
Network Working Group Jack Haverty (MIT)
Request for Comments: 722 Sept 1976
NIC #36806

I. ABSTRACT

 This paper addresses some issues concerned with the
design of distributed services. In particular, it is
concerned with the characteristics of the interactions,
between programs which support some service at various
network sites. The ideas presented are derived mainly from
experience with various service protocols [Reference 1]
on the ARPANET.

 A model is developed of interactions between programs.
Salient features of this model which promote and simplify
the construction of reliable, responsive services are
identified. These dualities are motivated by problems
experienced with various ARPANET protocols and in the design
and maintenance of programs which use these protocols in the
performance of some service.

 Using this model as a template, the general
architecture of one possible interaction protocol is
presented. This mechanism provides a foundation on which
protocols would be constructed for particular services,
simplifying the process of creating services which are easy
to implement and maintain, and appear reliable and
responsive to the customer. This presentation is meant to
serve as an introduction to a specific instance of such a
protocol, called the RRP, which is defined in one of the
references.

 -1-

II. OVERVIEW AND TERMINOLOGY

 This paper considers the interaction of two programs
which support some network service. It develops a model of
the interactions of a class of such applications, and
includes some thoughts on desirable goals and
characteristics of implementations. The model is derived
from a proposal [Reference 2] for mail-handling
systems. Terminology, as introduced, is highlighted by
capitalization.

 Many uses of computer networks involve communication
directly between programs, without human intervention or
monitoring. Some examples would include an advanced
mail-handling system, or any kind of multi-site data base
manager.

 Such programs will be termed SERVERs. They are the
users of some mechanism which provides the needed
communication and synchronization. The particular facility
which the servers implement will be termed a SERVICE.
Servers for any particular service may be written in several
languages, operate in various system environments on
different kinds of computers. The entity which utilizes the
service will be termed the CUSTOMER.

 Servers interact during ENCOUNTERs, which are the
periods when two servers are in communication. An encounter
begins when one server establishes a CHANNEL, a
bidirectional communication link with another server. The
interaction between servers is effected by the exchange of
information over the channel. The conventions used in such
an exchange are defined by the PROTOCOLs for the
interaction.

 The theme of this paper is a model for a particular
class of process interactions which may be used as a basis
for many possible services, where the interactions are
fairly simple. Services which fit in this category interact
in a manner which can be modeled by a REQUEST-REPLY
DISCIPLINE, which is defined herein.

 A set of guidelines and goals is developed, which
address issues relevant to ease or implementation and
reliability of operation of servers. These guidelines may
be used to assist in the formulation of protocols specific
to appropriate services.

 -2-

 Additionally, the guidelines presented may be used as a
basis for a general process interaction protocol, by
extracting the primitives and operational concepts which
would be common to a protocol constructed for virtually any
such service.

 From these ideas, a protocol which provides a
foundation can be constructed, to be extended for particular
services by adding primitives specific to each. The RRP
[Reference 4] is one such possible protocol. It
provides basic primitives to control the interaction between
servers, and a mechanism for extending the primitives to
include service-specific operations.

 The discussion here is primarily intended to explain
the basis for the design of the RRP, and to present some
general issues of design of services.

III. THE REQUEST-REPLY DISCIPLINE

 The class of services relevant to this discussion are
those whose interactions could be performed in the following
manner.

 Two servers have established a channel by some external
means. A single interaction between servers begins with one
server, called the REQUESTER, issuing a request. The server
receiving that request, the RESPONDER, issues a REPLY. The
requester interprets the reply sequence to determine whether
the request was successful, failed, or partially failed, and
takes appropriate action. Such a sequence of events is
termed an EXCHANGE. This is analogous to a subroutine call
in a simple single-processor operating system.

 This model is termed a REQUEST-REPLY DISCIPLINE of
program interaction. It should be noted that this is only a
model of program behavior, and does not necessarily exclude
services which require, for example, some measure of
pipelining of requests for efficiency in long-delay
situation;. In fact, most network services would require
such measures, put their interactions can still be reduced
to the request-reply model.

 At any time, one of the partners is in control of the
interaction, and is termed the MASTER of the interaction.
The other partner is called the SLAVE. In the simplest
cases, the requester is always the master, although this is
not always true in particular implementations, such as the
RRP [Reference 4].

 -3-

IV. CHARACTERISTICS OF AN INTERACTION MECHANISM

 The following set of characteristics desirable in an
interaction mechanism is the result of experience with
program communication in various ARPANET applications, such
as message services, file transfer, Datacomputer, and remote
job entry applications.

 In attempting to produce such systems, several
qualities recurred which would be desirable in the
substructure upon which the systems are built. These
characteristics would promote ease of writing and debugging
servers, maintaining reliability, and providing services
which are responsive to customer needs, while avoiding
disruptions of service.

 The qualities desired in the interaction mechanism are
presented along with a discussion of the effects which they
are intended to produce in the associated services. It must
be emphasized that this discussion is related to a class of
simple services, and might not be appropriate for more
complex applications.

 1/ Servers must be able to transfer data in a precise
 fashion, retaining the structure and semantic
 meaning of the data, despite the dissimilarities of
 the computer systems in which they function.

 2/ Synchronization and timing problems due to the
 characteristics of the communications link must be
 isolated and handled separately from any which
 might be characteristic of the service itself.

 3/ Since services may wish to provide expanded
 facilities as they are used and developed, a
 mechanism must be included to enable the service
 protocol to evolve.

 4/ Since various programs which act as servers may
 undergo simultaneous development, care must be
 taken to insure that servers with different
 capabilities interact reliably, maintaining at
 least the same level of service as existed
 previously.

 5/ The mechanisms for extending the facilities must
 avoid requiring servers to be modified when new
 capabilities are introduced, but not impede
 progress by maintainers who are anxious to provide
 a new or experimental service.

 -4-

 These qualities may be placed in three categories, data
precision (1), process synchronization (2), and service
enhancement (3, 4, 5). Each will be discussed separately in
the following sections. The significance of each quality
and its effect on the associated service characteristics
will be included, with some references to related problems
with current and past services.

 Since these considerations are common to many possible
services, it is appropriate for the interaction protocol to
include them within its machinery as much as possible. This
permits services to be implemented which, if carefully
designed, inherit these properties from the interaction
substrate.

V. PRECISE DATA TRANSFER

 Precision in data transfer permits semantic and
structural information which exists in the sender’s instance
of a datum to be reproduced in the receiver’s image of the
datum, even though it may be represented in the systems
involved in entirely different fashions.

 For programs to provide powerful, reliable
capabilities, they must be able to interact using data which
is meaningful to the particular service involved. The
interaction mechanism must permit services to define their
own relevant data types, and transfer such items efficiently
and precisely. This facility provides a ’standard’ for data,
permitting the service’s designers to concentrate on
higher-level issues of concern to the service itself.

 Data of a given type should be recognizable as such
without need for context. The mechanism should also permit
new data types to be handled by older servers without error,
even though they cannot interpret the semantics of the new
data.

 These characteristic permits services to be designed in
terms of the abstract data they need to function, without
continued detailed concern for the particular formats in
which it is represented within various machines.

 For example, servers may need to transfer a datum
identifying a particular date, which may be represented
internally within systems in different forms. The data
transfer mechanism should be capable of transferring such a
datum as a date per se, rather than a strict pattern or bits
or characters.

 -5-

 For example, in current FTP-based mail systems,
messages often contain information with significant semantic
meaning, which is lost or obscured when transferred between
sites. An example might be a file specification, which
effectively loses all identity as such when translated into
a simple character stream. People can usually recognize
such streams as file names, but it is often extremely
difficult, time-consuming, and inefficient to construct a
program to do so reliably. As a result, services which
should be easy to provide to the customer, such as automatic
retrieval of relevant files, become difficult and
unreliable.

 Some success has been achieved in handling certain
data, such as dates and times, by defining a particular
character pattern which, if seen in a particular context,
can be recognized as a date or time. Each of these cases
has been done on an individual basis, by defining a format
for the individual data of concern. Generally, the format
depends to some extent on the datum occurring within a
particular context, and is not unique enough to be
identifiable outside of that context.

 A particular service can achieve data precision by
meticulous specification of the protocols by which data is
transferred. This need is widespread enough, however, that
it is appropriate to consider inclusion of a facility to
provide data precision within the interaction mechanism
itself.

 The major effect of this would be to facilitate the
design of reliable, responsive services, by relieving the
service’s designers from the need to consider very low-level
details of data representation, which are usually the least
interesting, but highly critical, aspects of the design. By
isolating the data transfer mechanism, thIs architecture
also promotes modularity or implementations, which can
reduce the cost and time needed to implement or modify
services.

VI. PROCESS SYNCHRONIZATION

 A major source of problems in many services involved
synchronization of server; interacting over a relatively
low-bandwidth, high-delay communications link.

 Interactions in most services involve issuing a command
and waiting for a response. The number of responses which
can be elicited by a given command often varies, and there
is usually no way to determine if all replies have arrived.
Programs can easily issue a request before the responses to
a previous request have completed, and get out of
synchronization in a response is incorrectly matched to a
request. Each server program must be meticulously designed
to be capable of recovering if an unexpected reply arrives
after a subsequent command is issued.

 -6-

 Note that, for reliable operation, it is always
necessary that each response cause a reply to occur, at
least in the sense that the request ts confirmed at some
point. No service should perform a critical operation, such
as deleting a file, which depends on the success of a
previous request unless it has been confirmed. Requests in
current protocols which do not appear to cause a reply may
be viewed as confirmed later when a subsequent request is
acknowledged, while such protocols work, they are more
opaque than desirable, and consequently more difficult to
implement.

 These characteristics of protocols have often resulted
in implementation of ad hoc methods for interaction, such as
timeouts or sufficient length to assure correctness in an
acceptably high percentage of situations. Often this has
required careful tuning of programs as experience in using a
protocol shows which commands are most likely to cause
problems. Such methods generally result in a service which
is less responsive, powerful, or efficient than desirable,
and expensive to build and maintain.

 Additionally, protocol specifications for services have
often been incomplete, in that an enumeration of the
responses which may occur for a given command is inaccurate
or non-existent. This greatly complicates the task of the
programmer trying to construct an intelligent server. In
most cases, servers are slowly improved over time as
experience shows which responses are common in each
instance.

 The synchronization problems mentioned above are in
addition to those which naturally occur as part of the
service operation. Thus, problems of synchronization may
be split into two classes, those inherent in the service,
and those associated with the interaction mechanism itself.

 Construction of reliable, responsive servers can be
assisted by careful design of the interaction mechanism and
protocols. An unambiguous, completely specified mapping
between commands and responses is desirable.
Synchronization considerations of the two types can be
attacked separately. An interaction mechanism which handles
its own synchronization can be provided as a base for
service’ designers to use, relieving them of considerations
of the low-level, protocol-derived problems, by providing
primitives which encourage the design of reliable services.

 To achieve a reasonable effective bandwidth, it is
usually desirable to permit interacting programs to operate
in a full-duplex fashion. Significant amounts of data are
often in transit at any time. This magnifies the problems
associated with interaction by introducing parallelism. The
interaction mechanism can also be structured to provide ways
of handling these problems, and to provide a basis on which
servers which exploit parallelism can be constructed.

 -7-

 Many of these problems are too complex to warrant their
consideration in any but the most active services. As a
result, services are often constructed which avoid
problems by inefficiencies in their operation, as mentioned
above. Provision of an interaction mechanism and primitives
for use by such services would promote efficiency interaction
even by simple services which do not have the resources to
consider all the problems in detail.

VII. SERVICE ENHANCEMENT

 When particular programs implementing a service are
undergoing development simultaneously by several
organizations, or are maintained at many distributed sites.
many problems can develop concerning the compatibility of
dissimilar servers.

 This situation occurs in the initial phase of
implementing a service, as well as whenever the protocols
are modified to fix problems or expand the service.
Virtually every interaction protocol is modified from time
to time to add new capabilities. Two particular examples
arc the TELNET protocol and mail header formats.

 In most cases, the basic protocol had no facility for
implementing changes in an invisible fashion. This has had
several consequences.

 First, it is very difficult to change a protocol unless
the majority of concerned maintainers are interested in the
changes and therefore willing to exert effort to change the
programs involved. This situation has occurred in previous
cases because any change necessarily impacts all servers.
The services involved therefore often stagnate, and it
becomes inappropriately difficult to provide a customer with
a seemingly simple enhancement.

 Second, when protocols change by will of the majority,
existing servers often stop working or behave erratically
which they suddenly find their partner speaking a new
language. This is equally disconcerting to the service
customer, as well as annoying to the maintainers of the
servers at the various sites affected.

 These problems can be easily avoided, or at least
significantly reduced, by careful design of the interaction
protocols. In particular, the interaction mechanism itself
can be structured to avoid the problem entirely, leaving
only those problems associated with the particular service
operations themselves.

 The interaction machinery should be structured so that
the mechanisms of the interaction substrate itself may be
improved or expanded in a fashion which is absolutely
invisible to current servers.

 -8-

 1/ No server should be required to implement a change
 which is unimportant to its customers.

 2/ No server should be prevented from utilizing a new
 facility when interacting with a willing partner.

 3/ Service should not be degraded in any way when a
 new protocol facility is made available.

 In cases where a single service is provided by
different server programs at many sites, it is desirable for
the various sites to be able to participate at a level
appropriate to them. A new server program should be able to
participate quickly, using only simple mechanisms of the
protocol, and evolve into more advanced, powerful, or
efficient interaction as desired. Sites wishing to utilize
advanced or experimental features must be allowed to do so
without imposing implementation of such features on others.
Conversely, sites wishing to participate in a minimal
fashion must not prevent others from using advanced
features. In all cases, the various servers must be capable
of continued interaction at the highest level supported by
both.

 The goal is an evolving system which maintains
reliability as well as both upward and downward
compatibility. The protocol itself should have these
characteristics, and it should provide the mechanisms to
service interaction protocols to be defined which
inherit these qualities.

VIII. STRUCTURING AN INTERACTION MECHANISM

 The qualities presented previously should provide at
least a starting point for implementation of services which
avoid the problems mentioned. The rest of this paper
addresses issues of a particular possible architecture of an
interaction mechanism.

 The design architecture splits the service-specific
conventions from those of the interaction per se. An
interaction protocol is provided which implements the
machinery of the request-reply model, and includes handling
of the problems of data precision, synchronization, and
enhancement. This protocol is not specific to any service,
but rather provides primitives, in the form of
service-designed requests and replies, on which a particular
service protocol is built.

 An actual implementation for a particular service could
merge the code of the interaction protocol with the service
itself, or the interaction protocol could be provided as a
’service’ whose customer is the service being implemented.

 -9-

 The goals of this design architecture follow.

 1/ Provision of a general interaction mechanism to be
 used by services which follow a request-reply
 discipline. Services would design their protocols
 using the primitives of the mechanism as a
 foundation.

 2/ INTERACTION MECHANISM EXTENSIBILITY. The
 interaction mechanism may be expanded as desired
 without impacting on existing servers unless they
 wish to use the new features.

 3/ SERVER EXTENSIBILITY. Servers can be implemented
 using the most basic primitives. Implementations
 may later be extended to utilize additional
 capabilities to negate some of the inefficiency
 inherent in a strict request-reply structure.

 4/ SERVICE EXTENSIBILITY. The primitives permit a
 service to be expanded as desired without impacting
 on existing servers in any way unless they wish to
 use the new features.

 5/ SERVER COMPATIBILITY. Within the set of servers of
 a given application, it is possible to have
 different servers operating at different levels of
 sophistication, and still maintain the ability for
 any pair of servers to interact successfully.

 These goals involve two basic areas of design. First,
the interaction mechanism itself is designed to meet the
goals. Secondly, guidelines for structure of the particular
service’ protocols are necessary, in order for it to inherit
the qualities needed to meet the goals.

IX. PARTITIONING THE PROBLEM

 In defining the interaction mechanism itself, the
problem may be simplified by considering two areas of
concern separately.

 1/ The characteristics and format of the data conveyed
 by the channel may be defined.

 2/ The conventions used to define the interaction may
 be defined, in terms of the available data
 supported by the channel.

 -10-

 For purposes of this paper, the data repertoire and
characteristics of the channel are assumed to be as
described in [Reference 3] and summarized in an
appendix. Discussions of the interaction between servers
will use only the abstract concepts of primitive and
semantic data items, to isolate the issues of interaction
from those of data formats and communication details, and
therefore simplify the problem.

 Additionally, actual implementation of a mechanism
following the ideas presented here can be accomplished in a
modular fashion, isolating code which is concerned with the
channel itself from code concerned with the interaction
behavior.

 The interaction mechanism provides primitives to the
service’ designer which are likewise defined in terms of the
data items available. Service designers are encouraged, but
not required, to define interactions in terms of these data
only.

X. THE PRIMITIVES

 The interaction mechanism assumes the existence of a
channel [Reference 3] between two servers. Two
new semantic data types are defined to implement the
interaction. These are, unsurprisingly, called CONTROL
REQUESTs and CONTROL REPLYs. Each of these data items
contains at least two elements.

 1/ The TYPE element identifies a particular type of
 request or reply.

 2/ The SEQUENCE element is used to match replies to
 their corresponding request.

 Other elements may appear. Their interpretation
depends on the particular type of request or reply in which
they appear.

 The interaction protocol itself is defined in terms of
control requests and control replies. A very small number
of request and reply types is defined as the minimal
implementation level. Additional request and reply types
are also defined, for use by more advanced servers, to
Provide additional capabilities to the service, or simply to
increase efficiency of operation.

 -11-

 Two additional data items are defined, called USER
REQUESTs and USER REPLYs. These are structured like
requests and replies, but the various types are defined by
the service itself, to implement the primitives needed in
its operation.

 Control and user requests and replies are generically
referenced as simply REQUESTs and REPLYs.

 The protocol of the interaction has several
characteristics which form the basis of the request-reply
model, and attempt to meet the goals mentioned previously.

 1/ Every request elicits a reply.

 2/ Every reply is associated unambiguously with a
 previous request.

 3/ Each server always knows the state of the
 interaction, such as whether or not more data is
 expected from its partner.

 4/ The protocol definition includes enumeration of the
 possible responses for each request. Service
 protocols are encouraged to do likewise for user
 requests and user replies.

 5/ Servers who receive requests of unknown type issue
 a response which effectively refuses the request.
 Servers attempting to use advanced features of a
 protocol ’rephrase’ their requests in simpler terms
 where possible to maintain the previous level of
 service.

 The minimal implementation will support interaction
almost exactly along the lines of the request-reply
discipline.

 Extensions to the minimal configuration are defined for
two reasons. First, the strict request-reply discipline
model is inefficient for use in high-volume situations
because of the delays involved. Several extensions are
defined to cope with this problem. Thus, although the
interaction is based on such a discipline, it does not
necessarily implement the interaction in that fashion.
Second, additional primitives are defined which provide some
standard process synchronization operations, for use by the
services.

 The protocol architecture presented here is defined in
detail in an associated document. [Reference 4]

 -12-

Appendix I -- The Channel

 The following discussion is a summary of the ideas
presented in [Reference 3], which should be
consulted for further detail.

 The communication link between two servers is termed a
CHANNEL. Channels provide bidirectional communications
capabilities, and will usually be full-duplex. The programs
involved establish the channel as their individual
applications require, using some form of initial connection
protocol.

 The channel acts as an interface between servers. It
conveys abstract data items whose semantics are understood
by the programmers involved, such as INTEGERs, STRINGs, FILE
PATH NAMEs, and so on. Because the users of the channel may
operate in dissimilar computer environments, their
communication is defined only in terms of such abstract data
items, which are the atomic units of information carried on
the channel. The program implementing the channel at each
site converts the data between an encoded transmission
format appropriate to the particular communication link
involved, and whatever internal representational form is
appropriate in the computer itself.

 The channel protocol provides a mechanism for
definition of various types of data items of semantic value
for the particular service concerned, for example, possibly,
user-name, set, syllable, sentence, and other data items of
interest to the particular service. The channel provides a
mechanism for transportation of such user-defined data from
host to host.

 The channel may actually be implemented by one or more
separate encoding mechanisms which would be used in
different conditions, initially, the channel machinery would
provide a rudimentary facility based on a single mechanism
such as the MSDTP [Reference 3].

 The mechanism is not dependent on the existence of
actual line-style network connections but will operate in
other environments, such as a message-oriented (as opposed
to connection-oriented) communications architecture, and in
fact is more naturally structured for such an environment.

 -13-

XI. REFERENCES

[1] Network Information Center, ARPANET Protocol Handbook,
April, 1976.

[2] Broos, Haverty, Vezza, Message Services Protocol
proposal, December, 1975.

[3] Haverty, Jack, Message Services Data Transfer Protocol,
NWG RFC 713, NIC 34729, April, 1976.

[4] Haverty, Jack, RRP, A Process Communication Protocol for
Request-reply Disciplines, NWG RFC 723, NIC 36807, (to
be issued)

 -14-

