
Internet Engineering Task Force (IETF) L. Peterson
Request for Comments: 7336 Akamai Technologies, Inc.
Obsoletes: 3466 B. Davie
Category: Informational VMware, Inc.
ISSN: 2070-1721 R. van Brandenburg, Ed.
 TNO
 August 2014

 Framework for Content Distribution Network Interconnection (CDNI)

Abstract

 This document presents a framework for Content Distribution Network
 Interconnection (CDNI). The purpose of the framework is to provide
 an overall picture of the problem space of CDNI and to describe the
 relationships among the various components necessary to interconnect
 CDNs. CDNI requires the specification of interfaces and mechanisms
 to address issues such as request routing, distribution metadata
 exchange, and logging information exchange across CDNs. The intent
 of this document is to outline what each interface needs to
 accomplish and to describe how these interfaces and mechanisms fit
 together, while leaving their detailed specification to other
 documents. This document, in combination with RFC 6707, obsoletes
 RFC 3466.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7336.

Peterson, et al. Informational [Page 1]

RFC 7336 CDNI Framework August 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Peterson, et al. Informational [Page 2]

RFC 7336 CDNI Framework August 2014

Table of Contents

 1. Introduction ..4
 1.1. Terminology ..4
 1.2. Reference Model ..6
 1.3. Structure of This Document10
 2. Building Blocks ..10
 2.1. Request Redirection10
 2.1.1. DNS Redirection10
 2.1.2. HTTP Redirection12
 3. Overview of CDNI Operation12
 3.1. Preliminaries ...14
 3.2. Iterative HTTP Redirect Example15
 3.3. Recursive HTTP Redirection Example21
 3.4. Iterative DNS-Based Redirection Example25
 3.4.1. Notes on Using DNSSEC28
 3.5. Dynamic Footprint Discovery Example29
 3.6. Content Removal Example31
 3.7. Pre-positioned Content Acquisition Example32
 3.8. Asynchronous CDNI Metadata Example33
 3.9. Synchronous CDNI Metadata Acquisition Example35
 3.10. Content and Metadata Acquisition with Multiple
 Upstream CDNs ..37
 4. Main Interfaces ..38
 4.1. In-Band versus Out-of-Band Interfaces39
 4.2. Cross-Interface Concerns40
 4.3. Request Routing Interfaces40
 4.4. CDNI Logging Interface41
 4.5. CDNI Control Interface43
 4.6. CDNI Metadata Interface43
 4.7. HTTP Adaptive Streaming Concerns44
 4.8. URI Rewriting ...46
 5. Deployment Models ..47
 5.1. Meshed CDNs ...47
 5.2. CSP Combined with CDN48
 5.3. CSP Using CDNI Request Routing Interface49
 5.4. CDN Federations and CDN Exchanges50
 6. Trust Model ..53
 7. Privacy Considerations ...54
 8. Security Considerations ..55
 8.1. Security of CDNI Interfaces56
 8.2. Digital Rights Management56
 9. Contributors ...56
 10. Acknowledgements ..57
 11. Informative References ..57

Peterson, et al. Informational [Page 3]

RFC 7336 CDNI Framework August 2014

1. Introduction

 This document provides an overview of the various components
 necessary to interconnect CDNs, expanding on the problem statement
 and use cases introduced in [RFC6770] and [RFC6707]. It describes
 the necessary interfaces and mechanisms in general terms and outlines
 how they fit together to form a complete system for CDN
 Interconnection. Detailed specifications are left to other
 documents. This document makes extensive use of message flow
 examples to illustrate the operation of interconnected CDNs, but
 these examples should be considered illustrative rather than
 prescriptive.

 [RFC3466] uses different terminology and models for "Content
 (distribution) Internetworking (CDI)". It is also less prescriptive
 in terms of interfaces. To avoid confusion, this document obsoletes
 [RFC3466].

1.1. Terminology

 This document uses the core terminology defined in [RFC6707]. It
 also introduces the following terms:

 CDN-Domain: a hostname (Fully Qualified Domain Name -- FQDN) at the
 beginning of a URL (excluding port and scheme), representing a set
 of content that is served by a given CDN. For example, in the URL
 http://cdn.csp.example/...rest of URL..., the CDN-Domain is
 cdn.csp.example. A major role of CDN-Domain is to identify a
 region (subset) of the URI space relative to which various CDNI
 rules and policies apply. For example, a record of CDNI Metadata
 might be defined for the set of resources corresponding to some
 CDN-Domain.

 Distinguished CDN-Domain: a CDN-Domain that is allocated by a CDN
 for the purposes of communication with a peer CDN but that is not
 found in client requests. Such CDN-Domains may be used for inter-
 CDN acquisition, or as redirection targets, and enable a CDN to
 distinguish a request from a peer CDN from an end-user request.

 Delivering CDN: the CDN that ultimately delivers a piece of content
 to the end user. The last in a potential sequence of Downstream
 CDNs.

Peterson, et al. Informational [Page 4]

RFC 7336 CDNI Framework August 2014

 Iterative CDNI Request Redirection: When an Upstream CDN elects to
 redirect a request towards a Downstream CDN, the Upstream CDN can
 base its redirection purely on a local decision (and without
 attempting to take into account how the Downstream CDN may in turn
 redirect the user agent). In that case, the Upstream CDN
 redirects the request to the Request Routing system in the
 Downstream CDN, which in turn will decide how to redirect that
 request: this approach is referred to as "Iterative" CDNI Request
 Redirection.

 Recursive CDNI Request Redirection: When an Upstream CDN elects to
 redirect a request towards a Downstream CDN, the Upstream CDN can
 query the Downstream CDN Request Routing system via the CDNI
 Request Routing Redirection interface (or use information cached
 from earlier similar queries) to find out how the Downstream CDN
 wants the request to be redirected. This allows the Upstream CDN
 to factor in the Downstream CDN response when redirecting the user
 agent. This approach is referred to as "Recursive" CDNI Request
 Redirection. Note that the Downstream CDN may elect to have the
 request redirected directly to a Surrogate inside the Downstream
 CDN, or to any other element in the Downstream CDN (or in another
 CDN), to handle the redirected request appropriately.

 Synchronous CDNI operations: operations between CDNs that happen
 during the process of servicing a user request, i.e., between the
 time that the user agent begins its attempt to obtain content and
 the time at which that request is served.

 Asynchronous CDNI operations: operations between CDNs that happen
 independently of any given user request, such as advertisement of
 footprint information or pre-positioning of content for later
 delivery.

 Trigger Interface: a subset of the CDNI Control interface that
 includes operations to pre-position, revalidate, and purge both
 metadata and content. These operations are typically called in
 response to some action (Trigger) by the Content Service Provider
 (CSP) on the Upstream CDN.

 We also sometimes use uCDN and dCDN as shorthand for Upstream CDN and
 Downstream CDN (see [RFC6707]), respectively.

 At various points in this document, the concept of a CDN footprint is
 used. For a discussion on what constitutes a CDN footprint, the
 reader is referred to [FOOTPRINT-CAPABILITY].

Peterson, et al. Informational [Page 5]

RFC 7336 CDNI Framework August 2014

1.2. Reference Model

 This document uses the reference model in Figure 1, which expands the
 reference model originally defined in [RFC6707]. (The difference is
 that the expanded model splits the Request Routing interface into its
 two distinct parts: the Request Routing Redirection interface and the
 Footprint & Capabilities Advertisement interface, as described
 below.)

Peterson, et al. Informational [Page 6]

RFC 7336 CDNI Framework August 2014

 / \
 | CSP |
 \ /

 *
 *
 * /\
 * / \
 ---------------------- |CDNI| ----------------------
 / Upstream CDN \ | | / Downstream CDN \
 | +-------------+ | | CI | | +-------------+ |
 |******* Control |<======|====|=======>| Control *******|
 |* +------*----*-+ | | | | +-*----*------+ *|
 |* * * | | | | * * *|
 |* +------*------+ | | LI | | +------*------+ *|
 |* ***** Logging |<======|====|=======>| Logging ***** *|
 |* * +-*-----------+ | | | | +-----------*-+ * *|
 |* * * * | | | | * * * *|
 *...+-*---------*-+ | | RI | | +-*---------*-+...*.*...
 . |* * | |<======|====|=======>| | * *| .
 . |* * | Req-Routing | | |FCI | | | Req-Routing | * *| .
 . |* * *** |<======|====|=======>| |** * *| .
 . |* * * +-------------+.| | | | +-------------+ * * *| .
 . |* * * . | | | * * *| .
 . |* * * +-------------+ |. | MI | | +-------------+ * * *| .
 . |* * * | Distribution|<==.===|====|=======>| Distribution| * * *| .
 . |* * * | | | . \ / | | | * * *| .
 . |* * * |+---------+ | | . \/ | | +---------+| * * *| .
 . |* * ***| +---------+| | ...Request......+---------+ |*** * *| .
 . |* *****+-|Surrogate|***********************|Surrogate|-+***** *| .
 . |******* +---------+| | Acquisition | |+----------+ *******| .
 . | +-------------+ | | +-------*-----+ | .
 . \ / \ * / .
 . ---------------------- ---------*------------ .
 . * .
 . * Delivery .
 . * .
 . +--*---+ .
 Request............................| User |..Request..
 | Agent|
 +------+

 <==> interfaces inside the scope of CDNI

 **** and interfaces outside the scope of CDNI

 Figure 1: CDNI Expanded Model and CDNI Interfaces

Peterson, et al. Informational [Page 7]

RFC 7336 CDNI Framework August 2014

 While some interfaces in the reference model are "out of scope" for
 the CDNI WG (in the sense that there is no need to define new
 protocols for those interfaces), we note that we still need to refer
 to them in this document to explain the overall operation of CDNI.

 We also note that, while we generally show only one Upstream CDN
 serving a given CSP, it is entirely possible that multiple uCDNs can
 serve a single CSP. In fact, this situation effectively exists today
 in the sense that a single CSP can currently delegate its content
 delivery to more than one CDN.

 The following briefly describes the five CDNI interfaces,
 paraphrasing the definitions given in [RFC6707]. We discuss these
 interfaces in more detail in Section 4.

 o CDNI Control interface (CI): Operations to bootstrap and
 parameterize the other CDNI interfaces, as well as operations to
 pre-position, revalidate, and purge both metadata and content.
 The latter subset of operations is sometimes collectively called
 the "Trigger interface".

 o CDNI Request Routing interface: Operations to determine what CDN
 (and optionally what Surrogate within a CDN) is to serve end-user
 requests. This interface is actually a logical bundling of two
 separate, but related, interfaces:

 * CDNI Footprint & Capabilities Advertisement interface (FCI):
 Asynchronous operations to exchange routing information (e.g.,
 the network footprint and capabilities served by a given CDN)
 that enables CDN selection for subsequent user requests; and

 * CDNI Request Routing Redirection interface (RI): Synchronous
 operations to select a delivery CDN (Surrogate) for a given
 user request.

 o CDNI Metadata interface (MI): Operations to communicate metadata
 that governs how the content is delivered by interconnected CDNs.
 Examples of CDNI Metadata include geo-blocking directives,
 availability windows, access control mechanisms, and purge
 directives. It may include a combination of:

 * Asynchronous operations to exchange metadata that govern
 subsequent user requests for content; and

 * Synchronous operations that govern behavior for a given user
 request for content.

Peterson, et al. Informational [Page 8]

RFC 7336 CDNI Framework August 2014

 o CDNI Logging interface (LI): Operations that allow interconnected
 CDNs to exchange relevant activity logs. It may include a
 combination of:

 * Real-time exchanges, suitable for runtime traffic monitoring;
 and

 * Offline exchanges, suitable for analytics and billing.

 The division between the sets of Trigger-based operations in the CDNI
 Control interface and the CDNI Metadata interface is somewhat
 arbitrary. For both cases, the information passed from the Upstream
 CDN to the Downstream CDN can broadly be viewed as metadata that
 describes how content is to be managed by the Downstream CDN. For
 example, the information conveyed by the CI to pre-position,
 revalidate, or purge metadata is similar to the information conveyed
 by posting updated metadata via the MI. Even the CI operation to
 purge content could be viewed as a metadata update for that content:
 purge simply says that the availability window for the named content
 ends now. The two interfaces share much in common, so minimally,
 there will need to be a consistent data model that spans both.

 The distinction we draw has to do with what the uCDN knows about the
 successful application of the metadata by the dCDN. In the case of
 the CI, the Downstream CDN returning a successful status message
 guarantees that the operation has been successfully completed; for
 example, the content has been purged or pre-positioned. This implies
 that the Downstream CDN accepts responsibility for having
 successfully completed the requested operation. In contrast,
 metadata passed between CDNs via the MI carries no such completion
 guarantee. Returning success implies successful receipt of the
 metadata, but nothing can be inferred about precisely when the
 metadata will take effect in the Downstream CDN, only that it will
 take effect eventually. This is because of the challenge in globally
 synchronizing updates to metadata with end-user requests that are
 currently in progress (or indistinguishable from currently being in
 progress). Clearly, a CDN will not be viewed as a trusted peer if
 "eventually" often becomes an indefinite period of time, but the
 acceptance of responsibility cannot be as crisply defined for the MI.

 Finally, there is a practical issue that impacts all of the CDNI
 interfaces, and that is whether or not to optimize CDNI for HTTP
 Adaptive Streaming (HAS). We highlight specific issues related to
 delivering HAS content throughout this document, but for a more
 thorough treatment of the topic, see [RFC6983].

Peterson, et al. Informational [Page 9]

RFC 7336 CDNI Framework August 2014

1.3. Structure of This Document

 The remainder of this document is organized as follows:

 o Section 2 describes some essential building blocks for CDNI,
 notably the various options for redirecting user requests to a
 given CDN.

 o Section 3 provides a number of illustrative examples of various
 CDNI operations.

 o Section 4 describes the functionality of the main CDNI interfaces.

 o Section 5 shows how various deployment models of CDNI may be
 achieved using the defined interfaces.

 o Section 6 describes the trust model of CDNI and the issues of
 transitive trust in particular that CDNI raises.

2. Building Blocks

2.1. Request Redirection

 At its core, CDNI requires the redirection of requests from one CDN
 to another. For any given request that is received by an Upstream
 CDN, it will either respond to the request directly, or somehow
 redirect the request to a Downstream CDN. Two main mechanisms are
 available for redirecting a request to a Downstream CDN. The first
 leverages the DNS name resolution process and the second uses
 application-layer redirection mechanisms such as the HTTP 302 or
 Real-Time Streaming Protocol (RTSP) 302 redirection responses. While
 there exists a large variety of application-layer protocols that
 include some form of redirection mechanism, this document will use
 HTTP (and HTTPS) in its examples. Similar mechanisms can be applied
 to other application-layer protocols. What follows is a short
 discussion of both DNS- and HTTP-based redirection, before presenting
 some examples of their use in Section 3.

2.1.1. DNS Redirection

 DNS redirection is based on returning different IP addresses for the
 same DNS name, for example, to balance server load or to account for
 the client’s location in the network. A DNS server, sometimes called
 the Local DNS (LDNS), resolves DNS names on behalf of an end user.
 The LDNS server in turn queries other DNS servers until it reaches
 the authoritative DNS server for the CDN-Domain. The network
 operator typically provides the LDNS server, although the user is
 free to choose other DNS servers (e.g., OpenDNS, Google Public DNS).

Peterson, et al. Informational [Page 10]

RFC 7336 CDNI Framework August 2014

 This latter possibility is important because the authoritative DNS
 server sees only the IP address of the DNS server that queries it,
 not the IP address of the original end user.

 The advantage of DNS redirection is that it is completely transparent
 to the end user; the user sends a DNS name to the LDNS server and
 gets back an IP address. On the other hand, DNS redirection is
 problematic because the DNS request comes from the LDNS server, not
 the end user. This may affect the accuracy of server selection that
 is based on the user’s location. The transparency of DNS redirection
 is also a problem in that there is no opportunity to take the
 attributes of the user agent or the URI path component into account.
 We consider two main forms of DNS redirection: simple and CNAME-
 based.

 In simple DNS redirection, the authoritative DNS server for the name
 simply returns an IP address from a set of possible IP addresses.
 The answer is chosen from the set based on characteristics of the set
 (e.g., the relative loads on the servers) or characteristics of the
 client (e.g., the location of the client relative to the servers).
 Simple redirection is straightforward. The only caveats are (1)
 there is a limit to the number of alternate IP addresses a single DNS
 server can manage; and (2) DNS responses are cached by Downstream
 servers so the Time to Live (TTL) on the response must be set to an
 appropriate value so as to preserve the freshness of the redirection.

 In CNAME-based DNS redirection, the authoritative server returns a
 CNAME response to the DNS request, telling the LDNS server to restart
 the name lookup using a new name. A CNAME is essentially a symbolic
 link in the DNS namespace, and like a symbolic link, redirection is
 transparent to the client; the LDNS server gets the CNAME response
 and re-executes the lookup. Only when the name has been resolved to
 an IP address does it return the result to the user. Note that DNAME
 would be preferable to CNAME if it becomes widely supported.

 One of the advantages of DNS redirection compared to HTTP redirection
 is that it can be cached, reducing load on the redirecting CDN’s DNS
 server. However, this advantage can also be a drawback, especially
 when a given DNS resolver doesn’t strictly adhere to the TTL, which
 is a known problem in some real-world environments. In such cases,
 an end user might end up at a dCDN without first having passed
 through the uCDN, which might be an undesirable scenario from a uCDN
 point of view.

Peterson, et al. Informational [Page 11]

RFC 7336 CDNI Framework August 2014

2.1.2. HTTP Redirection

 HTTP redirection makes use of the redirection response of the HTTP
 protocol (e.g.,"302" or "307"). This response contains a new URL
 that the application should fetch instead of the original URL. By
 changing the URL appropriately, the server can cause the user to
 redirect to a different server. The advantages of HTTP redirection
 are that (1) the server can change the URL fetched by the client to
 include, for example, both the DNS name of the particular server to
 use, as well as the original HTTP server that was being accessed; (2)
 the client sends the HTTP request to the server, so that its IP
 address is known and can be used in selecting the server; and (3)
 other attributes (e.g., content type, user agent type) are visible to
 the redirection mechanism.

 Just as is the case for DNS redirection, there are some potential
 disadvantages of using HTTP redirection. For example, it may affect
 application behavior; web browsers will not send cookies if the URL
 changes to a different domain. In addition, although this might also
 be an advantage, results of HTTP redirection are not cached so that
 all redirections must go through to the uCDN.

3. Overview of CDNI Operation

 To provide a big-picture overview of the various components of CDNI,
 we walk through a "day in the life" of a content item that is made
 available via a pair of interconnected CDNs. This will serve to
 illustrate many of the functions that need to be supported in a
 complete CDNI solution. We give examples using both DNS-based and
 HTTP-based redirection. We begin with very simple examples and then
 show how additional capabilities, such as recursive request
 redirection and content removal, might be added.

 Before walking through the specific examples, we present a high-level
 view of the operations that may take place. This high-level overview
 is illustrated in Figure 2. Note that most operations will involve
 only a subset of all the messages shown below, and that the order and
 number of operations may vary considerably, as the more detailed
 examples illustrate.

 The following shows Operator A as the Upstream CDN (uCDN) and
 Operator B as the Downstream CDN (dCDN), where the former has a
 relationship with a content provider and the latter is the CDN
 selected by Operator A to deliver content to the end user. The
 interconnection relationship may be symmetric between these two CDN
 operators, but each direction can be considered as operating
 independently of the other; for simplicity, we show the interaction
 in one direction only.

Peterson, et al. Informational [Page 12]

RFC 7336 CDNI Framework August 2014

 End User Operator B Operator A
 | | |
 | | |
 | | [Async FCI Push] | (1)
 | | |
 | | [MI pre-positioning] | (2)
 | | |
 | CONTENT REQUEST | |
 |-->| (3)
 | | |
 | | [Sync RI Pull] | (4)
 | | |
 | CONTENT REQUEST REDIRECTION |
 |<--| (5)
 | | |
 | | |
 | CONTENT REQUEST | |
 |------------------------>| | (6)
 | | |
 | | [Sync MI Pull] | (7)
 | | |
 | | ACQUISITION REQUEST |
 | X------------------------>| (8)
 | X |
 | X CONTENT DATA |
 | X<------------------------| (9)
 | | |
 | CONTENT DATA | |
 |<------------------------| | (10)
 | | |
 : : :
 : [Other content requests] :
 : : :
 | | [CI: Content Purge] | (11)
 : : :
 | | [LI: Log exchange] | (12)
 | | |

 Figure 2: Overview of Operation

 The operations shown in the figure are as follows:

 1. The dCDN uses the FCI to advertise information relevant to its
 delivery footprint and capabilities prior to any content
 requests being redirected.

Peterson, et al. Informational [Page 13]

RFC 7336 CDNI Framework August 2014

 2. Prior to any content request, the uCDN uses the MI to pre-
 position CDNI Metadata to the dCDN, thereby making that metadata
 available in readiness for later content requests.

 3. A content request from a user agent arrives at the uCDN.

 4. The uCDN may use the RI to synchronously request information
 from the dCDN regarding its delivery capabilities to decide if
 the dCDN is a suitable target for redirection of this request.

 5. The uCDN redirects the request to the dCDN by sending some
 response (DNS, HTTP) to the user agent.

 6. The user agent requests the content from the dCDN.

 7. The dCDN may use the MI to synchronously request metadata
 related to this content from uCDN, e.g., to decide whether to
 serve it.

 8. If the content is not already in a suitable cache in the dCDN,
 the dCDN may acquire it from the uCDN.

 9. The content is delivered to the dCDN from the uCDN.

 10. The content is delivered to the user agent by the dCDN.

 11. Some time later, perhaps at the request of the CSP (not shown)
 the uCDN may use the CI to instruct the dCDN to purge the
 content, thereby ensuring it is not delivered again.

 12. After one or more content delivery actions by the dCDN, a log of
 delivery actions may be provided to the uCDN using the LI.

 The following sections show some more specific examples of how these
 operations may be combined to perform various delivery, control, and
 logging operations across a pair of CDNs.

3.1. Preliminaries

 Initially, we assume that there is at least one CSP that has
 contracted with an Upstream CDN (uCDN) to deliver content on its
 behalf. We are not particularly concerned with the interface between
 the CSP and uCDN, other than to note that it is expected to be the
 same as in the "traditional" (non-interconnected) CDN case. Existing
 mechanisms such as DNS CNAMEs or HTTP redirects (Section 2) can be
 used to direct a user request for a piece of content from the CSP
 towards the CSP’s chosen Upstream CDN.

Peterson, et al. Informational [Page 14]

RFC 7336 CDNI Framework August 2014

 We assume Operator A provides an Upstream CDN that serves content on
 behalf of a CSP with CDN-Domain cdn.csp.example. We assume that
 Operator B provides a Downstream CDN. An end user at some point
 makes a request for URL

 http://cdn.csp.example/...rest of URL...

 It may well be the case that cdn.csp.example is just a CNAME for some
 other CDN-Domain (such as csp.op-a.example). Nevertheless, the HTTP
 request in the examples that follow is assumed to be for the example
 URL above.

 Our goal is to enable content identified by the above URL to be
 served by the CDN of Operator B. In the following sections, we will
 walk through some scenarios in which content is served as well as
 other CDNI operations such as the removal of content from a
 Downstream CDN.

3.2. Iterative HTTP Redirect Example

 In this section, we walk through a simple, illustrative example using
 HTTP redirection from a uCDN to a dCDN. The example also assumes the
 use of HTTP redirection inside the uCDN and dCDN; however, this is
 independent of the choice of redirection approach across CDNs, so an
 alternative example could be constructed still showing HTTP
 redirection from the uCDN to dCDN but using DNS for the handling of
 the request inside each CDN.

 For this example, we assume that Operators A and B have established
 an agreement to interconnect their CDNs, with A being Upstream and B
 being Downstream.

 The operators agree that a CDN-Domain peer-a.op-b.example will be
 used as the target of redirections from the uCDN to dCDN. We assume
 the name of this domain is communicated by some means to each CDN.
 (This could be established out of band or via a CDNI interface.) We
 refer to this domain as a "distinguished" CDN-Domain to convey the
 fact that its use is limited to the interconnection mechanism; such a
 domain is never used directly by a CSP.

 We assume the operators also agree on some distinguished CDN-Domain
 that will be used for inter-CDN acquisition of the CSP’s content from
 the uCDN by the dCDN. In this example, we’ll use
 op-b-acq.op-a.example.

Peterson, et al. Informational [Page 15]

RFC 7336 CDNI Framework August 2014

 We assume the operators also exchange information regarding which
 requests the dCDN is prepared to serve. For example, the dCDN may be
 prepared to serve requests from clients in a given geographical
 region or a set of IP address prefixes. This information may again
 be provided out of band or via a defined CDNI interface.

 We assume DNS is configured in the following way:

 o The content provider is configured to make Operator A the
 authoritative DNS server for cdn.csp.example (or to return a CNAME
 for cdn.csp.example for which Operator A is the authoritative DNS
 server).

 o Operator A is configured so that a DNS request for
 op-b-acq.op-a.example returns a Request Router in Operator A.

 o Operator B is configured so that a DNS request for
 peer-a.op-b.example/cdn.csp.example returns a Request Router in
 Operator B.

 Figure 3 illustrates how a client request for

 http://cdn.csp.example/...rest of URL...

 is handled.

 End User Operator B Operator A
 |DNS cdn.csp.example | |
 |-->|
 | | |(1)
 |IPaddr of A’s Request Router |
 |<--|
 |HTTP cdn.csp.example | |
 |-->|
 | | |(2)
 |302 peer-a.op-b.example/cdn.csp.example |
 |<--|
 |DNS peer-a.op-b.example | |
 |------------------------>| |
 | |(3) |
 |IPaddr of B’s Request Router |
 |<------------------------| |
 | | |
 |HTTP peer-a.op-b.example/cdn.csp.example |
 |------------------------>| |

Peterson, et al. Informational [Page 16]

RFC 7336 CDNI Framework August 2014

 | |(4) |
 |302 node1.peer-a.op-b.example/cdn.csp.example |
 |<------------------------| |
 |DNS node1.peer-a.op-b.example |
 |------------------------>| |
 | |(5) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 | | |
 |HTTP node1.peer-a.op-b.example/cdn.csp.example |
 |------------------------>| |
 | |(6) |
 | |DNS op-b-acq.op-a.example|
 | |------------------------>|
 | | |(7)
 | |IPaddr of A’s Request Router
 | |<------------------------|
 | |HTTP op-b-acq.op-a.example
 | |------------------------>|
 | | |(8)
 | |302 node2.op-b-acq.op-a.example
 | |<------------------------|
 | |DNS node2.op-b-acq.op-a.example
 | |------------------------>|
 | | |(9)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | | |
 | |HTTP node2.op-b-acq.op-a.example
 | |------------------------>|
 | | |(10)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 3: Message Flow for Iterative HTTP Redirection

 The steps illustrated in the figure are as follows:

 1. A DNS resolver for Operator A processes the DNS request for its
 customer based on CDN-Domain cdn.csp.example. It returns the IP
 address of a Request Router in Operator A.

 2. A Request Router for Operator A processes the HTTP request and
 recognizes that the end user is best served by another CDN,
 specifically one provided by Operator B, and so it returns a 302
 redirect message for a new URL constructed by "stacking"

Peterson, et al. Informational [Page 17]

RFC 7336 CDNI Framework August 2014

 Operator B’s distinguished CDN-Domain (peer-a.op-b.example) on
 the front of the original URL. (Note that more complex URL
 manipulations are possible, such as replacing the initial CDN-
 Domain by some opaque handle.)

 3. The end user does a DNS lookup using Operator B’s distinguished
 CDN-Domain (peer-a.op-b.example). B’s DNS resolver returns the
 IP address of a Request Router for Operator B. Note that if
 request routing within the dCDN was performed using DNS instead
 of HTTP redirection, B’s DNS resolver would also behave as the
 Request Router and directly return the IP address of a delivery
 node.

 4. The Request Router for Operator B processes the HTTP request and
 selects a suitable delivery node to serve the end-user request,
 and it returns a 302 redirect message for a new URL constructed
 by replacing the hostname with a subdomain of the Operator B’s
 distinguished CDN-Domain that points to the selected delivery
 node.

 5. The end user does a DNS lookup using Operator B’s delivery node
 subdomain (node1.peer-a.op-b.example). B’s DNS resolver returns
 the IP address of the delivery node.

 6. The end user requests the content from B’s delivery node. In
 the case of a cache hit, steps 6, 7, 8, 9, and 10 below do not
 happen, and the content data is directly returned by the
 delivery node to the end user. In the case of a cache miss, the
 content needs to be acquired by the dCDN from the uCDN (not the
 CSP). The distinguished CDN-Domain peer-a.op-b.example
 indicates to the dCDN that this content is to be acquired from
 the uCDN; stripping the CDN-Domain reveals the original CDN-
 Domain cdn.csp.example, and the dCDN may verify that this CDN-
 Domain belongs to a known peer (so as to avoid being tricked
 into serving as an open proxy). It then does a DNS request for
 an inter-CDN acquisition CDN-Domain as agreed above (in this
 case, op-b-acq.op-a.example).

 7. Operator A’s DNS resolver processes the DNS request and returns
 the IP address of a Request Router in Operator A.

 8. The Request Router for Operator A processes the HTTP request
 from Operator B’s delivery node. Operator A’s Request Router
 recognizes that the request is from a peer CDN rather than an
 end user because of the dedicated inter-CDN acquisition domain
 (op-b-acq.op-a.example). (Note that without this specially
 defined inter-CDN acquisition domain, Operator A would be at
 risk of redirecting the request back to Operator B, resulting in

Peterson, et al. Informational [Page 18]

RFC 7336 CDNI Framework August 2014

 an infinite loop). The Request Router for Operator A selects a
 suitable delivery node in uCDN to serve the inter-CDN
 acquisition request and returns a 302 redirect message for a new
 URL constructed by replacing the hostname with a subdomain of
 the Operator A’s distinguished inter-CDN acquisition domain that
 points to the selected delivery node.

 9. Operator A’s DNS resolver processes the DNS request and returns
 the IP address of the delivery node in Operator A.

 10. Operator B requests (acquires) the content from Operator A.
 Although not shown, Operator A processes the rest of the URL: it
 extracts information identifying the origin server, validates
 that this server has been registered, and determines the content
 provider that owns the origin server. It may also perform its
 own content acquisition steps if needed before returning the
 content to dCDN.

 The main advantage of this design is that it is simple: each CDN need
 only know the distinguished CDN-Domain for each peer, with the
 Upstream CDN "pushing" the Downstream CDN-Domain onto the URL as part
 of its redirect (step 2), and the Downstream CDN "popping" its CDN-
 Domain off the URL to expose a CDN-Domain that the Upstream CDN can
 correctly process. Neither CDN need be aware of the internal
 structure of the other’s URLs. Moreover, the inter-CDN redirection
 is entirely supported by a single HTTP redirect; neither CDN need be
 aware of the other’s internal redirection mechanism (i.e., whether it
 is DNS or HTTP based).

 One disadvantage is that the end user’s browser is redirected to a
 new URL that is not in the same domain of the original URL. This has
 implications on a number of security or validation mechanisms
 sometimes used on endpoints. For example, it is important that any
 redirected URL be in the same domain (e.g., csp.example) if the
 browser is expected to send any cookies associated with that domain.
 As another example, some video players enforce validation of a cross-
 domain policy that needs to accommodate the domains involved in the
 CDN redirection. These problems are generally solvable, but the
 solutions complicate the example, so we do not discuss them further
 in this document.

 We note that this example begins to illustrate some of the interfaces
 that may be required for CDNI, but it does not require all of them.
 For example, obtaining information from a dCDN regarding the set of
 client IP addresses or geographic regions it might be able to serve
 is an aspect of request routing (specifically of the CDNI Footprint &
 Capabilities Advertisement interface). Important configuration
 information such as the distinguished names used for redirection and

Peterson, et al. Informational [Page 19]

RFC 7336 CDNI Framework August 2014

 inter-CDN acquisition could also be conveyed via a CDNI interface
 (e.g., perhaps the CDNI Control interface). The example also shows
 how existing HTTP-based methods suffice for the acquisition
 interface. Arguably, the absolute minimum metadata required for CDNI
 is the information required to acquire the content, and this
 information was provided "in-band" in this example by means of the
 URI handed to the client in the HTTP 302 response. The example also
 assumes that the CSP does not require any distribution policy (e.g.,
 time window or geo-blocking) or delivery processing to be applied by
 the interconnected CDNs. Hence, there is no explicit CDNI Metadata
 interface invoked in this example. There is also no explicit CDNI
 Logging interface discussed in this example.

 We also note that the step of deciding when a request should be
 redirected to the dCDN rather than served by the uCDN has been
 somewhat glossed over. It may be as simple as checking the client IP
 address against a list of prefixes, or it may be considerably more
 complex, involving a wide range of factors, such as the geographic
 location of the client (perhaps determined from a third-party
 service), CDN load, or specific business rules.

 This example uses the "iterative" CDNI request redirection approach.
 That is, a uCDN performs part of the request redirection function by
 redirecting the client to a Request Router in the dCDN, which then
 performs the rest of the redirection function by redirecting to a
 suitable Surrogate. If request routing is performed in the dCDN
 using HTTP redirection, this translates in the end user experiencing
 two successive HTTP redirections. By contrast, the alternative
 approach of "recursive" CDNI request redirection effectively
 coalesces these two successive HTTP redirections into a single one,
 sending the end user directly to the right delivery node in the dCDN.
 This "recursive" CDNI request routing approach is discussed in the
 next section.

 While the example above uses HTTP, the iterative HTTP redirection
 mechanism would work over HTTPS in a similar fashion. In order to
 make sure an end user’s HTTPS request is not downgraded to HTTP along
 the redirection path, it is necessary for every Request Router along
 the path from the initial uCDN Request Router to the final Surrogate
 in the dCDN to respond to an incoming HTTPS request with an HTTP
 redirect containing an HTTPS URL. It should be noted that using
 HTTPS will have the effect of increasing the total redirection
 process time and increasing the load on the Request Routers,
 especially when the redirection path includes many redirects and thus
 many Secure Socket Layer/Transport Layer Security (SSL/TLS) sessions.
 In such cases, a recursive HTTP redirection mechanism, as described
 in an example in the next section, might help to reduce some of these
 issues.

Peterson, et al. Informational [Page 20]

RFC 7336 CDNI Framework August 2014

3.3. Recursive HTTP Redirection Example

 The following example builds on the previous one to illustrate the
 use of the request routing interface (specifically, the CDNI Request
 Routing Redirection interface) to enable "recursive" CDNI request
 routing. We build on the HTTP-based redirection approach because it
 illustrates the principles and benefits clearly, but it is equally
 possible to perform recursive redirection when DNS-based redirection
 is employed.

 In contrast to the prior example, the operators need not agree in
 advance on a CDN-Domain to serve as the target of redirections from
 the uCDN to dCDN. We assume that the operators agree on some
 distinguished CDN-Domain that will be used for inter-CDN acquisition
 of the CSP’s content by dCDN. In this example, we’ll use
 op-b-acq.op-a.example.

 We assume the operators also exchange information regarding which
 requests the dCDN is prepared to serve. For example, the dCDN may be
 prepared to serve requests from clients in a given geographical
 region or a set of IP address prefixes. This information may again
 be provided out of band or via a defined protocol.

 We assume DNS is configured in the following way:

 o The content provider is configured to make Operator A the
 authoritative DNS server for cdn.csp.example (or to return a CNAME
 for cdn.csp.example for which Operator A is the authoritative DNS
 server).

 o Operator A is configured so that a DNS request for
 op-b-acq.op-a.example returns a Request Router in Operator A.

 o Operator B is configured so that a request for node1.op-b.example/
 cdn.csp.example returns the IP address of a delivery node. Note
 that there might be a number of such delivery nodes.

 Figure 3 illustrates how a client request for

 http://cdn.csp.example/...rest of URL...

 is handled.

Peterson, et al. Informational [Page 21]

RFC 7336 CDNI Framework August 2014

 End User Operator B Operator A
 |DNS cdn.csp.example | |
 |-->|
 | | |(1)
 |IPaddr of A’s Request Router |
 |<--|
 |HTTP cdn.csp.example | |
 |-->|
 | | |(2)
 | |RR/RI REQ cdn.csp.example|
 | |<------------------------|
 | | |
 | |RR/RI RESP node1.op-b.example
 | |------------------------>|
 | | |(3)
 |302 node1.op-b.example/cdn.csp.example |
 |<--|
 |DNS node1.op-b.example | |
 |------------------------>| |
 | |(4) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP node1.op-b.example/cdn.csp.example |
 |------------------------>| |
 | |(5) |
 | |DNS op-b-acq.op-a.example|
 | |------------------------>|
 | | |(6)
 | |IPaddr of A’s Request Router
 | |<------------------------|
 | |HTTP op-b-acq.op-a.example
 | |------------------------>|
 | | |(7)

Peterson, et al. Informational [Page 22]

RFC 7336 CDNI Framework August 2014

 | |302 node2.op-b-acq.op-a.example
 | |<------------------------|
 | |DNS node2.op-b-acq.op-a.example
 | |------------------------>|
 | | |(8)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | | |
 | |HTTP node2.op-b-acq.op-a.example
 | |------------------------>|
 | | |(9)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 4: Message Flow for Recursive HTTP Redirection

 The steps illustrated in the figure are as follows:

 1. A DNS resolver for Operator A processes the DNS request for its
 customer based on CDN-Domain cdn.csp.example. It returns the IP
 address of a Request Router in Operator A.

 2. A Request Router for Operator A processes the HTTP request and
 recognizes that the end user is best served by another CDN --
 specifically one provided by Operator B -- so it queries the CDNI
 Request Routing Redirection interface of Operator B, providing a
 set of information about the request including the URL requested.
 Operator B replies with the DNS name of a delivery node.

 3. Operator A returns a 302 redirect message for a new URL obtained
 from the RI.

 4. The end user does a DNS lookup using the hostname of the URL just
 provided (node1.op-b.example). B’s DNS resolver returns the IP
 address of the corresponding delivery node. Note that, since the
 name of the delivery node was already obtained from B using the
 RI, there should not be any further redirection here (in contrast
 to the iterative method described above.)

 5. The end user requests the content from B’s delivery node,
 potentially resulting in a cache miss. In the case of a cache
 miss, the content needs to be acquired from the uCDN (not the
 CSP.) The distinguished CDN-Domain op-b.example indicates to the
 dCDN that this content is to be acquired from another CDN;
 stripping the CDN-Domain reveals the original CDN-Domain
 cdn.csp.example. The dCDN may verify that this CDN-Domain

Peterson, et al. Informational [Page 23]

RFC 7336 CDNI Framework August 2014

 belongs to a known peer (so as to avoid being tricked into
 serving as an open proxy). It then does a DNS request for the
 inter-CDN Acquisition "distinguished" CDN-Domain as agreed above
 (in this case, op-b-acq.op-a.example).

 6. Operator A’s DNS resolver processes the DNS request and returns
 the IP address of a Request Router in Operator A.

 7. The Request Router for Operator A processes the HTTP request from
 Operator B’s delivery node. Operator A’s Request Router
 recognizes that the request is from a peer CDN rather than an end
 user because of the dedicated inter-CDN acquisition domain
 (op-b-acq.op-a.example). (Note that without this specially
 defined inter-CDN acquisition domain, Operator A would be at risk
 of redirecting the request back to Operator B, resulting in an
 infinite loop). The Request Router for Operator A selects a
 suitable delivery node in the uCDN to serve the inter-CDN
 acquisition request and returns a 302 redirect message for a new
 URL constructed by replacing the hostname with a subdomain of the
 Operator A’s distinguished inter-CDN acquisition domain that
 points to the selected delivery node.

 8. Operator A recognizes that the DNS request is from a peer CDN
 rather than an end user (due to the internal CDN-Domain) and so
 returns the address of a delivery node. (Note that without this
 specially defined internal domain, Operator A would be at risk of
 redirecting the request back to Operator B, resulting in an
 infinite loop.)

 9. Operator B requests (acquires) the content from Operator A.
 Operator A serves content for the requested CDN-Domain to the
 dCDN. Although not shown, it is at this point that Operator A
 processes the rest of the URL: it extracts information
 identifying the origin server, validates that this server has
 been registered, and determines the content provider that owns
 the origin server. It may also perform its own content
 acquisition steps if needed before returning the content to the
 dCDN.

 Recursive redirection has the advantage (over iterative redirection)
 of being more transparent from the end user’s perspective but the
 disadvantage of each CDN exposing more of its internal structure (in
 particular, the addresses of edge caches) to peer CDNs. By contrast,
 iterative redirection does not require the dCDN to expose the
 addresses of its edge caches to the uCDN.

Peterson, et al. Informational [Page 24]

RFC 7336 CDNI Framework August 2014

 This example happens to use HTTP-based redirection in both CDN A and
 CDN B, but a similar example could be constructed using DNS-based
 redirection in either CDN. Hence, the key point to take away here is
 simply that the end user only sees a single redirection of some type,
 as opposed to the pair of redirections in the prior (iterative)
 example.

 The use of the RI requires that the request routing mechanism be
 appropriately configured and bootstrapped, which is not shown here.
 More discussion on the bootstrapping of interfaces is provided in
 Section 4

3.4. Iterative DNS-Based Redirection Example

 In this section we walk through a simple example using DNS-based
 redirection for request redirection from the uCDN to the dCDN (as
 well as for request routing inside the dCDN and the uCDN). As noted
 in Section 2.1, DNS-based redirection has certain advantages over
 HTTP-based redirection (notably, it is transparent to the end user)
 as well as some drawbacks (notably, the client IP address is not
 visible to the Request Router).

 As before, Operator A has to learn the set of requests that the dCDN
 is willing or able to serve (e.g., which client IP address prefixes
 or geographic regions are part of the dCDN footprint). We assume
 Operator B has and makes known to Operator A some unique identifier
 that can be used for the construction of a distinguished CDN-Domain,
 as shown in more detail below. (This identifier strictly needs only
 to be unique within the scope of Operator A, but a globally unique
 identifier, such as an Autonomous System (AS) number assigned to B,
 is one easy way to achieve that.) Also, Operator A obtains the NS
 records for Operator B’s externally visible redirection servers.
 Also, as before, a distinguished CDN-Domain, such as
 op-b-acq.op-a.example, must be assigned for inter-CDN acquisition.

 We assume DNS is configured in the following way:

 o The CSP is configured to make Operator A the authoritative DNS
 server for cdn.csp.example (or to return a CNAME for
 cdn.csp.example for which Operator A is the authoritative DNS
 server).

 o When uCDN sees a request best served by the dCDN, it returns CNAME
 and NS records for "b.cdn.csp.example", where "b" is the unique
 identifier assigned to Operator B. (It may, for example, be an AS
 number assigned to Operator B.)

Peterson, et al. Informational [Page 25]

RFC 7336 CDNI Framework August 2014

 o The dCDN is configured so that a request for "b.cdn.csp.example"
 returns a delivery node in the dCDN.

 o The uCDN is configured so that a request for
 "op-b-acq.op-a.example" returns a delivery node in the uCDN.

 Figure 5 depicts the exchange of DNS and HTTP requests. The main
 differences from Figure 3 are the lack of HTTP redirection and
 transparency to the end user.

 End User Operator B Operator A
 |DNS cdn.csp.example | |
 |-->|
 | | |(1)
 |CNAME b.cdn.csp.example | |
 |<--|
 | | |
 |DNS b.cdn.csp.example | |
 |-->|
 | | |(2)
 |NS records for b.cdn.csp.example + |
 |Glue AAAA/A records for b.cdn.csp.example |
 |<--|
 | | |
 |DNS b.cdn.csp.example | |
 |------------------------>| |
 | |(3) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP cdn.csp.example | |
 |------------------------>| |
 | |(4) |
 | |DNS op-b-acq.op-a.example|
 | |------------------------>|
 | | |(5)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP op-b-acq.op-a.example
 | |------------------------>|
 | | |(6)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 5: Message Flow for DNS-Based Redirection

Peterson, et al. Informational [Page 26]

RFC 7336 CDNI Framework August 2014

 The steps illustrated in the figure are as follows:

 1. The Request Router for Operator A processes the DNS request for
 CDN-Domain cdn.csp.example and recognizes that the end user is
 best served by another CDN. (This may depend on the IP address
 of the user’s LDNS resolver, or other information discussed
 below.) The Request Router returns a DNS CNAME response by
 "stacking" the distinguished identifier for Operator B onto the
 original CDN-Domain (e.g., b.cdn.csp.example).

 2. The end user sends a DNS query for the modified CDN-Domain (i.e.,
 b.cdn.csp.example) to Operator A’s DNS server. The Request
 Router for Operator A processes the DNS request and returns a
 delegation to b.cdn.csp.example by sending an NS record plus glue
 records pointing to Operator B’s DNS server. (This extra step is
 necessary since typical DNS implementation won’t follow an NS
 record when it is sent together with a CNAME record, thereby
 necessitating a two-step approach.)

 3. The end user sends a DNS query for the modified CDN-Domain (i.e.,
 b.cdn.csp.example) to Operator B’s DNS server, using the NS and
 AAAA/A records received in step 2. This causes B’s Request
 Router to respond with a suitable delivery node.

 4. The end user requests the content from B’s delivery node. The
 requested URL contains the name cdn.csp.example. (Note that the
 returned CNAME does not affect the URL.) At this point, the
 delivery node has the correct IP address of the end user and can
 do an HTTP 302 redirect if the redirections in steps 2 and 3 were
 incorrect. Otherwise, B verifies that this CDN-Domain belongs to
 a known peer (so as to avoid being tricked into serving as an
 open proxy). It then does a DNS request for an "internal" CDN-
 Domain as agreed above (op-b-acq.op-a.example).

 5. Operator A recognizes that the DNS request is from a peer CDN
 rather than an end user (due to the internal CDN-Domain) and so
 returns the address of a delivery node in uCDN.

 6. Operator A serves content to dCDN. Although not shown, it is at
 this point that Operator A processes the rest of the URL: it
 extracts information identifying the origin server, validates
 that this server has been registered, and determines the content
 provider that owns the origin server.

 The advantages of this approach are that it is more transparent to
 the end user and requires fewer round trips than HTTP-based
 redirection (in its worst case, i.e., when none of the needed DNS
 information is cached). A potential problem is that the Upstream CDN

Peterson, et al. Informational [Page 27]

RFC 7336 CDNI Framework August 2014

 depends on being able to learn the correct Downstream CDN that serves
 the end user from the client address in the DNS request. In standard
 DNS operation, the uCDN will only obtain the address of the client’s
 LDNS resolver, which is not guaranteed to be in the same network (or
 geographic region) as the client. If not (e.g., the end user uses a
 global DNS service), then the Upstream CDN cannot determine the
 appropriate Downstream CDN to serve the end user. In this case, and
 assuming the uCDN is capable of detecting that situation, one option
 is for the Upstream CDN to treat the end user as it would any user
 not connected to a peer CDN. Another option is for the Upstream CDN
 to "fall back" to a pure HTTP-based redirection strategy in this case
 (i.e., use the first method). Note that this problem affects
 existing CDNs that rely on DNS to determine where to redirect client
 requests, but the consequences are arguably less serious for CDNI
 since the LDNS is likely in the same network as the dCDN serves.

 As with the prior example, this example partially illustrates the
 various interfaces involved in CDNI. Operator A could learn
 dynamically from Operator B the set of prefixes or regions that B is
 willing and able to serve via the CDNI Footprint & Capabilities
 Advertisement interface. The distinguished name used for acquisition
 and the identifier for Operator B that is prepended to the CDN-Domain
 on redirection are examples of information elements that might also
 be conveyed by CDNI interfaces (or, alternatively, statically
 configured). As before, minimal metadata sufficient to obtain the
 content is carried "in-band" as part of the redirection process, and
 standard HTTP is used for inter-CDN acquisition. There is no
 explicit CDNI Logging interface discussed in this example.

3.4.1. Notes on Using DNSSEC

 Although it is possible to use DNSSEC in combination with the
 Iterative DNS-based Redirection mechanism explained above, it is
 important to note that the uCDN might have to sign records on the
 fly, since the CNAME returned, and thus the signature provided, can
 potentially be different for each incoming query. Although there is
 nothing preventing a uCDN from performing such on-the-fly signing,
 this might be computationally expensive. In the case where the
 number of dCDNs, and thus the number of different CNAMEs to return,
 is relatively stable, an alternative solution would be for the uCDN
 to pre-generate signatures for all possible CNAMEs. For each
 incoming query, the uCDN would then determine the appropriate CNAME
 and return it together with the associated pre-generated signature.
 Note: In the latter case, maintaining the serial number and signature
 of Start of Authority (SOA) might be an issue since, technically, it
 should change every time a different CNAME is used. However, since,

Peterson, et al. Informational [Page 28]

RFC 7336 CDNI Framework August 2014

 in practice, direct SOA queries are relatively rare, a uCDN could
 defer incrementing the serial number and resigning the SOA until it
 is queried and then do it on-the-fly.

 Note also that the NS record and the glue records used in step 2 in
 the previous section should generally be identical to those of their
 authoritative zone managed by Operator B. Even if they differ, this
 will not make the DNS resolution process fail, but the client DNS
 server will prefer the authoritative data in its cache and use it for
 subsequent queries. Such inconsistency is a general operational
 issue of DNS, but it may be more important for this architecture
 because the uCDN (Operator A) would rely on the consistency to make
 the resulting redirection work as intended. In general, it is the
 administrator’s responsibility to make them consistent.

3.5. Dynamic Footprint Discovery Example

 There could be situations where being able to dynamically discover
 the set of requests that a given dCDN is willing and able to serve is
 beneficial. For example, a CDN might at one time be able to serve a
 certain set of client IP prefixes, but that set might change over
 time due to changes in the topology and routing policies of the IP
 network. The following example illustrates this capability. We have
 chosen the example of DNS-based redirection, but HTTP-based
 redirection could equally well use this approach.

Peterson, et al. Informational [Page 29]

RFC 7336 CDNI Framework August 2014

 End User Operator B Operator A
 |DNS cdn.csp.example | |
 |-->|
 | | |(1)
 | | RI REQ op-b.example |
 | |<------------------------|
 | | |(2)
 | | RI REPLY |
 | |------------------------>|
 | | |(3)
 |CNAME b.cdn.csp.example | |
 |NS records for b.cdn.csp.example |
 |<--|
 |DNS b.cdn.csp.example | |
 |------------------------>| |
 | |(2) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP cdn.csp.example | |
 |------------------------>| |
 | |(3) |
 | |DNS op-b-acq.op-a.example|
 | |------------------------>|
 | | |(4)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP op-b-acq.op-a.example
 | |------------------------>|
 | | |(5)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 6: Message Flow for Dynamic Footprint Discovery

 This example differs from the one in Figure 5 only in the addition of
 an RI request (step 2) and corresponding response (step 3). The RI
 REQ could be a message such as "Can you serve clients from this IP
 Prefix?" or it could be "Provide the list of client IP prefixes you
 can currently serve". In either case the response might be cached by
 Operator A to avoid repeatedly asking the same question.
 Alternatively, or in addition, Operator B may spontaneously advertise
 to Operator A information (or changes) on the set of requests it is
 willing and able to serve on behalf of Operator A; in that case,
 Operator B may spontaneously issue RR/RI REPLY messages that are not

Peterson, et al. Informational [Page 30]

RFC 7336 CDNI Framework August 2014

 in direct response to a corresponding RR/RI REQ message. (Note that
 the issues of determining the client’s subnet from DNS requests, as
 described above, are exactly the same here as in Section 3.4.)

 Once Operator A obtains the RI response, it is now able to determine
 that Operator B’s CDN is an appropriate dCDN for this request and
 therefore a valid candidate dCDN to consider in its redirection
 decision. If that dCDN is selected, the redirection and serving of
 the request proceeds as before (i.e., in the absence of dynamic
 footprint discovery).

3.6. Content Removal Example

 The following example illustrates how the CDNI Control interface may
 be used to achieve pre-positioning of an item of content in the dCDN.
 In this example, user requests for a particular content, and
 corresponding redirection of such requests from Operator A to
 Operator B CDN, may (or may not) have taken place earlier. Then, at
 some point in time, the uCDN (for example, in response to a
 corresponding Trigger from the Content Provider) uses the CI to
 request that content identified by a particular URL be removed from
 dCDN. The following diagram illustrates the operation. It should be
 noted that a uCDN will typically not know whether a dCDN has cached a
 given content item; however, it may send the content removal request
 to make sure no cached versions remain to satisfy any contractual
 obligations it may have.

 End User Operator B Operator A
 | |CI purge cdn.csp.example/...
 | |<------------------------|
 | | |
 | |CI OK |
 | |------------------------>|
 | | |

 Figure 7: Message Flow for Content Removal

 The CI is used to convey the request from the uCDN to the dCDN that
 some previously acquired content should be deleted. The URL in the
 request specifies which content to remove. This example corresponds
 to a DNS-based redirection scenario such as Section 3.4. If HTTP-
 based redirection had been used, the URL for removal would be of the
 form peer-a.op-b.example/cdn.csp.example/...

 The dCDN is expected to confirm to the uCDN, as illustrated by the CI
 OK message, the completion of the removal of the targeted content
 from all the caches in the dCDN.

Peterson, et al. Informational [Page 31]

RFC 7336 CDNI Framework August 2014

3.7. Pre-positioned Content Acquisition Example

 The following example illustrates how the CI may be used to pre-
 position an item of content in the dCDN. In this example, Operator A
 uses the CDNI Metadata interface to request that content identified
 by a particular URL be pre-positioned into Operator B CDN.

 End User Operator B Operator A

 | |CI pre-position cdn.csp.example/...
 | |<------------------------|
 | | |(1)
 | |CI OK |
 | |------------------------>|
 | | |
 | |DNS op-b-acq.op-a.example|
 | |------------------------>|
 | | |(2)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP op-b-acq.op-a.example
 | |------------------------>|
 | | |(3)
 | |Data |
 | |<------------------------|
 |DNS cdn.csp.example | |
 |--->|
 | | |(4)
 |IPaddr of A’s Request Router |
 |<---|
 |HTTP cdn.csp.example| |
 |--->|
 | | |(5)
 |302 peer-a.op-b.example/cdn.csp.example |
 |<---|
 |DNS peer-a.op-b.example |
 |------------------->| |
 | |(6) |
 |IPaddr of B’s Delivery Node |
 |<-------------------| |
 |HTTP peer-a.op-b.example/cdn.csp.example |
 |------------------->| |
 | |(7) |
 |Data | |
 |<-------------------| |

 Figure 8: Message Flow for Content Pre-Positioning

Peterson, et al. Informational [Page 32]

RFC 7336 CDNI Framework August 2014

 The steps illustrated in the figure are as follows:

 1. Operator A uses the CI to request that Operator B pre-position a
 particular content item identified by its URL. Operator B
 responds by confirming that it is willing to perform this
 operation.

 Steps 2 and 3 are exactly the same as steps 5 and 6 of Figure 3, only
 this time those steps happen as the result of the Pre-positioning
 request instead of as the result of a cache miss.

 Steps 4, 5, 6, and 7 are exactly the same as steps 1, 2, 3, and 4 of
 Figure 3, only this time, Operator B’s CDN can serve the end-user
 request without triggering dynamic content acquisition, since the
 content has been pre-positioned in the dCDN. Note that, depending on
 dCDN operations and policies, the content pre-positioned in the dCDN
 may be pre-positioned to all, or a subset of, dCDN caches. In the
 latter case, intra-CDN dynamic content acquisition may take place
 inside the dCDN serving requests from caches on which the content has
 not been pre-positioned; however, such intra-CDN dynamic acquisition
 would not involve the uCDN.

3.8. Asynchronous CDNI Metadata Example

 In this section, we walk through a simple example illustrating a
 scenario of asynchronously exchanging CDNI Metadata, where the
 Downstream CDN obtains CDNI Metadata for content ahead of a
 corresponding content request. The example that follows assumes that
 HTTP-based inter-CDN redirection and recursive CDNI request routing
 are used, as in Section 3.3. However, Asynchronous exchange of CDNI
 Metadata is similarly applicable to DNS-based inter-CDN redirection
 and iterative request routing (in which cases the CDNI Metadata may
 be used at slightly different processing stages of the message
 flows).

Peterson, et al. Informational [Page 33]

RFC 7336 CDNI Framework August 2014

 End User Operator B Operator A
 | | |
 | |CI pre-position (Trigger)|
 | |<------------------------|(1)
 | | |
 | |CI OK |
 | |------------------------>|(2)
 | | |
 | |MI pull REQ |
 | |------------------------>|(3)
 | | |
 | |MI metadata REP |(4)
 | | |
 | | |
 | CONTENT REQUEST | |
 |-->|(5)
 | | |
 | | RI REQ |
 | |<------------------------|(6)
 | | |
 | | RI RESP |
 | |------------------------>|(7)
 | | |
 | CONTENT REDIRECTION | |
 |<--|(8)
 | | |
 | CONTENT REQUEST | |
 |------------------------>|(9) |
 | | |
 : : :
 | CONTENT DATA | |
 |<------------------------| |(10)

 Figure 9: Message Flow for Asynchronous CDNI Metadata

 The steps illustrated in the figure are as follows:

 1. Operator A uses the CI to trigger the signaling of the
 availability of CDNI Metadata to Operator B.

 2. Operator B acknowledges the receipt of this Trigger.

 3. Operator B requests the latest metadata from Operator A using
 the MI.

Peterson, et al. Informational [Page 34]

RFC 7336 CDNI Framework August 2014

 4. Operator A replies with the requested metadata. This document
 does not constrain how the CDNI Metadata information is actually
 represented. For the purposes of this example, we assume that
 Operator A provides CDNI Metadata to Operator B indicating that:

 * this CDNI Metadata is applicable to any content referenced by
 some CDN-Domain.

 * this CDNI Metadata consists of a distribution policy
 requiring enforcement by the delivery node of a specific per-
 request authorization mechanism (e.g., URI signature or token
 validation).

 5. A Content Request occurs as usual.

 6. A CDNI Request Routing Redirection request (RI REQ) is issued by
 Operator A’s CDN, as discussed in Section 3.3. Operator B’s
 Request Router can access the CDNI Metadata that are relevant to
 the requested content and that have been pre-positioned as per
 Steps 1-4, which may or may not affect the response.

 7. Operator B’s Request Router issues a CDNI Request Routing
 Redirection response (RI RESP) as in Section 3.3.

 8. Operator B performs content redirection as discussed in
 Section 3.3.

 9. On receipt of the Content Request by the end user, the delivery
 node detects that previously acquired CDNI Metadata is
 applicable to the requested content. In accordance with the
 specific CDNI metadata of this example, the delivery node will
 invoke the appropriate per-request authorization mechanism,
 before serving the content. (Details of this authorization are
 not shown.)

 10. Assuming successful per-request authorization, serving of
 Content Data (possibly preceded by inter-CDN acquisition)
 proceeds as in Section 3.3.

3.9. Synchronous CDNI Metadata Acquisition Example

 In this section we walk through a simple example illustrating a
 scenario of Synchronous CDNI Metadata acquisition, in which the
 Downstream CDN obtains CDNI Metadata for content at the time of
 handling a first request for the corresponding content. As in the
 preceding section, this example assumes that HTTP-based inter-CDN

Peterson, et al. Informational [Page 35]

RFC 7336 CDNI Framework August 2014

 redirection and recursive CDNI request routing are used (as in
 Section 3.3), but dynamic CDNI Metadata acquisition is applicable to
 other variations of request routing.

 End User Operator B Operator A
 | | |
 | CONTENT REQUEST | |
 |-->|(1)
 | | |
 | | RI REQ |
 | (2)|<------------------------|
 | | |
 | | MI REQ |
 | (3)|------------------------>|
 | | MI RESP |
 | |<------------------------|(4)
 | | |
 | | RI RESP |
 | |------------------------>|(5)
 | | |
 | | |
 | CONTENT REDIRECTION | |
 |<--|(6)
 | | |
 | CONTENT REQUEST | |
 |------------------------>|(7) |
 | | |
 | | MI REQ |
 | (8)|------------------------>|
 | | MI RESP |
 | |<------------------------|(9)
 | | |
 : : :
 | CONTENT DATA | |
 |<------------------------| |(10)

 Figure 10: Message Flow for Synchronous CDNI Metadata Acquisition

 The steps illustrated in the figure are as follows:

 1. A Content Request arrives as normal.

 2. An RI request occurs as in the prior example.

Peterson, et al. Informational [Page 36]

RFC 7336 CDNI Framework August 2014

 3. On receipt of the CDNI Request Routing Request, Operator B’s CDN
 initiates Synchronous acquisition of CDNI Metadata that are
 needed for routing of the end-user request. We assume the URI
 for the a metadata server is known ahead of time through some
 out-of-band means.

 4. On receipt of a CDNI Metadata request, Operator A’s CDN
 responds, making the corresponding CDNI Metadata information
 available to Operator B’s CDN. This metadata is considered by
 Operator B’s CDN before responding to the Request Routing
 request. (In a simple case, the metadata could simply be an
 allow or deny response for this particular request.)

 5. Response to the RI request as normal.

 6. Redirection message is sent to the end user.

 7. A delivery node of Operator B receives the end user request.

 8. The delivery node Triggers dynamic acquisition of additional
 CDNI Metadata that are needed to process the end-user content
 request. Note that there may exist cases where this step need
 not happen, for example, because the metadata were already
 acquired previously.

 9. Operator A’s CDN responds to the CDNI Metadata Request and makes
 the corresponding CDNI Metadata available to Operator B. This
 metadata influence how Operator B’s CDN processes the end-user
 request.

 10. Content is served (possibly preceded by inter-CDN acquisition)
 as in Section 3.3.

3.10. Content and Metadata Acquisition with Multiple Upstream CDNs

 A single dCDN may receive end-user requests from multiple uCDNs.
 When a dCDN receives an end-user request, it must determine the
 identity of the uCDN from which it should acquire the requested
 content.

 Ideally, the acquisition path of an end-user request will follow the
 redirection path of the request. The dCDN should acquire the content
 from the same uCDN that redirected the request.

 Determining the acquisition path requires the dCDN to reconstruct the
 redirection path based on information in the end-user request. The
 method for reconstructing the redirection path differs based on the
 redirection approach: HTTP or DNS.

Peterson, et al. Informational [Page 37]

RFC 7336 CDNI Framework August 2014

 With HTTP-redirection, the rewritten URI should include sufficient
 information for the dCDN to directly or indirectly determine the uCDN
 when the end-user request is received. The HTTP-redirection approach
 can be further broken-down based on the how the URL is rewritten
 during redirection: HTTP redirection with or without Site
 Aggregation. HTTP redirection with Site Aggregation hides the
 identity of the original CSP. HTTP redirection without Site
 Aggregation does not attempt to hide the identity of the original
 CSP. With both approaches, the rewritten URI includes enough
 information to identify the immediate neighbor uCDN.

 With DNS-redirection, the dCDN receives the published URI (instead of
 a rewritten URI) and does not have sufficient information for the
 dCDN to identify the appropriate uCDN. The dCDN may narrow the set
 of viable uCDNs by examining the CDNI Metadata from each to determine
 which uCDNs are hosting metadata for the requested content. If there
 is a single uCDN hosting metadata for the requested content, the dCDN
 can assume that the request redirection is coming from this uCDN and
 can acquire content from that uCDN. If there are multiple uCDNs
 hosting metadata for the requested content, the dCDN may be ready to
 trust any of these uCDNs to acquire the content (provided the uCDN is
 in a position to serve it). If the dCDN is not ready to trust any of
 these uCDNs, it needs to ensure via out of band arrangements that,
 for a given content, only a single uCDN will ever redirect requests
 to the dCDN.

 Content acquisition may be preceded by content metadata acquisition.
 If possible, the acquisition path for metadata should also follow the
 redirection path. Additionally, we assume metadata is indexed based
 on rewritten URIs in the case of HTTP redirection and is indexed
 based on published URIs in the case of DNS-redirection. Thus, the RI
 and the MI are tightly coupled in that the result of request routing
 (a rewritten URI pointing to the dCDN) serves as an input to metadata
 lookup. If the content metadata includes information for acquiring
 the content, then the MI is also tightly coupled with the acquisition
 interface in that the result of the metadata lookup (an acquisition
 URL likely hosted by the uCDN) should serve as input to the content
 acquisition.

4. Main Interfaces

 Figure 1 illustrates the main interfaces that are in scope for the
 CDNI WG, along with several others. The detailed specifications of
 these interfaces are left to other documents, but see [RFC6707] and
 [RFC7337] for some discussion of the interfaces.

Peterson, et al. Informational [Page 38]

RFC 7336 CDNI Framework August 2014

 One interface that is not shown in Figure 1 is the interface between
 the user and the CSP. While for the purposes of CDNI that interface
 is out of scope, it is worth noting that it does exist and can
 provide useful functions, such as end-to-end performance monitoring
 and some forms of authentication and authorization.

 There is also an important interface between the user and the Request
 Routing function of both uCDN and dCDN (shown as the "Request"
 interface in Figure 1). As we saw in some of the preceding examples,
 that interface can be used as a way of passing metadata, such as the
 minimum information that is required for dCDN to obtain the content
 from the uCDN.

 In this section we will provide an overview of the functions
 performed by each of the CDNI interfaces and discuss how they fit
 into the overall solution. We also examine some of the design trade-
 offs, and explore several cross-interface concerns. We begin with an
 examination of one such trade-off that affects all the interfaces --
 the use of in-band or out-of-band communication.

4.1. In-Band versus Out-of-Band Interfaces

 Before getting to the individual interfaces, we observe that there is
 a high-level design choice for each, involving the use of existing
 in-band communication channels versus defining new out-of-band
 interfaces.

 It is possible that the information needed to carry out various
 interconnection functions can be communicated between peer CDNs using
 existing in-band protocols. The use of HTTP 302 redirect is an
 example of how certain aspects of request routing can be implemented
 in-band (embedded in URIs). Note that using existing in-band
 protocols does not imply that the CDNI interfaces are null; it is
 still necessary to establish the rules (conventions) by which such
 protocols are used to implement the various interface functions.

 There are other opportunities for in-band communication beyond HTTP
 redirects. For example, many of the HTTP directives used by proxy
 servers can also be used by peer CDNs to inform each other of caching
 activity. Of these, one that is particularly relevant is the
 If-Modified-Since directive, which is used with the GET method to
 make it conditional: if the requested object has not been modified
 since the time specified in this field, a copy of the object will not
 be returned, and instead, a 304 (not modified) response will be
 returned.

Peterson, et al. Informational [Page 39]

RFC 7336 CDNI Framework August 2014

4.2. Cross-Interface Concerns

 Although the CDNI interfaces are largely independent, there are a set
 of conventions practiced consistently across all interfaces. Most
 important among these is how resources are named, for example, how
 the CDNI Metadata and Control interfaces identify the set of
 resources to which a given directive applies or the CDNI Logging
 interface identifies the set of resources for which a summary record
 applies.

 While, theoretically, the CDNI interfaces could explicitly identify
 every individual resource, in practice, they name resource aggregates
 (sets of URIs) that are to be treated in a similar way. For example,
 URI aggregates can be identified by a CDN-Domain (i.e., the FQDN at
 the beginning of a URI) or by a URI-Filter (i.e., a regular
 expression that matches a subset of URIs contained in some CDN-
 Domain). In other words, CDN-Domains and URI-Filters provide a
 uniform means to aggregate sets (and subsets) of URIs for the purpose
 of defining the scope for some operation in one of the CDNI
 interfaces.

4.3. Request Routing Interfaces

 The Request Routing interface comprises two parts: the Asynchronous
 interface used by a dCDN to advertise footprint and capabilities
 (denoted FCI) to a uCDN, allowing the uCDN to decide whether to
 redirect particular user requests to that dCDN; and the Synchronous
 interface used by the uCDN to redirect a user request to the dCDN
 (denoted RI). (These are somewhat analogous to the operations of
 routing and forwarding in IP.)

 As illustrated in Section 3, the RI part of request routing may be
 implemented in part by DNS and HTTP. Naming conventions may be
 established by which CDN peers communicate whether a request should
 be routed or content served.

 We also note that RI plays a key role in enabling recursive
 redirection, as illustrated in Section 3.3. It enables the user to
 be redirected to the correct delivery node in dCDN with only a single
 redirection step (as seen by the user). This may be particularly
 valuable as the chain of interconnected CDNs increases beyond two
 CDNs. For further discussion on the RI, see [REDIRECTION].

 In support of these redirection requests, it is necessary for CDN
 peers to exchange additional information with each other, and this is
 the role of the FCI part of request routing. Depending on the
 method(s) supported, this might include:

Peterson, et al. Informational [Page 40]

RFC 7336 CDNI Framework August 2014

 o The operator’s unique id (operator-id) or distinguished CDN-Domain
 (operator-domain);

 o NS records for the operator’s set of externally visible Request
 Routers;

 o The set of requests the dCDN operator is prepared to serve (e.g.,
 a set of client IP prefixes or geographic regions that may be
 served by the dCDN).

 o Additional capabilities of the dCDN, such as its ability to
 support different CDNI Metadata requests.

 Note that the set of requests that a dCDN is willing to serve could
 in some cases be relatively static (e.g., a set of IP prefixes),
 could be exchanged off-line, or might even be negotiated as part of a
 peering agreement. However, it may also be more dynamic, in which
 case the exchange supported by FCI would be helpful. A further
 discussion of the Footprint & Capability Advertisement interface can
 be found in [FOOTPRINT-CAPABILITY].

4.4. CDNI Logging Interface

 It is necessary for the Upstream CDN to have visibility into the
 delivery of content that it redirected to a Downstream CDN. This
 allows the Upstream CDN to properly bill its customers for multiple
 deliveries of content cached by the Downstream CDN, as well as to
 report accurate traffic statistics to those content providers. This
 is one role of the LI.

 Other operational data that may be relevant to CDNI can also be
 exchanged by the LI. For example, a dCDN may report the amount of
 content it has acquired from uCDN, and how much cache storage has
 been consumed by content cached on behalf of uCDN.

 Traffic logs are easily exchanged off-line. For example, the
 following traffic log is a small deviation from the Apache log file
 format, where entries include the following fields:

 o Domain - the full domain name of the origin server

 o IP address - the IP address of the client making the request

 o End time - the ending time of the transfer

 o Time zone - any time zone modifier for the end time

 o Method - the transfer command itself (e.g., GET, POST, HEAD)

Peterson, et al. Informational [Page 41]

RFC 7336 CDNI Framework August 2014

 o URL - the requested URL

 o Version - the protocol version, such as HTTP/1.0

 o Response - a numeric response code indicating transfer result

 o Bytes Sent - the number of bytes in the body sent to the client

 o Request ID - a unique identifier for this transfer

 o User agent - the user agent, if supplied

 o Duration - the duration of the transfer in milliseconds

 o Cached Bytes - the number of body bytes served from the cache

 o Referrer - the referrer string from the client, if supplied

 Of these, only the Domain field is indirect in the Downstream CDN --
 it is set to the CDN-Domain used by the Upstream CDN rather than the
 actual origin server. This field could then used to filter traffic
 log entries so only those entries matching the Upstream CDN are
 reported to the corresponding operator. Further discussion of the LI
 can be found in [LOGGING].

 One open question is who does the filtering. One option is that the
 Downstream CDN filters its own logs and passes the relevant records
 directly to each Upstream peer. This requires that the Downstream
 CDN know the set of CDN-Domains that belong to each Upstream peer.
 If this information is already exchanged between peers as part of
 another interface, then direct peer-to-peer reporting is
 straightforward. If it is not available, and operators do not wish
 to advertise the set of CDN-Domains they serve to their peers, then
 the second option is for each CDN to send both its non-local traffic
 records and the set of CDN-Domains it serves to an independent third
 party (i.e., a CDN Exchange), which subsequently filters, merges, and
 distributes traffic records on behalf of each participating CDN
 operator.

 A second open question is how timely traffic information should be.
 For example, in addition to offline traffic logs, accurate real-time
 traffic monitoring might also be useful, but such information
 requires that the Downstream CDN inform the Upstream CDN each time it
 serves Upstream content from its cache. The Downstream CDN can do
 this, for example, by sending a conditional HTTP GET request
 (If-Modified-Since) to the Upstream CDN each time it receives an HTTP
 GET request from one of its end users. This allows the Upstream CDN

Peterson, et al. Informational [Page 42]

RFC 7336 CDNI Framework August 2014

 to record that a request has been issued for the purpose of real-time
 traffic monitoring. The Upstream CDN can also use this information
 to validate the traffic logs received later from the Downstream CDN.

 There is obviously a trade-off between accuracy of such monitoring
 and the overhead of the Downstream CDN having to go back to the
 Upstream CDN for every request.

 Another design trade-off in the LI is the degree of aggregation or
 summarization of data. One situation that lends itself to
 summarization is the delivery of HTTP Adaptive Streaming (HAS), since
 the large number of individual chunk requests potentially results in
 large volumes of logging information. This case is discussed below,
 but other forms of aggregation may also be useful. For example,
 there may be situations where bulk metrics such as bytes delivered
 per hour may suffice rather than the detailed per-request logs
 outlined above. It seems likely that a range of granularities of
 logging will be needed along with ways to specify the type and degree
 of aggregation required.

4.5. CDNI Control Interface

 The CDNI Control interface is initially used to bootstrap the other
 interfaces. As a simple example, it could be used to provide the
 address of the logging server in the dCDN to the uCDN in order to
 bootstrap the CDNI Logging interface. It may also be used, for
 example, to establish security associations for the other interfaces.

 The other role the CI plays is to allow the uCDN to pre-position,
 revalidate, or purge metadata and content on a dCDN. These
 operations, sometimes collectively called the "Trigger interface",
 are discussed further in [CONTROL-TRIGGERS].

4.6. CDNI Metadata Interface

 The role of the CDNI Metadata interface is to enable CDNI
 distribution metadata to be conveyed to the Downstream CDN by the
 Upstream CDN. Such metadata includes geo-blocking restrictions,
 availability windows, access-control policies, and so on. It may
 also include information to facilitate acquisition of content by a
 dCDN (e.g., alternate sources for the content, authorization
 information needed to acquire the content from the source). For a
 full discussion of the CDNI Metadata interface, see [METADATA]

 Some distribution metadata may be partially emulated using in-band
 mechanisms. For example, in case of any geo-blocking restrictions or
 availability windows, the Upstream CDN can elect to redirect a
 request to the Downstream CDN only if that CDN’s advertised delivery

Peterson, et al. Informational [Page 43]

RFC 7336 CDNI Framework August 2014

 footprint is acceptable for the requested URL. Similarly, the
 request could be forwarded only if the current time is within the
 availability window. However, such approaches typically come with
 shortcomings such as inability to prevent from replay outside the
 time window or inability to make use of a Downstream CDN that covers
 a broader footprint than the geo-blocking restrictions.

 Similarly, some forms of access control may also be performed on a
 per-request basis using HTTP directives. For example, being able to
 respond to a conditional GET request gives the Upstream CDN an
 opportunity to influence how the Downstream CDN delivers its content.
 Minimally, the Upstream CDN can invalidate (purge) content previously
 cached by the Downstream CDN.

 All of these in-band techniques serve to illustrate that uCDNs have
 the option of enforcing some of their access control policies
 themselves (at the expense of increased inter-CDN signaling load),
 rather than delegating enforcement to dCDNs using the MI. As a
 consequence, the MI could provide a means for the uCDN to express its
 desire to retain enforcement for itself. For example, this might be
 done by including a "check with me" flag in the metadata associated
 with certain content. The realization of such in-band techniques
 over the various inter-CDN acquisition protocols (e.g., HTTP)
 requires further investigation and may require small extensions or
 semantic changes to the acquisition protocol.

4.7. HTTP Adaptive Streaming Concerns

 We consider HTTP Adaptive Streaming (HAS) and the impact it has on
 the CDNI interfaces because large objects (e.g., videos) are broken
 into a sequence of small, independent chunks. For each of the
 following, a more thorough discussion, including an overview of the
 trade-offs involved in alternative designs, can be found in RFC 6983.

 First, with respect to Content Acquisition and File Management, which
 are out of scope for the CDNI interfaces but, nonetheless, relevant
 to the overall operation, we assume no additional measures are
 required to deal with large numbers of chunks. This means that the
 dCDN is not explicitly made aware of any relationship between
 different chunks, and the dCDN handles each chunk as if it were an
 individual and independent content item. The result is that content
 acquisition between uCDN and dCDN also happens on a per-chunk basis.
 This approach is in line with the recommendations made in RFC 6983,
 which also identifies potential improvements in this area that might
 be considered in the future.

Peterson, et al. Informational [Page 44]

RFC 7336 CDNI Framework August 2014

 Second, with respect to request routing, we note that HAS manifest
 files have the potential to interfere with request routing since
 manifest files contain URLs pointing to the location of content
 chunks. To make sure that a manifest file does not hinder CDNI
 request routing and does not place excessive load on CDNI resources,
 either the use of manifest files could be limited to those containing
 relative URLs or the uCDN could modify the URLs in the manifest. Our
 approach for dealing with these issues is twofold. As a mandatory
 requirement, CDNs should be able to handle unmodified manifest files
 containing either relative or absolute URLs. To limit the number of
 redirects, and thus the load placed on the CDNI interfaces, as an
 optional feature uCDNs can use the information obtained through the
 CDNI Request Routing Redirection interface to modify the URLs in the
 manifest file. Since the modification of the manifest file is an
 optional uCDN-internal process, this does not require any
 standardization effort beyond being able to communicate chunk
 locations in the CDNI Request Routing Redirection interface.

 Third, with respect to the CDNI Logging interface, there are several
 potential issues, including the large number of individual chunk
 requests potentially resulting in large volumes of logging
 information, and the desire to correlate logging information for
 chunk requests that correspond to the same HAS session. For the
 initial CDNI specification, our approach is to expect participating
 CDNs to support per-chunk logging (e.g., logging each chunk request
 as if it were an independent content request) over the CDNI Logging
 interface. Optionally, the LI may include a Content Collection
 IDentifier (CCID) and/or a Session IDentifier (SID) as part of the
 logging fields, thereby facilitating correlation of per-chunk logs
 into per-session logs for applications benefiting from such session
 level information (e.g., session-based analytics). This approach is
 in line with the recommendations made in RFC 6983, which also
 identifies potential improvements in this area that might be
 considered in the future.

 Fourth, with respect to the CDNI Control interface, and in particular
 purging HAS chunks from a given CDN, our approach is to expect each
 CDN supports per-chunk content purge (e.g., purging of chunks as if
 they were individual content items). Optionally, a CDN may support
 content purge on the basis of a "Purge IDentifier (Purge-ID)"
 allowing the removal of all chunks related to a given Content
 Collection with a single reference. It is possible that this Purge-
 ID could be merged with the CCID discussed above for HAS Logging, or
 alternatively, they may remain distinct.

Peterson, et al. Informational [Page 45]

RFC 7336 CDNI Framework August 2014

4.8. URI Rewriting

 When using HTTP redirection, content URIs may be rewritten when
 redirection takes place within a uCDN, from a uCDN to a dCDN, and
 within the dCDN. In the case of cascaded CDNs, content URIs may be
 rewritten at every CDN hop (e.g., between the uCDN and the dCDN
 acting as the transit CDN, and between the transit CDN and the dCDN
 serving the request). The content URI used between any uCDN/dCDN
 pair becomes a common handle that can be referred to without
 ambiguity by both CDNs in all their inter-CDN communications. This
 handle allows the uCDN and dCDN to correlate information exchanged
 using other CDNI interfaces in both the Downstream direction (e.g.,
 when using the MI) and the Upstream direction (e.g., when using the
 LI).

 Consider the simple case of a single uCDN/dCDN pair using HTTP
 redirection. We introduce the following terminology for content URIs
 to simplify the discussion:

 "u-URI" represents a content URI in a request presented to the
 uCDN;

 "ud-URI" is a content URI acting as the common handle across uCDN
 and dCDN for requests redirected by the uCDN to a specific dCDN;

 "d-URI" represents a content URI in a request made within the
 delegate dCDN.

 In our simple pair-wise example, the "ud-URI" effectively becomes the
 handle that the uCDN/dCDN pair use to correlate all CDNI information.
 In particular, for a given pair of CDNs executing the HTTP
 redirection, the uCDN needs to map the u-URI to the ud-URI handle for
 all MI message exchanges, while the dCDN needs to map the d-URI to
 the ud-URI handle for all LI message exchanges.

 In the case of cascaded CDNs, the transit CDN will rewrite the
 content URI when redirecting to the dCDN, thereby establishing a new
 handle between the transit CDN and the dCDN, that is different from
 the handle between the uCDN and transit CDN. It is the
 responsibility of the transit CDN to manage its mapping across
 handles so the right handle for all pairs of CDNs is always used in
 its CDNI communication.

 In summary, all CDNI interfaces between a given pair of CDNs need to
 always use the "ud-URI" handle for that specific CDN pair as their
 content URI reference.

Peterson, et al. Informational [Page 46]

RFC 7336 CDNI Framework August 2014

5. Deployment Models

 In this section, we describe a number of possible deployment models
 that may be achieved using the CDNI interfaces described above. We
 note that these models are by no means exhaustive and that many other
 models may be possible.

 Although the reference model of Figure 1 shows all CDN functions on
 each side of the CDNI interface, deployments can rely on entities
 that are involved in any subset of these functions, and therefore
 only support the relevant subset of CDNI interfaces. As already
 noted in Section 3, effective CDNI deployments can be built without
 necessarily implementing all the interfaces. Some examples of such
 deployments are shown below.

 Note that, while we refer to Upstream and Downstream CDNs, this
 distinction applies to specific content items and transactions. That
 is, a given CDN may be Upstream for some transactions and Downstream
 for others, depending on many factors such as location of the
 requesting client and the particular piece of content requested.

5.1. Meshed CDNs

 Although the reference model illustrated in Figure 1 shows a
 unidirectional CDN interconnection with a single uCDN and a single
 dCDN, any arbitrary CDNI meshing can be built from this, such as the
 example meshing illustrated in Figure 11. (Support for arbitrary
 meshing may or may not be in the initial scope for the working group,
 but the model allows for it.)

Peterson, et al. Informational [Page 47]

RFC 7336 CDNI Framework August 2014

 ------------- -----------
 / CDN A \<==CDNI===>/ CDN B \
 \ / \ /
 ------------- -----------
 /\ \\ /\
 || \\ ||
 CDNI \==CDNI===\\ CDNI
 || \\ ||
 \/ \/ \/
 ------------- -----------
 / CDN C \===CDNI===>/ CDN D \
 \ / \ /
 ------------- -----------
 /\
 ||
 CDNI
 ||
 \/

 / CDN E \
 \ /

 ===> CDNI interfaces, with right-hand side CDN acting as dCDN
 to left-hand side CDN
 <==> CDNI interfaces, with right-hand side CDN acting as dCDN
 to left-hand side CDN and with left-hand side CDN acting
 as dCDN to right-hand side CDN

 Figure 11: CDNI Deployment Model: CDN Meshing Example

5.2. CSP Combined with CDN

 Note that our terminology refers to functional roles and not economic
 or business roles. That is, a given organization may be operating as
 both a CSP and a fully fledged uCDN when we consider the functions
 performed, as illustrated in Figure 12.

Peterson, et al. Informational [Page 48]

RFC 7336 CDNI Framework August 2014

 ##################################### ##################
 # # # #
 # Organization A # # Organization B #
 # # # #
 # -------- ------------- # # ----------- #
 # / CSP \ / uCDN \ # # / dCDN \ #
 # | | | +----+ | # # | +----+ | #
 # | | | | C | | # # | | C | | #
 # | | | +----+ | # # | +----+ | #
 # | | | +----+ | # # | +----+ | #
 # | | | | L | | # # | | L | | #
 # | |*****| +----+ |===CDNI===>| +----+ | #
 # | | | +----+ | # # | +----+ | #
 # | | | | RR | | # # | | RR | | #
 # | | | +----+ | # # | +----+ | #
 # | | | +----+ | # # | +----+ | #
 # | | | | D | | # # | | D | | #
 # | | | +----+ | # # | +----+ | #
 # \ / \ / # # \ / #
 # -------- ------------- # # ----------- #
 # # # #
 ##################################### ##################

 ===> CDNI interfaces, with right-hand side CDN acting as dCDN
 to left-hand side CDN
 **** interfaces outside the scope of CDNI
 C Control component of the CDN
 L Logging component of the CDN
 RR Request Routing component of the CDN
 D Distribution component of the CDN

 Figure 12: CDNI Deployment Model: Organization Combining CSP & uCDN

5.3. CSP Using CDNI Request Routing Interface

 As another example, a content provider organization may choose to run
 its own Request Routing function as a way to select among multiple
 candidate CDN providers; in this case, the content provider may be
 modeled as the combination of a CSP and of a special, restricted case
 of a CDN. In that case, as illustrated in Figure 13, the CDNI
 Request Routing interfaces can be used between the restricted CDN
 operated by the content provider Organization and the CDN operated by
 the full CDN organization acting as a dCDN in the request routing
 control plane. Interfaces outside the scope of the CDNI work can be
 used between the CSP functional entities of the content provider
 organization and the CDN operated by the full CDN organization acting
 as a uCDN) in the CDNI control planes other than the request routing
 plane (i.e., Control, Distribution, Logging).

Peterson, et al. Informational [Page 49]

RFC 7336 CDNI Framework August 2014

 ##################################### ##################
 # # # #
 # Organization A # # Organization B #
 # # # #
 # -------- ------------- # # ----------- #
 # / CSP \ / uCDN(RR) \ # # / dCDN(RR) \ #
 # | | | +----+ | # # | +----+ | #
 # | |*****| | RR |==========CDNI=====>| RR | | #
 # | | | +----+ | # RR # | +----+ | #
 # | | \ / # # | | #
 # | | ------------- # # |uCDN(C,L,D)| #
 # | | # # | +----+ | #
 # | | # # | | C | | #
 # | |*******************************| +----+ | #
 # | | # # | +----+ | #
 # | | # # | | L | | #
 # | | # # | +----+ | #
 # | | # # | +----+ | #
 # | | # # | | D | | #
 # | | # # | +----+ | #
 # \ / # # \ / #
 # -------- # # ----------- #
 # # # #
 ##################################### ##################

 ===> CDNI Request Routing Interface
 **** interfaces outside the scope of CDNI

 Figure 13: CDNI Deployment Model: Organization Combining
 CSP and Partial CDN

5.4. CDN Federations and CDN Exchanges

 There are two additional concepts related to, but distinct from,
 CDNI. The first is CDN Federation. Our view is that CDNI is the
 more general concept, involving two or more CDNs serving content to
 each other’s users, while federation implies a multi-lateral
 interconnection arrangement, but other CDNI agreements are also
 possible (e.g., symmetric bilateral, asymmetric bilateral). An
 important conclusion is that CDNI technology should not presume (or
 bake in) a particular interconnection agreement, but should instead
 be general enough to permit alternative interconnection arrangements
 to evolve.

 The second concept often used in the context of CDN Federation is CDN
 Exchange -- a third-party broker or exchange that is used to
 facilitate a CDN federation. Our view is that a CDN exchange offers
 valuable machinery to scale the number of CDN operators involved in a

Peterson, et al. Informational [Page 50]

RFC 7336 CDNI Framework August 2014

 multi-lateral (federated) agreement, but that this machinery is built
 on top of the core CDNI mechanisms. For example, as illustrated in
 Figure 14, the exchange might aggregate and redistribute information
 about each CDN footprint and capacity, as well as collect, filter,
 and redistribute traffic logs that each participant needs for
 interconnection settlement, but inter-CDN Request Routing, inter-CDN
 content distribution (including inter-CDN acquisition), and inter-CDN
 control, which fundamentally involve a direct interaction between an
 Upstream CDN and a Downstream CDN -- operate exactly as in a pair-
 wise peering arrangement. Turning to Figure 14, we observe that in
 this example:

 o each CDN supports a direct CDNI Control interface to every other
 CDN

 o each CDN supports a direct CDNI Metadata interface to every other
 CDN

 o each CDN supports a CDNI Logging interface with the CDN Exchange

 o each CDN supports both a CDNI Request Routing interface with the
 CDN Exchange (for aggregation and redistribution of dynamic CDN
 footprint discovery information) and a direct RI to every other
 CDN (for actual request redirection).

Peterson, et al. Informational [Page 51]

RFC 7336 CDNI Framework August 2014

 ---------- ---------
 / CDN A \ / CDN B \
 | +----+ | | +----+ |
 //========>| C |<==============CDNI============>| C |<==========\\
		+----+	C	+----+														
		+----+		+----+														
	//=====>	D	<==============CDNI============>	D	<=======\\													
				+----+	M	+----+												
					/------------\													
				+----+		+--+ CDN Ex		+----+										
			//==>	RR	<===CDNI==>	RR	<=======CDNI====>	RR	<====\\									
						+----+	RR	+--+	RR	+----+								
								/\										
						+----+				+---+		+----+						
							L	<===CDNI=======>	L	<=CDNI====>	L							
						+----+	L			+---+	L	+----+						
					\ / \		/\ / \ /											
					----------- --		----		-- -----------									
					CDNI RR													
							CDNI L											
					---		----		----									
					/ \/		\											
						+----+												
			\\=====CDNI==========>	RR	<=============CDNI========//													
			RR	+----+ \/	RR													
				+----+														
					L													
				+----+														
				+----+														
	\\=======CDNI===========>	D	<=============CDNI===========//															
	M	+----+	M															
		+----+																
 \\==========CDNI===========>| C |<=============CDNI==============//
 C | +----+ | C
 \ CDN C /

 <=CDNI RR=> CDNI Request Routing Interface
 <=CDNI M==> CDNI Metadata Interface
 <=CDNI C==> CDNI Control Interface
 <=CDNI L==> CDNI Logging Interface

 Figure 14: CDNI Deployment Model: CDN Exchange

Peterson, et al. Informational [Page 52]

RFC 7336 CDNI Framework August 2014

 Note that a CDN exchange may alternatively support a different set of
 functionality (e.g., Logging only, or Logging and full request
 routing, or all the functionality of a CDN including content
 distribution). All these options are expected to be allowed by the
 IETF CDNI specifications.

6. Trust Model

 There are a number of trust issues that need to be addressed by a
 CDNI solution. Many of them are in fact similar or identical to
 those in a simple CDN without interconnection. In a standard CDN
 environment (without CDNI), the CSP places a degree of trust in a
 single CDN operator to perform many functions. The CDN is trusted to
 deliver content with appropriate quality of experience for the end
 user. The CSP trusts the CDN operator not to corrupt or modify the
 content. The CSP often relies on the CDN operator to provide
 reliable accounting information regarding the volume of delivered
 content. The CSP may also trust the CDN operator to perform actions
 such as timely invalidation of content and restriction of access to
 content based on certain criteria such as location of the user and
 time of day, and to enforce per-request authorization performed by
 the CSP using techniques such as URI signing.

 A CSP also places trust in the CDN not to distribute any information
 that is confidential to the CSP (e.g., how popular a given piece of
 content is) or confidential to the end user (e.g., which content has
 been watched by which user).

 A CSP does not necessarily have to place complete trust in a CDN. A
 CSP will in some cases take steps to protect its content from
 improper distribution by a CDN, e.g., by encrypting it and
 distributing keys in some out of band way. A CSP also depends on
 monitoring (possibly by third parties) and reporting to verify that
 the CDN has performed adequately. A CSP may use techniques such as
 client-based metering to verify that accounting information provided
 by the CDN is reliable. HTTP conditional requests may be used to
 provide the CSP with some checks on CDN operation. In other words,
 while a CSP may trust a CDN to perform some functions in the short
 term, the CSP is able, in most cases, to verify whether these actions
 have been performed correctly and to take action (such as moving the
 content to a different CDN) if the CDN does not live up to
 expectations.

 One of the trust issues raised by CDNI is transitive trust. A CDN
 that has a direct relationship with a CSP can now "outsource" the
 delivery of content to another (Downstream) CDN. That CDN may in
 term outsource delivery to yet another Downstream CDN, and so on.

Peterson, et al. Informational [Page 53]

RFC 7336 CDNI Framework August 2014

 The top-level CDN in such a chain of delegation is responsible for
 ensuring that the requirements of the CSP are met. Failure to do so
 is presumably just as serious as in the traditional single CDN case.
 Hence, an Upstream CDN is essentially trusting a Downstream CDN to
 perform functions on its behalf in just the same way as a CSP trusts
 a single CDN. Monitoring and reporting can similarly be used to
 verify that the Downstream CDN has performed appropriately. However,
 the introduction of multiple CDNs in the path between CSP and end
 user complicates the picture. For example, third-party monitoring of
 CDN performance (or other aspects of operation, such as timely
 invalidation) might be able to identify the fact that a problem
 occurred somewhere in the chain but not point to the particular CDN
 at fault.

 In summary, we assume that an Upstream CDN will invest a certain
 amount of trust in a Downstream CDN, but that it will verify that the
 Downstream CDN is performing correctly, and take corrective action
 (including potentially breaking off its relationship with that CDN)
 if behavior is not correct. We do not expect that the trust
 relationship between a CSP and its "top level" CDN will differ
 significantly from that found today in single CDN situations.
 However, it does appear that more sophisticated tools and techniques
 for monitoring CDN performance and behavior will be required to
 enable the identification of the CDN at fault in a particular
 delivery chain.

 We expect that the detailed designs for the specific interfaces for
 CDNI will need to take the transitive trust issues into account. For
 example, explicit confirmation that some action (such as content
 removal) has taken place in a Downstream CDN may help to mitigate
 some issues of transitive trust.

7. Privacy Considerations

 In general, a CDN has the opportunity to collect detailed information
 about the behavior of end users, e.g., by logging which files are
 being downloaded. While the concept of interconnected CDNs as
 described in this document doesn’t necessarily allow any given CDN to
 gather more information on any specific user, it potentially
 facilitates sharing of this data by a CDN with more parties. As an
 example, the purpose of the CDNI Logging interface is to allow a dCDN
 to share some of its log records with a uCDN, both for billing
 purposes as well as for sharing traffic statistics with the Content
 Provider on whose behalf the content was delivered. The fact that
 the CDNI interfaces provide mechanisms for sharing such potentially
 sensitive user data, shows that it is necessary to include in these

Peterson, et al. Informational [Page 54]

RFC 7336 CDNI Framework August 2014

 interface appropriate privacy and confidentiality mechanisms. The
 definition of such mechanisms is dealt with in the respective CDN
 interface documents.

8. Security Considerations

 While there are a variety of security issues introduced by a single
 CDN, we are concerned here specifically with the additional issues
 that arise when CDNs are interconnected. For example, when a single
 CDN has the ability to distribute content on behalf of a CSP, there
 may be concerns that such content could be distributed to parties who
 are not authorized to receive it, and there are mechanisms to deal
 with such concerns. Our focus in this section is on how CDNI
 introduces new security issues not found in the single CDN case. For
 a more detailed analysis of the security requirements of CDNI, see
 Section 9 of [RFC7337].

 Many of the security issues that arise in CDNI are related to the
 transitivity of trust (or lack thereof) described in Section 6. As
 noted above, the design of the various interfaces for CDNI must take
 account of the additional risks posed by the fact that a CDN with
 whom a CSP has no direct relationship is now potentially distributing
 content for that CSP. The mechanisms used to mitigate these risks
 may be similar to those used in the single CDN case, but their
 suitability in this more complex environment must be validated.

 CDNs today offer a variety of means to control access to content,
 such as time-of-day restrictions, geo-blocking, and URI signing.
 These mechanisms must continue to function in CDNI environments, and
 this consideration is likely to affect the design of certain CDNI
 interfaces (e.g., metadata, request routing). For more information
 on URI signing in CDNI, see [URI-SIGNING].

 Just as with a single CDN, each peer CDN must ensure that it is not
 used as an "open proxy" to deliver content on behalf of a malicious
 CSP. Whereas a single CDN typically addresses this problem by having
 CSPs explicitly register content (or origin servers) that are to be
 served, simply propagating this information to peer Downstream CDNs
 may be problematic because it reveals more information than the
 Upstream CDN is willing to specify. (To this end, the content
 acquisition step in the earlier examples force the dCDN to retrieve
 content from the uCDN rather than go directly to the origin server.)

 There are several approaches to this problem. One is for the uCDN to
 encode a signed token generated from a shared secret in each URL
 routed to a dCDN, and for the dCDN to validate the request based on
 this token. Another one is to have each Upstream CDN advertise the
 set of CDN-Domains they serve, where the Downstream CDN checks each

Peterson, et al. Informational [Page 55]

RFC 7336 CDNI Framework August 2014

 request against this set before caching and delivering the associated
 object. Although straightforward, this approach requires operators
 to reveal additional information, which may or may not be an issue.

8.1. Security of CDNI Interfaces

 It is noted in [RFC7337] that all CDNI interfaces must be able to
 operate securely over insecure IP networks. Since it is expected
 that the CDNI interfaces will be implemented using existing
 application protocols such as HTTP or Extensible Messaging and
 Presence Protocol (XMPP), we also expect that the security mechanisms
 available to those protocols may be used by the CDNI interfaces.
 Details of how these interfaces are secured will be specified in the
 relevant interface documents.

8.2. Digital Rights Management

 Digital Rights Management (DRM), also sometimes called digital
 restrictions management, is often employed for content distributed
 via CDNs. In general, DRM relies on the CDN to distribute encrypted
 content, with decryption keys distributed to users by some other
 means (e.g., directly from the CSP to the end user). For this
 reason, DRM is considered out of scope [RFC6707] and does not
 introduce additional security issues for CDNI.

9. Contributors

 The following individuals contributed to this document:

 o Matt Caulfield

 o Francois Le Faucheur

 o Aaron Falk

 o David Ferguson

 o John Hartman

 o Ben Niven-Jenkins

 o Kent Leung

Peterson, et al. Informational [Page 56]

RFC 7336 CDNI Framework August 2014

10. Acknowledgements

 The authors would like to thank Huw Jones and Jinmei Tatuya for their
 helpful input to this document. In addition, the authors would like
 to thank Stephen Farrell, Ted Lemon, and Alissa Cooper for their
 reviews, which have helped to improve this document.

11. Informative References

 [CONTROL-TRIGGERS]
 Murray, R. and B. Niven-Jenkins, "CDNI Control Interface /
 Triggers", Work in Progress, July 2014.

 [FOOTPRINT-CAPABILITY]
 Seedorf, J., Peterson, J., Previdi, S., Brandenburg, R.,
 and K. Ma, "CDNI Request Routing: Footprint and
 Capabilities Semantics", Work in Progress, July 2014.

 [LOGGING] Faucheur, F., Ed., Bertrand, G., Ed., Oprescu, I., Ed.,
 and R. Peterkofsky, "CDNI Logging Interface", Work in
 Progress, July 2014.

 [METADATA]
 Niven-Jenkins, B., Murray, R., Caulfield, M., Leung, K.,
 and K. Ma, "CDN Interconnection Metadata", Work in
 Progress, July 2014.

 [REDIRECTION]
 Niven-Jenkins, B., Ed. and R. Brandenburg, Ed., "Request
 Routing Redirection Interface for CDN Interconnection",
 Work in Progress, April 2014.

 [RFC3466] Day, M., Cain, B., Tomlinson, G., and P. Rzewski, "A Model
 for Content Internetworking (CDI)", RFC 3466, February
 2003.

 [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", RFC 6707, September 2012.

 [RFC6770] Bertrand, G., Stephan, E., Burbridge, T., Eardley, P., Ma,
 K., and G. Watson, "Use Cases for Content Delivery Network
 Interconnection", RFC 6770, November 2012.

 [RFC6983] van Brandenburg, R., van Deventer, O., Le Faucheur, F.,
 and K. Leung, "Models for HTTP-Adaptive-Streaming-Aware
 Content Distribution Network Interconnection (CDNI)", RFC
 6983, July 2013.

Peterson, et al. Informational [Page 57]

RFC 7336 CDNI Framework August 2014

 [RFC7337] Leung, K., Ed. and Y. Lee, Ed., "Content Distribution
 Network Interconnection (CDNI) Requirements", RFC 7337,
 August 2014.

 [URI-SIGNING]
 Leung, K., Faucheur, F., Downey, B., Brandenburg, R., and
 S. Leibrand, "URI Signing for CDN Interconnection (CDNI)",
 Work in Progress, March 2014.

Authors’ Addresses

 Larry Peterson
 Akamai Technologies, Inc.
 8 Cambridge Center
 Cambridge, MA 02142
 USA

 EMail: lapeters@akamai.com

 Bruce Davie
 VMware, Inc.
 3401 Hillview Ave.
 Palo Alto, CA 94304
 USA

 EMail: bdavie@vmware.com

 Ray van Brandenburg (editor)
 TNO
 Brassersplein 2
 Delft 2612CT
 the Netherlands

 Phone: +31-88-866-7000
 EMail: ray.vanbrandenburg@tno.nl

Peterson, et al. Informational [Page 58]

