
Internet Engineering Task Force (IETF) B. Trammell
Request for Comments: 7373 ETH Zurich
Category: Standards Track September 2014
ISSN: 2070-1721

 Textual Representation of IP Flow Information Export (IPFIX)
 Abstract Data Types

Abstract

 This document defines UTF-8 representations for IP Flow Information
 Export (IPFIX) abstract data types (ADTs) to support interoperable
 usage of the IPFIX Information Elements with protocols based on
 textual encodings.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7373.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Trammell Standards Track [Page 1]

RFC 7373 IPFIX Text Types September 2014

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Identifying Information Elements 3
 4. Data Type Encodings . 3
 4.1. octetArray . 4
 4.2. unsigned8, unsigned16, unsigned32, and unsigned64 4
 4.3. signed8, signed16, signed32, and signed64 5
 4.4. float32 and float64 6
 4.5. boolean . 7
 4.6. macAddress . 7
 4.7. string . 7
 4.8. The dateTime ADTs . 8
 4.9. ipv4Address . 8
 4.10. ipv6Address . 9
 4.11. basicList, subTemplateList, and subTemplateMultiList . . 9
 5. Security Considerations 9
 6. References . 10
 6.1. Normative References 10
 6.2. Informative References 11
 Appendix A. Example . 13
 Acknowledgments . 14
 Author’s Address .

1. Introduction

 The IP Flow Information Export (IPFIX) Information Model [RFC7012]
 provides a set of abstract data types (ADTs) for the IANA "IPFIX
 Information Elements" registry [IANA-IPFIX], which contains a rich
 set of Information Elements for description of information about
 network entities and network traffic data, and abstract data types
 for these Information Elements. The IPFIX Protocol Specification
 [RFC7011], in turn, defines a big-endian binary encoding for these
 abstract data types suitable for use with the IPFIX protocol.

 However, present and future operations and management protocols and
 applications may use textual encodings, and generic framing and
 structure, as in JSON [RFC7159] or XML. A definition of canonical
 textual encodings for the IPFIX abstract data types would allow this
 set of Information Elements to be used for such applications and for
 these applications to interoperate with IPFIX applications at the
 Information Element definition level.

 Note that templating or other mechanisms used for data description
 for such applications and protocols are application specific and,
 therefore, out of scope for this document: only Information Element
 identification and value representation are defined here.

Trammell Standards Track [Page 2]

RFC 7373 IPFIX Text Types September 2014

 In most cases where a textual representation will be used, an
 explicit tradeoff is made for human readability or manipulability
 over compactness; this assumption is used in defining standard
 representations of IPFIX ADTs.

2. Terminology

 Capitalized terms defined in the IPFIX Protocol Specification
 [RFC7011] and the IPFIX Information Model [RFC7012] are used in this
 document as defined in those documents. The key words "MUST", "MUST
 NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in [RFC2119]. In addition, this document
 defines the following terminology for its own use:

 Enclosing Context
 A textual representation of Information Element values is applied
 to use the IPFIX Information Model within some existing textual
 format (e.g., XML [W3C-XML] and JSON [RFC7159]). This outer
 format is referred to as the Enclosing Context within this
 document. Enclosing Contexts define escaping and quoting rules
 for represented values.

3. Identifying Information Elements

 The "IPFIX Information Elements" registry [IANA-IPFIX] defines a set
 of Information Elements numbered by Information Element identifiers
 and named for human readability. These Information Element
 identifiers are meant for use with the IPFIX protocol and have little
 meaning when applying the "IPFIX Information Elements" registry to
 textual representations.

 Instead, applications using textual representations of Information
 Elements use Information Element names to identify them; see
 Appendix A for examples illustrating this principle.

4. Data Type Encodings

 Each subsection of this section defines a textual encoding for the
 abstract data types defined in [RFC7012]. This section uses ABNF,
 including the Core Rules in Appendix B of [RFC5234], to describe the
 format of textual representations of IPFIX abstract data types.

 If future documents update [RFC7012] to add new abstract data types
 to the IPFIX Information Model, and those abstract data types are
 generally useful, this document will also need to be updated in order
 to define textual encodings for those abstract data types.

Trammell Standards Track [Page 3]

RFC 7373 IPFIX Text Types September 2014

4.1. octetArray

 If the Enclosing Context defines a representation for binary objects,
 that representation SHOULD be used.

 Otherwise, since the goal of textual representation of Information
 Elements is human readability over compactness, the values of
 Information Elements of the octetArray data type are represented as a
 string of pairs of hexadecimal digits, one pair per byte, in the
 order the bytes would appear on the wire were the octetArray encoded
 directly in IPFIX per [RFC7011]. Whitespace may occur between any
 pair of digits to assist in human readability of the string but is
 not necessary. In ABNF:

 hex-octet = 2HEXDIG

 octetarray = hex-octet *([WSP] hex-octet)

4.2. unsigned8, unsigned16, unsigned32, and unsigned64

 If the Enclosing Context defines a representation for unsigned
 integers, that representation SHOULD be used.

 In the special case where the unsigned Information Element has
 identifier semantics and refers to a set of codepoints either in an
 external registry, in a sub-registry, or directly in the description
 of the Information Element, then the name or short description for
 that codepoint as a string MAY be used to improve readability.

 Otherwise, the values of Information Elements of an unsigned integer
 type may be represented as either unprefixed base-10 (decimal)
 strings, base-16 (hexadecimal) strings prefixed by "0x", or base-2
 (binary) strings prefixed by "0b". In ABNF:

 unsigned = 1*DIGIT / "0x" 1*HEXDIG / "0b" 1*BIT

 Leading zeroes are allowed in any representation and do not signify
 base-8 (octal) representation. Binary representation is intended for
 use with Information Elements with flag semantics, but it can be used
 in any case.

 The encoded value MUST be in range for the corresponding abstract
 data type or Information Element. Values that are out of range are
 interpreted as clipped to the implicit range for the Information
 Element as defined by the abstract data type or to the explicit range
 of the Information Element if defined. Minimum and maximum values
 for abstract data types are shown in Table 1 below.

Trammell Standards Track [Page 4]

RFC 7373 IPFIX Text Types September 2014

 +------------+---------+----------------------+
 | type | minimum | maximum |
 +------------+---------+----------------------+
 | unsigned8 | 0 | 255 |
 | unsigned16 | 0 | 65535 |
 | unsigned32 | 0 | 4294967295 |
 | unsigned64 | 0 | 18446744073709551615 |
 +------------+---------+----------------------+

 Table 1: Ranges for Unsigned Abstract Data Types (in Decimal)

4.3. signed8, signed16, signed32, and signed64

 If the Enclosing Context defines a representation for signed
 integers, that representation SHOULD be used.

 Otherwise, the values of Information Elements of signed integer types
 are represented as optionally prefixed base-10 (decimal) strings. In
 ABNF:

 sign = "+" / "-"

 signed = [sign] 1*DIGIT

 If the sign is omitted, it is assumed to be positive. Leading zeroes
 are allowed and do not signify base-8 (octal) encoding. The
 representation "-0" is explicitly allowed and is equal to zero.

 The encoded value MUST be in range for the corresponding abstract
 data type or Information Element. Values that are out of range are
 to be interpreted as clipped to the implicit range for the
 Information Element as defined by the abstract data type or to the
 explicit range of the Information Element if defined. Minimum and
 maximum values for abstract data types are shown in Table 2 below.

 +----------+----------------------+----------------------+
 | type | minimum | maximum |
 +----------+----------------------+----------------------+
 | signed8 | -128 | +127 |
 | signed16 | -32768 | +32767 |
 | signed32 | -2147483648 | +2147483647 |
 | signed64 | -9223372036854775808 | +9223372036854775807 |
 +----------+----------------------+----------------------+

 Table 2: Ranges for Signed Abstract Data Types (in Decimal)

Trammell Standards Track [Page 5]

RFC 7373 IPFIX Text Types September 2014

4.4. float32 and float64

 If the Enclosing Context defines a representation for floating-point
 numbers, that representation SHOULD be used.

 Otherwise, the values of Information Elements of float32 or float64
 types are represented as optionally sign-prefixed, optionally base-10
 exponent-suffixed, floating-point decimal numbers, as in
 [IEEE.754.2008]. The special strings "NaN", "+inf", and "-inf"
 represent "not a number", "positive infinity", and "negative
 infinity", respectively.

 In ABNF:

 sign = "+" / "-"

 exponent = "e" [sign] 1*3DIGIT

 right-decimal = "." 1*DIGIT

 mantissa = 1*DIGIT [right-decimal]

 num = [sign] mantissa [exponent]

 naninf = "NaN" / (sign "inf")

 float = num / naninf

 The expressed value is (mantissa * 10 ^ exponent). If the sign is
 omitted, it is assumed to be positive. If the exponent is omitted,
 it is assumed to be zero. Leading zeroes may appear in the mantissa
 and/or the exponent. Values MUST be within range for single- or
 double-precision numbers as defined in [IEEE.754.2008]; finite values
 outside the appropriate range are to be interpreted as clamped to be
 within the range. Note that no more than three digits are required
 or allowed for exponents in this encoding due to these ranges.

 Note that since this representation is meant for human readability,
 writers MAY sacrifice precision to use a more human-readable
 representation of a given value, at the expense of the ability to
 recover the exact bit pattern at the reader. Therefore, decoders
 MUST NOT assume that the represented values are exactly comparable
 for equality.

Trammell Standards Track [Page 6]

RFC 7373 IPFIX Text Types September 2014

4.5. boolean

 If the Enclosing Context defines a representation for boolean values,
 that representation SHOULD be used.

 Otherwise, a true boolean value is represented by the literal string
 "true" and a false boolean value by the literal string "false". In
 ABNF:

 boolean-true = "true"

 boolean-false = "false"

 boolean = boolean-true / boolean-false

4.6. macAddress

 Media Access Control (MAC) addresses are represented as IEEE 802
 MAC-48 addresses, hexadecimal bytes with the most significant byte
 first, separated by colons. In ABNF:

 hex-octet = 2HEXDIG

 macaddress = hex-octet 5(":" hex-octet)

4.7. string

 As Information Elements of the string type are simply Unicode strings
 (encoded as UTF-8 when appearing in Data Sets in IPFIX Messages
 [RFC7011]), they are represented directly, using the Unicode encoding
 rules and quoting and escaping rules of the Enclosing Context.

 If the Enclosing Context cannot natively represent Unicode
 characters, the escaping facility provided by the Enclosing Context
 MUST be used for nonrepresentable characters. Additionally, strings
 containing characters reserved in the Enclosing Context (e.g.,
 control characters, markup characters, and quotes) MUST be escaped or
 quoted according to the rules of the Enclosing Context.

 It is presumed that the Enclosing Context has sufficient restrictions
 on the use of Unicode to prevent the unsafe use of nonprinting and
 control characters. As there is no accepted solution for the
 processing and safe display of mixed-direction strings, mixed-
 direction strings should be avoided using this encoding. Note also
 that since this document presents no additional requirements for the
 normalization of Unicode strings, care must be taken when comparing
 strings using this encoding; direct byte-pattern comparisons are not
 sufficient for determining whether two strings are equivalent. See

Trammell Standards Track [Page 7]

RFC 7373 IPFIX Text Types September 2014

 [RFC6885] and [PRECIS] for more on possible unexpected results and
 related risks in comparing Unicode strings.

4.8. The dateTime ADTs

 Timestamp abstract data types are represented generally as in
 [RFC3339], with two important differences. First, all IPFIX
 timestamps are expressed in terms of UTC, so textual representations
 of these Information Elements are explicitly in UTC as well. Time
 zone offsets are, therefore, not required or supported. Second,
 there are four timestamp abstract data types, separated by the
 precision that they can express. Fractional seconds are omitted in
 dateTimeSeconds, expressed in milliseconds in dateTimeMilliseconds,
 and so on.

 In ABNF, taken from [RFC3339] and modified as follows:

 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60
 time-msec = "." 3DIGIT
 time-usec = "." 6DIGIT
 time-nsec = "." 9DIGIT
 full-date = date-fullyear "-" date-month "-" date-mday
 integer-time = time-hour ":" time-minute ":" time-second

 datetimeseconds = full-date "T" integer-time
 datetimemilliseconds = full-date "T" integer-time "." time-msec
 datetimemicroseconds = full-date "T" integer-time "." time-usec
 datetimenanoseconds = full-date "T" integer-time "." time-nsec

4.9. ipv4Address

 IP version 4 addresses are represented in dotted-quad format, most
 significant byte first, as it would be in a Uniform Resource
 Identifier [RFC3986]; the ABNF for an IPv4 address is taken from
 [RFC3986] and reproduced below:

 dec-octet = DIGIT ; 0-9
 / %x31-39 DIGIT ; 10-99
 / "1" 2DIGIT ; 100-199
 / "2" %x30-34 DIGIT ; 200-249
 / "25" %x30-35 ; 250-255

 ipv4address = dec-octet 3("." dec-octet)

Trammell Standards Track [Page 8]

RFC 7373 IPFIX Text Types September 2014

4.10. ipv6Address

 IP version 6 addresses are represented as in Section 2.2 of
 [RFC4291], as updated by Section 4 of [RFC5952]. The ABNF for an
 IPv6 address is taken from [RFC3986] and reproduced below, using the
 ipv4address production from the previous section:

 ls32 = (h16 ":" h16) / ipv4address
 ; least significant 32 bits of address
 h16 = 1*4HEXDIG
 ; 16 bits of address represented in hexadecimal
 ; zeroes to be suppressed as in RFC 5952

 ipv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [h16 ":" h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

4.11. basicList, subTemplateList, and subTemplateMultiList

 These abstract data types, defined for IPFIX Structured Data
 [RFC6313], do not represent actual data types; they are instead
 designed to provide a mechanism by which complex structure can be
 represented in IPFIX below the template level. It is assumed that
 protocols using textual Information Element representation will
 provide their own structure. Therefore, Information Elements of
 these data types MUST NOT be used in textual representations.

5. Security Considerations

 The security considerations for the IPFIX protocol [RFC7011] apply.

 Implementations of decoders of Information Element values using these
 representations must take care to correctly handle invalid input, but
 the encodings presented here are not special in that respect.

 The encoding specified in this document, and representations that may
 be built upon it, are specifically not intended for the storage of
 data. However, since storage of data in the format in which it is
 exchanged is a very common practice, and the ubiquity of tools for
 indexing and searching text significantly increases the ease of
 searching and the risk of privacy-sensitive data being accidentally
 indexed or searched, the privacy considerations in Section 11.8 of

Trammell Standards Track [Page 9]

RFC 7373 IPFIX Text Types September 2014

 [RFC7011] are especially important to observe when storing data using
 the encoding specified in this document that was derived from the
 measurement of network traffic.

 When using representations based on this encoding to transmit or
 store network traffic data, consider omitting especially privacy-
 sensitive values by not representing the columns or keys containing
 those values, as in black-marker anonymization as discussed in
 Section 4 of [RFC6235]. Other anonymization techniques described in
 [RFC6235] may also be useful in these situations.

 The encodings for all abstract data types other than ’string’ are
 defined in such a way as to be representable in the US-ASCII
 character set and, therefore, should be unproblematic for all
 Enclosing Contexts. However, the ’string’ abstract data type may be
 vulnerable to problems with ill-formed UTF-8 strings as discussed in
 Section 6.1.6 of [RFC7011]; see [UTF8-EXPLOIT] for background.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006,
 <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

Trammell Standards Track [Page 10]

RFC 7373 IPFIX Text Types September 2014

 [RFC7011] Claise, B., Trammell, B., and P. Aitken, "Specification of
 the IP Flow Information Export (IPFIX) Protocol for the
 Exchange of Flow Information", STD 77, RFC 7011, September
 2013, <http://www.rfc-editor.org/info/rfc7011>.

6.2. Informative References

 [IANA-IPFIX]
 IANA, "IPFIX Information Elements",
 <http://www.iana.org/assignments/ipfix/>.

 [IEEE.754.2008]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Floating-Point Arithmetic", IEEE Standard
 754, August 2008.

 [PRECIS] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation and Comparison of Internationalized Strings in
 Application Protocols", Work in Progress, draft-ietf-
 precis-framework-18, September 2014.

 [RFC6235] Boschi, E. and B. Trammell, "IP Flow Anonymization
 Support", RFC 6235, May 2011,
 <http://www.rfc-editor.org/info/rfc6235>.

 [RFC6313] Claise, B., Dhandapani, G., Aitken, P., and S. Yates,
 "Export of Structured Data in IP Flow Information Export
 (IPFIX)", RFC 6313, July 2011,
 <http://www.rfc-editor.org/info/rfc6313>.

 [RFC6885] Blanchet, M. and A. Sullivan, "Stringprep Revision and
 Problem Statement for the Preparation and Comparison of
 Internationalized Strings (PRECIS)", RFC 6885, March 2013,
 <http://www.rfc-editor.org/info/rfc6885>.

 [RFC7012] Claise, B. and B. Trammell, "Information Model for IP Flow
 Information Export (IPFIX)", RFC 7012, September 2013,
 <http://www.rfc-editor.org/info/rfc7012>.

 [RFC7013] Trammell, B. and B. Claise, "Guidelines for Authors and
 Reviewers of IP Flow Information Export (IPFIX)
 Information Elements", BCP 184, RFC 7013, September 2013,
 <http://www.rfc-editor.org/info/rfc7013>.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014,
 <http://www.rfc-editor.org/info/rfc7159>.

Trammell Standards Track [Page 11]

RFC 7373 IPFIX Text Types September 2014

 [UTF8-EXPLOIT]
 Davis, M. and M. Suignard, "Unicode Technical Report #36:
 Unicode Security Considerations", The Unicode Consortium,
 November 2012.

 [W3C-XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", W3C Recommendation REC-xml, November 2008.

Trammell Standards Track [Page 12]

RFC 7373 IPFIX Text Types September 2014

Appendix A. Example

 In this section, we examine an IPFIX Template and a Data Record
 defined by that Template and show how that Data Record would be
 represented in JSON according to the specification in this document.
 Note that this is specifically NOT a recommendation for a particular
 representation but merely an illustration of the encodings in this
 document; the quoting and formatting in the example are JSON
 specific.

 Figure 1 shows a Template in Information Element Specifier (IESpec)
 format as defined in Section 10.1 of [RFC7013]; a corresponding JSON
 object representing a record defined by this template in the text
 format specified in this document is shown in Figure 2.

 flowStartMilliseconds(152)<dateTimeMilliseconds>[8]
 flowEndMilliseconds(153)<dateTimeMilliseconds>[8]
 octetDeltaCount(1)<unsigned64>[4]
 packetDeltaCount(2)<unsigned64>[4]
 sourceIPv6Address(27)<ipv6Address>[16]{key}
 destinationIPv6Address(28)<ipv6Address>[16]{key}
 sourceTransportPort(7)<unsigned16>[2]{key}
 destinationTransportPort(11)<unsigned16>[2]{key}
 protocolIdentifier(4)<unsigned8>[1]{key}
 tcpControlBits(6)<unsigned16>[2]
 flowEndReason(136)<unsigned8>[1]

 Figure 1: Sample Flow Template in IESpec Format

 {
 "flowStartMilliseconds": "2012-11-05T18:31:01.135",
 "flowEndMilliseconds": "2012-11-05T18:31:02.880",
 "octetDeltaCount": 195383,
 "packetDeltaCount": 88,
 "sourceIPv6Address": "2001:db8:c:1337::2",
 "destinationIPv6Address": "2001:db8:c:1337::3",
 "sourceTransportPort": 80,
 "destinationTransportPort": 32991,
 "protocolIdentifier": "tcp",
 "tcpControlBits": 19,
 "flowEndReason": 3
 }

 Figure 2: JSON Object Containing Sample Flow

Trammell Standards Track [Page 13]

RFC 7373 IPFIX Text Types September 2014

Acknowledgments

 Thanks to Paul Aitken, Benoit Claise, Andrew Feren, Juergen Quittek,
 David Black, and the IESG for their reviews and comments. Thanks to
 Dave Thaler and Stephan Neuhaus for discussions that improved the
 floating-point representation section. This work is materially
 supported by the European Union Seventh Framework Programme under
 grant agreement 318627 mPlane.

Author’s Address

 Brian Trammell
 Swiss Federal Institute of Technology Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Phone: +41 44 632 70 13
 EMail: ietf@trammell.ch

Trammell Standards Track [Page 14]

