-typing information. It is presented here in
the hope that it nmay be of use to other projects which need
to transfer data structures between dissinmlar hosts.

A set of abstract entities called PRMTIVE I TEMS is
enunerated. These are intended to include traditional data
types of general utility, such as integers, strings, and
arrays.

A mechanismis defined for augnmenting the set of

abstract data entities handled, to allow the introduction of
application-specific data, whose format and semantics are
under stood by the application prograns involved, but which
can be transnitted using comon coding facilities. An
exanpl e might be a data structure called a "file
specification', or a 'date’. Abstract data entities defined
using this nechanismw ||l be terned SEMANTI C | TEMS, since
they are typically used to carry data having semantic
content in the application involved.

Semantic and primitive itens are collectively referred
to sinply as | TEMS

The protocol next involves the definition of the format

of the byte streamused to convey itens from machine to
machi ne. These encodings are described in terns of OBJECTS,
whi ch are the physical byte streans transmtted.

To conplete the protocol, the rules for translating
bet ween objects and itens are presented as each object is
def i ned.

An itemis transmtted by being translated into an

obj ect which is transnmitted over the connection as a stream
of bytes to the receiver, and reconstructed there as an
item The protocol nechanism may thus be viewed as a sinple
translator. It enunerates a set of abstract entities, the
itens, which are known to programmers, a set of entities in
byte-stream fornat, the objects, and the translation rules
for conversion between the sets. A site inplenenting the
MSDTP woul d typically provide a facility to convert between
objects and the local representation of the various itens
handl ed. Applications using the MSDTP define their
interactions using itenms, without regard to the actua
formats in which such itens are represented at various

machi nes. This pernits prograns to handl e hi gher-1eve
concepts such as a character string, wthout concern for its
nunerous representational formats. Such detail is handled
by the MSDTP.

- 3-

Finally, a discussion of a general data transfer
mechani sm for conmuni cati on between prograns i s presented,
and the manner in which the particular byte-oriented
protocol defined herein would be used in that environment is
di scussed.

Termi nol ogy, as introduced, is defined and highlighted
by capitali zing.

I'V. PRIMTIVE DATA | TEMS

The prinmtive data itens include a variety of
traditional, well-understood types, such as integers and
strings. Primtive data items will be presented using

menoni ¢ nanmes preceded by the character pair "p-", to serve
as a reninder that the naned object is primtive.

These itens may be represented in various conputer
systens in whatever fashion their programmers desire.

IV.1 -- Set O Primtive |ltens

The set of printive itens defined includes p-INT
p- STRING p-STRUC, p-BITS, p-CHAR, p-BOO., p-EMPTY, and
p- XTRA.

Since the protocol was devel oped primarily for use in
nmessage services, itens such as p-FLOAT are not included
since they were unnecessary. Additional itens nmay be easily
added as necessary.

A p-INT perforns the traditional role of representing

i nteger nunbers. A p-BITS (BIT Stream itemrepresents a
bit stream The two possible p-BOOL (BOCOLean) itens are
used to represent the |ogical values of *TRUE* and *FALSE*.
The single p-EMPTY itemis used to, for exanple, indicate
that a given field of a nessage is enpty. It is provided to
act as a place-holder, representing 'no data’, and appears
as *EMPTY*.

The p-STRUC (STRUCture) itemis used to group together
a collection of itens as a single value, maintaining the
ordering of the elenents, such as a p- STRUC of p-INTs.

A p-CHAR is a single character. The nost comon

occurrence of character data, however, will be as p-STRI NGs.
A p- STRING shoul d be considered to be a synonymfor a

p- STRUC contai ning only p-CHARs. This concept is inportant

for generality and consistency, especially when considering

definitions of perm ssible operations on structures, such as
extracting subsequences of elenents, etc.

- 4-

Four p-XTRA itenms, which can be transmtted in a single
byte, are nade available for higher |evel protocols to use
when a frequently used datumis handl ed which can be
represented just by its name. An exanple would be an
acknow edgnment between two servers. Using p-XTRAs to
represent such data pernmits themto be handled in a single
byte. There are four possible p-XTRA itens, termed *XTRAO*,
XTRAL, *XTRA2*, and *XTRA3*. These may be assi gned

meani ngs by user protocols as desired.

IV.2 -- Printing Conventions

The followi ng printing conventions are introduced to
facilitate discussion of the prinmtive itens.

When a specific instance of a primtive data itemis
presented, it will be shown in a traditional representation
for that kind of data. For exanple, p-INIs are shown as
sequences of digits, e.g. 100, p-STRI NGs, as sequences of
characters enclosed in doubl e-quote characters, for exanple
" ABCDEF" .

As shown above, the two possible p-BOOL itens are shown

as *TRUE* or *FALSE*. The object p-EMPTY appears as
EMPTY. A bit stream i.e. p-BITS, appears as a stream of
1s and Os enclosed in asterisks, for exanple *100101001*. A
p-CHAR wi || be presented as the character enclosed in single
quote characters, e.g., 'A.

P-STRUCs are printed as the representations of their

el ements, enclosed in parentheses, for exanple (1 2 3 4) or
("Xyz" "ABC' 1 2) or ((1 2 3) "A" "B"). Note that because
p- STRINGs are sinply a class of p-STRUCs assignhed a speci al
nane and printing format for brevity and conveni ence, the
items "ABC' and (A 'B 'C) are identical, and the latter
format shoul d not be used.

To present a generic p-STRUC, as in specifying fornmats

of the contents of sonething, the itens are presented as a
menoni ¢ nanme, optionally followed by a colon and the

perm ssible types of values for that datum \Wen one of
several itenms may appear as the value for sonme conponent,

t he pernissible ones appear separated by vertical - bar
characters. For exanple, p-INT|p-STRING represents a single
item which may be either a p-INT or a p-STRI NG

To represent a succession of itens, the Kl eene star
convention is used. The specification p-INT[*] represents
any nunber of p-INTs. Sinilarly, p-INT[3,5] represents from
3 to 5 p-INTs, while p-INT[*,5] specifies up to 5 and

p-i NT[5,*] specifies at least 5 p-INTs.

For exanple, a p-STRUC which is used to carry names and
nunbers m ght be specified as follows.

(nane: p- STRI NG nunber : p- | NT)

In discussing itens in general, when a specific data

value is not intended, the nane and types representati on nmay
be used, e.g., offset:p-INT to discuss an 'offset’ which has
a nuneric val ue.

V. SEMANTI C | TEM MECHANI SM

The senantic item mechani sm provides a neans for
program designers to use a variety of application-specific
data itemns.

This mechanismis inplenented using a special tagged
structure to carry the data type infornmation as well as the
actual conponents of the particular senmantic item For

di scussi on purposes. Such a special p-STRUC will be terned a
p- EDT (Extended Data Type).

When p-EDTs are transferred, their identity as a p-EDT
is maintained. So that an applications programreceives the
correspondi ng semantic iteminstead of a sinple p-STRUC. A
p-EDT is identical to a p-STRUC in all other respects.

V.1 -- Format of p-EDTs

A prototypical p-EDT follows. It is printed as if it
were a normal p-STRUC. Since p-EDTs are converted to
semantic itens for presentation to the user, a p-EDT will
never be used except in this protocol definition

(type: p- I NT| p- STRI NG versi on: p-1 NT coml: any
con:any ...)

The first element, the "type’ is generally a p-INT, and

is used to identify the particular type of semantic item
Types are assigned nuneric codes in a controlled fashion
The type may alternatively be specified by a p-STRING to
pernmit devel opment of new data types for possible later
assi gnnent of codes. FEach type has an equival ent p-STRI NG
nane. These may be used interchangeably as 'type’ elenents
primarily to maintain upward conpatibility.

The second el enent of a p-EDT is always an p-INT, the
"version’, and specifies the exact format of the particul ar
datum A senmantic item may undergo several revisions of its
internal structure. Wich would be evident through assigning
different versions to each revision

-6-

Successi ve conponents. The 'com elenents, if any.

carry the actual data of the semantic item As each
semantic itemis defined, conventions on pernissible val ues
and interpretation of these conponents are presented. Such
definitions may use any types of itenms to specify the fornat
of the semantic item Use of lower |evel concepts, such as
objects, in these definitions is prohibited.

Semantic itens will be printed as the menonic for the

type involved, preceded by the character pair "s-", to
signify that the data itemis handled by this nechani sm

V.2 -- Printing Conventions

A semantic itemis represented as if it were a p-STRUC
contai ning only the conponents, if any, but preceded by the
semantic type nanme and a # character. The version nunber is
assuned to be 1 if unspecified. For later versions, the
versi on nunber is attached to the type nane, as in, for
exanple, FILE-2 to represent version 2 of the FILE data

t ype.

For exanple, a semantic itemcalled a '"file

specification’ mght be defined, containing two conponents,
a host nunber and pat hname. A specific instance of such an
item nmi ght appear as #FI LE(69 "Dl RECTORY. NAME- OF- FI LE"),
while a generic s-FILE might be presented as the foll ow ng.

#FI LE(host : p- | NT| p- STRI NG pat hnamne: p- STRI NG

the item which may be either a p-INT or p-STRING and
"pathnane’ is the second conponent, which nust be a
p-STRING. The full definition would present interpretation
rules for these conponents.

VI . ENCODI NG OBJECTS

This section presents the set of objects which are used

to represent itens as byte streans for inter-server

transm ssion. bjects will be presented using menonic
type- nanes preceded by the character pair "b-", indicating
their existence only as byte streans.

Al'l servers are required to be capable of decoding the
entire set of objects. Servers are not required to transnit
certain objects which are available to i nprove channe

ef ficiency.

The encodings are designed to facilitate programing

and efficiency of the receiving decoder. |In all cases, the
type and length in bytes of objects is supplied as the first
informati on sent. This characteristic is inportant for ease
of inmplementation. The type information pernmits a decoder to
be constructed in a nodul ar fashion. The npst inportant
advant age of including size information is that the receiver
al ways knows how nany bytes it nust read to discover what to
do next, and knows when each object ternminates. This

requi renent avoids nmany potential problens with timng and
synchroni zati on of processes.

Two varieties of objects are defined. The first wll

be called ATOM C, and includes objects used to efficiently
encode the nost common data. The second variety is terned
NON- ATOM C, and is used to encode |arger or |ess comon
itens.

In all cases, a data object begins with a single byte,
which will be ternmed the TYPE-BYTE, a field of which
contains the type code of the object. The follow ng bytes,
if any, are interpreted according to the type involved.

VI.1 -- Presentation Conventations

In discussing formats of bytes, the follow ng

conventions will be enployed. The individual bits of a byte
will be referenced by using capital letters fromAto H,
where A signifies the highest order bit, and H the | owest.
The entire eight bit value, for exanple, could be referred
to as ABCDEFGH. Sinilarly, subfields of the byte will be
identified by such sequences. The CDEF field specifies the
m ddl e four bits of a byte.

In referring to values of fields, binary format will be
used, and snall letters near the end of the al phabet will be
used to identify particular bits for discussion. For
exanple, we night say that the BCD field of a byte contains
a specifier for some type, and define its value to be
BCD=11z. In discussions of the specifier usage, we could
refer to the cases where z=l and where z=0, as shorthand
notation to identify BCD=111 and BCD=110, respectively.

V1.2 -- Type-Byte Bit Assignnent

To assist in understanding the assignnent of the
various type-byte val ues, the table and graph bel ow are
i ncl uded, showi ng representations of the eight bits.

OXXXXXXX -- CHAR7 (CHARacter, 7 bit)
1OXXXXXX - - SI NTEGER (Snal | | NTEGER)

[ZOXXXXX -- NON- ATOM (NON- ATOM ¢ obj ect s)
11100XXX -- LINTEGER (Large | NTEGER)
11101XXX -- reserved

11110XXX -- SBITSTR (Short BI T STReam
111110XX -- XTRA (eXTRA singl e-byte objects)
1111110X -- BOOL (BOOLean)

11111110 -- EMPTY (EMPTY data item

11111111 -- PADDI NG (unused byte)

In each case, the bits identified by X s are used to
contain information specific to the type involved. These
are expl ai ned when each type is defined.

An equivalent tree representation follows, for those
who prefer it.
start with high order bit

0----- 0----- 0----- 0----- 0----- 0----- 0----- 0----- X
| | | | | | | | PADDI NG
0| 0| 0| 0| 0| 0| 0| 0|
| | | | | | | |
X | X | X | X X
CHAR7 | NON-ATOM | BITS | BOOL EMPTY
(7) I (5) ol I (3) I (1)

SI NTEGER | XTRA

(6) | (2)
LI NTEGER
(3)

Type-Byte Bit Assignnment Schene

This picture is interpreted by entering at the top, and
taking the appropriate branch at each node to correspond to
the next bit of the type-byte, as it is scanned fromleft to
right. Wen a type is assigned, the branch ternminates with
an "X and the nane of the type of the object, with the
nunmber of remaining bits in parentheses. The individual

obj ect definitions specify how these bits are used for that
particul ar type.

V1.3 -- Atonmic bjects

Atom c objects are identified by specific patterns in a
type-byte. Receiving servers nust be capable of recognizing

-0-

and handling all atomic types, since the size of the object
is not explicitly present in a uniformfashion

| Atomi c bject: B-CHARY

The b-CHAR7 (CHARacter 7 bit) object is introduced to

handl e transni ssion of characters, in 7-bit ASCI| fornmat.
Since the vast majority of nessage-rel ated data invol ves

such objects, they are designed to be very efficient in
transmi ssion. Oher formats, such as eight bit values, can
be introduced as non-atonic objects. The format of a b- CHAR?
fol | ows:

A=0 identifying the b-CHAR7 data type
BCDEFGH=t uvwxyz cont ai ni ng the character
code

The tuvwxyz objects contain the ASCII code of the
character. For exanple, transmi ssion of a "space’ (ASCl
code 32, 40 octal) would be acconplished by the foll ow ng
byt e.

00100000
ABCDEFGH

A=0 to identify this byte as a b-CHAR7. The remaining
bits contain the 7 bit code, octal 40, for space.

A b-CHAR7 standing alone is presented as a p- CHAR

Such occurrences will probably be rare if they are used at
all. The nost conmon use of b-CHAR7's is as el enents of
b- USTRUCs used to transmit p-STRINGS, as explained |ater.

| Atomic hject: B-SINTEGER |

The b-SI NTEGER (Smal |l | NTEGER) object is used to

transmit very snall positive integers, of values up to 64.

It always translates to an p-INT, and any p-INT between 0O
and 63 nmay be encoded as a b-SINTEGER for transmi ssion. The
format of an b-SI NTEGER f ol | ows.

AB=10 identifying the object as a b-SI NTEGER
CDEFGH=uvwxyz contai ning the actual nunber

For exanple, to transnmit the integer 10 (12 octal), the
followi ng byte woul d be transmtted:

10001010
ABCDEFGH

-10-

AB=10 to specify a b-SINTEGER. The remaining six bits
contain the nunber 10 expressed in binary.

| Atomic bject: B-SINTEGER |

The b-SINTEGER (Large | NTEGER) object is used to

transmit p-INTs to any precision up to 64 bits. It is

al ways translated as a p-INT. Sending servers are pernitted
to choose either b-SINTECER or b-SINTEGER fornmat for

transm ssi on of nunbers, as appropriate. Wen possible,

b- SI NTEGERs can be used for better channel efficiency. The
format of a b-SI NTEGER fol | ows:

ABCDE=11100 specifying that this is a b-SlI NTEGER
FGH=xyz containing a count of nunber of bytes to follow.

The xyz bits are interpreted as a nunber of bytes to

foll ow which contain the actual binary code of the the
integer in 2's conplenent format. Since a zero-byte integer
is disallowed, the pattern xyz=000 is interpreted as 1000,
specifying that 8 bytes follow The nunber is transnmitted
wi th high-order bits first. This format permts

transm ssion of integers as large as 64 bits in magnitude.

For exanple, if the nunber 4096 (10000 octal) is to be
transmtted, the follow ng sequence of bytes would be sent:

11100010 00010000 00000000
ABCDEFCGH - --actual data---

ABCDE=11100, identifying this as a b-LINTEGER, E=0,
specifying a positive nunmber, and FGH=010, specifying that 2
bytes follow, containing the actual binary numnber.

| Atomic Object: B-SBITSTR |

The b-SBITSTR (Short BIT STReam) object is used to
transmt a p-BITS of length 63 or less. For longer bit
streanms, the non-atom c object b-LBITSTR may be used. The
format of a b-SBI TSTR fol | ows.

ABCDE=11110 specifying the type as b-SBI TSTR

FGHxyz specifying the nunber of bytes
fol | owi ng.

-11-

The xyz val ue specifies the nunber of additional bytes

to be read to obtain the bit streamvalues. As in the case
of b-SINTEGER, the value xyz=000 is interpreted as 1000,
specifying that 8 bytes follow.

To avoid requiring specification of exactly the nunber

of bits contained, the follow ng convention is used. The
first data byte is scanned fromleft to right until the
first 1 bit is encountered. The bit streamis defined to
begin with the immedi ately following bit, and run through
the last bit of the last byte read. In other words, the bit
streamis 'right-adjusted in the collected bytes, with its
left end delimted by the first "on” bit.

For exanple, to send the bit stream *001010011* (9
bits), the followi ng bytes are transnmitted.

11110010 00000010 01010011
ABCDEhi j kl mopqgr st uvwxyz

The hij=010 val ue specifies that two bytes follow. The

g bit, which is the first 1 bit encountered, identifies the
start of the bit streamas being the r bit. The rstuvwyz
bits are the bit stream being handl ed.

| Atomic Object: b-BOOL |

The b-BOOL (BOOLean) object is used to transnmit
p-BOOLs. The format of b-BOOL objects follows.

ABCDEFG=1111110 specifying the type as
b- BOCL
H=z specifying the val ue

The two possible translations of a b-BOOL are *FALSE*
and * TRUE*.

11111100 represents *FALSE*
11111101 represents *TRUE*
ABCDEFG&z

if z=0, the value is FALSE, otherw se TRUE.

| Atomic hject: B-EMPTY |

The b- EMPTY object type is used to transmit a '"null’
object, i.e. an *EMPTY*. The fornmat of an b-EMPTY foll ows.

ABCDEFGH11111110 speci fying *EMPTY*

-12-

| Atom c Object: B-XTRA

The b- XTRA objects are used to carry the four possible
p-XTRA items, i.e., *XTRAO*, *XTRAl*, *XTRA2*, and *XTRA3*.
These four itens correspond to the binary coding of the
remaining two bits after the b-XTRA type code bits. The
format of a b- XTRA fol | ows.

ABCDEF=111110 to specify the type b-XTRA
GHyz to identify the particular p-XTRA item
carried

The GH bits of the byte are decoded to produce a
particular p-XTRA item as follows.

GH=00 -- *XTRAO*
GH=01 -- *XTRALl*
GH10 -- *XTRA2*
G111 -- *XTRA3*

The b- XTRA object is included to provide the use of

several single-byte data itens to higher levels. These
items may be assigned by individual applications to inprove
the efficiency of transm ssion of several very frequent data
itens. For exanple, the nessage services protocols will use
these itens to convey positive and negative acknow edgnents,
two very conmon itens in every interaction

| Atom c Object: B-PADDI NG

This object is anomal ous, since it represents really no

data at all. \Whenever it is encountered in a byte streamin
a position where a type-byte is expected, it is conpletely
i gnored, and the succeedi ng byte exam ned instead. |Its

purpose is to serve as a filler in byte streans, providing
servers with an aid in handling internal problens related to
their specific word lengths, etc. The encoders may freely
use this object to serve as paddi ng when necessary.

Al'l b- PADDI NG data obj ects exist only within an encoded

byte stream They never cause any data item whatsoever to

be presented externally to the coder nodule. The format of a
b- PADDI NG f ol | ows.

ABCDEFG+11111111

Note that this does not inply that all such 'null

bytes in a streamare to be ignored, since they could be
encountered as a byte within sonme other type, such as
b-LINTEGER. Only bytes of this format which, by their
position in the stream appear as a 'type’ byte are to be
i gnor ed.

- 13-

VI.4 -- Non-Atomc (bjects

Non-atomi c objects are are always transmtted preceded
by both a single type byte and sone snall nunber of size
byte(s). The type byte identifies that the data object
concerned is of a non-atonic type, as well as uniquely
specifying the particular type involved. Al non-atomc
obj ects have type byte values of the followi ng form

ABC=110 specifying that the object is
non- at om ¢

DEFGH=vwxyz specifying the particular type
of obj ect

The vwxyz value is used to specify one of 31 possible
non-atom c types. The value vwxyz=00000 is reserved for use
in future expansion.

In all non-atom c data objects, the byte(s) follow ng
the type-byte specify the nunber of bytes to follow which
contain the data object. |In all cases, if the nunber of
bytes specified are processed, the next byte to be seen
shoul d be another type-byte, the begi nning of the next
object in the stream

The nunber of bytes containing the object size
information is variable. These bytes will be terned the
S| ZE- BYTES. The first byte encountered has the follow ng
format.

A=s specifying the manner in which the size
information is encoded

BCDEFGH=t uvwxyz specifying the size, or
nurmber of bytes containing the size

The tuvwxyz val ues supply a positive binary nunber. |If

the s value is a one, the tuvwxyz val ue specifies the nunber
of bytes to foll ow which should be read and concat enated as
a binary nunber, which will then specify the size of the
object. These bytes will appear with high order bits first.
Thus, if s=1, up to 128 bytes may follow, containing the
count of the succeeding data bytes, which should certainly
be sufficient.

Since many non-atomic objects will be fairly short, the
s=0 condition is used to indicate that the 7 bits contained
in tuvwxyz specify the actual data byte count. This permits

objects of sizes up to 128 bytes to be specified using one
size-information byte. The case tuvwxyz=0000000 is
interpreted as specifying 128 bytes.

For exanple, a data object of sone non-atonic type
whi ch requires 100 (144 octal) bytes to be transmitted woul d
be sent as foll ows.

-14-

110XXXXX -- identifying a specific
non- at om ¢ obj ect
01100100 -- specifying that 100 bytes foll ow

data -- the 100 data bytes

Note that the size count does not include the
si ze-specifier byte(s) thensel ves, but does include all
succeedi ng bytes in the streamused to encode the object.

A data object requiring 20000 (47040 octal) bytes would
appear in the streamas foll ows.

110XXXXX -- identifying a specific

non- at om ¢ obj ect

10000010 -- specifying that the next 2 bytes
contain the streamlength

01001110 -- first byte of nunber 20000
00100000 -- second byte

data -- 20,000 bytes

Interpretation of the contents of the 20000 bytes in

the stream can be perforned by a nodul e which knows the
specific format of the non-atom c type specified by DEFGH in
the type-byte.

The remai nder of this section defines an initial set of
non-atonmic types, the format of their encoding, and the
semantics of their interpretation

| Non-atonmic Object: B-LBITSTR

The b-LBITSTR (Long BIT Streanm) data type is introduced
to transmit p-BITS which cannot be handl ed by a b-SBI TSTR
A b-LBI TSTR nmay be used to transnit short p-BITS as well.
Its format follows.

-15-

11000001 si ze-bytes data-bytes
ABCDEFGH

ABC=110 identifies this as a non-atonic object.

DEFGH=00001 specifies that it is a b-LBITSTR The standard
sizing information specifies the nunber of succeedi ng bytes.
Wthin the data-bytes, the first object encountered nust
decode to a p-INT. This nunber conveys the |length of the
bit streamto follow. The actual bit streambegins with the
next byte, and is left-adjusted in the byte stream For
exanple to encode *101010101010*, the follow ng b-LBI TSTR
could be used, although a b-SBI TSTR woul d be nore conpact.

11000001 -- identifies a b-LBITSTR
00000010 -- b-SINTEGER, to specify length
10001100 -- size = 2

10101010 -- first 8 data bits

10100000 -- last 4 data bits

| Non-atomic Object: B-STRUC

The b-STRUC (STRUCture) data type is used to transmt
any p-STRUC. The translation rules for converting a b-STRUC
into a printive itemare presented foll owi ng the di scussion
of b- REPEATs. The b-STRUC format appears as foll ows.

11000010 si ze-bytes data-bytes
ABCDEFGH

ABC=110 identifies this as a non-atonic type.

DEFGH=00010 specifies that the object is a b-STRUC. Wthin
the data-bytes stream objects sinmply followin order. This
inplies that the b-STRUC encoder and decoder nodul es can
sinmply nmake use of recursive calls to a standard

encoder/ decoder for processing each el enent of the b-STRUC

Note that any type of object is pernmitted as an elenment of a
b- STRUC, but the size information of the b-STRUC nust
include all bytes used to represent the el ements.

Cont ai nment of b-STRUCs within other b-STRUCs is

permitted to any reasonable level. That is, a b-STRUC nay
contain as an el ement anot her b-STRUC, which contains

anot her b-STRUC, and so on. All servers are requires to
handl e such containnment to at |east a m ni mum depth of

t hree.

Exanpl es of encoded structures appear in a later
section.

-16-

| Non-atom c Object: B-EDT

A b-EDT is the object used as the carrier for p-EDTs in
transm ssion of semantic items. It is functionally
identical to a b-STRUC, but has a different type code to
permt it to be identified and converted to a semantic item
instead of a p-STRUC. The format of a b-EDT foll ows.

11000011 si ze-bytes data-bytes
ABCDEFGH

As with all non-atonmic types, ABC=110 to identify this

as such, and DEFGH=00011 to specify a b-EDT. The objects in
the data-bytes are decoded as for b-STRUCs. However, the
first object nmust decode to a p-i NT or p-STRING and the
second to a p-INT, to conformto the format of p-EDTs.

| Non-atonmic Object: b-REPEAT

The b- REPEAT object is never translated directly into

an item It is legal only as an conponent of an encl osing

b- STRUC, b-USTRUC, b-EDT, or b-REPEAT. A b-REPEAT is used to
concisely specify a set of elenents to be treated as if they
appeared in the enclosing structure in place of the

b- REPEAT. This provides a nmechani smfor encodi ng a sequence
of identical data itens or patterns efficiently for
transm ssi on.

A comon exanple of this would be in transm ssion of

text, where line imges containing | ong sequences of spaces,
or pages containing nmultiple carriage-return, |line-feed
pairs, are often encountered. Such sequences could be
encoded as an appropriate b- REPEAT to conpact the data for
transmi ssion. The format of a b-REPEAT is as foll ows.

11000100 -- identifylng the object as a
b- REPEAT
size-bytes -- the standard non-atonic object
size information
countspec -- an object which translates to a p-INT

data -- the objects which define the pattern

The ' countspec’ object nust translate to an p-INT to
specify the nunber of times that the follow ng data pattern
shoul d be repeated in the object enclosing the b- REPEAT

-17-

The remai ning objects in the b-REPEAT constitute the

data pattern which is to be repeated. The decodi ng of the
encl osing structure will be continued as if the data pattern
obj ects appeared 'countspec’ tinmes in place of the b- REPEAT.
Zero repeat counts are pernmtted, for generality. They
cause no objects to be sinulated in the enclosing structure.

An encoder does not have to use b-REPEATs at all, if
simplicity of coding outweighs the benefits of data
conpression. In nessage services, for exanple, an encoder
mght limt itself to only conpressing long text strings. It
is inportant for conpatibility, however, to have the ability
in the decoders to handl e b- REPEATSs.

| Non-atomic Object: B-USTRUC

The b-USTRUC (Uni form Structure) object type is

provided to enabl e servers to convey the fact that a p- STRUC
being transferred contains items of only a single type. The
nmost common exanpl e woul d i nvol ve a b- USTRUC whi ch
translates to a p- STRUC of only p-CHARs, and hence may be
considered to be a p-STRING Servers nmay use this
information to assist themin decoding objects efficiently.
No server is required to generate b-USTRUCs.

The internal construction of a b-USTRUC is identical to
that of a b-STRUC, except for the type-byte. The format of a
b- USTRUC f ol | ows.

11000101 si ze-bytes data-bytes
ABCDEFGH

ABC=110 to identify a non-atonmi c object. DEFGH=00101
specifies the object as a b- USTRUC

| Non-atomic Object: B-STRING

The b- STRING object is included to permt explicit
specification of a structure as a p-STRING This

information will permt receiving servers to process the
incom ng structure nore efficiently. A b-STRINGis

formatted simlarity to a b-USTRUC, except that its type-byte
identifies the object as a b-STRI/NG The normal sizing
information is followed by a stream of bytes which are
interpreted as b-CHAR7s, Ignoring the high-order bit. The
format of a b-STRING foll ows.

11000110 si ze-bytes data-bytes
ABCDEFGH

ABC=110 to identify a non-atom c object. DEFGH=00110
specifies the object as a b- STRI NG

-18-

VI.5 -- Structure Transl ati on Rul es

A b-STRUC is translated into a p-STRUC. This is

performed by translating each object of the b-STRUC Into its
corresponding item and saving it for inclusion In the

p- STRUC bei ng generated. A b-USTRUC is handled simlarly,
but the coding prograns may utilize the information that the
resultant p-STRUC will contain itens of uniformtype. The
preferred nethod of coding p-STRINGS is to use b-USTRUCs.

If all of the elenments of the resultant p-STRUC are
p-CHARs, it is presented to the user of the decoder as a
p- STRING. A p-STRING shoul d be considered to be a synonym
for a p-STRUC containing only characters. 1t need not
necessarily exist at particular sites which would present
p- STRUCs of p-CHARs to their application prograns

The object b-REPEAT is handled in a special fashion

when encountered as an elenment. Wen this occurs, the data
pattern of the b-REPEAT is translated into a sequence of
items, and that sequence is repeated in the next higher

I evel as many tinmes as specified in the b- REPEAT.

Theref ore, b-REPEATS are legal only as elenents of a
surroundi ng b- STRUC, b-USTRUC, b-EDT, or b-REPEAT.

In encoding a p-STRUC or p-STRING for transnission, a
translator may use b- REPEATs as desired to effect data
conpression, but their use is not nandatory. Sinilarly,
b- STRINGS may be used, but are not nmandatory.

A b-EDT is translated into a p-EDT to identify it as a
carrier for a semantic item Oherwise, it is treated
identically to a b- STRUC.

VI.6 -- Translation Sunmary

The followi ng table sunmarizes the possible
transl ati ons between prinitive itens and objects.

p- | NT <--> b- LI NTEGER, b- S| NTEGER

p- STRING <--> b-STRING b-STRUC, b- USTRUC
p- STRUC <--> b-STRING b-STRUC, b-USTRUC
p-BI TS <--> b=SBI TSTR, b-LBI TSTR

p- CHAR <--> b- CHARY

p-BOOL <--> b-BOOL

p- EMPTY <--> b=EMPTY

p- XTRA <--> b- XTRA

p- EDT <--> b-EDT (all semantic itens)

- none- <--> b- PADDI NG

- hone- <--> b-REPEAT (only within structure)

Note that all semantic itens are represented as p-EDTs
whi ch al ways exi st as b-EDTs in byte-stream fornat.

-19-

V1.7 -- Structure Codi ng Exanpl es

The following streamtransmts a b- STRUC containing 3
b- SINTEGERs, with values 1, 2, and 3, representing a p- STRUC
containing three p-INTs, i.e. (1 2 3).

11000010 -- b-STRUC
00000011 -- size=3
10000001 -- b-SI NTEGER=1
10000010 -- b-SI NTEGER=2
10000011 -- b- SI NTEGER=3

The next exanple represents a b- STRUC cont ai ning the
characters X and Y, followed by the b-LI NTEGER 10,
representing a p-STRUC of 2 p-CHARs and a p-INT, i.e., ("X
"Y' 10). Note that the p-INT prevents considering this a
p- STRI NG

11000010 -- b-STRUC
00000100 -- size=4
01011000 -- b-CHAR7 ' X
01011001 -- b-CHAR7 'Y
11100001 -- b-LINTEGER
00001010 -- 10

Note that a better way to send this p-STRUC would be to
represent the integer as a b-SINTEGER, as shown bel ow.

11000010 -- b-STRUC
00000011 -- size=3
01011000 -- b-CHAR7 ' X
01011001 -- b-CHAR7 'Y
10001010 -- b-SI NTEGER=10

The next exanple shows a b-STRUC of b-CHAR7s. It is
the translation of the b-STRING "HELLO'.

11000010 -- b-STRUC
00000101 -- size=b

01001000 -- b-CHAR7 'H
01000101 -- b-CHAR7 'FE
01001100 -- b-CHAR7 'L’
01001100 -- b-CHAR7 'L’
01001111 -- b-CHAR7 ' O

This datum could al so be transnmitted as a b- STRI NG
Note that the character bytes are not necessarily b-CHARYs,
since the high-order bit is ignored.

11000110 -- b-STRI NG
00000101 -- size=b

01001000 -- 'H
01000101 -- 'E
01001100 -- "L’
01001100 -- 'L’
01001111 -- 'O

-20-

To encode a p- STRING containing 20 carriage-return
line-feed pairs, the follow ng b- STRUC cont ai ni ng a b- REPEAT
coul d be used.

11000010 -- b-STRUC

00000101 -- size=5

11000100 -- b- REPEAT

00000011 -- size=3

10010100 -- count, b-SI NTEGER=20
00001101 -- b-CHAR?7, "CR
00001010 -- b-CHAR?7, 'IF

To encode a p- STRUC of p-I1NTs, where the sequence
contains a sequence of thirty 0's preceded by a single 1
the follow ng b-STRUC coul d be used.

11000010 -- b-STRUC

00000110 -- size=6

10000001 -- b-SI NTEGER=1
11000100 -- b- REPEAT

00000010 -- size=2

10011110 -- count, b-SI NTEGER=30
10000000 -- b-SI NTEGER=0

VI1. A GENERAL DATA TRANSFER SCHEME

This section considers a possible schenme for extending
the concept of a data translator into an multi-purpose data
transfer mechani sm

The proposed environnment woul d provide a set of

primtive itens, including those enunerated herein but

ext ended as necessary to accompdate a variety of
applications. Conmunication between processes would be
defined solely in ternms of these items, and woul d
specifically avoid any consideration of the actual formats
in which the data is transferred.

A repertoire of translators woul d be provided, one of

which is the MSDTP machi nery, for use in converting items to
any of a number of transmi ssion formats. Borrowi ng a
concept fromradi o term nol ogy, each translator would be
anal ogous to a different type of nodul ation schene, to be
used to transfer data through sonme communi cati ons nedi um
Such nedia could be an eight-bit byte-oriented connection
36-bit connection, etc. and conceivably have other

di stingui shing features, such as bandw dth, cost, and del ay.
For each nmedia which a site supports, it would provide its
programmers with a nodule for perform ng the translations
required.

-21-

Certain nmedia or translators mght not handl e vari ous

itens. For exanple, the MBDTP does not handle itens which

m ght be terned p- FLOATs, p- COWLEXs, p-ARRAY, and so on. In
addition, the efficiency of various nedia for transfer of
specific items may differ drastically. MSDIP, for exanple,
transfers data frequently used in nmessage handling very
efficiently, but is relatively poor at transfer of very

| arge or deep tree structures.

Avail abl e at each site as a process or subroutine

package woulLd be a nodul e responsible for interfacing with
its counterpart at the other end of the nedia. These
nmodul es woul d use a protocol, not yet defined, to match
their capabilities, and choose a particular nedia and
transl ator, when nore than one exists, for transfer of data
itens.

Such a facility could totally insulate applications
fromneed to consider encoding formats, nachi ne differences,
and so on, as well as elinnate duplication of effort in
produci ng such facilities for every new project which
requires them In addition, as new translators or nedia are
i ntroduced, they would becorme i nmedi ately available to

exi sting users w thout reprogramm ng.

| mpl enent ati on of such a protocol should not be very
difficult or time-consuning, since it need not be very
sophi sticated in choosing the nost appropriate transfer
mechanismin initial inplementations. The systemis

i nherently upward-conpatible and easily expandabl e.

-22-

