I nt ernet Engi neering Task Force (I ETF) V. Gurbani, Ed

Request for Comments: 7339 V. Hilt
Cat egory: Standards Track Bel | Labs, Alcatel-Lucent
| SSN: 2070-1721 H. Schul zri nne

Col unbia University
Sept enber 2014

Session Initiation Protocol (SIP) Overload Contro

Abst r act

Overload occurs in Session Initiation Protocol (SIP) networks when
SI P servers have insufficient resources to handle all the SIP
messages they receive. Even though the SIP protocol provides a
limted overload control nechanismthrough its 503 (Service
Unavai |l abl e) response code, SIP servers are still vulnerable to
overload. This docunent defines the behavior of SIP servers involved

in overload control and al so specifies a | oss-based overl oad schene
for SIP.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww.rfc-editor.org/info/rfc7339

Qurbani, et al. St andards Track [Page 1]

RFC 7339 Overl oad Control Sept ember 2014

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Qurbani, et al. St andards Track [Page 2]

RFC 7339 Overl oad Control Sept ember 2014

Tabl e of Contents

1. IntroduCtion
2. Term nol OQY . ..ot
3. Overview of Qperations
4. Via Header Paranmeters for Overload Control
4.1. The "oC" Paramet er
4.2. The "oc-al go" Parameter,
4.3. The "oc-validity" Parameter
4.4. The "oc-seq" Parameter
5. General Behavi or
Det erm ni ng Support for Overload Control
Creating and Updating the Overload Control Paraneters
Determ ning the "oc" Paranmeter Value
Processing the Overl oad Control Paraneters
Usi ng the Overl oad Control Paraneter Values
Forwardi ng the Overl oad Control Paraneters
Termnating Overload Control
Stabilizing Overload Algorithm Selection
Sel f-Limting
0. Responding to an Overload Indication
5.10.1. Message Prioritization at the Hop before
the Overloaded Server
5.10.2. Rejecting Requests at an Overl oaded Server
5.11. 100 Trying Provisional Response and Overl oad
Control Paramet ersS e
6. EXanpl @ ...
7. The Loss-Based Overload Control Scheme
7.1. Special Paraneter Values for Loss-Based Overl oad Control .
7.2. Default Algorithmfor Loss-Based Overload Control
8. Relationship with Gher |ETF SIP Load Control Efforts
O, SNt AX ..
10. Design Considerati ONsS
10. 1. SIP Mechani sm
10.1.1. SIP Response Header
10.1.2. SIP Event Package i,
10. 2. Backwards Conpatibility
11. Security Considerati ONS
12. TANA Considerati ONS e
13, References
13.1. Normative References
13.2. Informative References
Appendi x A. Acknowl edgement s e
Appendi x B. RFC 5390 Requirements i,

aoooooooo oo
BOX®NOORWNE

Qurbani, et al. St andards Track [Page

3]

RFC 7339 Overl oad Control Sept ember 2014

1

I ntroduction

As with any network elenment, a Session Initiation Protocol (SIP)

[RFC3261] server can suffer from overl oad when the nunber of SIP
messages it receives exceeds the nunmber of nessages it can process.
Overl oad can pose a serious problemfor a network of SIP servers.
During periods of overload, the throughput of a network of SIP
servers can be significantly degraded. In fact, overload may lead to
a situation where the retransm ssions of dropped SIP nessages nmay
overwhel mthe capacity of the network. This is often called
"congestion col | apse".

Overload is said to occur if a SIP server does not have sufficient
resources to process all incomng SIP nessages. These resources nay
i ncl ude CPU processing capacity, nenory, input/output, or disk
resour ces

For overload control, this docunent only addresses failure cases
where SIP servers are unable to process all SIP requests due to
resource constraints. There are other cases where a SIP server can
successfully process inconming requests but has to reject themdue to
failure conditions unrelated to the SIP server being overloaded. For
exanple, a Public Switched Tel ephone Network (PSTN) gateway that runs
out of trunks but still has plenty of capacity to process SIP
messages shoul d reject incoming INVITES using a 488 (Not Acceptabl e
Here) response [RFC4412]. Sinmilarly, a SIP registrar that has | ost
connectivity to its registration database but is still capable of
processing SIP requests should reject REG STER requests with a 500
(Server Error) response [RFC3261]. Overload control does not apply
to these cases, and SIP provides appropriate response codes for them

The SIP protocol provides a linited mechanismfor overload contro
through its 503 (Service Unavail abl e) response code. However, this
mechani sm cannot prevent overload of a SIP server, and it cannot
prevent congestion collapse. |In fact, the use of the 503 (Service
Unavai |l abl e) response code may cause traffic to oscillate and shift
between SIP servers, thereby worsening an overload condition. A
detail ed discussion of the SIP overload problem the problens with
the 503 (Service Unavail able) response code, and the requirenments for
a Sl P overload control mechani smcan be found in [RFC5390].

Thi s docunent defines the protocol for conmunicating overl oad

i nformati on between SIP servers and clients so that clients can
reduce the volune of traffic sent to overl oaded servers, avoiding
congestion coll apse and increasi ng useful throughput. Section 4
describes the Via header paraneters used for this comunication. The

Qurbani, et al. St andards Track [Page 4]

RFC 7339 Overl oad Control Sept ember 2014

general behavior of SIP servers and clients involved in overl oad
control is described in Section 5. 1In addition, Section 7 specifies
a | oss-based overload control schene.

Thi s docunment specifies the | oss-based overload control schene
(Section 7), which is mandatory to inplenent for this specification.
In addition, this docunment allows other overload control schenes to
be supported as well. To do so effectively, the expectations and
primtive protocol paraneters conmon to all classes of overload
control schenes are specified in this docunent.

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

In this docunent, the terns "SIP client" and "SIP server" are used in
their generic forms. Thus, a "SIP client" could refer to the client
transaction state machine in a SIP proxy, or it could refer to a user
agent client (UAC). Simlarly, a "SIP server" could be a user agent
server (UAS) or the server transaction state machine in a proxy.
Various pernutations of this are also possible, for instance, SIP
clients and servers could al so be part of back-to-back user agents
(B2BUAS) .

However, irrespective of the context these terns are used in (i.e.
proxy, B2BUA, UAS, UAC), "SIP client" applies to any SIP entity that
provi des overload control to traffic destined downstream Similarly,
"SIP server" applies to any SIP entity that is experiencing overload
and would like its upstream nei ghbor to throttle incomng traffic.

Unl ess ot herwi se specified, all SIP entities described in this
docunent are assuned to support this specification

The nornative statenents in this specification as they apply to SIP
clients and SIP servers assunme that both the SIP clients and SIP
servers support this specification. |If, for instance, only a SIP
client supports this specification and not the SIP server, then the
normative statenents in this specification pertinent to the behavi or
of a SIP server do not apply to the server that does not support this
speci fication.

Qurbani, et al. St andards Track [Page 5]

RFC 7339 Overl oad Control Sept ember 2014

3.

Overvi ew of Operations

Thi s section provides an overview of how the overload contro
mechani sm operates by introducing the overl oad control paraneters.
Section 4 provides nore details and normative behavior on the
paraneters |isted bel ow.

Because overload control is performed hop-by-hop, the Via header
paraneter is attractive since it allows two adjacent SIP entities to
i ndi cate support for, and exchange information associated wth,
overload control [RFC6357]. Additional advantages of this choice are
di scussed in Section 10.1.1. An alternative nechanismusing SIP
event packages was al so considered, and the characteristics of that
choice are further outlined in Section 10.1. 2.

Thi s docunent defines four new paraneters for the SIP Via header for
overload control. These paraneters provide a nechani smfor conveying
overload control information between adjacent SIP entities. The "oc"
paraneter is used by a SIP server to indicate a reduction in the
number of requests arriving at the server. The "oc-al go" paraneter
contains a token or a list of tokens corresponding to the class of
overload control algorithnms supported by the client. The server
chooses one algorithmfromthis list. The "oc-validity" paraneter
establishes a tinme limt for which overload control is in effect, and
the "oc-seq" paraneter aids in sequencing the responses at the
client. These paraneters are discussed in detail in the next

section.

Vi a Header Paraneters for Overload Contro

The four Via header paraneters are introduced below. Further context
about how to interpret these under various conditions is provided in
Section 5.

The "oc" Paraneter
This paranmeter is inserted by the SIP client and updated by the SIP
server.

A SIP client MIST add an "oc" paraneter to the topnost Via header it
inserts into every SIP request. This provides an indication to
downstream nei ghbors that the client supports overload control

There MUST NOT be a value associated with the paraneter (the val ue
will be added by the server).

The downstream server MJST add a value to the "oc" paraneter in the
response going upstreamto a client that included the "oc" paraneter
in the request. Inclusion of a value to the paraneter represents two

Qurbani, et al. St andards Track [Page 6]

RFC 7339 Overl oad Control Sept ember 2014

things. First, upon the first contact (see Section 5.1), addition of
a value by the server to this paraneter indicates (to the client)
that the downstream server supports overload control as defined in
this docunent. Second, if overload control is active, then it

i ndi cates the level of control to be applied.

When a SIP client receives a response with the value in the "oc
paraneter filled in, it MJST reduce, as indicated by the "oc" and
"oc-al go" paraneters, the nunber of requests going downstreamto the
SIP server fromwhich it received the response (see Section 5.10 for
pertinent discussion on traffic reduction).

4.2. The "oc-al go" Paraneter

This paraneter is inserted by the SIP client and updated by the SIP
server.

A SIP client MIST add an "oc-al go" paraneter to the topnost Via
header it inserts into every SIP request, with a default value of
"l oss".

Thi s paraneter contains names of one or nore classes of overl oad
control algorithms. A SIP client MJUST support the | oss-based

overl oad control scheme and MJUST insert at |east the token "loss" as
one of the "oc-al go" paraneter values. In addition, the SIP client
MAY i nsert other tokens, separated by a conma, in the "oc-al go"
paranmeter if it supports other overload control schemes such as a
rat e- based schene [RATE- CONTROL]. Each elenment in the conme-
separated list corresponds to the class of overload contro

al gorithns supported by the SIP client. Wen nore than one cl ass of
overload control algorithns is present in the "oc-al go" paraneter,
the client may indicate algorithmpreference by ordering the list in
a decreasing order of preference. However, the client cannot assume
that the server will pick the nost preferred al gorithm

When a downstream SI P server receives a request with nultiple
overload control algorithns specified in the "oc-al go" paraneter
(optionally sorted by decreasing order of preference), it chooses one
algorithmfromthe list and MUST return the single selected algorithm
to the client.

Once the SIP server has chosen a nutually agreeabl e class of overl oad
control algorithms and conmunicated it to the client, the selection
stays in effect until the algorithmis changed by the server

Furt hernmore, the client MJST continue to include all the supported

al gorithnms in subsequent requests; the server MJST respond with the
agreed-to algorithmuntil the algorithmis changed by the server.

Qurbani, et al. St andards Track [Page 7]

RFC 7339 Overl oad Control Sept ember 2014

The sel ection SHOULD stay the sane for a non-trivial duration of tinme
to allow the overload control algorithmto stabilize its behavior
(see Section 5.8).

The "oc-al go" paraneter does not define the exact algorithmto be
used for traffic reduction; rather, the intent is to use any
algorithmfroma specific class of algorithns that affect traffic
reduction simlarly. For exanple, the reference algorithmin
Section 7.2 can be used as a | oss-based algorithm or it can be
substituted by any other |oss-based algorithmthat results in
equi val ent traffic reduction

4.3. The "oc-validity" Paraneter

This paraneter MAY be inserted by the SIP server in a response; it
MUST NOT be inserted by the SIP client in a request.

This paraneter contains a value that indicates an interval of tinme
(rmeasured in mlliseconds) that the | oad reduction specified in the
val ue of the "oc" paraneter should be in effect. The default value
of the "oc-validity" paraneter is 500 (nmilliseconds). |If the client
receives a response with the "oc" and "oc-al go" paraneters suitably
filled in, but no "oc-validity" paraneter, the SIP client should
behave as if it had received "oc-validity=500"

A value of 0 in the "oc-validity" parameter is reserved to denote the
event that the server wi shes to stop overload control or to indicate
that it supports overload control but is not currently requesting any
reduction in traffic (see Section 5.7).

A non-zero value for the "oc-validity" parameter MJST only be present
in conjunction with an "oc" paraneter. A SIP client MJIST discard a
non-zero value of the "oc-validity" paraneter if the client receives
it in a response without the corresponding "oc" paraneter being
present as well.

After the value specified in the "oc-validity" paraneter expires and
until the SIP client receives an updated set of overload contro
paraneters fromthe SIP server, overload control is not in effect
between the client and the downstream SI P server.

4.4, The "oc-seq" Paraneter

This paraneter MJST be inserted by the SIP server in a response; it
MJUST NOT be inserted by the SIP client in a request.

Qurbani, et al. St andards Track [Page 8]

RFC 7339 Overl oad Control Sept ember 2014

This paraneter contains an unsigned integer value that indicates the
sequence nunmber associated with the "oc" parameter. This sequence
nunber is used to differentiate two "oc" paraneter val ues generated
by an overload control algorithmat two different instants in tine.
"oc" paraneter val ues generated by an overload control algorithm at
tinme t and t+1 MJST have an increasing value in the "oc-seq"
paraneter. This allows the upstream SIP client to properly collate
out - of - order responses.

Note: A tinestanp can be used as a value of the "oc-seq"
par anet er .

If the value contained in the "oc-seq" paraneter overflows during the
period in which the load reduction is in effect, then the "oc-seq"
paranmeter MJST be reset to the current tinestanp or an appropriate
base val ue.

Note: A client inplenentation can recognize that an overfl ow has
occurred when it receives an "oc-seq" paraneter whose value is
significantly less than several previous values. (Note that an
"oc-seq" paraneter whose val ue does not deviate significantly from
the | ast several previous values is synptomatic of a tardy packet.
However, overflow will cause the "oc-seq" paraneter value to be
significantly less than the | ast several values.) If an overfl ow
is detected, then the client should use the overload paraneters in
t he new nessage, even though the sequence nunber is lower. The
client should also reset any internal state to reflect the
overflow so that future nmessages (follow ng the overflow) will be
accept ed.

5. General Behavi or

Wien forwarding a SIP request, a SIP client uses the SIP procedures
of [RFC3263] to determine the next-hop SIP server. The procedures of
[RFC3263] take a SIP URI as input, extract the domain portion of that
URI for use as a | ookup key, query the Domain Nane Service (DNS) to
obtain an ordered set of one or nore | P addresses with a port nunber
and transport corresponding to each IP address in this set (the
"Expected Qutput").

After selecting a specific SIP server fromthe Expected Qutput, a SIP
client deternines whether overload controls are currently active with
that server. |If overload controls are currently active (and the "oc-
validity" period has not yet expired), the client applies the

rel evant algorithmto deternmi ne whether or not to send the SIP
request to the server. |If overload controls are not currently active
with this server (which will be the case if this is the initia
contact with the server, the last response fromthis server had

Qurbani, et al. St andards Track [Page 9]

RFC 7339 Overl oad Control Sept ember 2014

5. 1

5.2.

Qur

"oc-validity=0", or the tine period indicated by the "oc-validity"
paraneter has expired), the SIP client sends the SIP nessage to the
server wi thout invoking any overload control algorithm

Det erm ni ng Support for Overload Contro

If a client deternmines that this is the first contact with a server
the client MUST insert the "oc" paraneter wi thout any val ue and MJST
insert the "oc-al go" paraneter with a list of algorithns it supports.
This list MJIST include "loss" and MAY include other algorithm nanes
approved by I ANA and described in correspondi ng docunents. The
client transnits the request to the chosen server

If a server receives a SIP request containing the "oc" and "oc-al go"
paraneters, the server MIST deternine if it has already selected the
overload control algorithmclass with this client. |If it has, the
server SHOULD use the previously selected algorithmclass inits
response to the nessage. |If the server determ nes that the nessage
is froma newclient or a client the server has not heard fromin a
long tine, the server MJUST choose one algorithmfromthe list of

algorithms in the "oc-al go" paranmeter. |t MJST put the chosen
algorithmas the sol e paraneter value in the "oc-al go" paraneter of
the response it sends to the client. 1In addition, if the server is

currently not in an overload condition, it MJST set the value of the

"oc" paraneter to be 0 and MAY insert an "oc-validity=0" paraneter in
the response to further qualify the value in the "oc" paraneter. |If

the server is currently overloaded, it MJST follow the procedures in

Section 5. 2.

Note: A client that supports the rate-based overload contro

schene [RATE- CONTROL] will consider "oc=0" as an indication not to
send any requests downstreamat all. Thus, when the server
inserts "oc-validity=0" as well, it is indicating that it does
support overload control, but it is not under overload node right
now (see Section 5.7).

Creating and Updating the Overload Control Paraneters

A SI P server provides overload control feedback to its upstream
clients by providing a value for the "oc" paraneter to the topnost
Via header field of a SIP response, that is, the Via header added by
the client before it sent the request to the server

Since the topnost Via header of a response will be renoved by an
upstreamclient after processing it, overload control feedback
contained in the "oc" paraneter will not travel beyond the upstream

bani, et al. St andards Track [Page 10]

RFC 7339 Overl oad Control Sept ember 2014

SIP client. A Via header paraneter therefore provides hop-by-hop
semantics for overload control feedback (see [RFC6357]) even if the
next - hop nei ghbor does not support this specification

The "oc" paraneter can be used in all response types, including

provi sional, success, and failure responses (please see Section 5.11
for special consideration on transporting overload control paraneters
in a 100 Trying response). A SIP server can update the "oc"
paraneter in a response, asking the client to increase or decrease

t he nunber of requests destined to the server or to stop performng
overl oad control altogether.

A SIP server that has updated the "oc" paraneter SHOULD al so add a
"oc-validity" paranmeter. The "oc-validity" paraneter defines the
time in mlliseconds during which the overload control feedback
specified in the "oc" paraneter is valid. The default value of the
"oc-validity" parameter is 500 (mlliseconds).

When a SIP server retransnmits a response, it SHOULD use the "oc" and
"oc-validity" paraneter values consistent with the overload state at
the tine the retransnmitted response was sent. This inplies that the
values in the "oc" and "oc-validity" paraneters may be different than
the ones used in previous retransm ssions of the response. Due to
the fact that responses sent over UDP may be subject to delays in the
network and arrive out of order, the "oc-seq" paraneter aids in
detecting a stale "oc" paraneter val ue.

| mpl enent ati ons that are capable of updating the "oc" and "oc-
validity" paraneter values during retransm ssions MJST insert the
"oc-seq" paraneter. The value of this paraneter MJUST be a set of
nunbers drawn from an increasi ng sequence.

| mpl enent ati ons that are not capable of updating the "oc" and "oc-

validity" paraneter values during retransm ssions -- or
i npl ement ations that do not want to do so because they will have to
regenerate the nessage to be retransnmitted -- MJST still insert a

"oc-seq" paraneter in the first response associated with a
transacti on; however, they do not have to update the value in
subsequent retransni ssions.

The "oc-validity" and "oc-seq" Via header paraneters are only defined
in SIP responses and MJUST NOT be used in SIP requests. These
paraneters are only useful to the upstream nei ghbor of a SIP server
(i.e., the entity that is sending requests to the SIP server) since
the client is the entity that can offload traffic by redirecting or
rejecting new requests. |If requests are forwarded in both directions
between two SIP servers (i.e., the roles of upstream downstream

Qurbani, et al. St andards Track [Page 11]

RFC 7339 Overl oad Control Sept ember 2014

nei ghbors change), there are al so responses flowing in both
directions. Thus, both SIP servers can exchange overl oad
i nformati on.

This specification provides a good overload control mnechani smthat
can protect a SIP server fromoverload. However, if a SIP server
wants to limt advertisenents of overload control capability for
privacy reasons, it night decide to performoverload control only for
requests that are received on a secure transport, such as Transport
Layer Security (TLS). Indicating support for overload control on a
request received on an untrusted link can | eak privacy in the form of
capabilities supported by the server. To limt the know edge that
the server supports overload control, a server can adopt a policy of
inserting overload control paraneters in only those requests received
over trusted links such that these paraneters are only visible to
trusted nei ghbors.

5.3. Determining the "oc" Paraneter Val ue

The val ue of the "oc" paraneter is deternined by the overl oaded
server using any pertinent information at its disposal. The only
constraint inposed by this docunment is that the server contro

al gorithm MJUST produce a value for the "oc" paraneter that it expects
the receiving SIP clients to apply to all downstream SIP requests
(dialogue formng as well as in-dialogue) to this SIP server. Beyond
this stipulation, the process by which an overl oaded server

determ nes the value of the "oc" paraneter is considered out of the
scope of this document.

Note: This stipulation is required so that both the client and
server have a comon vi ew of which nessages the overload contro
applies to. Wth this stipulation in place, the client can
prioritize nmessages as discussed in Section 5.10.1.

As an exanple, a value of "oc=10" when the | oss-based algorithmis
used inplies that 10% of the total nunber of SIP requests (dial ogue
formng as well as in-dialogue) are subject to reduction at the
client. Analogously, a value of "oc=10" when the rate-based

al gorithm [RATE- CONTRCL] is used indicates that the client should
send SIP requests at a rate of 10 SIP requests or fewer per second.

5.4. Processing the Overload Control Paraneters

A SIP client SHOULD renove the "oc", "oc-validity", and "oc-seq"
paraneters fromall Via headers of a response received, except for
the topnost Via header. This prevents overload control paraneters
that were accidentally or maliciously inserted into Via headers by a
downstream SI P server fromtraveling upstream

Qurbani, et al. St andards Track [Page 12]

RFC 7339 Overl oad Control Sept ember 2014

The scope of overload control applies to unique conbinations of IP
and port values. A SIP client maintains the overload control val ues
received (along with the address and port nunber of the SIP servers
fromwhich they were received) for the duration specified in the "oc-
validity" paraneter or the default duration. Each tinme a SIP client
receives a response with an overload control paraneter froma
downstream SI P server, it conpares the "oc-seq" value extracted from
the Via header with the "oc-seq" value stored for this server. |If

t hese val ues match, the response does not update the overload contro
paraneters related to this server, and the client continues to
provi de overload control as previously negotiated. |If the "oc-seq"
val ue extracted fromthe Via header is larger than the stored val ue,
the client updates the stored val ues by copying the new val ues of the
"oc", "oc-algo", and "oc-seq" paraneters fromthe Via header to the
stored values. Upon such an update of the overload contro
paraneters, the client restarts the validity period of the new
overload control paraneters. The overload control paraneters now
remain in effect until the validity period expires or the paraneters
are updated in a new response. Stored overload control paraneters
MJUST be reset to default values once the validity period has expired
(see Section 5.7 for the detailed steps on terminating overl oad
control).

5.5. Using the Overload Control Paraneter Val ues

A SIP client MJST honor overload control values it receives from
downstream nei ghbors. The SIP client MJST NOT forward nore requests
to a SIP server than allowed by the current "oc" and "oc-al go"
paraneter values fromthat particul ar downstream server

When forwarding a SIP request, a SIP client uses the SIP procedures
of [RFC3263] to determine the next-hop SIP server. The procedures of
[RFC3263] take a SIP URI as input, extract the domain portion of that
URI for use as a | ookup key, query the DNS to obtain an ordered set
of one or nore I P addresses with a port number and transport
corresponding to each IP address in this set (the Expected Qutput).

After selecting a specific SIP server fromthe Expected Cutput, the
SIP client deternmines if it already has overload control paraneter
val ues for the server chosen fromthe Expected Qutput. |If the SIP
client has a non-expired "oc" paraneter value for the server chosen
fromthe Expected Qutput, then this chosen server is operating in
overload control node. Thus, the SIP client determines if it can or
cannot forward the current request to the SIP server based on the
"oc" and "oc-al go" paranmeters and any rel evant |ocal policy.

Qurbani, et al. St andards Track [Page 13]

RFC 7339 Overl oad Control Sept ember 2014

The particular algorithmused to determn ne whether or not to forward
a particular SIP request is a nmatter of local policy and may take
into account a variety of prioritization factors. However, this

| ocal policy SHOULD transnmit the same number of SIP requests as the
sanmpl e al gorithm defined by the overl oad control schene being used.
(See Section 7.2 for the default |oss-based overload contro

al gorithm)

5.6. Forwarding the Overload Control Paraneters

Overload control is defined in a hop-by-hop manner. Therefore,
forwardi ng the contents of the overload control paraneters is
general |y NOT RECOMVENDED and should only be perfornmed if pernitted
by the configuration of SIP servers. This neans that a SIP proxy
SHOULD strip the overload control paraneters inserted by the client
bef ore proxying the request further downstream O course, when the
proxy acts as a client and proxies the request downstream it is free
to add overload control paraneters pertinent to itself in the Via
header it inserted in the request.

5.7. Terminating Overload Contro

A SIP client renoves overload control if one of the follow ng events
occur:

1. The "oc-validity" period previously received by the client from
this server (or the default value of 500 ns if the server did not
previously specify an "oc-validity" paraneter) expires.

2. The client is explicitly told by the server to stop perforning
overload control using the "oc-validity=0" paraneter.

A SI P server can decide to terninate overload control by explicitly
signaling the client. To do so, the SIP server MJST set the val ue of
the "oc-validity" paraneter to 0. The SIP server MJST increnment the
val ue of "oc-seq" and SHOULD set the value of the "oc" paraneter to
0.

Note that the |oss-based overload control scheme (Section 7) can
effectively stop overload control by setting the value of the "oc"
paraneter to 0. However, the rate-based schene [RATE- CONTROL]
needs an additional piece of information in the formof "oc-

val i dity=0".

When the client receives a response with a higher "oc-seq" nunber
than the one it nost recently processed, it checks the "oc-validity"
paraneter. |If the value of the "oc-validity" paraneter is 0, this
indicates to the client that overload control of nessages destined to

Qurbani, et al. St andards Track [Page 14]

RFC 7339 Overl oad Control Sept ember 2014

the server is no | onger necessary and the traffic can flow w t hout
any reduction. Furthernore, when the value of the "oc-validity"
paranmeter is 0, the client SHOULD disregard the value in the "oc"
par anet er.

5.8. Stabilizing Overload Al gorithm Sel ection

Realities of deployments of SIP necessitate that the overload contro
al gorithm may be changed upon a system reboot or a software upgrade.
However, frequent changes of the overload control algorithm nust be
avoi ded. Frequent changes of the overload control algorithmw |l not
benefit the client or the server as such flapping does not allow the
chosen algorithmto stabilize. An algorithmchange, when desired, is
simply acconplished by the SIP server choosing a new al gorithmfrom
the list in the client’s "oc-al go" paranmeter and sending it back to
the client in a response.

The client associates a specific algorithmw th each server it sends
traffic to, and when the server changes the algorithm the client
nmust change its behavi or accordingly.

Once the server selects a specific overload control algorithmfor a
given client, the algorithm SHOULD NOT change the al gorithm
associated with that client for at |east 3600 seconds (1 hour). This
peri od may involve one or nore cycles of overload control being in

ef fect and then being stopped depending on the traffic and resources
at the server.

Note: One way to acconplish this involves the server saving the
tinme of the last algorithmchange in a | ookup table, indexed by
the client’s network identifiers. The server only changes the
"oc-al go" paraneter when the tinme since the |last change has

sur passed 3600 seconds.

5.9. Self-Limting

In sone cases, a SIP client may not receive a response froma server
after sending a request. RFC 3261 [RFC3261] states:

Note: When a timeout error is received fromthe transaction |ayer,
it MIST be treated as if a 408 (Request Tinmeout) status code has
been received. |If a fatal transport error is reported by the
transport layer ..., the condition MIST be treated as a 503
(Service Unavail abl e) status code.

In the event of repeated timeouts or fatal transport errors, the SIP

client MIUST stop sending requests to this server. The SIP client
SHOULD periodically probe if the downstream server is alive using any

Qurbani, et al. St andards Track [Page 15]

RFC 7339 Overl oad Control Sept ember 2014

mechanismat its disposal. dients should be conservative in their
probing (e.g., using an exponential back-off) so that their |iveness
probes do not exacerbate an overload situation. Once a SIP client
has successfully received a normal response for a request sent to the
downstream server, the SIP client can resune sending SIP requests.

It should, of course, honor any overload control paraneters it nmay
receive in the initial, or later, responses.

5.10. Responding to an Overload Indication

A SIP client can receive overload control feedback indicating that it
needs to reduce the traffic it sends to its downstream server. The

client can acconplish this task by sending sone of the requests that
woul d have gone to the overloaded elenent to a different destination

It needs to ensure, however, that this destination is not in overload
and is capable of processing the extra load. A client can al so
buffer requests in the hope that the overload condition will resolve
qui ckly and the requests can still be forwarded in tinme. |n nmany
cases, however, it will need to reject these requests with a "503
(Service Unavail abl e)" response w thout the Retry-After header

5.10.1. Message Prioritization at the Hop before the Overl oaded Server

During an overload condition, a SIP client needs to prioritize
requests and sel ect those requests that need to be rejected or
redirected. This selection is largely a matter of local policy. It
is expected that a SIP client will follow |local policy as long as the
result in reduction of traffic is consistent with the overl oad
algorithmin effect at that node. Accordingly, the nornative
behavi or in the next three paragraphs should be interpreted with the
understanding that the SIP client will aimto preserve |local policy
to the fullest extent possible.

A SIP client SHOULD honor the |l ocal policy for prioritizing SIP
requests such as policies based on nessage type, e.g., |INVITEs versus
requests associated with existing sessions.

A SIP client SHOULD honor the local policy for prioritizing SIP
requests based on the content of the Resource-Priority header (RPH)
[RFC4412]. Specific (namespace.value) RPH contents may indicate
high-priority requests that should be preserved as nmuch as possible
during overload. The RPH contents can also indicate a lowpriority
request that is eligible to be dropped during tinmes of overl oad.

A SIP client SHOULD honor the local policy for prioritizing SIP

requests relating to enmergency calls as identified by the SOS URN
[RFC5031] indicating an energency request. This policy ensures that

Qurbani, et al. St andards Track [Page 16]

RFC 7339 Overl oad Control Sept ember 2014

when a server is overloaded and non-energency calls outnunber
energency calls in the traffic arriving at the client, the few
energency calls will be given preference. |If, on the other hand, the
server is overloaded and the majority of calls arriving at the client
are emergency in nature, then no anount of nessage prioritization
will ensure the delivery of all enmergency calls if the client is to
reduce the anount of traffic as requested by the server

A local policy can be expected to conbine both the SIP request type
and the prioritization markings, and it SHOULD be honored when
overl oad conditions prevail.

5.10.2. Rejecting Requests at an Overl oaded Server

If the upstream SIP client to the overl oaded server does not support
overload control, it will continue to direct requests to the

over|l oaded server. Thus, for the non-participating client, the
over|l oaded server nust bear the cost of rejecting sone requests from
the client as well as the cost of processing the non-rejected
requests to conpletion. It would be fair to devote the sanme anount
of processing at the overloaded server to the conbination of
rejection and processing froma non-participating client as the

over| oaded server woul d devote to processing requests froma
participating client. This is to ensure that SIP clients that do not
support this specification don't receive an unfair advantage over

t hose that do

A SIP server that is in overload and has started to throttle incom ng
traffic MJST reject sonme requests fromnon-participating clients with
a 503 (Service Unavail able) response without the Retry-After header

5.11. 100 Trying Provisional Response and Overload Control Paramneters

The overload control information sent froma SIP server to a client
is transported in the responses. Wile inplenentations can insert
overload control information in any response, special attention
shoul d be accorded to overload control infornmation transported in a
100 Tryi ng response.

Traditionally, the 100 Trying response has been used in SIP to quench
retransm ssions. In sone inplenentations, the 100 Tryi ng nessage may
not be generated by the transaction user (TU) nor consunmed by the TU.
In these inplenentations, the 100 Trying response is generated at the
transaction |layer and sent to the upstream SIP client. At the
receiving SIP client, the 100 Trying is consunmed at the transaction

I ayer by inhibiting the retransnission of the correspondi ng request.
Consequently, inplenentations that insert overload contro

information in the 100 Tryi ng cannot assune that the upstream SIP

Qurbani, et al. St andards Track [Page 17]

RFC 7339 Overl oad Control Sept ember 2014

client passed the overload control information in the 100 Trying to
their corresponding TU For this reason, inplenmentations that insert
overload control information in the 100 Trying MJST re-insert the
same (or updated) overload control information in the first non-100
Trying response being sent to the upstream SIP client.

6. Exanple

Consider a SIP client, P1, which is sending requests to another
downstream SI P server, P2. The follow ng snippets of SIP nessages
denmonstrate how the overload control paraneters work

I NVI TE si ps: user @xanpl e.com SI P/ 2.0
Via: SIP/2. 0/TLS pl. exanpl e. net;
branch=z9hG4bkK2d4790. 1; oc; oc- al go="1 oss, A"

SIP/2.0 100 Trying

Via: SIP/2. 0/TLS pl. exanpl e. net;
branch=z9h&bk2d4790. 1; recei ved=192. 0. 2. 111
oc=0; oc-al go="10ss";oc-validity=0

In the messages above, the first line is sent by P1 to P2. This line
is a SIP request; because P1 supports overload control, it inserts
the "oc" paraneter in the topnost Via header that it created. P1
supports two overload control algorithns: "loss" and an al gorithm
called "A".

The second line -- a SIP response -- shows the topnobst Via header
anended by P2 according to this specification and sent to PLl.
Because P2 al so supports overload control and chooses the | oss-based
schene, it sends "loss" back to Pl in the "oc-al go" paraneter. It

al so sets the value of the "oc" and "oc-validity" paraneters to O
because it is not currently requesting overload control activation

Had P2 not supported overload control, it would have left the "oc"

and "oc-al go" paraneters unchanged, thus allowing the client to know
that it did not support overload control

Qurbani, et al. St andards Track [Page 18]

RFC 7339 Overl oad Control Sept ember 2014

At sonme later tine, P2 starts to experience overload. It sends the
following SIP nessage indicating that P1 shoul d decrease the nessages
arriving to P2 by 20% for 0.5 seconds.

SIP/2.0 180 Ringing

Via: SIP/2. 0/TLS pl. exanpl e. net;
branch=z9hx4bK2d4790. 3; recei ved=192. 0. 2. 111
0c=20; oc- al go="1 0ss"; oc-validi ty=500;
oc-seq=1282321615. 782

After sone tinme, the overload condition at P2 subsides. It then
changes the paraneter values in the response it sends to P1 to all ow
P1 to send all nessages destined to P2.

SIP/2.0 183 Queued

Via: SIP/2.0/TLS pl. exanpl e. net;
branch=z9hG4bkK2d4790. 4; recei ved=192. 0. 2. 111
oc=0; oc-al go="10ss"; oc-validity=0; oc-seq=1282321892. 439

7. The Loss-Based Overl oad Control Schene

Under a | oss-based approach, a SIP server asks an upstream nei ghbor
to reduce the nunber of requests it would normally forward to this
server by a certain percentage. For exanple, a SIP server can ask an
upstream nei ghbor to reduce the nunmber of requests this neighbor
woul d normal |y send by 10% The upstream nei ghbor then redirects or
rejects 10% of the traffic originally destined for that server.

This section specifies the semantics of the overload contro
paraneters associated with the | oss-based overload control schene.
The general behavior of SIP clients and servers is specified in
Section 5 and is applicable to SIP clients and servers that inplenment
| oss- based overl oad control

7.1. Special Paraneter Values for Loss-Based Overload Contro

The | oss-based overl oad control schenme is identified using the token
"l oss". This token appears in the "oc-al go" paraneter list sent by
the SIP client.

Upon entering the overload state, a SIP server that has selected the
| oss-based algorithmw ||l assign a value to the "oc" paraneter. This
val ue MUST be in the range of [0, 100], inclusive. This value
indicates to the client the percentage by which the client is to
reduce the nunber of requests being forwarded to the overl oaded
server. The SIP client may use any algorithmthat reduces the
traffic it sends to the overl oaded server by the anount indicated.

Qurbani, et al. St andards Track [Page 19]

RFC 7339 Overl oad Control Sept ember 2014

Such an al gorithm shoul d honor the nessage prioritization discussion
in Section 5.10.1. Wile a particular algorithmis not subject to
standardi zati on, for conpleteness, a default algorithmfor |oss-based
overload control is provided in Section 7.2.

7.2. Default Algorithmfor Loss-Based Overload Contro

This section describes a default algorithmthat a SIP client can use
to throttle SIP traffic goi ng downstream by the percentage | oss val ue
specified in the "oc" paraneter.

The client maintains two categories of requests. The first category
will include requests that are candidates for reduction, and the
second category will include requests that are not subject to
reducti on except when all nmessages in the first category have been
rejected and further reduction is still needed. Section 5.10.1
contains directives on identifying nessages for inclusion in the
second category. The remaining nessages are allocated to the first
cat egory.

Under overload condition, the client converts the value of the "oc"
paraneter to a value that it applies to requests in the first
category. As a sinple exanple, if "oc=10" and 40% of the requests
shoul d be included in the first category, then

10 / 40 * 100 = 25

O, 25%of the requests in the first category can be reduced to get
an overall reduction of 10% The client uses random di scard to

achi eve the 25%reduction of nmessages in the first category.
Messages in the second category proceed downstream unscathed. To
affect the 25%reduction rate fromthe first category, the client
draws a random nunmber between 1 and 100 for the request picked from
the first category. |If the random nunber is less than or equal to
the converted val ue of the "oc" paraneter, the request is not
forwarded; otherw se, the request is forwarded.

Qurbani, et al. St andards Track [Page 20]

RFC 7339 Overl oad Control Sept ember 2014

A reference algorithmis shown bel ow.

catl := 80.0 /] Category 1 -- Subject to reduction
cat2 := 100.0 - catl // Category 2 -- Under normal operations,
/1 only subject to reduction after category 1 is exhausted.

/1 Note that the above ratio is sinply a reasonable default.
/1 The actual values will change through periodic sanpling

// as the traffic mix changes over tine.

while (true) {
/1 We’re nodel i ng nessage processing as a single work
/1 queue that contains both incom ng and out goi ng nessages.
sip_nsg := get_next_nessage_ from work _queue()
update_m x(catl, cat2) // See Note bel ow
switch (sip_nsg.type) {

case out bound request:

destination : = get_next_hop(sip_nsg)
oc_context := get_oc_context(destination)
if (oc_context == null) {

send_to_network(sip_nsg) // Process it normally by
/1 sending the request to the next hop since this
/1 particular destination is not subject to overl oad.
}
el se {
/!l Determine if server wants to enter in overload or is in
/'l overl oad.

in_oc := extract _in_oc(oc_context)

oc_value : = extract_oc(oc_context)

oc_validity := extract_oc_validity(oc_context)

if (in_oc == false or oc_validity is not in effect) {

send_to_network(sip_nsg) // Process it nornally by sending
/1 the request to the next hop since this particular

/] destination is not subject to overload. Optionally,

/'l clear the oc context for this server (not shown).

else { // Begin performng overload control
r := randon()
drop_nsg : = fal se

category : = assign_nsg_to_category(sip_nsg)

pct _to_reduce_catl = oc_value / catl * 100

Qurbani, et al. St andards Track [Page 21]

RFC 7339 Overl oad Control Sept ember 2014

if (oc_value <= catl) { // Reduce all nsgs fromcategory 1
if (r <= pct_to_reduce catl && category == catl) {
drop_nsg : = true
}

else { // oc_value > category 1. Reduce 100% of nsgs from
/1 category 1 and remaining fromcategory 2.
pct _to reduce cat2 = (oc_value - catl) / cat2 * 100
if (category == catl) {
drop_nsg : = true

el se {
if (r <= pct_to_reduce cat2) {
drop_nsg : = true;
}

}

if (drop_nmsg == false) {
send_to _network(sip_nsg) // Process it normally by
/'l sending the request to the next hop

el se {
/1 Do not send request downstream handle it locally by
/1 generating response (if a proxy) or treating it as
/'l an error (if a user agent).

}

} /! End perform overl oad control

}

end case // outbound request
case out bound response:
if (we are in overload) {
add_over | oad_par anet er s(si p_nsg)
send_t o_network(sip_nsQ)
end case // outbound response
case i nbound response:
if (sip_nmsg has oc paraneter values) {
create_or_update_oc_context() // For the specific server
/1 that sent the response, create or update the oc context,

/1 i.e., extract the values of the oc-related paraneters
/] and store themfor |ater use.

Qurbani, et al. St andards Track [Page 22]

RFC 7339 Overl oad Control Sept ember 2014

}

process_nsg(si p_nsQg)

end case // inbound response
case i nbound request:

if (we are not in overload) {
process_nsg(si p_nsQg)

else { // W are in overl oad.
if (sip_msg has oc paraneters) { // Upstreamclient supports
process_nsg(sip_nsg) // oc; only sends inportant requests.

else { // Upstreamclient does not support oc
if (local _policy(sip_nsg) says process nessage) {
process_mnsg(si p_nsQg)

el se {
send_response(si p_nsg, 503)
}

}

end case // inbound request

Note: A sinple way to sanple the traffic mx for category 1 and
category 2 is to associate a counter with each category of nessage
Periodically (every 5-10 seconds), get the value of the counters, and
calculate the ratio of category 1 nessages to category 2 nessages
since the last cal cul ation

Exanple: In the last 5 seconds, a total of 500 requests arrived at
the queue. 450 out of the 500 were nessages subject to reduction
and 50 out of 500 were classified as requests not subject to
reduction. Based on this ratio, catl := 90 and cat2 := 10, so a
90/10 mix will be used in overload cal cul ations.

8. Relationship with Gher IETF SIP Load Control Efforts

The overl oad control nechani smdescribed in this docunent is reactive
in nature, and apart fromthe nmessage prioritization directives
listed in Section 5.10.1, the mechani snms described in this docunent
will not discrimnate requests based on user identity, filtering
action, and arrival tine. SIP networks that require pro-active

overl oad control nechani sns can upl oad user-level |oad contro

filters as described in [RFC7200]. Local policy will also dictate
the precedence of different overload control nechanisns applied to

Qurbani, et al. St andards Track [Page 23]

RFC 7339 Overl oad Control Sept ember 2014

10.

10.

10.

the traffic. Specifically, in a scenario where load control filters
are installed by signaling neighbors [RFC7200] and the sane traffic
can also be throttled using the overload control nechanism |oca
policy will dictate which of these schenmes shall be given precedence.
Interactions between the two schenes are out of the scope of this
docunent .

Synt ax
This specification extends the existing definition of the Via header
field paraneters of [RFC3261]. The ABNF [RFC5234] syntax is as
fol | ows:

via-parans =/ oc / oc-validity / oc-seq / oc-algo

oc = "oc" [EQUAL oc-nun

oc- num =1*DAT

oc-validity = "oc-validity" [EQUAL delta-ns]

oc-seq = "oc-seq" EQUAL 1*12DIGT "." 1*5DIA T

oc-al go = "oc-al go" EQUAL DQUOTE al go-list *(COWA al go-1list)
DQUOTE

al go-1i st = "loss" / *(other-al go)

other-algo = W%41-5A / 9%61-7A /| %30-39

del ta-ns =1*DAT

Desi gn Consi derati ons

This section discusses specific design considerations for the
mechani sm described in this docunent. General design considerations
for SIP overload control can be found in [RFC6357].

1. SIP Mechani sm

A SIP nechanismis needed to convey overload feedback fromthe
receiving to the sending SIP entity. A nunber of different
alternatives exist to inplenent such a nmechani sm

1.1. SIP Response Header

Overload control information can be transmitted using a new Via
header field paraneter for overload control. A SIP server can add
this header paraneter to the responses it is sending upstreamto
provi de overload control feedback to its upstream neighbors. This
approach has the followi ng characteristics:

0 A Via header paraneter is light-weight and creates very little
overhead. It does not require the transm ssion of additiona
messages for overload control and does not increase traffic or
processing burdens in an overl oad situation

Qurbani, et al. St andards Track [Page 24]

RFC 7339 Overl oad Control Sept ember 2014

0 Overload control status can frequently be reported to upstream
nei ghbors since it is a part of a SIP response. This enables the
use of this mechanismin scenarios where the overload status needs
to be adjusted frequently. It also enables the use of overl oad
control mechani snms that use regul ar feedback, such as w ndow based
overl oad control

o Wth a Via header paraneter, overload control status is inherent
in SIP signaling and is automatically conveyed to all rel evant
upstream nei ghbors, i.e., neighbors that are currently
contributing traffic. There is no need for a SIP server to
specifically track and manage the set of current upstream or
downstream nei ghbors with which it shoul d exchange overl oad
f eedback.

0 Overload status is not conveyed to inactive senders. This avoids
the transmi ssion of overload feedback to inactive senders, which
do not contribute traffic. |If an inactive sender starts to
transnmt while the receiver is in overload, it will receive
overl oad feedback in the first response and can adjust the anount
of traffic forwarded accordingly.

0 A SIP server can Iimt the distribution of overload contro
information by only inserting it into responses to known upstream
nei ghbors. A SIP server can use transport-level authentication
(e.g., via TLS) with its upstream nei ghbors.

10.1.2. SIP Event Package

Overload control information can al so be conveyed froma receiver to
a sender using a new event package. Such an event package enables a
sending entity to subscribe to the overload status of its downstream
nei ghbors and receive notifications of overload control status
changes in NOTIFY requests. This approach has the foll ow ng
characteristics:

0 Overload control information is conveyed decoupled from SIP
signaling. |t enables an overload control nanager, which is a
separate entity, to nonitor the load on other servers and provide
overload control feedback to all SIP servers that have set up
subscriptions with the controller

o Wth an event package, a receiver can send updates to senders that
are currently inactive. |Inactive senders will receive a
notification about the overload and can refrain from sendi ng
traffic to this neighbor until the overload condition is resol ved.

Qurbani, et al. St andards Track [Page 25]

RFC 7339 Overl oad Control Sept ember 2014

10.

The receiver can also notify all potential senders once they are
permitted to send traffic again. However, these notifications do
generate additional traffic, which adds to the overall | oad.

0 ASIPentity needs to set up and maintain overload contro
subscriptions with all upstream and downstream nei ghbors. A new
subscription needs to be set up before/while a request is
transmtted to a new downstream nei ghbor. Servers can be
configured to subscribe at boot tine. However, this would require
additional protection to avoid the aval anche restart problemfor
overload control. Subscriptions need to be term nated when they
are not needed any nore, which can be done, for exanple, using a
ti meout mechani sm

0 A receiver needs to send NOTI FY nessages to all subscribed
upstream nei ghbors in a tinely nmanner when the control algorithm
requires a change in the control variable (e.g., when a SIP server
is in an overload condition). This includes active as well as
i nactive neighbors. These NOTIFYs add to the anount of traffic
that needs to be processed. To ensure that these requests wll
not be dropped due to overload, a priority nechani smneeds to be
implemented in all servers these requests will pass through

0 As overload feedback is sent to all senders in separate nessages
this mechanismis not suitable when frequent overload contro
f eedback is needed.

0 A SIP server can limt the set of senders that can receive
overload control information by authenticating subscriptions to
this event package.

0 This approach requires each proxy to inplenent user agent
functionality (UAS and UAC) to manage the subscriptions.

2. Backwards Conpatibility

A new overl oad control nechani smneeds to be backwards conpatible so
that it can be gradually introduced into a network and function
properly if only a fraction of the servers support it.

Hop- by- hop overl oad control (see [RFC6357]) has the advantage that it
does not require that all SIP entities in a network support it. It
can be used effectively between two adjacent SIP servers if both
servers support overload control and does not depend on the support
fromany ot her server or user agent. The nore SIP servers in a

net wor k support hop-by-hop overload control, the better protected the
network i s agai nst occurrences of overl oad.

Qurbani, et al. St andards Track [Page 26]

RFC 7339 Overl oad Control Sept ember 2014

11.

A SIP server may have nul tiple upstream nei ghbors from which only
some may support overload control. |If a server would sinply use this
overl oad control nechanism only those that support it would reduce
traffic. QOhers would keep sending at the full rate and benefit from
the throttling by the servers that support overload control. In

ot her words, upstream nei ghbors that do not support overload contro
woul d be better off than those that do.

A SI P server should therefore follow the behavior outlined in
Section 5.10.2 to handle clients that do not support overl oad
control

Security Considerations

Overload control nechani sns can be used by an attacker to conduct a
deni al -of -service attack on a SIP entity if the attacker can pretend
that the SIP entity is overloaded. When such a forged overl oad
indication is received by an upstream SIP client, it will stop
sending traffic to the victim Thus, the victimis subject to a
deni al - of - service attack

To better understand the threat nodel, consider the foll ow ng
di agr am

Pa ------- - Pb
\ /
------ R i o R
/ L1 L2 \

..... > Downst ream (requests)
<----- Upst ream (responses)

Here, requests travel downstreamfromthe | eft-hand side, through
Proxy P1, towards the right-hand side; responses travel upstreamfrom
the right-hand side, through P1, towards the | eft-hand side. Proxies
Pa, Pb, and Pl support overload control. L1 and L2 are |abels for
the links connecting P1 to the upstreamclients and downstream
servers.

If an attacker is able to nodify traffic between Pa and P1 on |ink
L1, it can cause a denial-of-service attack on P1 by having Pa not
send any traffic to P1. Such an attack can proceed by the attacker
nodi fying the response fromP1l to Pa such that Pa’s Via header is
changed to indicate that all requests destined towards P1 should be
dropped. Conversely, the attacker can sinply renove any "oc", "oc-
validity", and "oc-seq" markings added by Pl in a response to Pa. In

Qurbani, et al. St andards Track [Page 27]

RFC 7339 Overl oad Control Sept ember 2014

such a case, the attacker will force Pl into overload by denying
request quenching at Pa even though Pa is capable of performng
overl oad control

Simlarly, if an attacker is able to nodify traffic between P1 and Pb
on link L2, it can change the Via header associated with P1 in a
response fromPb to Pl such that all subsequent requests destined
towards Pb from Pl are dropped. |In essence, the attacker nounts a
deni al -of -service attack on Pb by indicating fal se overload control
Note that it is immterial whether Pb supports overload control or
not; the attack will succeed as long as the attacker is able to
control L2. Conversely, an attacker can suppress a genui ne overl oad
condition at Pb by sinply renoving any "oc", "oc-validity", and "oc-
seq" markings added by Pb in a response to P1. In such a case, the
attacker will force P1 into sending requests to Pb even under

overl oad conditions because P1 would not be aware that Pb supports
overl oad control

Attacks that indicate false overload control are best nitigated by
using TLS in conjunction with applying BCP 38 [RFC2827]. Attacks
that are nounted to suppress genui ne overl oad conditions can be
simlarly avoided by using TLS on the connection. Generally, TCP or
WebSocket s [RFC6455] in conjunction with BCP 38 nakes it nore
difficult for an attacker to insert or nodify nessages but nmay stil
prove i nadequate agai nst an adversary that controls links L1 and L2.
TLS provides the best protection froman attacker with access to the
network |inks.

Anot her way to conduct an attack is to send a nmessage containing a
hi gh overl oad feedback val ue through a proxy that does not support
this extension. |If this feedback is added to the second Via header
(or all Via headers), it will reach the next upstream proxy. If the
attacker can nmeke the recipient believe that the overload status was
created by its direct downstream nei ghbor (and not by the attacker
further downstream), the recipient stops sending traffic to the
victim A precondition for this attack is that the victimproxy does
not support this extension since it would not pass through overl oad
control feedback otherw se

A malicious SIP entity could gain an advantage by pretending to
support this specification but never reducing the anount of traffic
it forwards to the downstream nei ghbor. |If its downstream nei ghbor
receives traffic frommultiple sources that correctly inplenent
overload control, the nalicious SIP entity would benefit since al
other sources to its downstream nei ghbor woul d reduce | oad.

Qurbani, et al. St andards Track [Page 28]

RFC 7339 Overl oad Control Sept ember 2014

12.

13.

13.

Note: The solution to this problem depends on the overload contro
nmet hod. Wth rate-based, w ndow based, and other sinilar overl oad
control algorithnms that promise to produce no nore than a
speci fi ed nunber of requests per unit tine, the overloaded server
can regulate the traffic arriving to it. However, when using

| oss-based overload control, such policing is not always obvi ous
since the | oad forwarded depends on the | oad received by the
client.

To prevent such attacks, servers should nonitor client behavior to
determ ne whether they are conplying with overload control policies.
If aclient is not conformng to such policies, then the server
should treat it as a non-supporting client (see Section 5.10.2).

Finally, a distributed denial-of-service (DDoS) attack could cause an
honest server to start signaling an overload condition. Such a DDoS
attack could be nmounted without controlling the comunications |inks
since the attack sinply depends on the attacker injecting a large
vol ume of packets on the conmunication links. |If the honest server
attacked by a DDoS attack has a long "oc-validity" interval and the
attacker can guess this interval, the attacker can keep the server
overl oaded by synchronizing the DDoS traffic with the validity
period. VWhile such an attack may be relatively easy to spot,
mechani sns for conbating it are outside the scope of this docunent
and, of course, since attackers can invent new variations, the
appropriate nechanisns are |likely to change over tine.

| ANA Consi derati ons
This specification defines four new Via header paraneters as detail ed
below in the "Header Field Paraneter and Paraneter Val ues" sub-
registry as per the registry created by [RFC3968]. The required
i nformation is:

Header Field Paraneter Nanme Predefined Values Reference

Vi a oc Yes [RFC7339]
Vi a oc-validity Yes [RFC7339]
Vi a oc-seq Yes [RFC7339]
Vi a oc-al go Yes [RFC7339]

Ref er ences
1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Qurbani, et al. St andards Track [Page 29]

RFC 7339 Overl oad Control Sept ember 2014
[RFC3261] Rosenberg, J., Schul zrinne, H, Canarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M, and E
School er, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.
[RFC3263] Rosenberg, J. and H Schul zrinne, "Session Initiation
Protocol (SIP): Locating SIP Servers", RFC 3263, June
2002.
[RFC3968] Camarillo, G, "The Internet Assigned Number Authority
(1 ANA) Header Field Paraneter Registry for the Session
Initiation Protocol (SIP)", BCP 98, RFC 3968, Decenber
2004.
[RFC4412] Schul zrinne, H and J. Pol k, "Conmuni cations Resource
Priority for the Session Initiation Protocol (SIP)", RFC
4412, February 2006.
[RFC5234] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Specifications: ABNF', STD 68, RFC 5234, January 2008.
13.2. Informative References

Gur bani ,

[RATE- CONTROL]

[RFC2827]

[RFC5031]

[RFC5390]

[RFCB357]

[RFC6455]

[RFC7200]

Noel, E. and P. WIllians, "Session Initiation Protocol
(SIP) Rate Control", Work in Progress, July 2014.

Ferguson, P. and D. Senie, "Network Ingress Filtering:
Def eati ng Deni al of Service Attacks which enmploy I P Source
Addr ess Spoofing", BCP 38, RFC 2827, My 2000.

Schul zrinne, H, "A Uniform Resource Name (URN) for
Emergency and Ot her Wel|-Known Services", RFC 5031,
January 2008.

Rosenberg, J., "Requirenents for Managenent of Overload in
the Session Initiation Protocol", RFC 5390, Decenber 2008.

Hlt, V., Noel, E, Shen, C., and A Abdelal, "Design
Consi derations for Session Initiation Protocol (SIP)
Overload Control", RFC 6357, August 2011.

Fette, |I. and A. Ml ni kov, "The WbSocket Protocol", RFC
6455, Decenber 2011.

Shen, C., Schul zrinne, H, and A Koi ke, "A Session
Initiation Protocol (SIP) Load-Control Event Package", RFC
7200, April 2014.

et al. St andards Track [Page 30]

RFC 7339 Overl oad Control Sept ember 2014

Appendi x A, Acknow edgenent s

The aut hors acknow edge the contributions of Bruno Chatras, Keith
Drage, Janet Gunn, Rich Terpstra, Daryl Malas, Eric Noel, R

Part hasarathi, Antoine Roly, Jonathan Rosenberg, Charles Shen, Rahul
Srivastava, Padma Valluri, Shaun Bharrat, Paul Kyzivat, and Jeroen
Van Benmmel to this docunent.

Adam Roach and Eric McMirry hel ped flesh out the different cases for
handl i ng SI P nmessages described in the algorithmin Section 7.2.
Janet @unn reviewed the al gorithm and suggested changes that led to
simpl er processing for the case where "oc_val ue > cat 1"

Ri chard Barnes provided invaluable conments as a part of the Area
Di rector review of the docunent.

Appendi x B. RFC 5390 Requirenents
Table 1 provides a summary of how this specification fulfills the

requi renents of [RFC5390]. A nore detailed view on how each
requirenents is fulfilled is provided after the table.

Qurbani, et al. St andards Track [Page 31]

RFC 7339 Overl oad Control Sept ember 2014

T e e e e +
| Requirenment | Meets requirenent

B ook +
REQ 1	Yes
REQ 2	Yes
REQ 3	Partially
REQ 4	Yes
REQ 5	Partially
REQ 6	Not applicable

REQ 7	Yes
REQ 8	Partially
REQ 9	Yes
REQ 10	Yes
REQ 11	Yes
REQ 12	Yes
REQ 13	Yes
REQ 14	Yes
REQ 15	Yes
REQ 16	Yes
REQ 17	Partially
REQ 18	Yes
REQ 19	Yes
REQ 20	Yes
REQ 21	Yes
REQ 22	Yes
REQ 23	Yes
B ook +

Table 1: Sunmmary of Meeting Requirenments in RFC 5390

REQ 1: The overl oad nechani smshall strive to naintain the overal
useful throughput (taking into consideration the quality-of-service
needs of the using applications) of a SIP server at reasonable

| evel s, even when the inconming load on the network is far in excess
of its capacity. The overall throughput under load is the ultinmate
nmeasure of the value of an overload control nechani sm

Meets REQ 1: Yes. The overload control nechanismallows an

over|l oaded SIP server to naintain a reasonable |evel of throughput
as it enters into congestion node by requesting the upstream
clients to reduce traffic destined downstream

REQ 2: When a single network elenent fails, goes into overload, or
suffers fromreduced processing capacity, the mechani smshould strive
tolimt the inpact of this on other elenents in the network. This
hel ps to prevent a small-scale failure frombeconm ng a w despread

out age.

Qurbani, et al. St andards Track [Page 32]

RFC 7339 Overl oad Control Sept ember 2014

Meets REQ 2: Yes. Wen a SIP server enters overload node, it wll
request the upstreamclients to throttle the traffic destined to
it. As a consequence of this, the overloaded SIP server wll
itself generate proportionally I ess downstreamtraffic, thereby
limting the inpact on other elenents in the network.

REQ 3: The nechani sm should seek to mininize the anbunt of
configuration required in order to work. For exanple, it is better
to avoid needing to configure a server with its SIP nessage

t hroughput, as these kinds of quantities are hard to determ ne

Meets REQ 3: Partially. On the server side, the overload
condition is deternmined nmonitoring "S" (cf., Section 4 of

[RFC6357]) and reporting a | oad feedback "F' as a value to the
"oc" paraneter. On the client side, a throttle "T" is applied to
requests goi ng downstream based on "F'. This specification does
not prescribe any value for "S" nor a particular value for "F"
The "oc-al go" paraneter allows for automatic convergence to a
particul ar class of overload control algorithm There are
suggest ed default values for the "oc-validity" parameter.

REQ 4: The mechani sm nust be capabl e of dealing with elenments that do
not support it so that a network can consist of a mx of elements
that do and don't support it. |In other words, the mechani sm should
not work only in environnents where all elenents support it. It is
reasonable to assunme that it works better in such environnments, of
course. ldeally, there should be increnmental inprovenments in overal
net wor k t hroughput as increasing nunbers of elements in the network
support the mechani sm

Meets REQ 4: Yes. The nechanismis designed to reduce congestion

when a pair of communicating entities support it. |f a downstream
overl oaded SIP server does not respond to a request in tinme, a SIP
client will attenpt to reduce traffic destined towards the non-

responsi ve server as outlined in Section 5.9.

REQ 5: The nmechani sm shoul d not assune that it will only be depl oyed
in environnents with conpletely trusted elenents. It should seek to
operate as effectively as possible in environments where ot her

el ements are malicious; this includes preventing malicious elenments
fromobtaining nore than a fair share of service

Meets REQ 5: Partially. Since overload control information is
shared between a pair of comrunicating entities, a confidential
and aut henti cated channel can be used for this comunication
However, if such a channel is not available, then the security
ram fications outlined in Section 11 apply.

Qurbani, et al. St andards Track [Page 33]

RFC 7339 Overl oad Control Sept ember 2014

REQ 6: When overload is signaled by neans of a specific nessage, the
message must clearly indicate that it is being sent because of

overl oad, as opposed to other, non-overl oad-based failure conditions.
This requirenment is nmeant to avoid sone of the problens that have
arisen fromthe reuse of the 503 response code for nultiple purposes.
O course, overload is also signaled by |ack of response to requests.
This requirenment applies only to explicit overload signals.

Meets REQ 6: Not applicable. Overload control information is
signal ed as part of the Via header and not in a new header.

REQ 7: The nmechani sm shall provide a way for an elenent to throttle
the amount of traffic it receives froman upstreamelenent. This
throttling shall be graded so that it is not "all or nothing" as with
the current 503 nechanism This recognizes the fact that overload is
not a binary state and that there are degrees of overl oad.

Meets REQ 7: Yes. Please see Sections 5.5 and 5. 10.

REQ 8: The nechani sm shall ensure that, when a request was not
processed successfully due to overload (or failure) of a downstream
el ement, the request will not be retried on another elenment that is
al so overl| oaded or whose status is unknown. This requirenment derives
from REQ 1.

Meets REQ 8: Partially. A SIP client that has overl oad
information fromnultiple downstream servers will not retry the
request on another element. However, if a SIP client does not
know t he overl oad status of a downstream server, it may send the
request to that server

REQ 9: That a request has been rejected froman overl oaded el enent
shall not unduly restrict the ability of that request to be submitted
to and processed by an elenment that is not overloaded. This

requi renent derives from REQ 1.

Meets REQ 9: Yes. A SIP client conformant to this specification
will send the request to a different el enent.

REQ 10: The mechani sm shoul d support servers that receive requests
froma large nunber of different upstream el enents, where the set of
upstream el enents is not enunerabl e.

Meets REQ 10: Yes. There are no constraints on the nunber of
upstreamclients.

Qurbani, et al. St andards Track [Page 34]

RFC 7339 Overl oad Control Sept ember 2014

REQ 11: The nechani sm shoul d support servers that receive requests
froma finite set of upstreamelenents, where the set of upstream
el ements is enunerable.

Meets REQ 11: Yes. There are no constraints on the nunber of
upstreamclients.

REQ 12: The nechani sm shoul d work between servers in different
domai ns.

Meets REQ 12: Yes. There are no inherent limtations on using
overl oad control between domai ns. However, interconnections
points that engage in overload control between donmains will have
to popul ate and nmaintain the overl oad control paraneters as
requests cross domains.

REQ 13: The mechani sm nmust not dictate a specific algorithmfor
prioritizing the processing of work within a proxy during tinmes of
overload. It nust permt a proxy to prioritize requests based on any
| ocal policy so that certain ones (such as a call for energency
services or a call with a specific value of the Resource-Priority
header field [RFC4412]) are given preferential treatnent, such as not
bei ng dropped, being given additional retransm ssion, or being
processed ahead of others.

Meets REQ 13: Yes. Please see Section 5.10.

REQ 14: The mechani sm shoul d provi de unambi guous directions to
clients on when they should retry a request and when they shoul d not.
This especially applies to TCP connection establishnent and SIP
registrations in order to nitigate agai nst an aval anche restart.

Meets REQ 14: Yes. Section 5.9 provides normative behavi or on
when to retry a request after repeated tineouts and fata
transport errors resulting from comruni cations with a non-
responsi ve downstream SI P server

REQ 15: In cases where a network elenment fails, is so overloaded that
it cannot process nmessages, or cannot conmunicate due to a network
failure or network partition, it will not be able to provide explicit
i ndi cations of the nature of the failure or its levels of congestion
The mechani sm nust properly function in these cases.

Meets REQ 15: Yes. Section 5.9 provides normative behavi or on
when to retry a request after repeated tineouts and fata
transport errors resulting from comruni cations with a non-
responsi ve downstream SI P server

Qurbani, et al. St andards Track [Page 35]

RFC 7339 Overl oad Control Sept ember 2014

REQ 16: The nechani sm should attenpt to minimze the overhead of the
overl oad control messagi ng.

Meets REQ 16: Yes. Overload control nessages are sent in the
topnost Via header, which is always processed by the SIP el ements.

REQ 17: The overload nechani sm nust not provide an avenue for
mal i ci ous attack, including DoS and DDoS attacks.

Meets REQ 17: Partially. Since overload control information is
shared between a pair of conmmunicating entities, a confidential
and aut henti cated channel can be used for this comunication
However, if such a channel is not available, then the security
ram fications outlined in Section 11 apply.

REQ 18: The overload nechani sm shoul d be unanbi guous about whether a
| oad indication applies to a specific |IP address, host, or URl so
that an upstream el enent can determine the | oad of the entity to
which a request is to be sent.

Meets REQ 18: Yes. Please see discussion in Section 5.5.

REQ 19: The specification for the overl oad mechani sm shoul d give

gui dance on whi ch nessage types m ght be desirable to process over
others during times of overload, based on SIP-specific

consi derations. For exanple, it nmay be nore beneficial to process a
SUBSCRI BE refresh with Expires of zero than a SUBSCRIBE refresh with
a non-zero expiration (since the former reduces the overall anount of
| oad on the elenent) or to process re-INVITEsS over new | NVI TEs

Meets REQ 19: Yes. Please see Section 5.10.

REQ 20: In a m xed environnent of elenents that do and do not

i mpl enment the overl oad nechani sm no di sproportionate benefit shal
accrue to the users or operators of the elenents that do not

i mpl enent t he nmechani sm

Meets REQ 20: Yes. An elenment that does not inplement overl oad
control does not receive any nmeasure of extra benefit.

REQ 21: The overload nechani sm shoul d ensure that the systemrenains
stable. Wen the offered | oad drops from above the overall capacity
of the network to below the overall capacity, the throughput should
stabilize and becone equal to the offered | oad.

Meets REQ 21: Yes. The overload control mechani sm described in
this docunent ensures the stability of the system

Qurbani, et al. St andards Track [Page 36]

RFC 7339 Overl oad Control Sept ember 2014

REQ 22: It nust be possible to disable the reporting of |oad

i nformati on towards upstreamtargets based on the identity of those
targets. This allows a domain adm nistrator who considers the |oad
of their elenents to be sensitive information to restrict access to
that information. O course, in such cases, there is no expectation
that the overload nmechanismitself will help prevent overload from
that upstreamtarget.

Meets REQ 22: Yes. An operator of a SIP server can configure the
SIP server to only report overload control information for
requests received over a confidential channel, for exanple.
However, note that this requirenent is in conflict with REQ 3 as
it introduces a nodi cum of extra configuration

REQ 23: It mnust be possible for the overl oad mechanismto work in
cases where there is a | oad balancer in front of a farm of proxies.

Meets REQ 23: Yes. Depending on the type of |oad bal ancer, this
requirenent is net. A |oad balancer fronting a farmof SIP
proxies could be a Sl P-aware | oad bal ancer or one that is not Sl P-
aware. |If the load balancer is SIP-aware, it can nake consci ous
decisions on throttling outgoing traffic towards the individua
server in the farm based on the overl oad control paraneters
returned by the server. On the other hand, if the |oad bal ancer
is not SIP-aware, then there are other strategies to perform
overload control. Section 6 of [RFC6357] docunents sone of these
strategies in nore detail (see discussion related to Figure 3(a)
of that docunent).

Qurbani, et al. St andards Track [Page 37]

RFC 7339 Overl oad Control Sept ember 2014

Aut hors’ Addr esses

Vijay K CQurbani (editor)
Bel | Labs, Al catel-Lucent
1960 Lucent Lane, Rm 9C-533
Naperville, IL 60563

USA

EMai | : vkg@el | -1 abs. com

Vol ker Hilt

Bel | Labs, Al catel-Lucent
Lorenzstrasse 10

70435 Stuttgart

Cer many

EMai | : vol ker. hilt@ell-I|abs. com

Henni ng Schul zri nne

Col unbi a Uni versity/Departnment of Computer Science
450 Conputer Science Buil ding

New York, NY 10027

USA

Phone: +1 212 939 7004

EMai | : hgs@s. col unbi a. edu
URI : http://ww. cs. col unbi a. edu

Qurbani, et al. St andards Track [Page 38]

