I nt ernet Engi neering Task Force (I ETF) K. Mriarty, Ed.
Request for Comments: 7292 EMC
Cat egory: | nformational M Nystrom
| SSN: 2070- 1721 M crosoft Corporation
S. Parki nson

A. Rusch

M Scott

RSA

July 2014

PKCS #12: Personal |nformation Exchange Syntax v1.1
Abst r act

PKCS #12 v1.1 describes a transfer syntax for personal identity

i nformation, including private keys, certificates, m scellaneous
secrets, and extensions. Machines, applications, browsers, |nternet
ki osks, and so on, that support this standard will allow a user to

i mport, export, and exercise a single set of personal identity
information. This standard supports direct transfer of persona

i nformati on under several privacy and integrity nodes.

Thi s docunent represents a republication of PKCS #12 v1.1 from RSA
Laboratories’ Public Key Cryptography Standard (PKCS) series. By
publishing this RFC, change control is transferred to the |ETF.

| ESG Not e
The | ESG t hanks RSA Laboratories for transferring change control to
the I ETF. Enhancenents to this specification that preserve backward

conmpatibility are expected in an upcom ng | ETF Standards Track
docunent .

Moriarty, et al. I nf or mat i onal [Page 1]

RFC 7292 PKCS12 July 2014

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for informational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the | ESG are a candi date for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc7292

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunent rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Moriarty, et al. I nf or mat i onal [Page 2]

RFC 7292 PKCS12 July 2014

Tabl e of Contents

1. Introduction . . . 4
1.1. Changes fron1PKCS #12 Vér5|on 1 . 4
2. Definitions and Notation - 5
3. Overview . . 7
3.1. Exchange Nbdes 7
3.2. Mbdde Choice Policies 8
3.3. Trusted Public Keys . . 8
3.4. The AuthenticatedSafe . Ce e e 9
4. PFX PDU Syntax . . K¢
4.1. The AuthentlcatedSafe Type e
4.2. The SafeBag Type 12
4.2.1. The KeyBag Type . . T
4.2.2. The PKCSBShroudedKeyBag Type e e 13
4.2.3. The CertBag Type <
4.2.4. The CRLBag Type 14
4.2.5. The SecretBag Type 14
4.2.6. The SafeContents Type e

5. Using PFX PDUs . . . T <
5.1. Creating PFX PDUB e £
5.2. Inporting Keys, etc., froma PFXPDU 16
6. Security Considerations 16
7. Normative References . . Y
Appendi x A. Message Authentlcatlon Codes (MACs) .o e
Appendi x B. Deriving Keys and |Vs from Passwords and Salt ... 19
B.1. Password Formatting 19
B.2. General Method .. 20
B.3. More on the ID Byte . . . e e e e e 22
B.4. Keys for Password Integrlty Nbde .o e .. 22
Appendi x C. Keys and IVs for Password Privacy Nbde e e ... 22
Appendix D. ASN. 1 Module . . . -
Appendi x E. Intellectual Property Cbnsiderations 28
Appendi x F. Acknow edgrnents 28
Appendix G About PKCS . 28

Moriarty, et al. I nf or mat i onal [Page 3]

RFC 7292 PKCS12 July 2014

1. Introduction

Thi s docunent represents a republication of PKCS #12 v1.1 from RSA
Laboratories’ Public Key Cryptography Standard (PKCS) series. By
publishing this RFC, change control is transferred to the IETF. RSA
and its parent conpany EMC reserve the right to continue publishing
and distributing PKCS #12 v1.1 and its predecessors.

The body of this docunent, except for the Security Considerations
section, is taken directly fromthe PKCS #12 v1.1 specification. The
list of references and the in-line cites have been updated or added
where appropriate to cite the nost current docunents in addition to
those current at the original publication of PKCS #12 v1.1.

This standard describes a transfer syntax for personal identity

i nformation, including private keys, certificates, m scell aneous
secrets, and extensions. Machines, applications, browsers, |nternet
ki osks, and so on, that support this standard will allow a user to

i mport, export, and exercise a single set of personal identity

i nformation.

This standard supports direct transfer of personal information under
several privacy and integrity nodes. The nost secure of the privacy
and integrity nodes require the source and destination platforns to
have trusted public/private key pairs usable for digital signatures
and encryption, respectively. The standard al so supports | ower-
security, password-based privacy and integrity nodes for those cases
where trusted public/private key pairs are not avail abl e.

Thi s standard shoul d be anenable to both software and hardware

i npl enentations. Hardware inplenentations offer physical security in
tanper-resistant tokens such as smart cards and Personal Conputer
Memory Card International Association (PCMCIA) devices.

This standard can be viewed as building on PKCS #8 [15] [24] by
i ncluding essential but ancillary identity infornmation along with
private keys and by instituting higher security through public-key
privacy and integrity nodes.

1.1. Changes from PKCS #12 Version 1

This docunent transfers PKCS #12 [16] into the | ETF and i ncl udes sone
m nor changes fromthe authors for this subm ssion

0 Addition of hash al gorithmns.

0 Incorporation of Technical Corrigendum #1, which makes some m nor
corrections to the ASN. 1 syntax.

Moriarty, et al. I nf or mat i onal [Page 4]

RFC 7292 PKCS12 July 2014

0 Renoved (fromthe ASN. 1 syntax) 1024 as an exanple of the
iteration count.

0 Addition of a recommendation that the technique in Appendi x B no
| onger be used for a specific node (password privacy node) and
that techni ques from PKCS#5 v2.1 be used instead.

0 Addition of comments and minor corrections to the ASN.1 nodule in
Appendi x C

0 Renoval of the export regulations discussion in the fornmer
Appendi x D

0 Replacenent of RSAwith EMCin the "Intellectual Property
Consi der ati ons"

o Many changes and additions to the references.

o A reference was added to NI ST SP 800-132 for its reconmmendati ons
on selection of the iteration count value for password integrity
(part of dictionary-attack resistance).

o Comment included on acronym expansi on of PFX: The acronymis
soneti nes expanded as Personal |nformati on Exchange

o In Appendix B, the phrase "no | onger recomended" was changed to
"not reconmmended" in the followi ng sentence to address a question
and nake it clear the nethod was not reconmended: "Note that this
met hod for password privacy node is no | onger recomended. "

2. Definitions and Notation

Al gorithmdentifier: An ASN 1 type that identifies an algorithm (by
an object identifier) and any associ ated paraneters. This type is
defined in [8].

ASN. 1: Abstract Syntax Notation One, as defined in [2], [3], [4],
and [5].

Attribute: An ASN. 1 type that identifies an attribute type (by an
object identifier) and an associated attribute value. The ASN. 1
type Attribute is defined in [7].

Certificate: A digitally signed data unit binding a public key to

identity information. A specific format for identity certificates
is defined in [8]. Another format is described in [17].

Moriarty, et al. I nf or mat i onal [Page 5]

RFC 7292 PKCS12 July 2014

Certificate Revocation List (CRL): A digitally signed list of
certificates that should no | onger be honored, having been revoked
by the issuers or a higher authority. One format for CRLs is
defined in [8].

Contentlnfo: An ASN. 1 type used to hold data that nay have been

cryptographically protected. This type is defined in [21] and
[14].

DER: Distingui shed Encoding Rul es, as defined in [6].

Destination platform The ultimate, final target platformfor the
personal information originating fromthe source platform Even
though certain information nay be transported fromthe destination
platformto the source platform the ultimte target for persona
information is always called the destination platform

Digestinfo: An ASN. 1 type used to hold a nessage digest. This type
is defined in [21] and [14].

Encryption Key Pair (DestEncK): A public/private key pair used for
t he public-key privacy node of this standard. The public half is
cal | ed PDest EncK (TPDest EncK when enphasi zing that the public key
is "trusted"), and the private half is called VDest EnckK

Export time: The tine that a user reads personal information froma
source platformand transfornms the information into an
i nteroperabl e, secure Protocol Data Unit (PDU).

Inmport tinme: The time that a user wites personal information froma
Safe PDU to a destination platform

Message Authentication Code (MAC): A type of collision-resistant,
"unpredi ctabl e" function of a nessage and a secret key. MACs are
used for data authentication and are akin to secret-key digita
signatures in nmany respects.

bject ldentifier: A sequence of integers that uniquely identifies
an associ ated data object in a global nane space adm nistrated by
a hierarchy of naming authorities. This is a primtive data type
in ASN. 1.

PFX: The top-1evel exchange PDU defined in this standard. The
acronymis sonetines expanded as Personal |nformation Exchange

Moriarty, et al. I nf or mat i onal [Page 6]

RFC 7292 PKCS12 July 2014

Platform A conbination of nmachine, operating system and
applications software within which the user exercises persona
identity. An application, in this context, is software that uses
personal information. Two platforms differ if their machine types
differ or if their applications software differs. There is at
| east one platformper user in nulti-user systens.

Protocol Data Unit (PDU): A sequence of bits in nachine-independent
format constituting a nmessage in a protocol

Shroudi ng: Encryption as applied to private keys, possibly in
concert with a policy that prevents the plaintext of the key from
ever being visible beyond a certain, well-defined interface.

Signature Key Pair (SrcSigK): A platformspecific signature key pair
used for the public-key integrity nmode of this standard. The
public half is called PSrcSigK (TPSrcSi gK when enphasi zi ng t hat
the public key is "trusted"), and the private half is called
VSr cSi gK

Source platform The origin platformof the personal infornmation
ultimately intended for the destination platform Even though
certain information may be transported fromthe destination
platformto the source platform the platformthat is the origin
of personal information is always called the source platform

3. Overview
3.1. Exchange Modes

There are four conbinations of privacy nodes and integrity nodes.

The privacy nodes use encryption to protect personal information from
exposure, and the integrity nodes protect personal information from
tanpering. Wthout protection fromtanpering, an adversary could
concei vably substitute invalid information for the user’s persona

i nformati on wi thout the user being aware of the substitution

The following are the privacy nodes
0 Public-key privacy node: Personal information is envel oped on the
source platformusing a trusted encryption public key of a known

destination platform (see Section 3.3). The envel ope is opened
with the corresponding private key.

Moriarty, et al. I nf or mat i onal [Page 7]

RFC 7292 PKCS12 July 2014

o Password privacy node: Personal information is encrypted with a
symretric key derived froma user nanme and a privacy password, as

in [22] and [13]. |If password integrity node is used as well, the
privacy password and the integrity password nmay or may not be the
sane.

The following are the integrity nopdes:

0 Public-key integrity node: Integrity is guaranteed through a
digital signature on the contents of the PFX PDU, which is
produced using the source platfornmis private signature key. The
signature is verified on the destination platformby using the
correspondi ng public key (see Section 3.4).

0 Password integrity node: Integrity is guaranteed through a Message
Aut henti cati on Code (MAC) derived froma secret integrity
password. |If password privacy node is used as well, the privacy
password and the integrity password nay or may not be the sane.

3.2. Mde Choice Policies

Al'l conbinations of the privacy and integrity nodes are pernmitted in
this standard. O course, good security policy suggests that certain
practices be avoided, e.g., it can be unwise to transport private
keys wi thout physical protection when using password privacy node or
when usi ng public-key privacy node with weak symetric encryption

In general, the public-key nodes for both privacy and integrity are
preferable to the password nodes (froma security viewpoint).
However, it is not always possible to use the public-key nodes. For
exanple, it nmay not be known at export tinme what the destination
platformis; if this is the case, then the use of the public-key
privacy node is precluded.

3.3. Trusted Public Keys

Asymretric key pairs may be used in this standard in two ways:
public-key privacy node and public-key integrity node. For public-
key privacy node, an encryption key pair is required; for public-key
integrity node, a signature key pair is required

It may be appropriate for the keys discussed in this section to be

pl atform speci fic keys dedicated solely for the purpose of
transporting a user’s personal information. Wether or not that is
the case, though, the keys discussed here should not be confused with
the user’s personal keys that the user wi shes to transport from one
platformto another. (These latter keys are stored within the PDU.)

Moriarty, et al. I nf or mat i onal [Page 8]

RFC 7292 PKCS12 July 2014

For public-key privacy node, the private key fromthe encryption key

pair is kept on the destination platform where it is ultimately used
to open a private envel ope. The corresponding trusted public key is

cal l ed TPDest EncK.

For public-key integrity node, the private key fromthe signature
pair is kept on the source platform where it is used to sign
personal information. The corresponding trusted public key is called
TPSr cSi gK

For both uses of public/private key pairs, the public key fromthe
key pair nmust be transported to the other platformsuch that it is
trusted to have originated at the correct platform Judgi ng whet her
or not a public key is trusted in this sense nust ultimately be left
to the user. There are a variety of nethods for ensuring that a
public key is trusted.

The processes of inmbuing keys with trust and of verifying
trustworthi ness of keys are not discussed further in this docunent.
Whenever asymmetric keys are discussed in what follows, the public
keys are assuned to be trusted.

3.4. The AuthenticatedSafe

Each conpliant platformshall be able to inport and export
Aut hent i cat edSaf e PDUs wrapped in PFX PDUs.

For integrity, the AuthenticatedSafe is either signed (if public-key
integrity node is used) or MACed (if password integrity node i s used)
to produce a PFX PDU. |f the AuthenticatedSafe is signed, then it is
acconpani ed by a digital signature, which was produced on the source
platformwith a private signature key, VSrcSigK, corresponding to a
trusted public signature key, TPSrcSigK TPSrcSi gK rmust acconpany
the PFX to the destination platform where the user can verify the
trust in the key and can verify the signature on the

Aut henti catedSafe. |f the AuthenticatedSafe is MACed, then it is
acconpani ed by a MAC conputed froma secret integrity password, salt
bits, an iteration count, and the contents of the AuthenticatedSafe.

The Aut henticatedSafe itself consists of a sequence of Contentlnfo
val ues, sone of which may consist of plaintext (data), and others
that may either be envel oped (if public-key privacy node is used) or
encrypted (if password privacy node is used). |If the contents are
envel oped, then they are encrypted with a symmetric ci pher under a
freshly generated key, which is in turn encrypted with RSA asynmetric
encryption. The RSA public key used to encrypt the symetric key is
cal | ed TPDest EncK and corresponds to an RSA private key, VDestEncK
on the destination platform TPDest EncK needs to be trusted by the

Moriarty, et al. I nf or mat i onal [Page 9]

RFC 7292 PKCS12 July 2014

user when it is used at export tine. |If the contents are encrypted,
then they are encrypted with a symetric ci pher under a key derived
froma secret privacy password, salt bits, and an iteration counter

Each Contentlnfo contains an arbitrary collection of private keys,
PKCS #8-shrouded private keys, certificates, CRLs, or opaque data
objects, at the user’'s discretion, stored in values of type

Saf eCont ent s.

The raison d etre for the unencrypted option is that sone governments
restrict certain uses of cryptography. Having several parts in an
Aut hent i cat edSaf e keeps inplenenters’ options open. For exanple, it
may be the case that strong cryptography can be used to make PKCS

#8- shrouded keys, but then these shrouded keys should not be further
encrypted, because super-encryption can linit a product’s
exportability. The nmulti-part AuthenticatedSafe design pernits this
possibility.

Around the AuthenticatedSafe is the integrity-node wapper, which
protects the entire contents of the AuthenticatedSafe (including
unencrypted parts, if they are present). This is the reverse of the
wr appi ng order in many protocols, in which privacy is the outernost
protection. This latter, nore-conmon w appi ng order avoids
signatures on encrypted data, which are undesirabl e under certain

ci rcunst ances; however, these circunstances do not apply to this
document, and it is therefore preferable to protect the integrity of
as nmuch informati on as possible.

4. PFX PDU Synt ax
This format corresponds to the data nodel presented above, with
wrappers for privacy and integrity. This section nakes free
reference to PKCS #7 [14] [21] and assunes the reader is famliar
with terns defined in that docunent.

Al'l nodes of direct exchange use the sane PDU format. ASN 1 and BER-
encodi ng ensure pl atform i ndependence.

This standard has one ASN. 1 export: PFX. This is the outer integrity
wr apper. Instances of PFX contain:

1. A version indicator. The version shall be v3 for this version of
t his docunent.

2. A PKCS #7 Contentlnfo, whose contentType is signedData in public-
key integrity node and data in password integrity node.

Moriarty, et al. I nf or mat i onal [Page 10]

RFC 7292 PKCS12 July 2014

3. An optional instance of MacData, present only in password
integrity. This object, if present, contains a PKCS #7
Di gest I nfo, which holds the MAC value, a macSalt, and an
iterationCount. As described in Appendix B, the MAC key is
derived fromthe password, the macSalt, and the iterationCount;
as described in Section 5, the MAC is conputed fromthe authSafe
val ue and the MAC key via HVAC [11] [20]. The password and the
MAC key are not actually present anywhere in the PFX. The salt
and (to a certain extent) the iteration count thwarts dictionary
attacks against the integrity password. See N ST Speci al
Publ i cati on 800-132 [12] about how to choose a reasonabl e val ue
for the iteration count.

PFEX :: = SEQUENCE ({
ver sion I NTEGER {v3(3)}(Vv3,...),
aut hSaf e Cont ent | nf o,
macDat a MacDat a OPTI ONAL
}
MacDat a :: = SEQUENCE ({
nmac Di gest I nfo,
macSal t OCTET STRI NG,

iterations | NTEGER DEFAULT 1
-- Note: The default is for historical reasons and its
-- use i s deprecated.

4.1. The AuthenticatedSafe Type

As nentioned, the contentType field of authSafe shall be of type data
or signedData. The content field of the authSafe shall, either
directly (data case) or indirectly (signedbata case), contain a BER-
encoded val ue of type AuthenticatedSafe.

Aut henti catedSafe ::= SEQUENCE OF Contentlnfo
-- Data if unencrypted
-- EncryptedData if password-encrypted
-- Envel opedData if public key-encrypted

An Aut henti cat edSaf e contai ns a sequence of Contentlnfo values. The
content field of these Contentlnfo values contains either plaintext,
encrypted, or envel oped data. |In the case of encrypted or envel oped
data, the plaintext of the data holds the BER-encodi ng of an instance
of SafeContents. Section 5.1 of this docunent describes the
construction of values of type AuthenticatedSafe in nore detail

Moriarty, et al. I nf or mat i onal [Page 11]

RFC 7292 PKCS12 July 2014

4.2. The SafeBag Type

The Saf eContents type is made up of SafeBags. Each SafeBag hol ds one
pi ece of information -- a key, a certificate, etc. -- which is
identified by an object identifier.

Saf eContents ::= SEQUENCE OF Saf eBag

Saf eBag ::= SEQUENCE {
bagl d BAG TYPE. & d ({PKCS12BagSet})
bagVval ue [0] EXPLICIT BAG TYPE. &Type({ PKCS12BagSet } { @agl d}),
bagAttri butes SET OF PKCS12Attri bute OPTI ONAL

}

PKCS12Attri bute ::= SEQUENCE {

attrid ATTRI BUTE. & d ({PKCS12Attr Set}),
attrVal ues SET OF ATTRI BUTE. &Type ({PKCS12AttrSet}{@ttrld})
} -- This type is conpatible with the X. 500 type "Attribute’

PKCS12Attr Set ATTRI BUTE :: = {
friendlyName | -- from PKCS #9 [23]
| ocal Keyl d, -- from PKCS #9

-- Oher attributes are all owed

The optional bagAttributes field allows users to assign ni cknames and
identifiers to keys, etc., and permts visual tools to display
meani ngf ul strings of some sort to the user.

Si x types of SafeBags are defined in this version of this docunent:
bagt ypes OBJECT | DENTIFIER ::= {pkcs-12 10 1}
BAG TYPE ::= TYPE-| DENTI FI ER

keyBag BAG TYPE :: =

{KeyBag | DENTI FI ED BY {bagtypes 1}}
pkcs8Shr oudedKeyBag BAG TYPE :: =

{ PKCS8Shr oudedKeyBag | DENTI FI ED BY {bagtypes 2}}
certBag BAG TYPE :: =

{CertBag | DENTI FI ED BY {bagtypes 3}}
crl Bag BAG TYPE :: =

{CRLBag | DENTI FI ED BY {bagtypes 4}}
secret Bag BAG TYPE :: =

{SecretBag | DENTI FI ED BY {bagtypes 5}}
saf eCont ent sBag BAG TYPE :: =

{ Saf eCont ent s | DENTI FI ED BY {bagtypes 6}}

Moriarty, et al. I nf or mat i onal [Page 12]

RFC 7292 PKCS12 July 2014

PKCS12BagSet BAG TYPE ::= {
keyBag |
pkcs8Shr oudedKeyBag |
certBag |
crl Bag |
secret Bag |
saf eCont ent sBag,
-- For future extensions

}

As new bag types becone recognized in future versions of this
standard, the PKCS12BagSet may be extended.

4.2.1. The KeyBag Type

A KeyBag is a PKCS #8 PrivateKeylnfo. Note that a KeyBag contai ns
only one private key.

KeyBag ::= PrivateKeylnfo
4.2.2. The PKCS8ShroudedKeyBag Type

A PKCS8Shr oudedKeyBag hol ds a private key, which has been shrouded in
accordance with PKCS #8. Note that a PKCS8ShroudedKeyBag hol ds only
one shrouded private key.

PKCS8Shr oudedKeyBag :: = Encrypt edPri vat eKeyl nfo
4.2.3. The CertBag Type

A CertBag contains a certificate of a certain type. Object
identifiers are used to distinguish between different certificate

types.

CertBag ::= SEQUENCE {
certld BAG TYPE. & d ({Cert Types}),
certValue [0] EXPLICIT BAG TYPE. &Type ({Cert Types}{@ertl|d})

}

x509Certificate BAG TYPE :: =

{OCTET STRI NG | DENTI FI ED BY {certTypes 1}}

-- DER-encoded X. 509 certificate stored in OCTET STRI NG
sdsi Certificate BAG TYPE :: =

{1 A5String | DENTI FI ED BY {certTypes 2}}

-- Baseb64-encoded SDSI certificate stored in I A5String

Cert Types BAG TYPE :: = {
x509Certificate |

Moriarty, et al. I nf or mat i onal [Page 13]

RFC 7292 PKCS12 July 2014

sdsi Certificate,
-- For future extensions

}
4.2.4. The CRLBag Type

A CRLBag contains a Certificate Revocation List (CRL) of a certain
type. hject identifiers are used to distinguish between different
CRL types.

CRLBag ::= SEQUENCE {
crild BAG TYPE. & d ({CRLTypes}),
crlValue [0] EXPLICIT BAG TYPE. &Type ({CRLTypes}{@rlId})

}

Xx509CRL BAG TYPE :: =
{CCTET STRI NG | DENTI FI ED BY {crl Types 1}}
-- DER-encoded X. 509 CRL stored in OCTET STRI NG

CRLTypes BAG TYPE ::= {
x509CRL,
-- For future extensions

}
4.2.5. The SecretBag Type

Each of the user’s miscellaneous personal secrets is contained in an
i nstance of SecretBag, which holds an object identifier-dependent
value. Note that a SecretBag contains only one secret.

SecretBag ::= SEQUENCE {
secret Typel d BAG TYPE. & d ({Secret Types}),
secret Val ue [0] EXPLICIT BAG TYPE. &Type ({Secret Types}
{@ecret Typel d})

}
Secret Types BAG TYPE :: = {

-- For future ext ensi ons
}

I mpl enenters can add values to this set at their own discretion.
4.2.6. The SafeContents Type

The sixth type of bag that can be held in a SafeBag is a

Saf eContents. This recursive structure allows for arbitrary nesting

of multiple KeyBags, PKCS8ShroudedKeyBags, CertBags, CRLBags, and
SecretBags within the top-1evel SafeContents.

Moriarty, et al. I nf or mat i onal [Page 14]

RFC 7292 PKCS12 July 2014

5.

Usi ng PFX PDUs

This section describes the creation and usage of PFX PDUs.

5. 1

Creati ng PFX PDUs

The steps for creating PFX PDUs are as foll ows.

1.

It is sonewhat clear fromthe ASN. 1 how to nake a nunber of

i nstances of SafeContents, each containing a nunber of (possibly
nest ed) instances of SafeBag. Let us assume, therefore, a nunber
of instances SC 1, SC 2,..., SC n of SafeContents. Note that
there can be a nore or less arbitrary nunber of instances of

Saf eContents in a PFEX PDU. As will be seen in step 2, each

i nstance can be encrypted (or not) separately.

For each SCI, depending on the chosen encryption option,

A If SCi is not to be encrypted, nake a Contentinfo Cl i
hol di ng content type Data. The contents of the Data OCTET
STRI NG shall be a BER-encoding of SC.i (including tag,
| ength, and val ue octets).

B. If SCi is to be encrypted with a password, nake a
Contentlnfo Cl i of type EncryptedData. The
encryptedContentinfo field of Cl_i has its content Type field
set to data and its encryptedContent field set to the
encryption of the BER-encoding of SCi (note that the tag and
I ength octets shall be present).

C. If SCi is to be encrypted with a public key, nmake a
Contentlnfo Cl i of type Envel opedData in essentially the
sanme fashion as the EncryptedData Contentlnfo was made in B.

Make an instance of AuthenticatedSafe by stringing together the
Cl_i"s in a SEQUENCE.

Make a Contentlnfo T holding content type Data. The contents of
the Data OCTET STRI NG shall be a BER-encodi ng of the

Aut hent i cat edSaf e val ue (including tag, |ength, and val ue
octets).

For integrity protection,

A If the PFX PDU is to be authenticated with a digital
signature, make a Contentlnfo C of type SignedData. The
contentinfo field of the SignedData in Chas Tinit. Cis
the Contentinfo in the top-level PFX structure.

Moriarty, et al. I nf or mat i onal [Page 15]

RFC 7292 PKCS12 July 2014

B. If the PEX PDUis to be authenticated with HWAC, then an HVAC
with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
or SHA-512/256 is conputed on the contents of the Data in T
(i.e., excluding the OCTET STRING tag and | ength bytes).
This is exactly what would be initially digested in step 5A
i f public-key authentication were being used.

5.2. Inporting Keys, etc., froma PFX PDU

I mportation froma PFX is acconplished essentially by reversing the
procedure for creating a PFX. In general, when an application

i mports keys, etc., froma PFX, it should ignore any object
identifiers that it is not famliar with. At tinmes, it may be
appropriate to alert the user to the presence of such object

i dentifiers.

Speci al care nmay be taken by the application when inporting an item
in the PFX would require overwiting an itemthat already exists

| ocally. The behavior of the application when such an itemis
encountered may depend on what the itemis (i.e., it may be that a
PKCS #8-shrouded private key and a CRL should be treated differently
here). Appropriate behavior may be to ask the user what action
shoul d be taken for this item

6. Security Considerations

When using passwords in privacy or integrity node, it needs to be
consi dered that password-based cryptography is generally limted in
the security that it can provide, particularly for nmethods such as
those defined in this docunent where off-line password search is
possible. Wile the use of salt and iteration count can increase the
complexity of attack, it is essential that passwords are sel ected
well and that relevant guidelines (e.g., N ST SP 800-61-1) are taken
into account. It is also inportant that passwords be protected wel

i f stored.

When choosing a salt value in password privacy or integrity node, the
recomendations in Section 4 of PKCS #5 2.1 [13] [22] should be taken
into account. Ideally, the salt is as long as the output of the hash
function being used and consists of randomy generated data.

Moriarty, et al. I nf or mat i onal [Page 16]

RFC 7292

PKCS12 July 2014

7. Normative References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Moriarty,

Dobbertin, H, "The status of MD5 after a recent attack.",
CryptoBytes Vol . 2, #2, 1996.

ISOIEC "Information technology -- Abstract Syntax Notation
One (ASN. 1) -- Specification of basic notation", |1SQOIEC
8824-1: 2008, 2008.

ISOIEC "Information technology -- Abstract Syntax Notation
One (ASN. 1) -- Information object specification", 1SQO1EC
8824-2: 2008, 2008.

ISOIEC "Information technology -- Abstract Syntax Notation
One (ASN. 1) -- Constraint specification", |1SQ1EC 88247-3: 2008,
2008.

ISOIEC "Information technology -- Abstract Syntax Notation
One (ASN. 1) -- Paraneterization of ASN. 1 specifications",
| SO' | EC 8824- 4: 2008, 2008.

ISOI1EC, "Information Technol ogy - ASN. 1 Encodi ng Rul es:

Speci fication of Basic Encoding Rules (BER), Canonical Encoding
Rul es (CER), and Distingui shed Encodi ng Rules", 1SQOIEC

8825-1: 2008, 2008.

ISOIEC, "Information technology -- Open Systens
Interconnection -- The Directory: Mdels", 1SQO|EC 9594-2: 1997,
1997.

ISOIEC, "Information technology -- Open Systens
I nterconnection -- The Directory: Authentication Franework",
| SO | EC 9594-8: 1997, 1997.

M crosoft, "PFX Personal Exchange Syntax and Protocol
Standard", SO IEC Version 0.020, January 1997.

National Institute of Standards and Technol ogy (N ST), "Secure
Hash Standard", FIPS Publication 180-4, March 2012.

National Institute of Standards and Technol ogy (N ST), "The
Keyed- Hash Message Aut hentication Code (HVAQ ", FIPS
Publication 198-1, July 2008.

National Institute of Standards and Technol ogy (N ST), "The
Recommendati on for Password-Based Key Derivation, Part 1:

St orage Applications”, N ST Special Publication 800-132,
Decenber 2010.

et al. I nf or mat i onal [Page 17]

RFC 7292 PKCS12 July 2014

[13] RSA Laboratories, "PKCS #5: Password-Based Encryption
St andard", PKCS Version 2.1, Cctober 2012.

[14] RSA Laboratories, "PKCS #7: Cryptographi c Message Syntax
Standard”, PKCS Version 1.5, Novenber 1993.

[15] RSA Laboratories, "PKCS #8: Private-Key Information Syntax
Standard", PKCS Version 1.2, Novenber 1993.

[16] RSA Laboratories, "PKCS #12: Personal |nformation Exchange
Syntax", PKCS Version 1.1, Decenber 2012.

[17] Rivest, R and B. Lanpson, "SDSI - A Sinple Distributed
Security Infrastructure", 1996,
<http://people.csail.mt.edu/rivest/sdsi10. htm >.

[18] Turner, S. and L. Chen, "MD2 to Historic Status", RFC 6149,

March 2011.

[19] Rivest, R, "The MD5 Message-Digest Al gorithnm, RFC 1321, April
1992.

[20] Krawczyk, H., Bellare, M, and R Canetti, "HVAC Keyed-

Hashi ng for Message Authentication", RFC 2104, February 1997.

[21] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version
1.5", RFC 2315, March 1998.

[22] Kaliski, B., "PKCS #5: Password-Based Cryptography
Speci fication Version 2.0", RFC 2898, Septenber 2000.

[23] Nystrom M and B. Kaliski, "PKCS #9: Sel ected Object C asses
and Attribute Types Version 2.0", RFC 2985, Novenber 2000.

[24] Turner, S., "Asymmetric Key Packages", RFC 5958, August 2010.
[25] Turner, S. and L. Chen, "Updated Security Considerations for

the MD5 Message-Di gest and the HVAC-MD5 Al gorithms", RFC 6151,
March 2011.

Moriarty, et al. I nf or mat i onal [Page 18]

RFC 7292 PKCS12 July 2014

App

App

B. 1.

Mor

endi x A. Message Aut hentication Codes (MACs)

A MAC is a special type of function of a nessage (data bits) and an
integrity key. It can be conputed or checked only by soneone
possessing both the nessage and the integrity key. |Its security
follows fromthe secrecy of the integrity key. 1In this standard,
MACi ng is used in password integrity node.

Thi s docunent uses a particular type of MAC called HVAC [11] [20],
whi ch can be constructed fromany of a variety of hash functions.
Note that the specifications in [20] and [11] differ sonmewhat from
the specification in [9]. The hash function HVAC i s based on is
identified in the MacData, which holds the MAC, for this version of
this standard, the hash function can be one of the follow ng: SHA-1
SHA- 224, SHA- 256, SHA- 384, SHA-512, SHA-512/224, or SHA-512/256 [10].
As indicated in Appendix B.4, this structure inplies that the same
hash al gorithm nust be used to derive the MAC key itself in password
integrity node and that the MAC key has either 160, 224, 256, 384, or
512 bits.

When password integrity node is used to secure a PFX PDU, an HMAC
with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or

SHA- 512/ 256 is conputed on the BER-encodi ng of the contents of the
content field of the authSafe field in the PFX PDU (see Section 5.1).

endi x B. Deriving Keys and |IVs from Passwords and Sal t

Note that this nmethod for password privacy node is not recomended
and is deprecated for new usage. The procedures and algorithns
defined in PKCS #5 v2.1 [13] [22] should be used instead.
Specifically, PBES2 should be used as encryption schene, w th PBKDF2
as the key derivation function.

The met hod presented here is still used to generate the key in
password integrity node.

We present here a general nmethod for using a hash function to produce
various types of pseudorandombits froma password and a string of
salt bits. This nethod is used for password privacy node and
password integrity node in the present standard.

Password Formatting
The underlying password-based encryption nmethods in PKCS #5 v2.1 view
passwords (and salt) as being sinple byte strings. The underlying

passwor d- based encryption nethods and the underlying password-based
aut hentication nmethods in this version of this docunment are simlar

iarty, et al. I nf or mat i onal [Page 19]

RFC 7292 PKCS12 July 2014

B. 2.

Mor

What’'s |left unspecified in the above paragraph is precisely where the
byte string representing a password cones from (This is not an
issue with salt strings, since they are supplied as a password-based
encryption (or authentication) paraneter.) PKCS #5 v2.1 says: "[...]
a password is considered to be an octet string of arbitrary length
whose interpretation as a text string is unspecified. 1In the
interest of interoperability, however, it is reconmended that
applications follow sone comon text encoding rules. ASC | and UTF-8
are two possibilities."

In this specification, however, all passwords are created from
BMPStrings with a NULL termnator. This nmeans that each character in
the original BWPString is encoded in 2 bytes in big-endian fornat
(rmost-significant byte first). There are no Uni code byte order

marks. The 2 bytes produced fromthe |ast character in the BWPString
are followed by 2 additional bytes with the val ue 0x00.

To illustrate with a sinple exanple, if a user enters the 6-character
password "Beavis", the string that PKCS #12 i npl enentati ons shoul d
treat as the password is the followi ng string of 14 bytes:
0x00 0x42 0x00 0x65 0x00 Ox61 O0x00 0x76 0x00 0Ox69 0x00 0x73 0x00 0x00
General Met hod
Let H be a hash function built around a conpression function f:

Z 2"u x Z 2"v -> Z 2"u
(that is, H has a chaining variable and output of length u bits, and

the message input to the conpression function of His v bits). The
values for u and v are as foll ows:

HASH FUNCTI ON VALUE u VALUE v
MD2, MD5 128 512
SHA- 1 160 512
SHA- 224 224 512
SHA- 256 256 512
SHA- 384 384 1024
SHA- 512 512 1024
SHA- 512/ 224 224 1024
SHA- 512/ 256 256 1024

iarty, et al. I nf or mat i onal [Page 20]

RFC 7292 PKCS12 July 2014

Furthernore, let r be the iteration count.

We assume here that u and v are both nultiples of 8 as are the
| engths of the password and salt strings (which we denote by p and s,

respectively) and the nunmber n of pseudorandombits required. In
addition, u and v are of course non-zero.

For information on security considerations for MD5 [19], see [25] and
[1], and on those for MD2, see [18].

The followi ng procedure can be used to produce pseudorandom bits for

a particular "purpose" that is identified by a byte called "ID'. The
meani ng of this ID byte will be discussed |ater.

1

Construct a string, D (the "diversifier"), by concatenating v/8
copi es of |ID.

Concat enate copies of the salt together to create a string S of
I ength v(ceiling(s/v)) bits (the final copy of the salt may be
truncated to create S). Note that if the salt is the enpty
string, then so is S

Concat enat e copi es of the password together to create a string P
of length v(ceiling(p/v)) bits (the final copy of the password
may be truncated to create P). Note that if the password is the
enpty string, then sois P

Set I=S||P to be the concatenation of S and P

Set c=ceiling(n/u).

For i=1, 2, ..., ¢, do the follow ng:
A Set A2=H‘r(D||l). (i.e., the r-th hash of Dl |1,
HCHCHC. .. H(DI[1))))

B. Concatenate copies of Al to create a string B of length v
bits (the final copy of Al nmay be truncated to create B)

C. Treating | as a concatenation |_0O, 1_1, ..., | _(k-1) of v-bit
bl ocks, where k=ceiling(s/v)+ceiling(p/v), nmodify | by
setting | _j=(I_j+B+1) nod 2*v for each j.

Concatenate A1, A2, ..., Ac together to forma pseudorandom
bit string, A

Use the first n bits of A as the output of this entire process.

Moriarty, et al. I nf or mat i onal [Page 21]

RFC 7292 PKCS12 July 2014

If the above process is being used to generate a DES key, the process
shoul d be used to create 64 randombits, and the key's parity bits
shoul d be set after the 64 bits have been produced. Sinilar concerns
hold for 2-key and 3-key triple-DES keys, for CDW keys, and for any
simlar keys with parity bits "built into thent.

B.3. More on the ID Byte

This standard specifies 3 different values for the I D byte nmentioned
above:

1. If ID=1, then the pseudorandom bits being produced are to be used
as key material for performng encryption or decryption

2. If 1D=2, then the pseudorandom bits being produced are to be used
as an IV (Initial Value) for encryption or decryption

3. If I1D=3, then the pseudorandom bits being produced are to be used
as an integrity key for MAG ng

B.4. Keys for Password Integrity Mde

When password integrity node is used to protect a PFX PDU, a password
and salt are used to derive a MAC key. As with password privacy
node, the password is a Unicode string, and the salt is a byte
string. No particular lengths are prescribed in this standard for

ei ther the password or the salt, but the general advice about
passwords and salt that is given in Appendi x C applies here, as well

The hash function used to derive MAC keys is whatever hash function
is going to be used for MACing. The MAC keys that are derived have
the sanme length as the hash function’s output. In this version of
this standard, SHA-1, SHA-224, SHA-256, SHA384, SHA-512, SHA-512/224,
or SHA/512/256 can be used to perform MAG ng, and so the MAC keys can
be 160, 224, 256, 384, or 512 bits. See Appendix A for nore

i nformati on on MAGC ng.

Appendi x C. Keys and IVs for Password Privacy Mde

As stated at the start of Appendix B, use of this nethod for password
privacy node is not recommended; this specification of keys and |Vs
for password privacy node is retained for backwards conpatibility
with PKCS #12 v1.0 only.

When password privacy node is used to encrypt a PFX PDU, a password

(typically entered by the user), a salt and an iteration paraneter
are used to derive a key (and an 1V, if necessary). The password is

Moriarty, et al. I nf or mat i onal [Page 22]

RFC 7292 PKCS12 July 2014

a Unicode string, and as such, each character in it is represented by
2 bytes. The salt is a byte string and so can be represented
directly as a sequence of bytes.

This standard does not prescribe a length for the password. As
usual , however, too short a password night conpronise privacy. A
particul ar application mght well require a user-entered privacy
password for creating a PFX PDU to have a password exceedi ng sone
specific | ength.

This standard does not prescribe a length for the salt either
Ideally, the salt is as long as the output of the hash function being
used and consists of conpletely random bits.

The iteration count is reconmended to be 1024 or nore. (See [22] and
[13] for nmore information.)

The PBES1 encryption schenme defined in PKCS #5 provi des a nunber of
algorithmidentifiers for deriving keys and |IVs; here, we specify a
few nmore, all of which use the procedure detailed in Appendices B.2
and B.3 to construct keys (and |IVs, where needed). As is inplied by
their nanes, all of the object identifiers bel ow use the hash
function SHA-1.

pkcs- 12Pbel ds OBJECT | DENTI FI ER ::= {pkcs-12 1}
pbeW t hSHAANd128Bi t RC4 OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 1}
pbeW t hSHAANd40Bi t RC4 OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 2}

pbeW t hSHAANd3- KeyTri pl eDES- CBC OBJECT | DENTI FI ER : :
pbeW t hSHAANd2- KeyTri pl eDES- CBC OBJECT | DENTI FI ER : :
pbeW t hSHAANd128Bi t RC2- CBC OBJECT | DENTI FI ER ::
pbew t hSHAANd40Bi t RC2- CBC OBJECT | DENTI FI ER ::

{pkcs-12Pbel ds 3}
{pkcs-12Pbel ds 4}
{pkcs- 12Pbel ds 5}
{pkcs-12Pbel ds 6}

Each of the six PBE object identifiers above has the follow ng ASN. 1
type for paraneters:

pkcs- 12PbePar ans :: = SEQUENCE {
sal t OCTET STRI NG
iterations |NTEGER

}

The pkcs-12PbeParans holds the salt that is used to generate the key
(and 1V, if necessary) and the nunber of iterations to carry out.

Note that the first two algorithmidentifiers above (the algorithm

identifiers for RC4) only derive keys; it is unnecessary to derive an
IV for RCA.

Moriarty, et al. I nf or mat i onal [Page 23]

RFC 7292 PKCS12 July 2014

This section is here for two reasons: first, to enable backwards
conpatibility as described in the first paragraph of this section
second, because it is still used in password integrity node. In
order to not use it in password integrity node, the ASN. 1 definitions
requi re updates. This docunent reconmends that future definitions of
the PFX structure replace the existing MacData object, optionally
present in password integrity node, with a new object definition that
hol ds a MAC based on PKCS#5 [13] [22] PBMACL nessage authentication
scheme. This change would sinplify the requirements for key
derivation functions used across all parts of the PFX structure.

Appendi x D. ASN. 1 Mdul e
Thi s appendi x docurments all ASN. 1 types, values, and object sets
defined in this specification. |t does so by providing an ASN. 1
nmodul e cal | ed PKCS-12.
PKCS-12 {
i so(1) nenber-body(2) us(840) rsadsi(113549) pkcs(1l) pkcs-12(12)
nodul es(0) pkecs-12(1)}

-- PKCS #12 v1.1 ASN. 1 Modul e
-- Revised Cctober 27, 2012

-- This nodul e has been checked for conformance with the ASN. 1 standard
-- by the OSS ASN. 1 Tool s

DEFINITIONS | MPLICI T TAGS :: =
BEGA N
-- EXPORTS ALL
-- Al types and values defined in this nodule are exported for use
-- in other ASN. 1 nodul es.
| MPORTS
i nf or mati onFr amewor k
FROM Usef ul Definitions {joint-iso-itu-t(2) ds(5) nodul e(1)
useful Definitions(0) 3}

ATTRI BUTE
FROM | nf or mat i onFr amewor k i nf or mat i onFr amewor k

Contentlnfo, Digestlinfo

FROM PKCS- 7 {iso(1) menber-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-7(7) nodul es(0) pkcs-7(1)}

Moriarty, et al. I nf or mat i onal [Page 24]

RFC 7292 PKCS12 July 2014

Pri vat eKeyl nf o, EncryptedPrivat eKeyl nfo
FROM PKCS- 8 {iso(1) menber-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-8(8) nodul es(1l) pkcs-8(1)}

pkcs-9, friendl yNanme, |ocal Keyld, certTypes, crl Types
FROM PKCS-9 {iso(1) nenber-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) nodul es(0) pkcs-9(1)};

-- (bject identifiers

rsadsi OBJECT | DENTI FI ER : :

{iso(1) nenber-body(2) us(840)
rsadsi (113549)}

pkcs OBJECT | DENTI FI ER ::= {rsadsi pkcs(1)}

pkcs-12 OBJECT | DENTIFIER :: = {pkcs 12}

pkcs- 12Pbel ds OBJECT | DENTI FI ER ::= {pkcs-12 1}

pbeW t hSHAANd128Bi t RC4 OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 1}
pbeW t hSHAANd40Bi t RCA OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 2}

pbeW t hSHAANd3- KeyTri pl eDES- CBC OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 3}

pbeW t hSHAANd2- KeyTri pl eDES- CBC OBJECT | DENTI FI ER {pkcs-12Pbel ds 4}
pbeW t hSHAANd128Bi t RC2- CBC OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 5}
pbew t hSHAANd40Bi t RC2- CBC OBJECT | DENTI FI ER :: = {pkcs-12Pbel ds 6}
bagt ypes OBJECT | DENTIFIER ::= {pkcs-12 10 1}
-- The PFX PDU
PFEX ::= SEQUENCE ({

ver sion I NTEGER {v3(3)}(Vv3,...),

aut hSaf e Cont ent | nf o,
macDat a MacDat a OPTI ONAL

}
MacDat a :: = SEQUENCE {
nmac Di gest I nfo,
macSal t OCTET STRI NG,
iterations | NTEGER DEFAULT 1
-- Note: The default is for historical reasons and its use is
-- deprecat ed.
}

Moriarty, et al. I nf or mat i onal [Page 25]

RFC 7292 PKCS12 July 2014

Aut henti catedSafe ::= SEQUENCE OF Contentlnfo
-- Data if unencrypted
-- EncryptedData if password-encrypted
-- Envel opedData if public key-encrypted

Saf eContents ::= SEQUENCE OF Saf eBag
Saf eBag :: = SEQUENCE {
bagl d BAG TYPE. & d ({PKCS12BagSet}),
bagVal ue [0] EXPLICIT BAG TYPE. &Type({ PKCS12BagSet } { @agl d}),

bagAttri butes SET OF PKCS12Attri bute OPTI ONAL

-- Bag types

keyBag BAG TYPE :: =

{ KeyBag | DENTI FI ED BY {bagtypes 1}}
pkcs8Shr oudedKeyBag BAG TYPE :: =

{ PKCS8Shr oudedKeyBag | DENTI FI ED BY {bagtypes 2}}
certBag BAG TYPE :: =

{CertBag | DENTI FI ED BY {bagtypes 3}}
crl Bag BAG TYPE :: =

{CRLBag | DENTI FI ED BY {bagtypes 4}}
secret Bag BAG TYPE :: =

{Secr et Bag | DENTI FI ED BY {bagtypes 5}}
saf eCont ent sBag BAG TYPE :: =

{Saf eCont ent s | DENTI FI ED BY {bagtypes 6}}

PKCS12BagSet BAG TYPE ::= {
keyBag |
pkcs8Shr oudedKeyBag |
certBag |
crl Bag |
secret Bag |
saf eCont ent sBag,
-- For future extensions

}
BAG TYPE ::= TYPE-I DENTI FI ER

-- KeyBag
KeyBag ::= PrivateKeylnfo

-- Shrouded KeyBag
PKCS8Shr oudedKeyBag : : = Encrypt edPrivat eKeyl nf o

Moriarty, et al. I nf or mat i onal [Page 26]

RFC 7292 PKCS12 July 2014

-- CertBag
CertBag ::= SEQUENCE {
certld BAG TYPE. & d ({Cert Types}),
certValue [0] EXPLICIT BAG TYPE. &Type ({Cert Types}{@ertld})

}

x509Certificate BAG TYPE :: =

{OCTET STRI NG | DENTI FI ED BY {certTypes 1}}

-- DER-encoded X 509 certificate stored in OCTET STRI NG
sdsi Certificate BAG TYPE :: =

{1 A5String | DENTI FI ED BY {certTypes 2}}

-- Baseb64-encoded SDSI certificate stored in I A5String

Cert Types BAG TYPE :: = {
x509Certificate |
sdsi Certificate,
-- For future extensions

}
-- CRLBag
CRLBag ::= SEQUENCE {
crild BAG TYPE. & d ({CRLTypes}),
crlitvalue [0] EXPLICIT BAG TYPE. &Type ({CRLTypes}{@rl1d})
}

x509CRL BAG TYPE :: =
{OCTET STRI NG | DENTI FI ED BY {crl Types 1}}
-- DER-encoded X 509 CRL stored in OCTET STRI NG

CRLTypes BAG TYPE :: = {
x509CRL,
-- For future extensions
}
-- Secret Bag
SecretBag ::= SEQUENCE {
secret Typeld BAG TYPE. & d ({Secret Types}),
secret Val ue [0] EXPLICIT BAG TYPE. &Type ({Secret Types}
{@ecret Typel d})
}
Secret Types BAG TYPE ::= {
-- For future ext ensi ons
}

-- Attributes

Moriarty, et al. I nf or mat i onal [Page 27]

RFC 7292 PKCS12 July 2014

PKCS12Attri bute ::= SEQUENCE {

attrid ATTRI BUTE. & d ({PKCS12AttrSet}),

attrValues SET OF ATTRI BUTE. &Type ({PKCS12AttrSet}{@ttrld})
} -- This type is conpatible with the X. 500 type "Attribute’

PKCS12Attr Set ATTRIBUTE ::= {
friendl yName |
| ocal Keyl d,
-- Oher attributes are all owed
}
END
Appendi x E. Intellectual Property Considerations

EMC Cor poration nakes no patent clainms on the general constructions
described in this docunent, although specific underlying techniques
may be cover ed.

RC2 and RC4 are trademarks of EMC Corporation.

EMC Cor poration nmakes no representati ons regarding intellectual
property clainms by other parties. Such determ nation is the
responsibility of the user.

Appendi x F. Acknow edgrent s

Many thanks to Dan Sinon of M crosoft Corporation and Jim Spring of
Net scape Conmuni cations Corporation for their assistance in preparing
early drafts of this docunent. Especial thanks to Brian Becknan of
M crosoft Corporation for witing the specification that this
docunent is based on.

Appendi x G About PKCS

The Public-Key Cryptography Standards are specifications produced by
RSA Laboratories in cooperation with secure systens devel opers

wor | dwi de for the purpose of accel erating the deploynent of public-
key cryptography. First published in 1991 as a result of neetings
with a small group of early adopters of public-key technol ogy, the
PKCS docunents have becone wi dely referenced and i npl ement ed.
Contributions fromthe PKCS series have becone part of many fornal
and de facto standards, including ANSI X9 docunents, PKIX, SET, S/
M ME, and SSL.

Furt her devel opment of PKCS occurs through the | ETF. Suggestions for
i nprovenent are wel cone.

Moriarty, et al. I nf or mat i onal [Page 28]

RFC 7292 PKCS12 July 2014

Aut hors’ Addr esses

Kathleen M Moriarty (editor)
EMC Cor poration

176 South Street

Hopki nt on, MA

United States

EMai | : Kat hl een. Mori arty@nt. com

Magnus Nystrom

M crosoft Corporation
1 Mcrosoft Way
Rednond, WA 98052
United States

EMai | : mystrom@ri cr osoft. com

Sean Par ki nson

RSA Security Inc.
345 Queen Street

Bri sbane, Q.D, 4000
Australia

EMai | 1 Sean. Par ki nson@ sa. com

Andr eas Rusch

RSA Security Inc.
345 Queen Street

Bri sbane, Q.D, 4000
Australia

EMmi | : Andreas. Rusch@ sa. com

M chael Scott

RSA Security Inc.
345 Queen Street

Bri sbane, Q.D, 4000
Australia

EMail : M chael 2. Scott @ sa. com

Moriarty, et al. I nf or mat i onal [Page 29]

