
Independent Submission E. Wilde
Request for Comments: 7351 UC Berkeley
Category: Informational August 2014
ISSN: 2070-1721

 A Media Type for XML Patch Operations

Abstract

 The XML patch document format defines an XML document structure for
 expressing a sequence of patch operations to be applied to an XML
 document. The XML patch document format builds on the foundations
 defined in RFC 5261. This specification also provides the media type
 registration "application/xml-patch+xml", to allow the use of XML
 patch documents in, for example, HTTP conversations.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7351.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Wilde Informational [Page 1]

RFC 7351 XML Patch August 2014

Table of Contents

 1. Introduction . 2
 2. Patch Documents . 3
 2.1. Patch Document Format 3
 2.2. Patch Examples . 5
 3. IANA Considerations . 5
 4. Security Considerations 7
 5. Acknowledgements . 7
 6. References . 7
 6.1. Normative References 7
 6.2. Informative References 7
 Appendix A. Implementation Hints 9
 A.1. Matching Namespaces 9
 A.2. Patching Namespaces 10
 Appendix B. ABNF for RFC 5261 12

1. Introduction

 The Extensible Markup Language (XML) [RFC7303] is a common format for
 the exchange and storage of structured data. HTTP PATCH [RFC5789]
 extends HTTP [RFC7231] with a method to perform partial modifications
 to resources. HTTP PATCH requires that patch documents be sent along
 with the request, and it is therefore useful for there to be
 standardized patch document formats (identified by media types) for
 popular media types.

 The XML patch media type "application/xml-patch+xml" is an XML
 document structure for expressing a sequence of operations to apply
 to a target XML document, suitable for use with the HTTP PATCH
 method. Servers can freely choose which patch formats they want to
 accept, and "application/xml-patch+xml" could be a simple default
 format that can be used unless a server decides to use a different
 (maybe more sophisticated) patch format for XML.

 The format for patch documents is based on the XML patch framework
 defined in RFC 5261 [RFC5261]. While RFC 5261 does define a concrete
 syntax as well as the media type "application/patch-ops-error+xml"
 for error documents, it only defines XML Schema (XSD)
 [W3C.REC-xmlschema-1-20041028] types for patch operations. The
 concrete document format and the media type for patch operations are
 defined in an XSD defined in this specification.

 This specification relies on RFC 5261 but also requires that errata
 reported to date are taken into account. The main reason for the
 errata is the problematic ways in which RFC 5261 relies on XML Path
 Language (XPath) as the expression language for selecting the
 location of a patch, while at the same time XPath’s data model does

Wilde Informational [Page 2]

RFC 7351 XML Patch August 2014

 not contain sufficient information to determine whether such a
 selector indeed can be used for a patch operation or should result in
 an error. Specifically, the problem occurs with namespaces, where
 XPath does not expose namespace declaration attributes, while the
 patch model needs them to determine whether or not a namespace patch
 is allowed. Appendix A contains more information about the general
 problem and errata reports.

2. Patch Documents

 The following sections describe and illustrate the XML patch document
 format.

2.1. Patch Document Format

 The XML patch document format is based on a simple schema that uses a
 "patch" element as the document element and allows an arbitrary
 sequence of "add", "remove", and "replace" elements as the children
 of the document element. These children follow the semantics defined
 in RFC 5261, which means that each element is treated as an
 individual patch operation, and the result of each patch operation is
 a patched XML document that is the target XML document for the next
 patch operation.

 The following simple example patch document contains a single patch
 operation. This operation adds a new attribute called
 "new-attribute" to the document element of the target XML document.
 An XML patch document always uses a "patch" element in the
 "urn:ietf:rfc:7351" namespace as the document element that contains
 zero or more patch operation elements, which are also in the
 "urn:ietf:rfc:7351" namespace.

 <p:patch xmlns:p="urn:ietf:rfc:7351">
 <p:add sel="*" type="@new-attribute">value</p:add>
 </p:patch>

 The following more complex example patch document uses the example
 from RFC 5261, Section A.18 (but changing the example namespaces to
 example.com URIs); it uses the same "patch" element and XML namespace
 as shown in the simpler example. It shows the general structure of
 an XML patch document with multiple operations, as well as an example
 of each operation.

Wilde Informational [Page 3]

RFC 7351 XML Patch August 2014

 <p:patch xmlns="http://example.com/ns1"
 xmlns:y="http://example.com/ns2"
 xmlns:p="urn:ietf:rfc:7351">
 <p:add sel="doc/elem[@a=’foo’]">
 <!-- This is a new child -->
 <child id="ert4773">
 <y:node/>
 </child>
 </p:add>
 <p:replace sel="doc/note/text()">Patched doc</p:replace>
 <p:remove sel="*/elem[@a=’bar’]/y:child" ws="both"/>
 <p:add sel="*/elem[@a=’bar’]" type="@b">new attr</p:add>
 </p:patch>

 As this example demonstrates, both the document element "patch" and
 the patch operation elements are in the same XML namespace. This is
 the result of RFC 5261 only defining types for the patch operation
 elements, which then can be reused in schemas to define concrete
 patch elements.

 RFC 5261 defines XSD [W3C.REC-xmlschema-1-20041028] for the patch
 operation types. The following schema for the XML patch media type
 is based on the types defined in RFC 5261, which are imported as
 "rfc5261.xsd" in the following schema. The schema defines a "patch"
 document element, and then allows an unlimited (and possibly empty)
 sequence of the "add", "remove", and "replace" operation elements,
 which are directly based on the respective types from the schema
 defined in RFC 5261.

 <xs:schema targetNamespace="urn:ietf:rfc:7351"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:import schemaLocation="rfc5261.xsd"/>
 <xs:element name="patch">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="add" type="add"/>
 <xs:element name="remove" type="remove"/>
 <xs:element name="replace" type="replace"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Wilde Informational [Page 4]

RFC 7351 XML Patch August 2014

2.2. Patch Examples

 Since the semantics of the XML patch operations are defined by RFC
 5261, please refer to the numerous examples in that specification for
 more XML patch document examples. All the examples in RFC 5261 can
 be taken as examples for the XML patch media type, when looking at
 them with two minor changes in mind.

 The two differences are that XML patch documents always use the
 "patch" element as the document element and that both the "patch"
 element and the individual operation elements in XML patch documents
 have to be in the XML namespace with the URI "urn:ietf:rfc:7351".

 For example, consider the patch example in RFC 5261, Appendix A.1,
 "Adding an Element". In this example, the patch is applied to the
 following XML document:

 <?xml version="1.0" encoding="UTF-8"?>
 <doc>
 <note>This is a sample document</note>
 </doc>

 The patch example is based on the following patch document (with the
 element and namespace changes described above):

<?xml version="1.0" encoding="UTF-8"?>
<p:patch xmlns:p="urn:ietf:rfc:7351">
 <p:add sel="doc"><foo id="ert4773">This is a new child</foo></p:add>
</p:patch>

 Applying the patch results in the following XML document:

 <?xml version="1.0" encoding="UTF-8"?>
 <doc>
 <note>This is a sample document</note>
 <foo id="ert4773">This is a new child</foo></doc>

3. IANA Considerations

 The Internet media type [RFC6838] for an XML patch document is
 application/xml-patch+xml.

 Type name: application

 Subtype name: xml-patch+xml

 Required parameters: none

Wilde Informational [Page 5]

RFC 7351 XML Patch August 2014

 Optional parameters:

 charset: Same as charset parameter for the media type
 "application/xml" as specified in RFC 7303 [RFC7303].

 Encoding considerations: Same as encoding considerations of media
 type "application/xml" as specified in RFC 7303 [RFC7303].

 Security considerations: This media type has all of the security
 considerations described in RFC 7303 [RFC7303], RFC 5261
 [RFC5261], and RFC 3470 [RFC3470], plus those listed in Section 4.

 Interoperability considerations: N/A

 Published specification: RFC 7351

 Applications that use this media type: Applications that
 manipulate XML documents.

 Additional information:

 Magic number(s): N/A

 File extension(s): XML documents often use ".xml" as the file
 extension, and this media type does not propose a specific
 extension other than this generic one.

 Macintosh file type code(s): TEXT

 Person & email address to contact for further information: Erik
 Wilde <dret@berkeley.edu>

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Erik Wilde <dret@berkeley.edu>

 Change controller: IETF

Wilde Informational [Page 6]

RFC 7351 XML Patch August 2014

4. Security Considerations

 The security considerations from RFC 5261 [RFC5261] apply to the
 application/xml-patch+xml media type.

 In addition, parsing XML may entail including information from
 external sources through XML’s mechanism of external entities.
 Implementations, therefore, should be aware of the fact that standard
 parsers may resolve external entities and thus include external
 information as a result of applying patch operations to an XML
 document.

5. Acknowledgements

 Thanks for comments and suggestions provided by Bas de Bakker, Tony
 Hansen, Bjoern Hoehrmann, and Julian Reschke.

6. References

6.1. Normative References

 [RFC3470] Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for
 the Use of Extensible Markup Language (XML)
 within IETF Protocols", BCP 70, RFC 3470, January 2003.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5261] Urpalainen, J., "An Extensible Markup Language (XML) Patch
 Operations Framework Utilizing XML Path Language (XPath)
 Selectors", RFC 5261, September 2008.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, January 2013.

 [RFC7303] Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
 July 2014.

6.2. Informative References

 [Err3477] RFC Errata, "Errata ID 3477", RFC 5261.

 [Err3478] RFC Errata, "Errata ID 3478", RFC 5261.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC
 5789, March 2010.

Wilde Informational [Page 7]

RFC 7351 XML Patch August 2014

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [W3C.REC-DOM-Level-3-Core-20040407]
 Robie, J., Wood, L., Champion, M., Hegaret, P., Nicol, G.,
 Le Hors, A., and S. Byrne, "Document Object Model (DOM)
 Level 3 Core Specification", World Wide Web Consortium
 Recommendation REC-DOM-Level-3-Core-20040407, April 2004,
 <http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407>.

 [W3C.REC-xml-20081126]
 Sperberg-McQueen, C., Yergeau, F., Paoli, J., Maler, E.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [W3C.REC-xml-names-20091208]
 Hollander, D., Layman, A., Bray, T., Tobin, R., and H.
 Thompson, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

 [W3C.REC-xmlschema-1-20041028]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [W3C.REC-xpath-19991116]
 DeRose, S. and J. Clark, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium Recommendation
 REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [W3C.REC-xpath20-20101214]
 Boag, S., Berglund, A., Kay, M., Simeon, J., Robie, J.,
 Chamberlin, D., and M. Fernandez, "XML Path Language
 (XPath) 2.0 (Second Edition)", World Wide Web Consortium
 Recommendation REC-xpath20-20101214, December 2010,
 <http://www.w3.org/TR/2010/REC-xpath20-20101214>.

Wilde Informational [Page 8]

RFC 7351 XML Patch August 2014

Appendix A. Implementation Hints

 This section is informative. It describes some issues that might be
 interesting for implementers, but it might also be interesting for
 users of XML patch that want to understand some of the differences
 between standard XPath 1.0 processing and the processing model of
 selectors in RFC 5261.

 Specifically, the issues described in the following two sections have
 been identified as technical issues with RFC 5261 and have been filed
 as errata. Implementers interested in using XML patch are encouraged
 to take those errata into account when implementing XML patch
 documents. The issue about "Matching Namespaces" described in
 Appendix A.1 has been filed as RFC Errata ID 3477 [Err3477]. The
 issue about "Patching Namespaces" described in Appendix A.2 has been
 filed as RFC Errata ID 3478 [Err3478].

A.1. Matching Namespaces

 RFC 5261 defines standard rules for matching prefixed names in
 expressions: any prefixes are interpreted according to the namespace
 bindings of the diff document (the document that the expression is
 applied against). This means that each prefixed name can be
 interpreted in the context of the diff document.

 For unprefixed names in expressions, the rules depart from XPath 1.0
 [W3C.REC-xpath-19991116]. XPath 1.0 defines that unprefixed names in
 expressions match namespace-less names (i.e., there is no "default
 namespace" for names used in XPath 1.0 expressions). RFC 5261
 requires, however, that unprefixed names in expressions must use the
 default namespace of the diff document (if there is one). This means
 that it is not possible to simply take a selector from a patch
 document and evaluate it in the context of the diff document
 according to the rules of XPath 1.0 because this would interpret
 unprefixed names incorrectly. As a consequence, it is not possible
 to simply take an XPath 1.0 processor and evaluate XML patch
 selectors in the context of the diff document.

 As an extension of XPath 1.0’s simple model, XPath 2.0
 [W3C.REC-xpath20-20101214] specifies different processing rules for
 unprefixed names: they are matched against the URI of the "default
 element/type namespace", which is defined as part of an expression’s
 static context. In some XPath 2.0 applications, this can be set; XSL
 Transformations (XSLT) 2.0, for example, has the ability to define an
 "xpath-default-namespace", which then will be used to match
 unprefixed names in expressions. Thus, by using an XPath 2.0
 implementation that allows one to set this URI, and setting it to the
 default namespace of the diff document (or leaving it undefined if

Wilde Informational [Page 9]

RFC 7351 XML Patch August 2014

 there is no such default namespace), it is possible to use an out-of-
 the-box XPath 2.0 implementation for evaluating XML patch selectors.

 Please keep in mind, however, that evaluating selectors is only one
 part of applying patches. When it comes to applying the actual patch
 operation, neither XPath 1.0 nor XPath 2.0 are sufficient because
 they do not preserve some of the information from the XML syntax
 (specifically namespace declarations) that is required to correctly
 apply patch operations. The following section describes this issue
 in more detail.

 Please note that [RFC5261], Section 4.2.2 on namespace matching
 explains XPath 2.0’s rules incorrectly. For this reason, RFC Errata
 ID 3477 is available for Section 4.2.2 of RFC 5261.

A.2. Patching Namespaces

 One of the issues when patching namespaces based on XPath is that
 XPath exposes namespaces differently than the XML 1.0
 [W3C.REC-xml-20081126] syntax for XML namespaces
 [W3C.REC-xml-names-20091208]. In the XML syntax, a namespace is
 declared with an attribute using the reserved name or prefix "xmlns",
 and this results in this namespace being available recursively
 through the document tree. In XPath, the namespace declaration is
 not exposed as an attribute (i.e., the attribute, although
 syntactically an XML attribute, is not accessible in XPath), but the
 resulting namespace nodes are exposed recursively through the tree.

 RFC 5261 uses the terms "namespace declaration" and "namespace"
 almost interchangeably, but it is important to keep in mind that the
 namespace declaration is an XML syntax construct that is unavailable
 in XPath, while the namespace itself is a logical construct that is
 not visible in the XML syntax, but a result of a namespace
 declaration. The intent of RFC 5261 is to patch namespaces as if
 namespace declarations were patched; thus, it only allows patching
 namespace nodes on the element nodes where the namespace has been
 declared.

 Patching namespaces in XML patch is supposed to "emulate" the effect
 of actually changing the namespace declaration (which is why a
 namespace can only be patched at the element where it has been
 declared). Therefore, when patching a namespace, even though XPath’s
 "namespace" axis is used, implementations have to make sure that not
 only the single selected namespace node is being patched but that all
 namespaces nodes resulting from the namespace declaration of this
 namespace are also patched accordingly.

Wilde Informational [Page 10]

RFC 7351 XML Patch August 2014

 This means that an implementation might have to descend into the
 tree, matching all namespace nodes with the selected prefix/URI pair
 recursively, until it encounters leaf elements or namespace
 declarations with the same prefix it is patching. Determining this
 requires access to the diff document beyond XPath, because, in XPath
 itself, namespace declarations are not represented; thus, such a
 recursive algorithm wouldn’t know when to stop. Consider the
 following document:

 <x xmlns:a="tag:42">
 <y xmlns:a="tag:42"/>
 </x>

 If this document is patched with a selector of /x/namespace::a, then
 only the namespace node on element x should be patched, even though
 the namespace node on element y has the same prefix/URI combination
 as the one on element x. However, determining that the repeated
 namespace declaration was present at all on element y is impossible
 when using XPath alone, which means that implementations must have an
 alternative way to determine the difference between the document
 above, and this one:

 <x xmlns:a="tag:42">
 <y/>
 </x>

 In this second example, patching with a selector of /x/namespace::a
 should indeed change the namespace nodes on elements x and y, because
 they both have been derived from the same namespace declaration.

 The conclusion of these considerations is that for implementing XML
 patch, access closer to the XML syntax (specifically access to
 namespace declarations) is necessary. As a result, implementations
 attempting to exclusively use the XPath model for implementing XML
 patch will fail to correctly address certain edge cases (such as the
 one shown above).

 Note that XPath’s specific limitations do not mean that it is
 impossible to use XML technologies other than XPath. The Document
 Object Model (DOM) [W3C.REC-DOM-Level-3-Core-20040407], for example,
 does expose namespace declaration attributes as regular attributes in
 the document tree; thus, they could be used to differentiate between
 the two variants shown above.

 Please note that RFC 5261, Section 4.4.3 (on replacing namespaces)
 mixes the terms "namespace declaration" and "namespace". For this
 reason, RFC Errata ID 3478 is available for Section 4.4.3 of RFC
 5261.

Wilde Informational [Page 11]

RFC 7351 XML Patch August 2014

Appendix B. ABNF for RFC 5261

 RFC 5261 [RFC5261] does not contain an ABNF grammar for the allowed
 subset of XPath expressions but includes an XSD-based grammar in its
 type definition for operation types. In order to make implementation
 easier, this appendix contains an ABNF grammar that has been derived
 from the XSD expressions in RFC 5261. In the following grammar,
 "xpath" is the definition for the allowed XPath expressions for
 remove and replace operations, and "xpath-add" is the definition for
 the allowed XPath expressions for add operations. The names of all
 grammar productions are the ones used in the XSD-based grammar of RFC
 5261.

Wilde Informational [Page 12]

RFC 7351 XML Patch August 2014

anychar = %x00-ffffffff
ncname = 1*%x00-ffffffff
qname = [ncname ":"] ncname
aname = "@" qname
pos = "[" 1*DIGIT "]"
attr = ("[" aname "=’" 0*anychar "’]") /
 ("[" aname "=" DQUOTE 0*anychar DQUOTE "]")
valueq = "[" (qname / ".") "=" DQUOTE 0*anychar DQUOTE "]"
value = ("[" (qname / ".") "=’" 0*anychar "’]") / valueq
cond = attr / value / pos
step = (qname / "*") 0*cond
piq = %x70.72.6f.63.65.73.73.69.6e.67.2d
 %x69.6e.73.74.72.75.63.74.69.6f.6e
 ; "processing-instruction", case-sensitive
 "(" [DQUOTE ncname DQUOTE] ")"
pi = (%x70.72.6f.63.65.73.73.69.6e.67.2d
 %x69.6e.73.74.72.75.63.74.69.6f.6e
 ; "processing-instruction", case-sensitive
 "(" ["’" ncname "’"] ")") / piq
id = (%x69.64 ; "id", case-sensitive
 "(" ["’" ncname "’"] ")") /
 (%x69.64 ; "id", case-sensitive
 "(" [DQUOTE ncname DQUOTE] ")")
com = %x63.6f.6d.6d.65.6e.74 ; "comment", case-sensitive
 "()"
text = %x74.65.78.74 ; "text", case-sensitive
 "()"
nspa = %x6e.61.6d.65.73.70.61.63.65 ; "namespace", case-sensitive
 "::" ncname
cnodes = (text / com / pi) [pos]
child = cnodes / step
last = child / aname / nspa
xpath = ["/"] ((id [0*("/" step) "/" last]) /
 (0*(step "/") last))
xpath-add = ["/"] ((id [0*("/" step) "/" child]) /
 (0*(step "/") child))

 Please note that the "ncname" production listed above does not fully
 capture the constraints of the original XSD-based definition, where
 it is defined as "\i\c*". DIGIT and DQUOTE are defined by the ABNF
 specification [RFC5234].

Wilde Informational [Page 13]

RFC 7351 XML Patch August 2014

Author’s Address

 Erik Wilde
 UC Berkeley

 EMail: dret@berkeley.edu
 URI: http://dret.net/netdret/

Wilde Informational [Page 14]

