NWE RFCH 746 RVB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Net wor k Wor ki ng Group Ri chard Stall man
Request for Comments 746 M T- Al
NI C 43976 17 March 1978

The SUPDUP Graphi cs Extension

extends SUPDUP to pernit the display of drawi ngs on the screen of
the termnal, as well as text. W refer constantly to the
docunent ati on of the SUPDUP protocol, described by Crispinin RFC 734
" SUPDUP Pr ot ocol ".

Since this extension has never been inplemented, it presunably has
sonme problems. It is being published to ask for suggestions, and to
encour age soneone to try to bring it up

The maj or acconplishnents are these:
* It is easy to do sinple things.

* Any programon the server host can at any time begin outputting
pictures. No special preparations are needed.

* No additional network connections are needed. G aphics commands
go through the normal text output connection

* It has nothing really to do with the network. It is suitable
for use with locally connected intelligent display termnals in
a term nal -i ndependent manner, by prograns whi ch need not know
whet her they are being used locally or renotely. It can be used
as the universal means of expression of graphics output, for
what ever destination. Prograns can be witten to use it for
non-network terminals, with little |loss of convenience, and
automatically be usable over the ARPA network.

* Loss of output (due, perhaps, to a "silence" conmmand typed by
the user) does not |eave the user host confused.

* The term nal does not need to be able to renmenber the interna
"semantic" structure of the picture being displayed, but just
the lines and points, or even just bits in a bit matrix.

* The server host need not be able to invoke arbitrary
term nal - dependent software to convert a standard | anguage into
one that a term nal can use. Instead, a standard | anguage is

defined which all programmable termnals can interpret easily.
Maj or di fferences between terninals are catered to by
conventions for including enough redundant information in the
out put streamthat all types of terminals will have the
necessary information avail able when it is needed, even if they

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

are not able to renenber it in usable formfromone conmmand to
anot her.

Those interested in network graphics should read about the Multics
Graphi cs System whose fundanental purpose is the sanme, but whose
particul ar assunptions are very different (although it did inspire a few
of the features of this proposal).

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

SUPDUP I nitial Negotiation:

One new optional variable, the SMARTS variable, is defined. It

shoul d foll ow the other variables sent by the SUPDUP user process to
the SUPDUP server process. Bits and fields in the left half-word of
this variable are given names starting with "%Q'. Bits and fields
inthe right half are given nanes starting with "%'R'. Not all of
the SMARTS variable has to do with the graphics protocol, but nost of
it does. The %QGRF bit should be 1 if the term nal supports

graphi cs output at all.

I nvoki ng the G aphics Protocol:

Graphics node is entered by a YWDGRF (octal 231) code in the output
stream Following characters in the range 0 - 177 are interpreted
according to the graphics protocol. Any character 200 or larger (a
%D code) | eaves graphics node, and then has its nornal
interpretation. Thus, if the server forgets that the terminal in
graphi cs node, the termnal will not long remain confused.

Once in graphics nbode, the output stream should contain a sequence of
graphi cs protocol conmands, each followed by its argunents. A zero
as a command is a no-op. To |eave graphics node deliberately, it is
best to use a %IDNOP.

NWGE RFCH 746 RMS 17- MAR-78 43976

The SUPDUP Graphi cs Extension

Co- or di nat es:

Graphi cs nbde uses a cursor position which is renenbered from one
graphi cs comand to the next while in graphics node. The graphics
nmode cursor is not the sane one used by normal type-out: G aphics
protocol conmands have no effect on the nornal type-out cursor, and
normal type-out has no effect on the graphics node cursor. In
addition, the graphics cursor’s position is nmeasured in dots rather
than in characters. The relationship between the two units (dots,
and characters) is recorded by the %9QHGT and YTQN D fields of the
SMARTS variable of the term nal, which contain the height and wi dth
in dots of the box occupied by a character. The size of the screen
in either dinension is assunmed to be the length of a character box
times the nunmber of characters in that direction on the screen. |If
the screen is actually bigger than that, the excess is may or may not
be part of the visible area; the programw ||l not know that it
exi sts, in any case.

Each co-ordinate of the cursor position is a 14-bit signed numnber,

where zero is at the center of the screen (if the screen dinension is

an even nunber of dots, then the visible negative points extend one
unit farther that the positive ones, in proper two's conpl enent
fashion). Excessively large values of the co-ordinates will be off
the screen, but are still meaningful

An alternate node is defined, which some termnals may support, in
which virtual co-ordinates are used. The specified co-ordinates are
still 14-bit signed nunbers, but instead of being in units of
physical dots on the ternminal, it is assunmed that +4000 octal is the
top of the screen or the right edge, while -4000 octal is the bottom
of the screen or the left edge. The termnal is responsible for

scaling these virtual co-ordinates into units of screen dots. Not

all termnals need have this capability; the 9QVIR bit in the SMARTS

variable indicates that it exists. To use virtual co-ordinates, the
server should send a %30VIR, to use physical co-ordinates again, it

shoul d send a %OPHY. These should be repeated at intervals, such as

when graphics node is entered, even though the ternmi nal mnust attenpt
to remenber the state of the switch anyway. This repetition is so
that a | oss of sonme output will not cause unbounded confusion

The virtual co-ordinates are based on a square. |f the visible area
on the terminal is not a square, then the standard virtual range
shoul d correspond to a square around the center of the screen, and
the rest of the visible area should correspond to virtua

co-ordi nates just beyond the normally visible range.

Graphi cs protocol conmands take two types of cursor position
argunents, absolute ones and relative ones. Comuands that take
address argunents generally have two forns, one for each type of

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

address. A relative address consists of two offsets, delta-X and
delta-Y, fromthe old cursor position. Each offset is a 7-bit tw's
conpl enent nunber occupyi ng one character. An absol ute address
consists of two co-ordinates, each 14 bits long, occupying two
characters, each of which conveys 7 bits. The X co-ordinate or

of fset precedes the Y. Both types of address set the running cursor
position which will be used by the next address, if it is relative.
It is perfectly legitimate for parts of objects to go off the screen
What happens to themis not terribly inportant, as long as it is not
di sastrous, does not interfere with the reckoning of the cursor
position, and does not cause |l ater objects, drawn after the cursor
noves back onto the screen, to be nisdrawn.

Whet her a particular spot on the screen is specified with an absolute
or a relative address is of no consequence. The sequence in which
they are drawn is of no consequence. Each object is independent of
all others, and exists at the place which was specified, in one way
or other, by the conmand that created it. Relative addresses are
provi ded for the sake of data conpression. They are not an attenpt
to spare prograns the need for the neagre intelligence required to
convert between absolute and rel ative addresses; nore intelligence
than that will surely be required for other aspects of the graphics
protocol. Nor are relative addresses intended to cause severa
objects to relocate together if one is "noved" or erased. Termnals
are not expected to renenber any rel ation between objects once they
are drawn. Mst will not be able to.

Al t hough the cursor position on entry to graphics node renmins set
fromthe last exit, it is wise to reinitialize it with a %G0OWA
command before any long transfer, to linit the effects of |ost

out put .

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Conmands:

Commands to draw an obj ect always have counterparts which erase the
same object. On a bit matrix termnal, erasure and draw ng are

al rost identical operations. On a display list terninal, erasure

i nvol ves searching the display list for an object with the specified
characteristics and deleting it fromthe list. It is assunmed that
any term nal whose %CERS bit is set can erase graphic objects.

The conmands to draw objects run from 100 to 137, while those to
erase run in a parallel sequence from 140 to 177. Oher sorts of
operations have command codes bel ow 100. Meanwhile, the 20 bit in

t he conmand code says which type of addresses are used as arguments:
if the 20 bit is set, absolute addresses are used. G aphics comrands
are given nanes starting with "%30'".

Graphics often uses characters. The %30DCH conmand is followed by a
string of characters to be output, term nated by a zero. The
characters must be single-position printing characters. On nost
termnals, this limts themto ASCI| graphic characters. Termnals
with %IOSAl set in the TTYOPT variable allow all characters 0-177
The characters are output at the current graphics cursor position
(the lower left hand corner of the first character’s rectangl e being
pl aced there), which is noved as the characters are drawn. The
normal type-out cursor is not relevant and its position is not
changed. The cursor position at which the characters are drawn may
be in between the Iines and col ums used for nornal type-out. The
%0ECH command is sinmilar to %G0DCH but erases the characters
specified init. To clear out a row of character positions on a bit
matrix terminal wthout having to respecify the text, a rectangle
command may be used.

Exanpl e:

The way to send a sinple line drawing is this:

% DRST ; Reset all graphics nodes.
%d DGRF ; Enter graphics.

%0OCLR ; Clear the screen.

YESOWA XX Yy ; Set cursor.

YESODLA XX Yy ;Draw line fromthere.

<< repeat last two commands for each line >>

% DNOP ; Exit graphics.

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

G aphics I nput:

The %9RGA N bit in the right half of the SMARTS vari abl e indicates
that the terminal can supply a graphic input in the formof a cursor
position on request. Sending a %303 N conmand to the terninal asks
to read the cursor position. It should be followed by an argunent
character that will be included in the reply, and serve to associate
the reply with the particular request for input that elicited it.
The reply should have the formof a Top-Y character (code 4131),
followed by the reply code character as just described, foll owed by
an absol ute cursor position. Since Top-Y is not normally neaningful
as input, %30G N replies can be distinguished reliably from keyboard
i nput. Unsolicited graphic input should be sent using a Top-X instead
of a Top-Y, so that the program can distinguish them Instead of a
reply code, for which there is no need, the term nal should send an
encodi ng of the buttons pressed by the user on his input device, if
it has nore than one.

Set s:

Term nal s may define the concept of a "set" of objects. There are up
to 200 different sets, each of which can contain arbitrarily nany
objects. At any tine, one set is selected; objects drawn becone part
of that set, and objects erased are renoved fromit. Cbjects in a
set other than the sel ected one cannot be erased w thout switching to
the sets that contain them A set can be nade tenporarily invisible,
as a whole, without being erased or its contents forgotten; and it
can then be nade instantly visible again. Al so, a whole set can be
moved. A set has at all tinmes a point identified as its "center"

and all objects in it are actually renmenbered relative to that

center, which can be noved arbitrarily, thus noving all the objects
in the set at once. Before beginning to use a set, therefore, one
shoul d "nove" its center to sone absolute location. Set center
notion can easily cause objects in the set to nove off screen. Wen
this happens, it does not matter what happens tenporarily to those
objects, but their "positions" nmust not be forgotten, so that undoi ng
the set center notion will restore themto visibility in their
previous positions. Sets are not easily inplenented on bit matrix
term nals, which should therefore ignore all set operations (except,
for a degenerate interpretation in connection with blinking, if that
is inplenmented). The 9%QSET bit in the SMARTS variable of the
termnal indicates that the terminal inplenents nultiple sets of

obj ect s.

On a terminal which supports multiple sets, the %30CLR conmand shoul d
enpty all sets and mark all sets "visible" (performa %30VIS on each
one). So should a %DCLR SUPDUP conmand. Thus, any program which
starts by clearing the screen will not have to worry about
initializing the states of all sets.

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Bl i nki ng:

Sonme terminals have the ability to blink objects on the screen. The
command %GOBNK neani ng make the current set blink. Al objects in it
al ready begi n blinking, and any new objects also blink. %30VIS or
%970A NV cancel s the effect of a %30OBNK, meking the objects of the set
permanently visible or invisible. 9% @BNK indicates that the term na
supports blinking on the screen

However, there is a problem sone intelligent bit matrix termnals
may be able to inplenent blinking a few objects, if they are told in
advance, before the objects are drawn. They will be unable to
support arbitrary use of %30BNK, however.

The solution to the problemis a convention for the use of % OBNK

whi ch, together with degenerate definitions for set operations, nakes
it possible to give commands which reliably work on any termina

whi ch supports blinking.

On a term nal which sets %9 QBNK but not %QSET, %G0OBNK is defined to
cause objects which are drawn after it to be drawn blinking. %30SET
cancels this, so following objects will be drawn unblinking. This is
regardl ess of the argument to the %30SET.

Thus, the way for a programto work on all termnals with %QBNK

whet her they know about sets or not, is: to wite a bliniking
picture, select sone set other than your nornal one (set 1 will do),
do %GOBNK, output the picture, and reselect set 0. The picture will
blink, while you draw things in set 0. To draw nore blinking

obj ects, you nust reselect set 1 and do anot her %OBNK. Sinply
reselecting set 1 will not work on termnals which don’t really
support sets, since they don't remenber that the blinking objects are
"in set 1" and not "in set 0"

Erasing a blinking object should nmake it di sappear, on any ternina
which inplements blinking. On bit matrix terminals, blinking MJST
al ways be done by XORi ng, so that the non-blinking background is not
destroyed.

%E0CLS, on a terminal which supports blinking but not sets, should
delete all blinking objects. Then, the convention for deleting all
blinking objects is to select set 1, do a %0CLS, and resel ect set O.
This has the desired effect on all terminals. This definition of
%50CLS causes no trouble on non-set termnals, since %0OCLS woul d

ot herwi se be neaningless to them

To nmake blinking objects stop blinking but remain visible is possible
with a %30VIS on a ternminal which supports sets. But in general the
only way to do it is to delete them and redraw them as permanent.

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Rect angl es and XOR

Bit matrix terminals have their own operations that display |ist
term nals cannot duplicate. First of all, they have XOR node, in
whi ch obj ects drawn cancel existing objects when they overlap. In
this node, drawing an object and erasing it are identical operations.
Al'l 9%30D.. commands act | DENTICALLY to the correspondi ng %3CE. .’ s.
XOR node is entered with a %30XOR and left with a %0 OR. Displ ay
list terminals will ignore both commands. For that reason, the
program shoul d continue to distinguish draw commands from erase
comands even in XOR node. % QXOR indicates a term nal which

i mpl ements XOR npde. XOR node, when set, renmains set even if
graphics node is left and re-entered. However, it is wise to
re-specify it fromtime to time, in case output is |ost.

Bit matrix termnals can also draw solid rectangles. They can thus

i mpl enent t he commands %E0DRR, %E0DRA, %30ERR, and %GOERA. A
rectangle is specified by taking the current cursor position to be
one corner, and providing the address of the opposite corner. That
can be done with either a relative address or an absolute one. The
99QREC bit indicates that the ternminal inplenents rectangl e conmands.

O course, a sufficiently intelligent bit matrix terminal can provide
all the features of a display list terminal by remenbering display
lists which are redundant with the bit matrix, and using themto
update the matrix when a %0OVBR or %50VIS is done. However, nost bit
matrix ternmnals are not expected to go to such |engths.

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

How Several Process Can Draw On One Terminal Wthout Interfering Wth
Each O her:

If we define "input-streamstate" infornation to be whatever

i nformati on which can affect the action of any conmand, other than
what is contained in the command, then each of the several processes
must have its own set of input-stream state vari ables.

This is acconplished by providing the %30PSH command. The %30PSH
command saves all such input-streaminformation, to be restored when
graphics node is exited. |f the processes can arrange to out put

bl ocks of characters uninterruptibly, they can begin each block with
a %30PSH fol l owed by commands to initialize the input-streamstate
informati on as they desire. Each block of graphics output should be
ended by a %DNOP, leaving the terminal inits "nornal" state for al
the other processes, and at the sane tinme popping the what the %OPSH
pushed.

The input-stream state information consists of:

The cursor position

the state of XOR node (default is OFF)

the selected set (default is 0)

the co-ordinate unit in use (physical dots, or virtual)
(default is physical)

whet her output is going to the display screen or to a hardcopy
device (default is to the screen)

what portion of the screen is in use
(see "Using Only Part of the Screen")
(default is all)

Each unit of input-streamstatus has a default value for the sake of
prograns that do not know that the information exists; the exception
is the cursor position, since all prograns nust know that it exists.
A %DINl or %DRST command should set all of the variables to their

default val ues.

The state of the current set (whether it is visible, and where its
center is) is not part of the input-streamstate infornmation, since
it would be hard to say what it would nean if it were. Besides, the
current set nunber is part of the input-streamstate information, so
di fferent processes can use different sets. The allocation of sets
to processes is the server host’s own business.

-10-

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Using Only Part of the Screen

It is sonetines desirable to use part of the screen for picture and
part for text. Then one may wish to clear the picture wthout
clearing the text. On display list terminals, %30CLR should do this.
On bit matrix terminals, however, %OCLR can’t tell which bits were
set by graphics and which by text display. For their sake, the
%OLMI conmmand i s provided. This command takes two cursor positions
as argunents, specifying a rectangle. It declares that graphics wll
be limted to that rectangle, so %30OCLR should clear only that part
of the screen. %0OLMI need not do anything on a terninal which can
remenber graphics output as distinct fromtext output and clear the
fornmer selectively, although it would be a desirable feature to
process it even on those term nals.

%0OLMI can be used to enabl e one of several processes which divide up
the screen anong thenselves to clear only the picture that it has
drawn, on a bit matrix ternminal. By using both %0_.MI and di stinct
sets, it is possible to deal successfully with al nost any term nal
since bit matrix termnals will inplenment %0OLMI and display |ist
term nal s al nost al ways i npl enent sets.

The %DCLR comand shoul d clear the whol e screen, including graphics
out put, ignoring %30LM.

Errors:
In general, errors in graphics comands shoul d be ignored.

Since the output and input streanms are not synchronized unl ess
trouble is taken, there is no sinple way to report an error wel
enough for the programthat caused it to identify just which command
was invalid. So it is better not to try.

Errors which are not the fault of any individual command, such as
runni ng out of nenory for display lists, should also be ignored as
much as possible. This does NOT nean conpletely ignoring the
commands that cannot be followed; it nmeans follow ng themas nuch as
possi bl e: noving the cursor, selecting sets, etc. as they specify, so
that any subsequent conmands whi ch can be executed are executed as

i nt ended.

-11-

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Ext ensi ons:

This protocol does not attenpt to specify commands for dealing with
every inmagi nabl e feature which a picture-draw ng devi ce can have
Addi tional features should be left until they are needed and wel |
under stood, so that they can be done right.

Storage of Graphics Conmands in Files:

This can certainly be done. Since graphics conmands are conposed
exclusively of the ASCI| characters 0 - 177, any file that can hold
ASCI| text can hold the comands to draw a picture. This is less
useful than you m ght think, however. Any programfor editing, in
what ever | oose sense, a picture, will have its own internal data

whi ch determne the relationshi ps between the objects depicted, and
control the interpretation of the prograns comands, and this data
will all be lost in the SUPDUP graphi cs commands for displaying the
pi cture. Thus, each such programw |l need to have its own format for
storing pictures in files, suitable for that progranis internal data
structure. Inclusion of actual graphics commands in a file will be
useful only when the sole purpose of the file is to be displayed.

-12-

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Note: the values of these commands are represented as 8.-bit octal
bytes. Argunents to the commands are in | ower case inside angle
brackets.

The Draw comrands are:

Val ue Nare Argument s

101 %3ODLR <p>

Draw line relative, fromthe cursor to <p>.
102 %EODPR <p>

Draw point relative, at <p>.
103 %CDRR <p>

Draw rectangle relative, corners at <p> and at the
current cursor position.

104 %3E0DCH <string> <0>
Di splay the chars of <string> starting at the current
graphi cs cursor position.

121 Y%EODLA <p>
Draw | i ne absolute, fromthe cursor to <p> The same
effect as %30DLR, but the arg is an absol ute address.

122 YE0DPA <p>
Draw poi nt absol ute, at <p>.
123 %GEODRA <p>

Draw rectangl e absolute, corners at <p> and at the
current cursor position.

The Erase conmands are:

Val ue Nare Argument s

141 UEOELR <p>

Erase line relative, fromthe cursor to <p>.
142 YCOEPR <p>

Erase point relative, at <p>.
143 %CERR <p>

Erase rectangle relative, corners at <p> and at the
current cursor position.

144 %EOECH <string> <0>
Erase the chars of <string> starting at the current
graphi cs cursor position.

161 %EOELA <p>

Erase line absolute, fromthe cursor to <p>.
162 YGEOEPA <p>

Erase point absolute, at <p>.
163 %E0ERA <p>

Erase rectangl e absolute, corners at <p> and at the
current cursor position.

-13-

NWGE RFCH 746
The SUPDUP Graphi cs Extension

RMS 17- MAR-78 43976

The m scel | aneous conmands ar e:

Val ue
001
021
002
022
003
004
024
006
026
007
010
030

011

012
032

013

014

015

Name

Y%OWR

YEOWA

%E0XOR

%0 OR

YESOSET

%E0VBR

YEOVBA

%0 NV

%OVl S

YE0BNK

%S0CLR

%30CLS

%0PSH

%0Vl R

YEOPHY

%E0HRD

%30G N

YEOLMT

Argunent s

<p>
Move cursor to point <p>

<p>

Move cursor to point <p>, absolute address.

Turn on XOR node. Bit matrix terminals only.

Turn of f XOR node.

<n>

Select set. <n>is a 1l-character set nunber, 0 - 177.
<p>

Move set origin to <p> Display list terminals only.
<p>

Move set origin to <p> absolute address.

Make current set invisible.

Make current set visible.

Make current set blink. Canceled by %30 NV or %GOVl S.
Er ase whol e screen.

Erase entire current set (display list termnals).

Push all input-streamstatus infornmation, to be restored
when graphics node is exited.

Start using virtual co-ordinates

Resune giving co-ordinates in units of dots.

<n>

Di vert output to output subdevice <n> <n>=0 reselects

the main di splay screen.

<n>

Request graphics input (nouse, tablet, etc). <n>is the
reply code to include in the answer.

<pl> <p2>

Limts graphics to a subrectangl e of the screen. %OCLR
will clear only that area. This is for those who woul d
use the rest for text.

- 14-

NWGE RFCH 746 RMB 17- MAR- 78 43976
The SUPDUP Graphi cs Extension

Bits in the SMARTS Variable Related to G aphics:

Note: the values of these bits are represented as octal 36.-bit words,
with the left and right 18.-bit hal fword separated by two commas as in
t he normal PDP-10 conventi on.

Nare Val ue Description

%9 QCRF 000001,,0 term nal understands graphics protocol.

U9 QSET 000002,,0 termnal supports multiple sets.

9TQREC 000004,,0 termnal inplenents rectangl e conmands.

%TQXOR 000010,,0 term nal inplenments XOR node.

%TQBNK 000020,,0 terminal inplements blinking.

%IQvI R 000040,,0 termnal inplenments virtual co-ordinates.

%WQN D 001700,,0 character width, in dots.

%I QHGT 076000,,0 character height, in dots.

%RA N 0,,400000 term nal can provide graphics input.

9%9RGHC 0,, 200000 term nal has a hard-copy device to which output can
be diverted.

-15-

