I nt ernet Engi neering Task Force (I ETF) N. WIliamns
Request for Comments: 7464 Cr ypt onect or
Cat egory: Standards Track February 2015
| SSN: 2070-1721

JavaScript Object Notation (JSON) Text Sequences
Abstract

Thi s docunent describes the JavaScript Cbject Notation (JSON) text
sequence format and associated nedia type "application/json-seq". A
JSON text sequence consists of any nunber of JSON texts, all encoded
in UTF-8, each prefixed by an ASCI| Record Separator (Ox1E), and each
ending with an ASCI| Line Feed character (0xO0A).

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc7464.

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

WIlians St andards Track [Page 1]

RFC 7464 JSON Text Sequences February 2015

Tabl e of Contents

1

1

1. Introduction and Motivation 2
1.1. Conventions Used in This Docunment 2
2. JSON Text Sequence Format 3
2.1. JSON Text Sequence ParsinNguuuiuiieninnnin 3
2.2. JSON Text Sequence Encodingoy 4
2.3. Inconplete/lnvalid JSON Texts Need Not Be Fatal 4
2.4. Top-Level Values: nunbers, true, false, and null 5
3. Security Considerati Ons 6
4. TANA Considerati ONS e 6
5. Normative References e 7
ACKNOW €dgeMEBNt S e e 8
AUt hor’ s Addr €SS o e e 8

I ntroducti on and Motivation

The JavaScript (bject Notation (JSON) [RFC7159] is a very handy
serialization format. However, when serializing a | arge sequence of
val ues as an array, or a possibly indeterninate-Ilength or never-
endi ng sequence of val ues, JSON beconmes difficult to work with.

Consi der a sequence of one mllion values, each possibly one kil obyte
when encoded -- roughly one gigabyte. It is often desirable to
process such a dataset in an increnmental nanner w thout having to
first read all of it before beginning to produce results.
Traditionally, the way to do this with JSONis to use a "streaning"
parser, but these are not widely available, w dely used, or easy to
use.

Thi s docunent describes the concept and format of "JSON text
sequences", which are specifically not JSON texts thensel ves but are
conmposed of (possible) JSON texts. JSON text sequences can be parsed
(and produced) increnentally wthout having to have a stream ng
parser (nor stream ng encoder).

Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in

[RFC2119] .

WIlians St andards Track [Page 2]

RFC 7464 JSON Text Sequences February 2015

2.

2.

JSON Text Sequence For nmat

Two different sets of ABNF rules are provided for the definition of
JSON text sequences: one for parsers and one for encoders. Having
two different sets of rules permts recovery by parsers from
sequences where sone of the elenents are truncated for whatever
reason. The syntax for parsers is specified in terns of octet
strings that are then interpreted as JSON texts, if possible. The
syntax for encoders, on the other hand, assumes that sequence

el ements are not truncated

JSON text sequences MJST use UTF-8 encodi ng; other encodi ngs of JSON
(i.e., UTF-16 and UTF-32) MJST NOT be used.

JSON Text Sequence Parsing

The ABNF [RFC5234] for the JSON text sequence parser is as given in
Fi gure 1.

i nput - JSON- sequence = *(1*RS possi bl e- JSON)
RS = %1E; "record separator" (RS), see RFC 20
; Also known as: Uni code Character | NFORMATI ON SEPARATOR
; TWO (U+001E)
possi bl e-JSON = 1*(not-RS); attenpt to parse as UTF-8-encoded
; JSON text (see RFC 7159)
not-RS = %&O00-1d / 9%&1f-ff; any octets other than RS

Figure 1: JSON Text Sequence ABNF

In prose: a series of octet strings, each containing any octet other
than a record separator (RS) (Ox1E) [RFC20]. Al octet strings are
preceded by an RS byte. Each octet string in the sequence is to be
parsed as a JSON text in the UTF-8 encodi ng [RFC3629] .

If parsing of such an octet string as a UTF-8-encoded JSON text
fails, the parser SHOULD nonet hel ess continue parsing the renai nder
of the sequence. The parser can report such failures to
applications, which night then choose to term nate parsing of a
sequence. Miltiple consecutive RS octets do not denote enpty
sequence el enents between them and can be ignored.

Thi s docunent does not define a nechanismfor reliably identifying
text sequence by position (for exanple, when sending individua

el ements of an array as uni que text sequences). For applications
where truncation is a possibility, this nmeans that intended sequence
el ements can be truncated and can even be missing entirely;
therefore, a reference to an nth elenment would be unreliable.

WIlians St andards Track [Page 3]

RFC 7464 JSON Text Sequences February 2015

There is no end of sequence indicator
2.2. JSON Text Sequence Encodi ng
The ABNF for the JSON text sequence encoder is given in Figure 2.

JSON sequence = *(RS JSON-text LF)

RS = %&1E; see RFC 20
; Also known as: Uni code Character | NFORMATI ON SEPARATOR
; TWO (U+001E)

LF = %O0A; "line feed" (LF), see RFC 20

JSON-text = <given by RFC 7159, using UTF-8 encodi ng>

Figure 2: JSON Text Sequence ABNF

In prose: any nunber of JSON texts, each encoded in UTF-8 [RFC3629],
each preceded by one ASCI|I RS character, and each followed by a line
feed (LF). Since RSis an ASCII control character, it may only
appear in JSON strings in escaped form (see [RFC7159]), and since RS
may not appear in JSON texts in any other form RS unanbi guously
delimts the start of any element in the sequence. RS is sufficient
to unanbi guously delimt all top-level JSON val ue types other than
nunbers. Followi ng each JSON text in the sequence with an LF all ows
detection of truncated JSON texts consisting of a nunber at the top-
| evel ; see Section 2.4.

JSON text sequence encoders are expected to ensure that the sequence
el ements are properly forned. Wen the JSON text sequence encoder
does the JSON text encoding, the sequence elenents will naturally be
properly fornmed. Wen the JSON text sequence encoder accepts

al ready- encoded JSON texts, the JSON text sequence encoder ought to
parse them before adding themto a sequence.

Note that on some systens it"s possible to input RS by typing
"ctrl-~"; on some system or applications, the correct sequence may be
"ctrl-v ctrl-~". This is hel pful when constructing a sequence
manual ly with a text editor.

2.3. Inconplete/lnvalid JSON Texts Need Not Be Fata

Per Section 2.1, JSON text sequence parsers should not abort when an
octet string contains a malforned JSON text. Instead, the JSON text
sequence parser should skip to the next RS. Such a situation nmay
arise in contexts where, for exanple, data that is appended to |og
files tolog files is truncated by the filesystem(e.g., due to a
crash or administrative process term nation).

WIlians St andards Track [Page 4]

RFC 7464 JSON Text Sequences February 2015

Increnental JSON text parsers nmay be used, though of course failure
to parse a given text may result after first producing sone
i ncrenental parse results.

Sequence parsers should have an option to warn about truncated JSON
texts.

2.4, Top-Level Values: nunbers, true, false, and nul

Wil e objects, arrays, and strings are self-delinmted in JSON texts,
nunbers and the values "true’, 'false’, and "null’ are not. Only
whi t espace can delimt the latter four kinds of val ues.

JSON text sequences use OxO0A as a "canary" octet to detect
truncati on.

Parsers MUST check that any JSON texts that are a top-level nunber,
or that mght be "true’, "false’, or "null’, include JSON whitespace
(at least one byte matching the "ws" ABNF rule from|[RFC7159]) after
that val ue; otherw se, the JSON-text nay have been truncated. Note
that the LF follow ng each JSON text natches the "ws" ABNF rule.

Parsers MUST drop JSON-text sequence el ements consisting of non-self-
delinmted top-level values that may have been truncated (that are not
delinted by whitespace). Parsers can report such texts as warnings
(including, optionally, the parsed text and/or the original octet
string).

For exanple, ’'<RS>123<RS>" m ght have been intended to carry the top-
| evel nunmber 1234, but it got truncated. Sinilarly, '<RS>true<RS>

m ght have been intended to carry the invalid text 'trueish’

" <RS>t ruef al se<RS>' is not two top-level values, "true’, and 'false’
it is sinply not a valid JSON text.

| mpl enent ati ons may produce a val ue when parsing ' <RS>"f 00" <RS>’
because their JSON text parser night be able to consune bytes
increnentally; since the JSON text in this case is a self-deliniting
top-1evel value, the parser can produce the result w thout consuning
an additional byte. Such inplenmentations ought to skip to the next
RS byte, possibly reporting any interveni ng non-whitespace bytes.

Detecti on of truncation of non-self-delinmted sequence el enents
(nunbers, true, false, and null) is only possible when the sequence
encoder produces or receives conplete JSON texts. |Inplenentations
where the sequence encoder is not also in charge of encoding the

i ndi vidual JSON texts should ensure that those JSON texts are
conpl et e.

WIlians St andards Track [Page 5]

RFC 7464 JSON Text Sequences February 2015

3. Security Considerations

Al'l the security considerations of JSON [RFC7159] apply. This fornmat
provi des no cryptographic integrity protection of any kind.

As usual, parsers nmust operate on input that is assunmed to be
untrusted. This neans that parsers nust fail gracefully in the face
of malicious inputs.

Note that incremental JSON text parsers can produce partial results
and later indicate failure to parse the renmainder of a text. A
sequence parser that uses an increnental JSON text parser mght treat
a sequence like '<RS>"fo0"<LF>456<LF><RS>" as a sequence of one

el emrent ("foo0"), while a sequence parser that uses a non-increnental
JSON text parser might treat the sanme sequence as being enpty. This
effect, and texts that fail to parse and are ignored, can be used to

snmuggl e data past sequence parsers that don’t warn about JSON text
failures.

Repeat ed parsing and re-encodi ng of a JSON text sequence can result
in the addition (or stripping) of trailing LF bytes from (to)
i ndi vi dual sequence el enent JSON texts. This can break signature
validation. JSON has no canonical formfor JSON texts, therefore
neither does the JSON text sequence fornat.

4. | ANA Consi derati ons
The M ME nedia type for JSON text sequences is application/json-seq.
Type nane: application
Subt ype nane: json-seq
Required paraneters: N A
Optional paraneters: NA
Encodi ng consi derations: binary
Security considerations: See RFC 7464, Section 3.

Interoperability considerations: Described herein.

Publ i shed specification: RFC 7464.

WIlians St andards Track [Page 6]

RFC 7464 JSON Text Sequences February 2015

Applications that use this nedia type:
<https://stedol an.github.io/jqg>
<https://github. coml mapbox/cligj>
<https://github.com hildjj/json-text-sequence>

Fragnent identifier considerations: NA

Addi tional infornation:

0 Deprecated alias nanes for this type: NA

0 Magic nunber(s): NA

0o File extension(s): NA

o Macintosh file type code(s): NA

Person & email address to contact for further information:

json@etf.org

I nt ended usage: COVVON

Author: Nicolas WIllianms (nico@ryptonector.com

Change controller: |ETF

5. Normative References

[RFC20] Cerf, V., "ASCIl format for network interchange", STD 80,
RFC 20, Cctober 1969,
<http://ww.rfc-editor.org/info/rfc20>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novemrber 2003,
<http://www. rfc-editor.org/info/rfc3629>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax

Speci fications: ABNF', STD 68, RFC 5234, January 2008,
<http://ww. rfc-editor.org/info/rfc5234>.

WIlians St andards Track [Page 7]

RFC 7464 JSON Text Sequences February 2015

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014,
<http://ww. rfc-editor.org/info/rfc7159>

Acknowl edgenent s

Phillip Hall am Baker proposed the use of JSON text sequences for

| ogfiles and pointed out the need for resynchroni zati on. Stephen
Dol an created <https://github. conf stedol an/jg> which uses sonet hing
like JSON text sequences (with LF as the separator between texts on
out put, and requiring only such whitespace as needed to di sambi guate
on input). Carsten Bormann suggested the use of ASCI|I RS, and Joe
Hi | debrand suggested the use of LF in addition to RS for

di sanbi guati ng top-Ievel nunber values. Paul Hoffnman shepherded the
docunent. Many others contributed reviews and coments on the JSON
Wrking Goup mailing |ist.

Aut hor’ s Addr ess

Ni colas WIIians
Cryptonector, LLC

EMai | : ni co@ryptonector.com

WIlians St andards Track [Page 8]

