
Internet Engineering Task Force (IETF) A. DeKok
Request for Comments: 7360 FreeRADIUS
Category: Experimental September 2014
ISSN: 2070-1721

 Datagram Transport Layer Security (DTLS)
 as a Transport Layer for RADIUS

Abstract

 The RADIUS protocol defined in RFC 2865 has limited support for
 authentication and encryption of RADIUS packets. The protocol
 transports data in the clear, although some parts of the packets can
 have obfuscated content. Packets may be replayed verbatim by an
 attacker, and client-server authentication is based on fixed shared
 secrets. This document specifies how the Datagram Transport Layer
 Security (DTLS) protocol may be used as a fix for these problems. It
 also describes how implementations of this proposal can coexist with
 current RADIUS systems.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7360.

DeKok Experimental [Page 1]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

DeKok Experimental [Page 2]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

Table of Contents

 1. Introduction ..4
 1.1. Terminology ..5
 1.2. Requirements Language5
 1.3. Document Status ..5
 2. Building on Existing Foundations6
 2.1. Changes to RADIUS ..7
 2.2. Similarities with RADIUS/TLS8
 2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS8
 3. Interaction with RADIUS/UDP9
 3.1. DTLS Port and Packet Types10
 3.2. Server Behavior ...10
 4. Client Behavior ..11
 5. Session Management ...12
 5.1. Server Session Management12
 5.1.1. Session Opening and Closing13
 5.2. Client Session Management15
 6. Implementation Guidelines16
 6.1. Client Implementations17
 6.2. Server Implementations18
 7. Diameter Considerations ..18
 8. IANA Considerations ..18
 9. Implementation Status ..18
 9.1. Radsecproxy ...19
 9.2. jradius ...19
 10. Security Considerations19
 10.1. Crypto-Agility ...20
 10.2. Legacy RADIUS Security21
 10.3. Resource Exhaustion22
 10.4. Client-Server Authentication with DTLS22
 10.5. Network Address Translation24
 10.6. Wildcard Clients ...24
 10.7. Session Closing ..25
 10.8. Client Subsystems ..25
 11. References ..26
 11.1. Normative References26
 11.2. Informative References27
 Acknowledgments ...27

DeKok Experimental [Page 3]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

1. Introduction

 The RADIUS protocol as described in [RFC2865], [RFC2866], [RFC5176],
 and others has traditionally used methods based on MD5 [RFC1321] for
 per-packet authentication and integrity checks. However, the MD5
 algorithm has known weaknesses such as [MD5Attack] and [MD5Break].
 As a result, some specifications, such as [RFC5176], have recommended
 using IPsec to secure RADIUS traffic.

 While RADIUS over IPsec has been widely deployed, there are
 difficulties with this approach. The simplest point against IPsec is
 that there is no straightforward way for an application to control or
 monitor the network security policies. That is, the requirement that
 the RADIUS traffic be encrypted and/or authenticated is implicit in
 the network configuration, and it cannot be enforced by the RADIUS
 application.

 This specification takes a different approach. We define a method
 for using DTLS [RFC6347] as a RADIUS transport protocol. This
 approach has the benefit that the RADIUS application can directly
 monitor and control the security policies associated with the traffic
 that it processes.

 Another benefit is that RADIUS over DTLS continues to be a UDP-based
 protocol. The change from RADIUS/UDP is largely to add DTLS support,
 and make any necessary related changes to RADIUS. This allows
 implementations to remain UDP based, without changing to a TCP
 architecture.

 This specification does not, however, solve all of the problems
 associated with RADIUS/UDP. The DTLS protocol does not add reliable
 or in-order transport to RADIUS. DTLS also does not support
 fragmentation of application-layer messages, or of the DTLS messages
 themselves. This specification therefore shares with traditional
 RADIUS the issues of order, reliability, and fragmentation. These
 issues are dealt with in RADIUS/TCP [RFC6613] and RADIUS/TLS
 [RFC6614].

DeKok Experimental [Page 4]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

1.1. Terminology

 This document uses the following terms:

 RADIUS/DTLS
 This term is a shorthand for "RADIUS over DTLS".

 RADIUS/DTLS client
 This term refers both to RADIUS clients as defined in [RFC2865]
 and to Dynamic Authorization clients as defined in [RFC5176] that
 implement RADIUS/DTLS.

 RADIUS/DTLS server
 This term refers both to RADIUS servers as defined in [RFC2865]
 and to Dynamic Authorization servers as defined in [RFC5176] that
 implement RADIUS/DTLS.

 RADIUS/UDP
 RADIUS over UDP, as defined in [RFC2865].

 RADIUS/TLS
 RADIUS over TLS, as defined in [RFC6614].

 silently discard
 This means that the implementation discards the packet without
 further processing.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in [RFC2119].

1.3. Document Status

 This document is an Experimental RFC.

 It contains one of several approaches to address known cryptographic
 weaknesses of the RADIUS protocol, such as described in [RFC6614].
 This specification does not fulfill all recommendations for an
 Authentication, Authorization, and Accounting (AAA) transport profile
 as per [RFC3539]; however, unlike [RFC6614], it is based on UDP and
 therefore does not have head-of-line blocking issues.

DeKok Experimental [Page 5]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 If this specification is indeed selected for advancement to Standards
 Track, certificate verification options ([RFC6614], Section 2.3,
 point 2) will need to be refined.

 Another experimental characteristic of this specification is the
 question of key management between RADIUS/DTLS peers. RADIUS/UDP
 only allowed for manual key management, i.e., distribution of a
 shared secret between a client and a server. RADIUS/DTLS allows
 manual distribution of long-term proofs of peer identity, by using
 TLS-PSK ciphersuites. RADIUS/DTLS also allows the use of X.509
 certificates in a PKIX infrastructure. It remains to be seen if one
 of these methods will prevail or if both will find their place in
 real-life deployments. The authors can imagine pre-shared keys
 (PSKs) to be popular in small-scale deployments (Small Office, Home
 Office (SOHO) or isolated enterprise deployments) where scalability
 is not an issue and the deployment of a Certification Authority (CA)
 is considered too much of a hassle; however, the authors can also
 imagine large roaming consortia to make use of PKIX. Readers of this
 specification are encouraged to read the discussion of key management
 issues within [RFC6421] as well as [RFC4107].

 It has yet to be decided whether this approach is to be chosen for
 Standards Track. One key aspect to judge whether the approach is
 usable on a large scale is by observing the uptake, usability, and
 operational behavior of the protocol in large-scale, real-life
 deployments.

2. Building on Existing Foundations

 Adding DTLS as a RADIUS transport protocol requires a number of
 changes to systems implementing standard RADIUS. This section
 outlines those changes, and defines new behaviors necessary to
 implement DTLS.

DeKok Experimental [Page 6]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

2.1. Changes to RADIUS

 The RADIUS packet format is unchanged from [RFC2865], [RFC2866], and
 [RFC5176]. Specifically, all of the following portions of RADIUS
 MUST be unchanged when using RADIUS/DTLS:

 * Packet format
 * Permitted codes
 * Request Authenticator calculation
 * Response Authenticator calculation
 * Minimum packet length
 * Maximum packet length
 * Attribute format
 * Vendor-Specific Attribute (VSA) format
 * Permitted data types
 * Calculations of dynamic attributes such as CHAP-Challenge, or
 Message-Authenticator.
 * Calculation of "obfuscated" attributes such as User-Password and
 Tunnel-Password.

 In short, the application creates a RADIUS packet via the usual
 methods, and then instead of sending it over a UDP socket, sends the
 packet to a DTLS layer for encapsulation. DTLS then acts as a
 transport layer for RADIUS: hence, the names "RADIUS/UDP" and
 "RADIUS/DTLS".

 The requirement that RADIUS remain largely unchanged ensures the
 simplest possible implementation and widest interoperability of this
 specification.

 We note that the DTLS encapsulation of RADIUS means that RADIUS
 packets have an additional overhead due to DTLS. Implementations
 MUST support sending and receiving encapsulated RADIUS packets of
 4096 octets in length, with a corresponding increase in the maximum
 size of the encapsulated DTLS packets. This larger packet size may
 cause the packet to be larger than the Path MTU (PMTU), where a
 RADIUS/UDP packet may be smaller. See Section 5.2, below, for more
 discussion.

DeKok Experimental [Page 7]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 The only changes made from RADIUS/UDP to RADIUS/DTLS are the
 following two items:

 (1) The Length checks defined in [RFC2865], Section 3, MUST use the
 length of the decrypted DTLS data instead of the UDP packet
 length. They MUST treat any decrypted DTLS data octets outside
 the range of the Length field as padding and ignore it on
 reception.

 (2) The shared secret used to compute the MD5 integrity checks and
 the attribute encryption MUST be "radius/dtls".

 All other aspects of RADIUS are unchanged.

2.2. Similarities with RADIUS/TLS

 While this specification can be thought of as RADIUS/TLS over UDP
 instead of the Transmission Control Protocol (TCP), there are some
 differences between the two methods. The bulk of [RFC6614] applies
 to this specification, so we do not repeat it here.

 This section explains the differences between RADIUS/TLS and
 RADIUS/DTLS, as semantic "patches" to [RFC6614]. The changes are as
 follows:

 * We replace references to "TCP" with "UDP"

 * We replace references to "RADIUS/TLS" with "RADIUS/DTLS"

 * We replace references to "TLS" with "DTLS"

 Those changes are sufficient to cover the majority of the differences
 between the two specifications. The next section reviews some more
 detailed changes from [RFC6614], giving additional commentary only
 where necessary.

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS

 This section describes how particular sections of [RFC6614] apply to
 RADIUS/DTLS.

 Section 2.1 applies to RADIUS/DTLS, with the exception that the
 RADIUS/DTLS port is UDP/2083.

 Section 2.2 applies to RADIUS/DTLS. Servers and clients need to be
 pre-configured to use RADIUS/DTLS for a given endpoint.

DeKok Experimental [Page 8]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 Most of Section 2.3 applies also to RADIUS/DTLS. Item (1) should be
 interpreted as applying to DTLS session initiation, instead of TCP
 connection establishment. Item (2) applies, except for the
 recommendation that implementations "SHOULD" support
 TLS_RSA_WITH_RC4_128_SHA. This recommendation is a historical
 artifact of RADIUS/TLS, and it does not apply to RADIUS/DTLS. Item
 (3) applies to RADIUS/DTLS. Item (4) applies, except that the fixed
 shared secret is "radius/dtls", as described above.

 Section 2.4 applies to RADIUS/DTLS. Client identities SHOULD be
 determined from DTLS parameters, instead of relying solely on the
 source IP address of the packet.

 Section 2.5 does not apply to RADIUS/DTLS. The relationship between
 RADIUS packet codes and UDP ports in RADIUS/DTLS is unchanged from
 RADIUS/UDP.

 Sections 3.1, 3.2, and 3.3 apply to RADIUS/DTLS.

 Section 3.4 item (1) does not apply to RADIUS/DTLS. Each RADIUS
 packet is encapsulated in one DTLS packet, and there is no "stream"
 of RADIUS packets inside of a TLS session. Implementors MUST enforce
 the requirements of [RFC2865], Section 3, for the RADIUS Length
 field, using the length of the decrypted DTLS data for the checks.
 This check replaces the RADIUS method of using the Length field from
 the UDP packet.

 Section 3.4 items (2), (3), (4), and (5) apply to RADIUS/DTLS.

 Section 4 does not apply to RADIUS/DTLS. Protocol compatibility
 considerations are defined in this document.

 Section 6 applies to RADIUS/DTLS.

3. Interaction with RADIUS/UDP

 Transitioning to DTLS is a process that needs to be done carefully.
 A poorly handled transition is complex for administrators and
 potentially subject to security downgrade attacks. It is not
 sufficient to just disable RADIUS/UDP and enable RADIUS/DTLS. RADIUS
 has no provisions for protocol negotiation, so simply disabling
 RADIUS/UDP would result in timeouts, lost traffic, and network
 instabilities.

 The end result of this specification is that nearly all RADIUS/UDP
 implementations should transition to using a secure alternative. In
 some cases, RADIUS/UDP may remain where IPsec is used as a transport,
 or where implementation and/or business reasons preclude a change.

DeKok Experimental [Page 9]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 However, we do not recommend long-term use of RADIUS/UDP outside of
 isolated and secure networks.

 This section describes how clients and servers should use
 RADIUS/DTLS, and how it interacts with RADIUS/UDP.

3.1. DTLS Port and Packet Types

 The default destination port number for RADIUS/DTLS is UDP/2083.
 There are no separate ports for authentication, accounting, and
 dynamic authorization changes. The source port is arbitrary. The
 text in [RFC6614], Section 3.4, describes issues surrounding the use
 of one port for multiple packet types. We recognize that
 implementations may allow the use of RADIUS/DTLS over non-standard
 ports. In that case, the references to UDP/2083 in this document
 should be read as applying to any port used for transport of
 RADIUS/DTLS traffic.

3.2. Server Behavior

 When a server receives packets on UDP/2083, all packets MUST be
 treated as being DTLS. RADIUS/UDP packets MUST NOT be accepted on
 this port.

 Servers MUST NOT accept DTLS packets on the old RADIUS/UDP ports.
 Early versions of this specification permitted this behavior. It is
 forbidden here, as it depended on behavior in DTLS that may change
 without notice.

 Servers MUST authenticate clients. RADIUS is designed to be used by
 mutually trusted systems. Allowing anonymous clients would ensure
 privacy for RADIUS/DTLS traffic, but would negate all other security
 aspects of the protocol.

 As RADIUS has no provisions for capability signaling, there is no way
 for a server to indicate to a client that it should transition to
 using DTLS. This action has to be taken by the administrators of the
 two systems, using a method other than RADIUS. This method will
 likely be out of band, or manual configuration will need to be used.

 Some servers maintain a list of allowed clients per destination port.
 Others maintain a global list of clients that are permitted to send
 packets to any port. Where a client can send packets to multiple
 ports, the server MUST maintain a "DTLS Required" flag per client.

 This flag indicates whether or not the client is required to use
 DTLS. When set, the flag indicates that the only traffic accepted
 from the client is over UDP/2083. When packets are received from a

DeKok Experimental [Page 10]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 client on non-DTLS ports, for which DTLS is required, the server MUST
 silently discard these packets, as there is no RADIUS/UDP shared
 secret available.

 This flag will often be set by an administrator. However, if a
 server receives DTLS traffic from a client, it SHOULD notify the
 administrator that DTLS is available for that client. It MAY mark
 the client as "DTLS Required".

 It is RECOMMENDED that servers support the following Perfect Forward
 Secrecy (PFS) ciphersuites:

 o TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 Allowing RADIUS/UDP and RADIUS/DTLS from the same client exposes the
 traffic to downbidding attacks and is NOT RECOMMENDED.

4. Client Behavior

 When a client sends packets to the assigned RADIUS/DTLS port, all
 packets MUST be DTLS. RADIUS/UDP packets MUST NOT be sent to this
 port.

 Clients MUST authenticate themselves to servers via credentials that
 are unique to each client.

 It is RECOMMENDED that clients support the following PFS
 ciphersuites:

 o TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 RADIUS/DTLS clients SHOULD NOT probe servers to see if they support
 DTLS transport. Instead, clients SHOULD use DTLS as a transport
 layer only when administratively configured. If a client is
 configured to use DTLS and the server appears to be unresponsive, the
 client MUST NOT fall back to using RADIUS/UDP. Instead, the client
 should treat the server as being down.

 RADIUS clients often had multiple independent RADIUS implementations
 and/or processes that originate packets. This practice was simple to
 implement, but the result is that each independent subsystem must
 independently discover network issues or server failures. It is
 therefore RECOMMENDED that clients with multiple internal RADIUS
 sources use a local proxy as described in Section 6.1, below.

DeKok Experimental [Page 11]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 Clients may implement "pools" of servers for fail-over or load-
 balancing. These pools SHOULD NOT mix RADIUS/UDP and RADIUS/DTLS
 servers.

5. Session Management

 Where [RFC6614] can rely on the TCP state machine to perform session
 tracking, this specification cannot. As a result, implementations of
 this specification may need to perform session management of the DTLS
 session in the application layer. This section describes logically
 how this tracking is done. Implementations may choose to use the
 method described here, or another, equivalent method.

 We note that [RFC5080], Section 2.2.2, already mandates a duplicate
 detection cache. The session tracking described below can be seen as
 an extension of that cache, where entries contain DTLS sessions
 instead of RADIUS/UDP packets.

 [RFC5080], Section 2.2.2, describes how duplicate RADIUS/UDP requests
 result in the retransmission of a previously cached RADIUS/UDP
 response. Due to DTLS sequence window requirements, a server MUST
 NOT retransmit a previously sent DTLS packet. Instead, it should
 cache the RADIUS response packet, and re-process it through DTLS to
 create a new RADIUS/DTLS packet, every time it is necessary to
 retransmit a RADIUS response.

5.1. Server Session Management

 A RADIUS/DTLS server MUST track ongoing DTLS sessions for each, based
 on the following 4-tuple:

 * source IP address
 * source port
 * destination IP address
 * destination port

 Note that this 4-tuple is independent of IP address version (IPv4 or
 IPv6).

DeKok Experimental [Page 12]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 Each 4-tuple points to a unique session entry, which usually contains
 the following information:

 DTLS Session
 Any information required to maintain and manage the DTLS session.

 Last Traffic
 A variable containing a timestamp that indicates when this session
 last received valid traffic. If "Last Traffic" is not used, this
 variable may not exist.

 DTLS Data
 An implementation-specific variable that may contain information
 about the active DTLS session. This variable may be empty or
 nonexistent.

 This data will typically contain information such as idle
 timeouts, session lifetimes, and other implementation-specific
 data.

5.1.1. Session Opening and Closing

 Session tracking is subject to Denial-of-Service (DoS) attacks due to
 the ability of an attacker to forge UDP traffic. RADIUS/DTLS servers
 SHOULD use the stateless cookie tracking technique described in
 [RFC6347], Section 4.2.1. DTLS sessions SHOULD NOT be tracked until
 a ClientHello packet has been received with an appropriate Cookie
 value. Server implementation SHOULD have a way of tracking DTLS
 sessions that are partially set up. Servers MUST limit both the
 number and impact on resources of partial sessions.

 Sessions (both 4-tuple and entry) MUST be deleted when a TLS Closure
 Alert ([RFC5246], Section 7.2.1) or a fatal TLS Error Alert
 ([RFC5246], Section 7.2.2) is received. When a session is deleted
 due to it failing security requirements, the DTLS session MUST be
 closed, any TLS session resumption parameters for that session MUST
 be discarded, and all tracking information MUST be deleted.

 Sessions MUST also be deleted when a RADIUS packet fails validation
 due to a packet being malformed, or when it has an invalid Message-
 Authenticator or invalid Request Authenticator. There are other
 cases when the specifications require that a packet received via a
 DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying session as described above.
 There are few reasons to communicate with a Network Access Server
 (NAS) that is not implementing RADIUS.

DeKok Experimental [Page 13]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 A session MUST be deleted when non-RADIUS traffic is received over
 it. This specification is for RADIUS, and there is no reason to
 allow non-RADIUS traffic over a RADIUS/DTLS session. A session MUST
 be deleted when RADIUS traffic fails to pass security checks. There
 is no reason to permit insecure networks. A session SHOULD NOT be
 deleted when a well-formed, but "unexpected", RADIUS packet is
 received over it. Future specifications may extend RADIUS/DTLS, and
 we do not want to forbid those specifications.

 The goal of the above requirements is to ensure security, while
 maintaining flexibility. Any security-related issue causes the
 connection to be closed. After the security restrictions have been
 applied, any unexpected traffic may be safely ignored, as it cannot
 cause a security issue. There is no need to close the session for
 unexpected but valid traffic, and the session can safely remain open.

 Once a DTLS session is established, a RADIUS/DTLS server SHOULD use
 DTLS Heartbeats [RFC6520] to determine connectivity between the two
 servers. A server SHOULD also use watchdog packets from the client
 to determine that the session is still active.

 As UDP does not guarantee delivery of messages, RADIUS/DTLS servers
 that do not implement an application-layer watchdog MUST also
 maintain a "Last Traffic" timestamp per DTLS session. The
 granularity of this timestamp is not critical and could be limited to
 one-second intervals. The timestamp SHOULD be updated on reception
 of a valid RADIUS/DTLS packet, or a DTLS Heartbeat, but no more than
 once per interval. The timestamp MUST NOT be updated in other
 situations.

 When a session has not received a packet for a period of time, it is
 labeled "idle". The server SHOULD delete idle DTLS sessions after an
 "idle timeout". The server MAY cache the TLS session parameters, in
 order to provide for fast session resumption.

 This session "idle timeout" SHOULD be exposed to the administrator as
 a configurable setting. It SHOULD NOT be set to less than 60 seconds
 and SHOULD NOT be set to more than 600 seconds (10 minutes). The
 minimum useful value for this timer is determined by the application-
 layer watchdog mechanism defined in the following section.

 RADIUS/DTLS servers SHOULD also monitor the total number of open
 sessions. They SHOULD have a "maximum sessions" setting exposed to
 administrators as a configurable parameter. When this maximum is
 reached and a new session is started, the server MUST either drop an
 old session in order to open the new one or not create a new session.

DeKok Experimental [Page 14]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 RADIUS/DTLS servers SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 client and increases network responsiveness.

 Since UDP is stateless, the potential exists for the client to
 initiate a new DTLS session using a particular 4-tuple, before the
 server has closed the old session. For security reasons, the server
 MUST keep the old session active until either it has received secure
 notification from the client that the session is closed or the server
 decides to close the session based on idle timeouts. Taking any
 other action would permit unauthenticated clients to perform a DoS
 attack, by reusing a 4-tuple and thus causing the server to close an
 active (and authenticated) DTLS session.

 As a result, servers MUST ignore any attempts to reuse an existing
 4-tuple from an active session. This requirement can likely be
 reached by simply processing the packet through the existing session,
 as with any other packet received via that 4-tuple. Non-compliant,
 or unexpected packets will be ignored by the DTLS layer.

 The above requirement is mitigated by the suggestion in Section 6.1,
 below, that the client use a local proxy for all RADIUS traffic.
 That proxy can then track the ports that it uses and ensure that
 reuse of 4-tuples is avoided. The exact process by which this
 tracking is done is outside of the scope of this document.

5.2. Client Session Management

 Clients SHOULD use PMTU discovery [RFC6520] to determine the PMTU
 between the client and server, prior to sending any RADIUS traffic.
 Once a DTLS session is established, a RADIUS/DTLS client SHOULD use
 DTLS Heartbeats [RFC6520] to determine connectivity between the two
 systems. RADIUS/DTLS clients SHOULD also use the application-layer
 watchdog algorithm defined in [RFC3539] to determine server
 responsiveness. The Status-Server packet defined in [RFC5997] SHOULD
 be used as the "watchdog packet" in any application-layer watchdog
 algorithm.

 RADIUS/DTLS clients SHOULD proactively close sessions when they have
 been idle for a period of time. Clients SHOULD close a session when
 the DTLS Heartbeat algorithm indicates that the session is no longer
 active. Clients SHOULD close a session when no traffic other than
 watchdog packets and (possibly) watchdog responses has been sent for
 three watchdog timeouts. This behavior ensures that clients do not
 waste resources on the server by causing it to track idle sessions.

DeKok Experimental [Page 15]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 When a client fails to implement both DTLS Heartbeats and watchdog
 packets, it has no way of knowing that a DTLS session has been
 closed. Therefore, there is the possibility that the server closes
 the session without the client knowing. When that happens, the
 client may later transmit packets in a session, and those packets
 will be ignored by the server. The client is then forced to time out
 those packets and then the session, leading to delays and network
 instabilities.

 For these reasons, it is RECOMMENDED that all DTLS sessions be
 configured to use DTLS Heartbeats and/or watchdog packets.

 DTLS sessions MUST also be deleted when a RADIUS packet fails
 validation due to a packet being malformed, or when it has an invalid
 Message-Authenticator or invalid Response Authenticator. There are
 other cases when the specifications require that a packet received
 via a DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying DTLS session.

 RADIUS/DTLS clients should not send both RADIUS/UDP and RADIUS/DTLS
 packets to different servers from the same source socket. This
 practice causes increased complexity in the client application and
 increases the potential for security breaches due to implementation
 issues.

 RADIUS/DTLS clients SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 server and increases network responsiveness.

6. Implementation Guidelines

 The text above describes the protocol. In this section, we give
 additional implementation guidelines. These guidelines are not part
 of the protocol, but they may help implementors create simple,
 secure, and interoperable implementations.

 Where a TLS-PSK method is used, implementations MUST support keys of
 at least 16 octets in length. Implementations SHOULD support key
 lengths of 32 octets and SHOULD allow for longer keys. The key data
 MUST be capable of being any value (0 through 255, inclusive).
 Implementations MUST NOT limit themselves to using textual keys. It
 is RECOMMENDED that the administration interface allow for the keys
 to be entered as human-readable strings in hex format.

DeKok Experimental [Page 16]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 When creating keys for use with PSK ciphersuites, it is RECOMMENDED
 that keys be derived from a Cryptographically Secure Pseudorandom
 Number Generator (CSPRNG) instead of administrators inventing keys on
 their own. If managing keys is too complicated, a certificate-based
 TLS method SHOULD be used instead.

6.1. Client Implementations

 RADIUS/DTLS clients should use connected sockets where possible. Use
 of connected sockets means that the underlying kernel tracks the
 sessions, so that the client subsystem does not need to manage
 multiple sessions on one socket.

 RADIUS/DTLS clients should use a single source (IP + port) when
 sending packets to a particular RADIUS/DTLS server. Doing so
 minimizes the number of DTLS session setups. It also ensures that
 information about the home server state is discovered only once.

 In practice, this means that RADIUS/DTLS clients with multiple
 internal RADIUS sources should use a local proxy that arbitrates all
 RADIUS traffic between the client and all servers. The proxy should
 accept traffic only from the authorized subsystems on the client
 machine and should proxy that traffic to known servers. Each
 authorized subsystem should include an attribute that uniquely
 identifies that subsystem to the proxy, so that the proxy can apply
 origin-specific proxy rules and security policies. We suggest using
 NAS-Identifier for this purpose.

 The local proxy should be able to interact with multiple servers at
 the same time. There is no requirement that each server have its own
 unique proxy on the client, as that would be inefficient.

 The suggestion to use a local proxy means that there is only one
 process that discovers network and/or connectivity issues with a
 server. If each client subsystem communicated directly with a
 server, issues with that server would have to be discovered
 independently by each subsystem. The side effect would be increased
 delays in re-routing traffic, error reporting, and network
 instabilities.

 Each client subsystem can include a subsystem-specific NAS-Identifier
 in each request. The format of this attribute is implementation-
 specific. The proxy should verify that the request originated from
 the local system, ideally via a loopback address. The proxy MUST
 then rewrite any subsystem-specific NAS-Identifier to a NAS-
 Identifier that identifies the client as a whole, or, remove the NAS-
 Identifier entirely and replace it with NAS-IP-Address or NAS-
 IPv6-Address.

DeKok Experimental [Page 17]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 In traditional RADIUS, the cost to set up a new "session" between a
 client and server was minimal. The client subsystem could simply
 open a port, send a packet, wait for the response, and then close the
 port. With RADIUS/DTLS, the connection setup is significantly more
 expensive. In addition, there may be a requirement to use DTLS in
 order to communicate with a server, as RADIUS/UDP may not be
 supported by that server. The knowledge of what protocol to use is
 best managed by a dedicated RADIUS subsystem, rather than by each
 individual subsystem on the client.

6.2. Server Implementations

 RADIUS/DTLS servers should not use connected sockets to read DTLS
 packets from a client. This recommendation exists because a
 connected UDP socket will accept packets only from one source IP
 address and port. This limitation would prevent the server from
 accepting packets from multiple clients on the same port.

7. Diameter Considerations

 This specification defines a transport layer for RADIUS. It makes no
 other changes to the RADIUS protocol. As a result, there are no
 Diameter considerations.

8. IANA Considerations

 No new RADIUS attributes or packet codes are defined. IANA has
 updated the "Service Name and Transport Protocol Port Number
 Registry". The entries corresponding to port service name "radsec",
 port number "2083", and transport protocol "UDP" have been updated as
 follows:

 o Assignee: IESG

 o Contact: IETF Chair

 o Reference: This document

 o Assignment Notes: The UDP port 2083 was already previously
 assigned by IANA for "RadSec", an early implementation of
 RADIUS/TLS, prior to issuance of this RFC.

9. Implementation Status

 This section records the status of known implementations of
 RADIUS/DTLS at the time of writing, and is based on a proposal
 described in [RFC6982].

DeKok Experimental [Page 18]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing Internet-
 Drafts to RFCs.

9.1. Radsecproxy

 Organization: Radsecproxy

 URL: https://software.uninett.no/radsecproxy/

 Maturity: Widely used software based on early versions of this
 document.
 The use of the DTLS functionality is not clear.

 Coverage: The bulk of this specification is implemented, based on
 earlier versions of this document. Exact revisions that
 were implemented are unknown.

 Licensing: Freely distributable with acknowledgment.

 Implementation experience: No comments from implementors.

9.2. jradius

 Organization: Coova

 URL: http://www.coova.org/JRadius/RadSec

 Maturity: Production software based on early versions of this
 document.
 The use of the DTLS functionality is not clear.

 Coverage: The bulk of this specification is implemented, based on
 earlier versions of this document. Exact revisions that
 were implemented are unknown.

 Licensing: Freely distributable with requirement to redistribute
 source.

 Implementation experience: No comments from implementors.

10. Security Considerations

 The bulk of this specification is devoted to discussing security
 considerations related to RADIUS. However, we discuss a few
 additional issues here.

DeKok Experimental [Page 19]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 This specification relies on the existing DTLS, RADIUS/UDP, and
 RADIUS/TLS specifications. As a result, all security considerations
 for DTLS apply to the DTLS portion of RADIUS/DTLS. Similarly, the
 TLS and RADIUS security issues discussed in [RFC6614] also apply to
 this specification. Most of the security considerations for RADIUS
 apply to the RADIUS portion of the specification.

 However, many security considerations raised in the RADIUS documents
 are related to RADIUS encryption and authorization. Those issues are
 largely mitigated when DTLS is used as a transport method. The
 issues that are not mitigated by this specification are related to
 the RADIUS packet format and handling, which is unchanged in this
 specification.

 This specification also suggests that implementations use a session
 tracking table. This table is an extension of the duplicate
 detection cache mandated in [RFC5080], Section 2.2.2. The changes
 given here are that DTLS-specific information is tracked for each
 table entry. Section 5.1.1, above, describes steps to mitigate any
 DoS issues that result from tracking additional information.

 The fixed shared secret given above in Section 2.2.1 is acceptable
 only when DTLS is used with a non-null encryption method. When a
 DTLS session uses a null encryption method due to misconfiguration or
 implementation error, all of the RADIUS traffic will be readable by
 an observer. Therefore, implementations MUST NOT use null encryption
 methods for RADIUS/DTLS.

 For systems that perform protocol-based firewalling and/or filtering,
 it is RECOMMENDED that they be configured to permit only DTLS over
 the RADIUS/DTLS port.

10.1. Crypto-Agility

 Section 4.2 of [RFC6421] makes a number of recommendations about
 security properties of new RADIUS proposals. All of those
 recommendations are satisfied by using DTLS as the transport layer.

 Section 4.3 of [RFC6421] makes a number of recommendations about
 backwards compatibility with RADIUS. Section 3, above, addresses
 these concerns in detail.

 Section 4.4 of [RFC6421] recommends that change control be ceded to
 the IETF, and that interoperability is possible. Both requirements
 are satisfied.

DeKok Experimental [Page 20]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 Section 4.5 of [RFC6421] requires that the new security methods apply
 to all packet types. This requirement is satisfied by allowing DTLS
 to be used for all RADIUS traffic. In addition, Section 3, above,
 addresses concerns about documenting the transition from legacy
 RADIUS to crypto-agile RADIUS.

 Section 4.6 of [RFC6421] requires automated key management. This
 requirement is satisfied by using DTLS key management.

10.2. Legacy RADIUS Security

 We reiterate here the poor security of the legacy RADIUS protocol.
 We suggest that RADIUS clients and servers implement either this
 specification or [RFC6614]. New attacks on MD5 have appeared over
 the past few years, and there is a distinct possibility that MD5 may
 be completely broken in the near future. Such a break would mean
 that RADIUS/UDP was completely insecure.

 The existence of fast and cheap attacks on MD5 could result in a loss
 of all network security that depends on RADIUS. Attackers could
 obtain user passwords and possibly gain complete network access. We
 cannot overstate the disastrous consequences of a successful attack
 on RADIUS.

 We also caution implementors (especially client implementors) about
 using RADIUS/DTLS. It may be tempting to use the shared secret as
 the basis for a TLS-PSK method and to leave the user interface
 otherwise unchanged. This practice MUST NOT be used. The
 administrator MUST be given the option to use DTLS. Any shared
 secret used for RADIUS/UDP MUST NOT be used for DTLS. Reusing a
 shared secret between RADIUS/UDP and RADIUS/DTLS would negate all of
 the benefits found by using DTLS.

 RADIUS/DTLS client implementors MUST expose a configuration that
 allows the administrator to choose the ciphersuite. Where
 certificates are used, RADIUS/DTLS client implementors MUST expose a
 configuration that allows an administrator to configure all
 certificates necessary for certificate-based authentication. These
 certificates include client, server, and root certificates.

 TLS-PSK methods are susceptible to dictionary attacks. Section 6,
 above, recommends deriving TLS-PSK keys from a Cryptographically
 Secure Pseudorandom Number Generator (CSPRNG), which makes dictionary
 attacks significantly more difficult. Servers SHOULD track failed
 client connections by TLS-PSK ID and block TLS-PSK IDs that seem to
 be attempting brute-force searches of the keyspace.

DeKok Experimental [Page 21]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 The historic RADIUS practice of using shared secrets (here, PSKs)
 that are minor variations of words is NOT RECOMMENDED, as it would
 negate all of the security of DTLS.

10.3. Resource Exhaustion

 The use of DTLS allows DoS attacks and resource-exhaustion attacks
 that were not possible in RADIUS/UDP. These attacks are similar to
 those described in [RFC6614], Section 6, for TCP.

 Session tracking, as described in Section 5.1, can result in resource
 exhaustion. Therefore, servers MUST limit the absolute number of
 sessions that they track. When the total number of sessions tracked
 is going to exceed the configured limit, servers MAY free up
 resources by closing the session that has been idle for the longest
 time. Doing so may free up idle resources that then allow the server
 to accept a new session.

 Servers MUST limit the number of partially open DTLS sessions. These
 limits SHOULD be exposed to the administrator as configurable
 settings.

10.4. Client-Server Authentication with DTLS

 We expect that the initial deployment of DTLS will follow the
 RADIUS/UDP model of statically configured client-server
 relationships. The specification for dynamic discovery of RADIUS
 servers is under development, so we will not address that here.

 Static configuration of client-server relationships for RADIUS/UDP
 means that a client has a fixed IP address for a server and a shared
 secret used to authenticate traffic sent to that address. The server
 in turn has a fixed IP address for a client and a shared secret used
 to authenticate traffic from that address. This model needs to be
 extended for RADIUS/DTLS.

 Instead of a shared secret, TLS credentials MUST be used by each
 party to authenticate the other. The issue of identity is more
 problematic. As with RADIUS/UDP, IP addresses may be used as a key
 to determine the authentication credentials that a client will
 present to a server or which credentials a server will accept from a
 client. This is the fixed IP address model of RADIUS/UDP, with the
 shared secret replaced by TLS credentials.

DeKok Experimental [Page 22]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 There are, however, additional considerations with RADIUS/DTLS. When
 a client is configured with a hostname for a server, the server may
 present to the client a certificate containing a hostname. The
 client MUST then verify that the hostnames match. Any mismatch is a
 security violation, and the connection MUST be closed.

 A RADIUS/DTLS server MAY be configured with a "wildcard" IP address
 match for clients, instead of a unique fixed IP address for each
 client. In that case, clients MUST be individually configured with a
 unique certificate. When the server receives a connection from a
 client, it MUST determine client identity from the client
 certificate, and MUST authenticate (or not) the client based on that
 certificate. See [RFC6614], Section 2.4, for a discussion of how to
 match a certificate to a client identity.

 However, servers SHOULD use IP address filtering to minimize the
 possibility of attacks. That is, they SHOULD permit clients only
 from a limited IP address range or ranges. They SHOULD silently
 discard all traffic from outside of those ranges.

 Since the client-server relationship is static, the authentication
 credentials for that relationship must also be statically configured.
 That is, a client connecting to a DTLS server SHOULD be pre-
 configured with the server’s credentials (e.g., PSK or certificate).
 If the server fails to present the correct credentials, the DTLS
 session MUST be closed. Each server SHOULD be pre-configured with
 sufficient information to authenticate connecting clients.

 The requirement for clients to be individually configured with a
 unique certificate can be met by using a private CA for certificates
 used in RADIUS/DTLS environments. If a client were configured to use
 a public CA, then it could accept as valid any server that has a
 certificate signed by that CA. While the traffic would be secure
 from third-party observers, the server would, however, have
 unrestricted access to all of the RADIUS traffic, including all user
 credentials and passwords.

 Therefore, clients SHOULD NOT be pre-configured with a list of known
 public CAs by the vendor or manufacturer. Instead, the clients
 SHOULD start off with an empty CA list. The addition of a CA SHOULD
 be done only when manually configured by an administrator.

DeKok Experimental [Page 23]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 This scenario is the opposite of web browsers, where they are pre-
 configured with many known CAs. The goal there is security from
 third-party observers, but also the ability to communicate with any
 unknown site that presents a signed certificate. In contrast, the
 goal of RADIUS/DTLS is both security from third-party observers and
 the ability to communicate with only a small set of well-known
 servers.

 This requirement does not prevent clients from using hostnames
 instead of IP addresses for locating a particular server. Instead,
 it means that the credentials for that server should be pre-
 configured on the client, and associated with that hostname. This
 requirement does suggest that in the absence of a specification for
 dynamic discovery, clients SHOULD use only those servers that have
 been manually configured by an administrator.

10.5. Network Address Translation

 Network Address Translation (NAT) is fundamentally incompatible with
 RADIUS/UDP. RADIUS/UDP uses the source IP address to determine the
 shared secret for the client, and NAT hides many clients behind one
 source IP address. As a result, RADIUS/UDP clients cannot be located
 behind a NAT gateway.

 In addition, port reuse on a NAT gateway means that packets from
 different clients may appear to come from the same source port on the
 NAT. That is, a RADIUS server may receive a RADIUS/DTLS packet from
 one source IP/port combination, followed by the reception of a
 RADIUS/UDP packet from that same source IP/port combination. If this
 behavior is allowed, then the server would have an inconsistent view
 of the client’s security profile, allowing an attacker to choose the
 most insecure method.

 If more than one client is located behind a NAT gateway, then every
 client behind the NAT MUST use a secure transport such as TLS or
 DTLS. As discussed below, a method for uniquely identifying each
 client MUST be used.

10.6. Wildcard Clients

 Some RADIUS server implementations allow for "wildcard" clients --
 that is, clients with an IPv4 netmask of other than 32 or an IPv6
 netmask of other than 128. That practice is not recommended for
 RADIUS/UDP, as it means multiple clients will use the same shared
 secret.

DeKok Experimental [Page 24]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 The use of RADIUS/DTLS can allow for the safe usage of wildcards.
 When RADIUS/DTLS is used with wildcards, clients MUST be uniquely
 identified using TLS parameters, and any certificate or PSK used MUST
 be unique to each client.

10.7. Session Closing

 Section 5.1.1, above, requires that DTLS sessions be closed when the
 transported RADIUS packets are malformed or fail the authenticator
 checks. The reason is that the session is expected to be used for
 transport of RADIUS packets only.

 Any non-RADIUS traffic on that session means the other party is
 misbehaving and is a potential security risk. Similarly, any RADIUS
 traffic failing authentication vector or Message-Authenticator
 validation means that two parties do not have a common shared secret,
 and the session is therefore unauthenticated and insecure.

 We wish to avoid the situation where a third party can send well-
 formed RADIUS packets that cause a DTLS session to close. Therefore,
 in other situations, the session SHOULD remain open in the face of
 non-conformant packets.

10.8. Client Subsystems

 Many traditional clients treat RADIUS as subsystem-specific. That
 is, each subsystem on the client has its own RADIUS implementation
 and configuration. These independent implementations work for simple
 systems, but break down for RADIUS when multiple servers, fail-over,
 and load-balancing are required. They have even worse issues when
 DTLS is enabled.

 As noted in Section 6.1, above, clients SHOULD use a local proxy that
 arbitrates all RADIUS traffic between the client and all servers.
 This proxy will encapsulate all knowledge about servers, including
 security policies, fail-over, and load-balancing. All client
 subsystems SHOULD communicate with this local proxy, ideally over a
 loopback address. The requirements on using strong shared secrets
 still apply.

 The benefit of this configuration is that there is one place in the
 client that arbitrates all RADIUS traffic. Subsystems that do not
 implement DTLS can remain unaware of DTLS. DTLS sessions opened by
 the proxy can remain open for long periods of time, even when client
 subsystems are restarted. The proxy can do RADIUS/UDP to some
 servers and RADIUS/DTLS to others.

DeKok Experimental [Page 25]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

 Delegation of responsibilities and separation of tasks are important
 security principles. By moving all RADIUS/DTLS knowledge to a DTLS-
 aware proxy, security analysis becomes simpler, and enforcement of
 correct security becomes easier.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3539] Aboba, B. and J. Wood, "Authentication, Authorization and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption
 without Server-Side State", RFC 5077, January 2008.

 [RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5997] DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol",
 RFC 5997, August 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer
 Security (DTLS) Heartbeat Extension", RFC 6520, February
 2012.

 [RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613, May 2012.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, May 2012.

DeKok Experimental [Page 26]

RFC 7360 DTLS as a Transport Layer for RADIUS September 2014

11.2. Informative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for
 Cryptographic Key Management", BCP 107, RFC 4107, June
 2005.

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC6421] Nelson, D., Ed., "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421,
 November 2011.

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of
 Running Code: The Implementation Status Section", RFC
 6982, July 2013.

 [MD5Attack] Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes Vol.2 No.2, Summer 1996.

 [MD5Break] Wang, X. and H. Yu, "How to Break MD5 and Other Hash
 Functions", EUROCRYPT ’05 Proceedings of the 24th annual
 international conference on Theory and Applications of
 Cryptographic Techniques, pp. 19-35, ISBN 3-540-25910-4,
 2005.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865], Section 3.

Author’s Address

 Alan DeKok
 The FreeRADIUS Server Project
 URI: http://freeradius.org
 EMail: aland@freeradius.org

DeKok Experimental [Page 27]

