I nt ernet Engi neering Task Force (I ETF) M Jones

Request for Comments: 7515 M crosoft
Cat egory: Standards Track J. Bradley
| SSN: 2070-1721 Ping ldentity
N. Saki mura

NRI

May 2015

JSON Wb Signature (JW5)
Abstract

JSON Wb Signature (JW5) represents content secured with digital
signatures or Message Authentication Codes (MACs) using JSON based
data structures. Cryptographic algorithns and identifiers for use
with this specification are described in the separate JSON Wb

Al gorithms (JWA) specification and an | ANA registry defined by that
specification. Related encryption capabilities are described in the
separate JSON Wb Encryption (JWE) specification.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww.rfc-editor.org/info/rfc7515.

Jones, et al. St andards Track [Page 1]

RFC 7515 JSON Wb Signature (JWB) May 2015

Copyri

ght Noti ce

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi

s docunent is subject to BCP 78 and the | ETF Trust’'s Legal

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect

to

this docunent. Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e
1.

2.
3.

6.

Jones,

of Contents
INtroduCti ON ... 4
1.1. Notational Conventions, 4
Term N0l OQY .. oo 5
JSON Wb Signature (JW5) OVervVi €Wttt 7
3.1. JW5 Conpact Serialization Overview, 7
3.2. JW5 JSON Serialization O/erview 8
3.3, Exanpl e WG ... 8
JOSE Header 9
4.1. Registered Header Paranmeter Names 10
4.1.1. "alg" (Algorithnm Header Parameter 10
4.1.2. "jku" (JWK Set URL) Header Parameter 10
4.1.3. "jwk" (JSON Wb Key) Header Paraneter 11
4.1.4. "kid" (Key ID) Header Paranmeter 11
4.1.5. "x5u" (X. 509 URL) Header Paraneter 11
4.1.6. "x5c¢" (X.509 Certificate Chain) Header Paraneter ...11
4.1.7. "x5t" (X.509 Certificate SHA-1 Thunbprint)
Header Parameter 12
4.1.8. "x5t#S256" (X.509 Certificate SHA-256
Thunbprint) Header Paraneter 12
4.1.9. "typ" (Type) Header Paranmeter 12
4.1.10. "cty" (Content Type) Header Paranmeter 13
4.1.11. "crit" (Critical) Header Paraneter 14
4.2. Public Header Paranmeter Names 14
4.3. Private Header Paraneter Nanmes, 14
Producing and Consuming JWBS it e 15
5.1. Message Signature or MAC Conputation 15
5.2. Message Signature or MAC Validation 16
5.3. String Conparison Rules 17
Key lIdentification e 18
et al. St andards Track [Page 2]

RFC 7515 JSON Wb Signature (JWB) May 2015

7. Serializati ONS 19
7.1. JW5 Conpact Serialization i, 19
7.2. JW5 JSON Serialization i 19

7.2.1. General JW5 JSON Serialization Syntax 20
7.2.2. Flattened JW5 JSON Serialization Syntax 21

8. TLS ReqUIremBNt S ... e e 22

9. TANA Considerati ONSt 22
9.1. JSON Web Signature and Encryption Header

Parameters Regi Stry 23
9.1.1. Registration Tenplate 23
9.1.2. Initial Registry Contents 24
9.2. Media Type Registration 26
9.2.1. Registry Contents 26

10. Security Considerati OnNsS 27
10.1. Key Entropy and Random Values 27
10. 2. Key Protection e 28
10.3. Key Oigin Authentication 28
10. 4. Cryptographic Agility 28
10.5. Differences between Digital Signatures and MACs 28
10.6. AlgorithmValidation i 29
10.7. AlgorithmProtection 29
10.8. Chosen Plaintext Attacks 30
10.9. Timng Attacks 30
10.10. Replay Protection 30
10.11. SHA-1 Certificate Thunbprints 30
10.12. JSON Security Considerations 31
10. 13. Uni code Conparison Security Considerations 31

11, Ref erencCes 32
11.1. Normative References i, 32
11.2. Informative References 34

Appendi x A JIWE Exanpl es 36

A l. Exanple JWS Using HVAC SHA-256 36
A L.l ENCOdiNg ..ot 36
A 1.2, Validating 38

A 2. Exanple JWS Usi ng RSASSA- PKCS1-v1_ 5 SHA-256 38
A 2.1, ENnCoding e 38
A 2.2, Validating e 42

A. 3. Exanple JWB Using ECDSA P-256 SHA-256 42
A 3.1, ENCoding ... 42
A 3.2, Validating 44

A 4. Exanple JWS Using ECDSA P-521 SHA-512 45
A d. 1. ENCoding e 45
A 4.2, Validating e 47

A 5. Exanple Unsecured JWE 47

A. 6. Exanple JW5 Using General JW5 JSON Serialization 48
A.6.1. JWS Per-Signature Protected Headers 48
A.6.2. JWS Per-Signature Unprotected Headers 49
A.6.3. Conplete JOSE Header Values 49

Jones, et al. St andards Track [Page 3]

RFC 7515 JSON Wb Signature (JWB) May 2015

A . 6.4. Conplete JW5 JSON Serialization Representation 50

A 7. Exanple JW5 Using Flattened JW5 JSON Serialization 51

Appendi x B. "x5c" (X.509 Certificate Chain) Exanple 52
Appendix C. Notes on Inplenenting base64url Encodi ng w t hout

Padding 54

Appendix D. Notes on Key Selection 55

Appendi x E. Negative Test Case for "crit" Header Paraneter 57

Appendi x F. Detached Content i, 57

Acknow edgemment S 58

Aut hor s’ Addr €SS ES 58

1. Introduction

JSON Wb Signature (JW5) represents content secured with digita
signatures or Message Authentication Codes (MACs) using JSON based

[RFC7159] data structures. The JW5 cryptographi c mechani snms provide
integrity protection for an arbitrary sequence of octets. See
Section 10.5 for a discussion on the differences between digita
signatures and MACs.

Two closely related serializations for JWss are defined. The JW5
Compact Serialization is a conpact, URL-safe representation intended
for space-constrained environnents such as HITP Authorization headers
and URI query paraneters. The JW5 JSON Serialization represents JWss
as JSON objects and enables nultiple signatures and/or MACs to be
applied to the same content. Both share the sane cryptographic
under pi nni ngs.

Cryptographic algorithns and identifiers for use with this
specification are described in the separate JSON Web Al gorithns (JWA)
[JWA] specification and an | ANA registry defined by that
specification. Related encryption capabilities are described in the
separate JSON Wb Encryption (JWE) [JWE] specification

Names defined by this specification are short because a core goal is
for the resulting representations to be conpact.

1.1. Notational Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirenent Levels" [RFC2119].
The interpretation should only be applied when the terns appear in
all capital letters.

BASE64URL(OCTETS) denotes the base64url encodi ng of OCTETS, per
Section 2.

Jones, et al. St andards Track [Page 4]

RFC 7515 JSON Wb Signature (JWB) May 2015

UTF8(STRI NG denotes the octets of the UTF-8 [RFC3629] representation
of STRING where STRING is a sequence of zero or nore Uni code
[UNI CODE] characters.

ASCI | (STRING denotes the octets of the ASCII [RFC20] representation
of STRING where STRING is a sequence of zero or nore ASCl I
characters.

The concatenation of tw values A and B is denoted as A || B.
2. Term nol ogy
These terns are defined by this specification:

JSON Wb Signature (JW5)
A data structure representing a digitally signed or MACed nessage.

JOSE Header
JSON obj ect containing the paraneters describing the cryptographic
operations and paraneters enpl oyed. The JOSE (JSON hj ect Signing
and Encryption) Header is conprised of a set of Header Paraneters.

JWE Payl oad
The sequence of octets to be secured -- a.k.a. the nessage. The
payl oad can contain an arbitrary sequence of octets.

JWE Signature
Digital signature or MAC over the JW5 Protected Header and the JW5
Payl oad.

Header Paraneter
A nane/val ue pair that is menber of the JOSE Header.

JWE Protected Header
JSON obj ect that contains the Header Paranmeters that are integrity
protected by the JWS Signature digital signature or MAC operation.
For the JW5 Conpact Serialization, this conprises the entire JOSE
Header. For the JW5 JSON Serialization, this is one conmponent of
t he JOSE Header.

JWE Unprot ect ed Header
JSON obj ect that contains the Header Paraneters that are not
integrity protected. This can only be present when using the JWS
JSON Serialization.

Jones, et al. St andards Track [Page 5]

RFC 7515 JSON Wb Signature (JWB) May 2015

Base64ur| Encodi ng
Base64 encoding using the URL- and fil enanme-safe character set
defined in Section 5 of RFC 4648 [RFC4648], with all trailing '=
characters onitted (as pernmitted by Section 3.2) and without the
i nclusion of any line breaks, whitespace, or other additional
characters. Note that the base64url encoding of the enpty octet
sequence is the enpty string. (See Appendix C for notes on
i mpl ementi ng base64url encodi ng w t hout padding.)

JWE Si gni ng | nput
The input to the digital signature or MAC conputation. Its value
is ASCl | (BASE64URL(UTF8(JWS Protected Header)) || *." ||
BASE64URL(JWS Payl oad)) .

JWE Conpact Serialization
A representation of the JW5 as a conpact, URL-safe string.

JWS JSON Serialization
A representation of the JW5 as a JSON object. Unlike the JWS
Conpact Serialization, the JW5 JSON Serialization enables nultiple
digital signatures and/or MACs to be applied to the sane content.
This representation is neither optinized for conpactness nor URL-
saf e.

Unsecured JW5
A JW5 that provides no integrity protection. Unsecured JW5s use
the "al g" val ue "none".

Col l'i si on- Resi st ant Nane
A name in a nanespace that enables nanes to be allocated in a
manner such that they are highly unlikely to collide with other
nanes. Exanples of collision-resistant nanmespaces include: Donain
Names, Cbject ldentifiers (ODs) as defined in the ITUT X 660 and
X. 670 Recomrendation series, and Universally Unique IDentifiers
(UU Ds) [RFC4122]. \When using an adnministratively del egated
nanespace, the definer of a nane needs to take reasonabl e
precautions to ensure they are in control of the portion of the
nanespace they use to define the nane.

StringOr URI
A JSON string value, with the additional requirenent that while
arbitrary string val ues MAY be used, any value containing a ":"
character MJST be a URI [RFC3986]. StringOrURlI val ues are
conpared as case-sensitive strings with no transfornmations or
canoni cal i zati ons appli ed.

Jones, et al. St andards Track [Page 6]

RFC 7515 JSON Wb Signature (JWB) May 2015

The terns "JSON Wb Encryption (JWE)", "JWE Conpact Serialization",
and "JWE JSON Serialization" are defined by the JWE specification

[JVEE].

The ternms "Digital Signature” and "Message Authenticati on Code (MAC)"
are defined by the "Internet Security d ossary, Version 2" [RFC4949].

3. JSON Wb Signature (JW5) Overview

JWE represents digitally signed or MACed content using JSON data
structures and base64url encoding. These JSON data structures NMNAY
contai n whitespace and/or line breaks before or after any JSON val ues
or structural characters, in accordance with Section 2 of RFC 7159
[RFC7159]. A JWS5 represents these |ogical values (each of which is
defined in Section 2):

0 JOSE Header
o JWS Payl oad
o JWS Signature

For a JWB, the JOSE Header nenbers are the union of the nmenbers of
t hese val ues (each of which is defined in Section 2):

0 JWB Protected Header
0 JWS Unprotected Header

Thi s docunent defines two serializations for JWss: a conpact, URL-
safe serialization called the JW5 Conpact Serialization and a JSON
serialization called the JW5 JSON Serialization. 1In both
serializations, the JW5 Protected Header, JWS Payl oad, and JW5

Si gnature are base64url encoded, since JSON |lacks a way to directly
represent arbitrary octet sequences.

3.1. JWB Conpact Serialization Overview
In the JWs Conpact Serialization, no JW5 Unprotected Header is used.
In this case, the JOSE Header and the JW5 Protected Header are the

sane.

In the JW5 Conpact Serialization, a JWs is represented as the
concat enati on:

BASE64URL(UTF8(JWS Protected Header)) || '. " ||
BASE64URL(JWS Payload) || '. ||
BASE64URL(JWS Si gnat ure)

See Section 7.1 for nore information about the JW5 Conpact
Serialization.

Jones, et al. St andards Track [Page 7]

RFC 7515 JSON Wb Signature (JWB) May 2015

3.2. JW5 JSON Serialization Overview

In the JW5 JSON Serialization, one or both of the JW5 Protected
Header and JW5 Unprotected Header MUST be present. In this case, the
menbers of the JOSE Header are the union of the nmenmbers of the JWS
Prot ect ed Header and the JW5 Unprotected Header val ues that are
present.

In the JW5 JSON Serialization, a JWs is represented as a JSON obj ect
contai ning some or all of these four nenbers:

"protected", with the val ue BASE64URL(UTF8(JW5 Prot ected Header))
"header", with the value JW5 Unprotected Header

"payl oad", with the val ue BASE64URL(JWS5 Payl oad)

"signature", with the val ue BASE64URL(JW5 Si gnat ure)

O o0Oo0oo

The three base64url -encoded result strings and the JW5 Unprotected
Header value are represented as nmenbers within a JSON object. The
i nclusion of sone of these values is OPTIONAL. The JWS JSON
Serialization can al so represent nultiple signature and/ or MAC

val ues, rather than just one. See Section 7.2 for nore infornmation
about the JW5 JSON Serialization.

3.3. Exanple IJWS

This section provides an exanple of a JW5. |Its conputation is
described in nore detail in Appendix A 1, including specifying the
exact octet sequences representing the JSON val ues used and the key
val ue used.

The foll owi ng exanpl e JW5 Protected Header declares that the encoded
object is a JSON Wb Token [JWI] and the JW5 Protected Header and the
JWE Payl oad are secured using the HVAC SHA- 256 [RFC2104] [SHS]

al gorithm

{"typr:"Iwr,
"al g":"HS256"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJOeXAi O JKV1Q LAOKI ClhbGeci G JI Uzl 1Ni J9
The UTF-8 representation of the following JSON object is used as the

JWE Payl oad. (Note that the payload can be any content and need not
be a representation of a JSON object.)

Jones, et al. St andards Track [Page 8]

RFC 7515 JSON Wb Signature (JWB) May 2015

{"iss":"joe",
"exp": 1300819380,
"http://exanple.comis_root":true}

Encodi ng this JW5 Payl oad as BASE64URL(JWS Payl oad) gives this val ue
(with line breaks for display purposes only):

eyJpc3M O Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 9l eGHt
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

Computing the HVAC of the JW5 Signing Input ASCl I (BASE64URL(UTF8(JW5
Protected Header)) || '.’ || BASE64URL(JWS5 Payl oad)) with the HVAC
SHA- 256 al gorithm using the key specified in Appendix A 1 and
base64url -encoding the result yields this BASE64URL(JWS Si gnature)
val ue:

dBj f t JeZ4CVP- nB92K27uhbUJULplr WWLgFWEOE] Xk

Concat enating these values in the order Header.Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JWs Conpact Serialization (with |ine breaks
for display purposes only):

eyJO0eXAi O JKV1Q LAOKI ClhbGeci G JI Uzl INi J9

éprcSM G Jgb2Ui LAOKI CJI eHAI § EzMDAAMIkz ODAs DQogl mhOdHAGLY 91 eGHt
cGxl Lm\vbS9pc19yb290I j pOcnV f Q

dBj ft JeZ4CVP- nBI2K27uhbUIULplr wWALgFWEOE] Xk

See Appendi x A for additional exanples, including exanples using the
JWE JSON Serialization in Sections A 6 and A 7.

4. JOSE Header

For a JW5, the nenbers of the JSON object(s) representing the JOSE
Header describe the digital signature or MAC applied to the JWS
Prot ect ed Header and the JW5 Payl oad and optionally additiona
properties of the JW5. The Header Paraneter nanes within the JOSE
Header MJST be uni que; JWS parsers MJST either reject JWss with
dupl i cat e Header Paraneter names or use a JSON parser that returns
only the lexically last duplicate nenber nane, as specified in
Section 15.12 ("The JSON Object") of ECMAScript 5.1 [ECMAScript].

| mpl enentati ons are required to understand the specific Header

Paranmet ers defined by this specification that are designated as "MJST
be understood" and process themin the manner defined in this
specification. Al other Header Paraneters defined by this

Jones, et al. St andards Track [Page 9]

RFC 7515 JSON Wb Signature (JWB) May 2015

specification that are not so designated MJUST be ignored when not
understood. Unless listed as a critical Header Paraneter, per
Section 4.1.11, all Header Parameters not defined by this

speci ficati on MIST be ignored when not understood.

There are three cl asses of Header Paranmeter nanmes: Regi stered Header
Par anet er nanes, Public Header Paraneter nanes, and Private Header
Par anet er nanes.

4.1. Registered Header Paraneter Nanes

The foll owi ng Header Parameter nanmes for use in JWss are registered
in the | ANA "JSON Wb Signature and Encryption Header Paraneters"
registry established by Section 9.1, with neanings as defined in the
subsecti ons bel ow.

As indicated by the common registry, JWss and JWEs share a conmon
Header Paraneter space; when a paranmeter is used by both
specifications, its usage nust be conpati bl e between the

speci fications.

4.1.1. "alg" (A gorithm Header Paraneter

The "al g" (al gorithn) Header Paraneter identifies the cryptographic
al gorithmused to secure the JWs. The JW5 Signature value is not
valid if the "alg" value does not represent a supported al gorithm or
if there is not a key for use with that algorithm associated with the
party that digitally signed or MACed the content. "alg" val ues
shoul d either be registered in the | ANA "JSON Wb Signature and
Encryption Al gorithnms" registry established by [JWA] or be a val ue
that contains a Collision-Resistant Nane. The "alg" value is a case-
sensitive ASCI| string containing a StringOrUR value. This Header
Par amet er MUST be present and MJUST be understood and processed by

i mpl enent ati ons.

A list of defined "alg" values for this use can be found in the | ANA
"JSON Web Signature and Encryption Al gorithns" registry established
by [JWA]; the initial contents of this registry are the val ues
defined in Section 3.1 of [JWA].

4.1.2. "jku" (JWK Set URL) Header Paraneter

The "jku" (JWK Set URL) Header Paraneter is a URI [RFC3986] that
refers to a resource for a set of JSO\ encoded public keys, one of
whi ch corresponds to the key used to digitally sign the JWs. The
keys MJST be encoded as a JWK Set [JWK]. The protocol used to
acquire the resource MIST provide integrity protection; an HITP GET
request to retrieve the JWK Set MJST use Transport Layer Security

Jones, et al. St andards Track [Page 10]

RFC 7515 JSON Wb Signature (JWB) May 2015

(TLS) [RFC2818] [RFC5246]; and the identity of the server MJST be
val i dated, as per Section 6 of RFC 6125 [RFC6125]. Also, see
Section 8 on TLS requirenents. Use of this Header Paraneter is
OPTI ONAL.

4.1.3. "jwk" (JSON Wb Key) Header Paraneter

The "jwk" (JSON Wb Key) Header Paraneter is the public key that
corresponds to the key used to digitally sign the JW5. This key is
represented as a JSON Wb Key [JWK]. Use of this Header Paraneter is
OPTI ONAL.

4.1.4. "kid" (Key |ID) Header Paraneter

The "kid" (key ID) Header Paraneter is a hint indicating which key
was used to secure the JWS. This paraneter allows originators to
explicitly signal a change of key to recipients. The structure of
the "kid" value is unspecified. Its value MJIST be a case-sensitive
string. Use of this Header Paraneter is OPTI ONAL.

When used with a JWK, the "kid" value is used to match a JW "ki d"
par anet er val ue.

4.1.5. "x5u" (X. 509 URL) Header Paraneter

The "x5u" (X 509 URL) Header Paraneter is a URI [RFC3986] that refers
to a resource for the X 509 public key certificate or certificate
chain [RFC5280] corresponding to the key used to digitally sign the
JWE. The identified resource MIST provide a representation of the
certificate or certificate chain that conforns to RFC 5280 [RFC5280]
in PEMencoded form wth each certificate delimted as specified in
Section 6.1 of RFC 4945 [RFC4945]. The certificate containing the
public key corresponding to the key used to digitally sign the JWs
MUST be the first certificate. This MAY be foll owed by additiona
certificates, with each subsequent certificate being the one used to
certify the previous one. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP CGET request to retrieve
the certificate MIUST use TLS [RFC2818] [RFC5246]; and the identity of
the server MJST be validated, as per Section 6 of RFC 6125 [RFC6125].
Al so, see Section 8 on TLS requirenents. Use of this Header
Paraneter is OPTI ONAL.

4.1.6. "xbc" (X. 509 Certificate Chain) Header Paraneter
The "x5c" (X. 509 certificate chain) Header Paraneter contains the
X. 509 public key certificate or certificate chain [RFC5280]

corresponding to the key used to digitally sign the JW5. The
certificate or certificate chain is represented as a JSON array of

Jones, et al. St andards Track [Page 11]

RFC 7515 JSON Wb Signature (JWB) May 2015

certificate value strings. Each string in the array is a

base64- encoded (Section 4 of [RFC4648] -- not base64url - encoded) DER
[1 TU. X690. 2008] PKI X certificate value. The certificate containing
the public key corresponding to the key used to digitally sign the
JWS MUST be the first certificate. This MAY be foll owed by
additional certificates, with each subsequent certificate being the
one used to certify the previous one. The recipient MJST validate
the certificate chain according to RFC 5280 [RFC5280] and consi der
the certificate or certificate chain to be invalid if any validation
failure occurs. Use of this Header Paraneter is OPTI ONAL.

See Appendi x B for an exanple "x5c" val ue.

4.1.7. "x5t" (X. 509 Certificate SHA-1 Thunbprint) Header Paraneter

The "x5t" (X. 509 certificate SHA-1 t hunbprint) Header Paraneter is a
base64url -encoded SHA-1 thunbprint (a.k.a. digest) of the DER
encodi ng of the X 509 certificate [RFC5280] corresponding to the key
used to digitally sign the JW5. Note that certificate thunbprints
are al so sonetines known as certificate fingerprints. Use of this
Header Parameter is OPTI ONAL

4.1.8. "x5t#S256" (X. 509 Certificate SHA-256 Thunbprint) Header
Par anet er

The "x5t#S256" (X. 509 certificate SHA-256 thunbprint) Header
Paraneter is a base64url-encoded SHA-256 thunbprint (a.k.a. digest)
of the DER encoding of the X 509 certificate [RFC5280] correspondi ng
to the key used to digitally sign the JW5. Note that certificate
thunbprints are al so soneti nes known as certificate fingerprints.
Use of this Header Paraneter is OPTI ONAL.

4.1.9. "typ" (Type) Header Paraneter

The "typ" (type) Header Paraneter is used by JW5 applications to

decl are the nedia type [| ANA Medi aTypes] of this conplete JWB. This
is intended for use by the application when nore than one kind of

obj ect could be present in an application data structure that can
contain a JW5; the application can use this value to disamnbiguate
anong the different kinds of objects that might be present. It will
typically not be used by applications when the kind of object is

al ready known. This paraneter is ignored by JWS inplenentations; any
processing of this paraneter is perfornmed by the JW5 application

Use of this Header Parameter is OPTI ONAL.

Per RFC 2045 [RFC2045], all nedia type val ues, subtype val ues, and

paraneter nanes are case insensitive. However, paranmeter values are
case sensitive unless otherw se specified for the specific paraneter.

Jones, et al. St andards Track [Page 12]

RFC 7515 JSON Wb Signature (JWB) May 2015

To keep nessages conpact in common situations, it is RECOMVENDED t hat
producers onit an "application/" prefix of a nmedia type value in a
"typ" Header Paraneter when no other '/’ appears in the nedia type
value. A recipient using the nedia type value MJST treat it as if
"application/" were prepended to any "typ" value not containing a
"/'. For instance, a "typ" value of "exanple" SHOULD be used to
represent the "application/exanple" nedia type, whereas the nedia
type "application/ exanple; part="1/2"" cannot be shortened to
"exanpl e; part="1/2"".

The "typ" value "JOSE" can be used by applications to indicate that
this object is a JW5 or JVWE using the JWs Conpact Serialization or
the JWE Conpact Serialization. The "typ" value "JOSE+JSON' can be
used by applications to indicate that this object is a JW or JVE
using the JW5 JSON Serialization or the JWE JSON Serialization

O her type values can al so be used by applications.

4.1.10. "cty" (Content Type) Header Paraneter

The "cty" (content type) Header Paraneter is used by JW5 applications
to declare the nedia type [| ANA Medi aTypes] of the secured content
(the payload). This is intended for use by the application when nore
than one kind of object could be present in the JW5 Payl oad; the
application can use this value to disanbi guate anong the different

ki nds of objects that might be present. It will typically not be
used by applications when the kind of object is already known. This
paraneter is ignored by JW5 inplenentations; any processing of this
paraneter is performed by the JWS application. Use of this Header
Paraneter is OPTI ONAL.

Per RFC 2045 [RFC2045], all nedia type val ues, subtype val ues, and
paraneter nanes are case insensitive. However, paraneter values are
case sensitive unless otherwi se specified for the specific paraneter

To keep nessages conpact in common situations, it is RECOMVENDED t hat
producers onit an "application/" prefix of a nedia type value in a
"cty" Header Paraneter when no other '/' appears in the nedia type
value. A recipient using the nedia type value MJST treat it as if
"application/" were prepended to any "cty" value not containing a
"/". For instance, a "cty" value of "exanple" SHOULD be used to
represent the "application/exanple" nedia type, whereas the nmedia
type "application/exanple; part="1/2"" cannot be shortened to
"exanpl e; part="1/2""

Jones, et al. St andards Track [Page 13]

RFC 7515 JSON Wb Signature (JWB) May 2015

4.1.11. "crit" (Critical) Header Paraneter

The "crit" (critical) Header Paraneter indicates that extensions to
this specification and/or [JWA] are being used that MJST be
under st ood and processed. |Its value is an array listing the Header
Par anet er nanes present in the JOSE Header that use those extensions
If any of the listed extensi on Header Paraneters are not understood
and supported by the recipient, then the JWs is invalid. Producers
MJUST NOT i ncl ude Header Paraneter nanes defined by this specification
or [JWA] for use with JW5, duplicate nanmes, or nanmes that do not
occur as Header Paraneter names within the JOSE Header in the "crit"
list. Producers MJST NOT use the enpty list "[]" as the "crit"

val ue. Recipients MAY consider the JWsto be invalid if the critica
list contains any Header Parameter nanmes defined by this
specification or [JWA] for use with JW5 or if any other constraints
on its use are violated. Wen used, this Header Paraneter MJST be
integrity protected; therefore, it MJST occur only within the JW5
Protected Header. Use of this Header Paraneter is OPTIONAL. This
Header Paraneter MJST be understood and processed by inpl enentations.

An exanpl e use, along with a hypothetical "exp" (expiration tine)
field is:

{"al g":"ES256",
"erit":["exp"],
"exp":1363284000

}

4. 2. Publ i ¢ Header Paraneter Nanes

Addi tional Header Paraneter names can be defined by those using JWss.
However, in order to prevent collisions, any new Header Paraneter
name should either be registered in the | ANA "JSON Wb Si gnature and
Encrypti on Header Paraneters" registry established by Section 9.1 or
be a Public Nane (a value that contains a Collision-Resistant Nane).
In each case, the definer of the name or val ue needs to take
reasonabl e precautions to nake sure they are in control of the part
of the nanespace they use to define the Header Paraneter nane.

New Header Paraneters should be introduced sparingly, as they can
result in non-interoperable JWs.

4.3. Private Header Paraneter Nanes
A producer and consuner of a JWS nmay agree to use Header Paraneter

nanes that are Private Nanes (nanes that are not Registered Header
Par anet er nanmes (Section 4.1)) or Public Header Paraneter nanes

Jones, et al. St andards Track [Page 14]

RFC 7515 JSON Wb Signature (JWB) May 2015

(Section 4.2). Unlike Public Header Paraneter nanes, Private Header
Par anet er names are subject to collision and should be used with
cauti on.

5. Produci ng and Consum ng JW5s

5.1

Message Signature or MAC Conputation

To create a JW5, the follow ng steps are performed. The order of the
steps is not significant in cases where there are no dependencies
between the inputs and outputs of the steps.

1

2.

Jones,

Create the content to be used as the JWS Payl oad.
Conpute the encoded payl oad val ue BASE64URL(JWS5 Payl oad) .

Create the JSON object(s) containing the desired set of Header
Par anet ers, which together conprise the JOSE Header (the JWS
Prot ect ed Header and/or the JWS Unprotected Header).

Comput e the encoded header val ue BASE64URL(UTF8(JWS Prot ect ed
Header)). |If the JW5 Protected Header is not present (which can
only happen when using the JW5 JSON Serialization and no
"protected" nenber is present), let this value be the enpty
string.

Conmpute the JWS Signature in the nanner defined for the
particul ar al gorithm being used over the JW5 Signing | nput

ASCl | (BASE64URL(UTF8(JWS Protected Header)) || '." ||
BASE64URL(JWS Payl oad)). The "alg" (algorithn) Header Paraneter
MUST be present in the JOSE Header, with the al gorithm val ue
accurately representing the algorithmused to construct the JW5
Si gnat ure.

Comput e the encoded signature val ue BASE64URL(JWS Si gnhature).

If the JW5 JSON Serialization is being used, repeat this process
(steps 3-6) for each digital signature or MAC operation being
per f or med.

Create the desired serialized output. The JW5 Conpact
Serialization of this result is BASE64URL(UTF8(JW5 Prot ect ed
Header)) || .’ || BASE64URL(JWS Payload) || .’ || BASE64URL(JWS
Signature). The JW5 JSON Serialization is described in

Section 7. 2.

et al. St andards Track [Page 15]

RFC 7515 JSON Wb Signature (JWB) May 2015

5.2.

Message Signature or MAC Validation

When validating a JW5, the followi ng steps are perforned. The order
of the steps is not significant in cases where there are no
dependenci es between the inputs and outputs of the steps. |If any of
the listed steps fails, then the signature or MAC cannot be

val i dat ed.

When there are multiple JWS Signature values, it is an application
deci si on which of the JW5 Signature val ues nust successfully validate
for the JW5s to be accepted. In sone cases, all nust successfully
validate, or the JWs will be considered invalid. In other cases,
only a specific JWs Signature val ue needs to be successfully
val i dated. However, in all cases, at |east one JW5 Signature val ue
MUST successfully validate, or the JW5 MUST be considered invalid.

1. Parse the JW5 representation to extract the serialized val ues for
the conponents of the JW5. Wen using the JW5 Conpact
Serialization, these conponents are the base64url - encoded
representations of the JW5 Protected Header, the JW5 Payl oad, and
the JW5 Signature, and when using the JW5 JSON Serialization
t hese conponents al so include the unencoded JWS5 Unpr ot ect ed
Header value. \When using the JW5 Conpact Serialization, the JW5
Prot ect ed Header, the JW5 Payl oad, and the JW5 Signature are
represented as base64url -encoded values in that order, with each
val ue being separated fromthe next by a single period ('.")
character, resulting in exactly two delimting period characters
bei ng used. The JW5 JSON Serialization is described in
Section 7. 2.

2. Base64url -decode the encoded representati on of the JWS Protected
Header, following the restriction that no |ine breaks,
whi t espace, or other additional characters have been used.

3. Verify that the resulting octet sequence is a UTF-8-encoded
representation of a conpletely valid JSON object confornming to
RFC 7159 [RFC7159]; let the JWS Protected Header be this JSON
obj ect.

4. If using the JW5 Conpact Serialization, let the JOSE Header be
the JW5 Protected Header. O herw se, when using the JW5 JSON
Serialization, let the JOSE Header be the union of the menbers of
the correspondi ng JW5 Protected Header and JW5 Unprotected
Header, all of which nust be conpletely valid JSON objects.
During this step, verify that the resulting JOSE Header does not
contai n duplicate Header Paraneter nanes. Wen using the JW5

Jones, et al. St andards Track [Page 16]

RFC 7515 JSON Wb Signature (JWB) May 2015

JSON Serialization, this restriction includes that the sane
Header Paraneter name al so MJUST NOT occur in distinct JSON object
val ues that together conprise the JOSE Header

5. Verify that the inplenentation understands and can process al
fields that it is required to support, whether required by this
specification, by the algorithmbeing used, or by the "crit"
Header Paraneter value, and that the val ues of those paranmeters
are al so understood and support ed.

6. Base64url-decode the encoded representation of the JW5 Payl oad,
following the restriction that no |line breaks, whitespace, or
ot her additional characters have been used.

7. Base64url -decode the encoded representati on of the JW5 Signature,
following the restriction that no |line breaks, whitespace, or
ot her additional characters have been used.

8. Validate the JW5 Signature against the JW5 Signing | nput
ASCI | (BASE64URL(UTF8(JWS Protected Header)) || '." ||
BASE64URL(JWS Payl oad)) in the nanner defined for the al gorithm
bei ng used, which MJST be accurately represented by the val ue of
the "alg" (algorithn) Header Paraneter, which MJST be present.
See Section 10.6 for security considerations on algorithm
validation. Record whether the validation succeeded or not.

9. If the JW5 JSON Serialization is being used, repeat this process
(steps 4-8) for each digital signature or MAC val ue contained in
the representation.

10. If none of the validations in step 9 succeeded, then the JWs MJST
be considered invalid. Oherwi se, in the JW JSON Serialization
case, return a result to the application indicating which of the
val i dati ons succeeded and failed. 1In the JW5 Conpact
Serialization case, the result can sinply indicate whether or not
the JW5 was successfully validated

Finally, note that it is an application decision which algorithms may
be used in a given context. Even if a JW5 can be successfully
val i dated, unless the algorithm(s) used in the JW5 are acceptable to
the application, it SHOULD consider the JW5 to be invalid.

5.3. String Conparison Rules
Processing a JW5 inevitably requires conparing known strings to
menbers and val ues in JSON objects. For exanple, in checking what

the algorithmis, the Unicode string "alg" will be checked agai nst
the nmenber nanes in the JOSE Header to see if there is a matching

Jones, et al. St andards Track [Page 17]

RFC 7515 JSON Wb Signature (JWB) May 2015

Header Paraneter nanme. The sane process is then used to determine if
the value of the "al g" Header Paraneter represents a supported
al gorithm

The JSON rul es for doing menber nane conpari son are described in
Section 8.3 of RFC 7159 [RFC7159]. Since the only string conparison
operations that are perforned are equality and inequality, the same
rul es can be used for conparing both nmenber nanes and nenber val ues
agai nst known strings.

These conparison rules MJST be used for all JSON string conparisons
except in cases where the definition of the nenber explicitly calls
out that a different conparison rule is to be used for that nenber
value. Only the "typ" and "cty" nenber values defined in this
speci fication do not use these conparison rules.

Some applications may include case-insensitive information in a case-
sensitive value, such as including a DNS nane as part of a "kid" (key
ID) value. |In those cases, the application may need to define a
convention for the canonical case to use for representing the case-

i nsensitive portions, such as |owercasing them if nore than one
party m ght need to produce the same value so that they can be
compared. (However, if all other parties consume whatever val ue the
producing party emtted verbatimw thout attenpting to conpare it to
an i ndependently produced val ue, then the case used by the producer
will not matter.)

Al so, see the JSON security considerations in Section 10.12 and the
Uni code security considerations in Section 10.13.

6. Key ldentification

It is necessary for the recipient of a JW5 to be able to determ ne
the key that was enployed for the digital signature or MAC operation
The key enpl oyed can be identified using the Header Paraneter nethods
described in Section 4.1 or can be identified using nmethods that are
outside the scope of this specification. Specifically, the Header
Paraneters "jku", "jwk", "kid", "x5u", "x5c", "x5t", and "x5t#S256"
can be used to identify the key used. These Header Paraneters MJST
be integrity protected if the information that they convey is to be
utilized in a trust decision; however, if the only information used
in the trust decision is a key, these paraneters need not be
integrity protected, since changing themin a way that causes a
different key to be used will cause the validation to fail

The producer SHOULD include sufficient information in the Header

Paraneters to identify the key used, unless the application uses
anot her neans or convention to determ ne the key used. Validation of

Jones, et al. St andards Track [Page 18]

RFC 7515 JSON Wb Signature (JWB) May 2015

the signature or MAC fails when the algorithmused requires a key
(which is true of all algorithnms except for "none") and the key used
cannot be determ ned.

The means of exchangi ng any shared symetric keys used is outside the
scope of this specification

Al so, see Appendix D for notes on possible key selection algorithns.
7. Serializations

JWBs use one of two serializations: the JW5 Conpact Serialization or
the JW5 JSON Serialization. Applications using this specification
need to specify what serialization and serialization features are
used for that application. For instance, applications m ght specify
that only the JW5 JSON Serialization is used, that only JW JSON
Serialization support for a single signature or MAC value is used, or
that support for nultiple signatures and/or MAC values is used. JW5
i mpl enentations only need to inplenent the features needed for the
applications they are designed to support.

7.1. JWS Conpact Serialization

The JW5 Conpact Serialization represents digitally signed or MACed
content as a conpact, URL-safe string. This string is:

BASE64URL(UTF8(JWS Protected Header)) || '. " ||
BASE64URL(JW5 Payload) || '." ||
BASE64URL(JWS Si gnat ure)

Only one signature/ MAC i s supported by the JW5 Conpact Serialization
and it provides no syntax to represent a JW5 Unprotected Header
val ue.

7.2. JW5 JSON Serialization

The JW5 JSON Serialization represents digitally signed or MACed
content as a JSON object. This representation is neither optinized
for conpactness nor URL-safe.

Two closely related syntaxes are defined for the JW5 JSON
Serialization: a fully general syntax, w th which content can be
secured with nore than one digital signature and/or MAC operation
and a flattened syntax, which is optimzed for the single digita
signature or MAC case.

Jones, et al. St andards Track [Page 19]

RFC 7515 JSON Wb Signature (JWB) May 2015

7.2.1. Ceneral JW5 JSON Serialization Syntax

The followi ng nenbers are defined for use in top-level JSON objects
used for the fully general JW5 JSON Serialization syntax:

payl oad
The "payl oad" nenber MJST be present and contain the val ue
BASE64URL(JWS Payl oad) .

si gnat ures
The "signatures"” menber value MJST be an array of JSON objects.
Each object represents a signature or MAC over the JW5 Payl oad and
the JW5 Protected Header.

The followi ng nenbers are defined for use in the JSON objects that
are elenents of the "signatures" array:

protected
The "protected" nenmber MJST be present and contain the val ue
BASE64URL(UTF8(JW5 Prot ect ed Header)) when the JWS5 Protected
Header value is non-enpty; otherwise, it MJST be absent. These
Header Paraneter values are integrity protected.

header
The "header" nmenber MJST be present and contain the value JWS
Unpr ot ect ed Header when the JWS Unprotected Header val ue is non-
enpty; otherwise, it MJST be absent. This value is represented as
an unencoded JSON object, rather than as a string. These Header
Par anet er values are not integrity protected.

signature
The "signature" menber MJST be present and contain the val ue
BASE64URL(JWS Si gnature).

At | east one of the "protected" and "header" nenbers MJST be present
for each signature/ MAC conputation so that an "al g" Header Paraneter
val ue i s conveyed.

Addi tional nenbers can be present in both the JSON objects defined
above; if not understood by inplenentations encountering them they
MUST be i gnor ed.

The Header Paraneter val ues used when creating or validating

i ndi vi dual signature or MAC values are the union of the two sets of
Header Paraneter val ues that nmay be present: (1) the JW5 Protected
Header represented in the "protected" nmenmber of the signature/ MAC s
array elenent, and (2) the JW5 Unprotected Header in the "header”

Jones, et al. St andards Track [Page 20]

RFC 7515 JSON Wb Signature (JWB) May 2015

menber of the signature/MAC s array el enent. The union of these sets
of Header Paraneters conprises the JOSE Header. The Header Paraneter
names in the two | ocations MJST be disjoint.

Each JW5 Signature value is conmputed using the paraneters of the
correspondi ng JOSE Header value in the same manner as for the JWs
Conpact Serialization. This has the desirable property that each JWs
Signature value represented in the "signatures" array is identical to
the val ue that woul d have been conputed for the same paraneter in the
JWE Conpact Serialization, provided that the JW5 Protected Header

val ue for that signature/ MAC conputation (which represents the
integrity-protected Header Paraneter val ues) natches that used in the
JWS Conpact Serialization.

In sunmary, the syntax of a JW5 using the general JW5 JSON
Serialization is as foll ows:

"payl oad": "<payl oad cont ent s>"

"signatures":|

{"protected":"<integrity-protected header 1 contents>"
"header": <non-integrity-protected header 1 contents>,
"signhature":"<signature 1 contents>"},

{"protected":"<integrity-protected header N contents>",
"header": <non-integrity-protected header N contents>,
"signhature":"<signature N contents>"}]

}

See Appendi x A.6 for an exanple JWS using the general JW5 JSON
Serialization syntax.

7.2.2. Flattened JW5 JSON Serialization Syntax

The flattened JW5 JSON Serialization syntax is based upon the genera
syntax but flattens it, optimzing it for the single digita

signature/ MAC case. It flattens it by renoving the "signatures"
menber and i nstead pl aci ng those nenbers defined for use in the
"signatures" array (the "protected", "header", and "signature"

menbers) in the top-level JSON object (at the same |evel as the
"payl oad" menber).

The "signatures" nmenber MUST NOT be present when using this syntax.
O her than this syntax difference, JW5 JSON Serialization objects
using the flattened syntax are processed identically to those using
t he general syntax.

Jones, et al. St andards Track [Page 21]

RFC 7515 JSON Wb Signature (JWB) May 2015

In summary, the syntax of a JW5S using the flattened JW5 JSON
Serialization is as follows:

"payl oad": "<payl oad cont ent s>"
"protected":"<integrity-protected header contents>"
"header": <non-integrity-protected header contents>,
"signature":"<signature contents>"

}

See Appendix A 7 for an exanple JW5 using the flattened JW5 JSON
Serialization syntax.

8. TLS Requirenments

| mpl enent ati ons supporting the "jku" and/or "x5u" Header Paraneters
MUST support TLS. Wich TLS version(s) ought to be inplenmented wll
vary over tinme and depend on the w despread depl oynent and known
security vulnerabilities at the tinme of inplenmentation. At the tine
of this witing, TLS version 1.2 [RFC5246] is the nost recent

versi on.

To protect against information disclosure and tanpering,
confidentiality protection MIST be applied using TLS with a

ci phersuite that provides confidentiality and integrity protection
See current publications by the | ETF TLS wor ki ng group, including RFC
6176 [RFC6176], for guidance on the ciphersuites currently considered
to be appropriate for use. Al so, see "Recommendations for Secure Use
of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS)" [RFC7525] for recommendations on inproving the
security of software and services using TLS.

Whenever TLS is used, the identity of the service provider encoded in
the TLS server certificate MJUST be verified using the procedures
described in Section 6 of RFC 6125 [RFC6125].

9. | ANA Consi derati ons

The followi ng registration procedure is used for all the registries
est abl i shed by this specification

Val ues are registered on a Specification Required [RFC5226] basis
after a three-week review period on the jose-reg-review@etf.org
mailing list, on the advice of one or nore Designated Experts.
However, to allow for the allocation of values prior to publication
the Designated Experts may approve registration once they are
satisfied that such a specification will be published.

Jones, et al. St andards Track [Page 22]

RFC 7515 JSON Wb Signature (JWB) May 2015

Regi stration requests sent to the nailing list for review should use
an appropriate subject (e.g., "Request to register header paraneter:
exanpl e").

Wthin the review period, the Designated Experts will either approve
or deny the registration request, conmunicating this decision to the
review list and 1 ANA. Denials should include an explanation and, if
appl i cabl e, suggestions as to how to nmake the request successful

Regi stration requests that are undetermi ned for a period |onger than
21 days can be brought to the IESG s attention (using the
iesg@etf.org mailing list) for resolution

Criteria that should be applied by the Designated Experts includes
det ermi ni ng whet her the proposed registration duplicates existing
functionality, whether it is likely to be of general applicability or
useful only for a single application, and whether the registration
description is clear.

| ANA nust only accept registry updates fromthe Designated Experts
and should direct all requests for registration to the review mailing
list.

It is suggested that nultiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly informed revi ew of
registration decisions. |n cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Expert, that Expert should defer to the judgnent of the other

Experts.

9.1. JSON Wb Signature and Encryption Header Paraneters Registry

This specification establishes the | ANA "JSON Wb Si gnature and
Encrypti on Header Paraneters" registry for Header Paraneter nanes.
The registry records the Header Paraneter nane and a reference to the
specification that defines it. The sane Header Paraneter nane can be
registered nmultiple times, provided that the paraneter usage is
conpati bl e between the specifications. Different registrations of
the sane Header Paraneter nanme will typically use different Header
Par anet er Usage Locations val ues.

9.1.1. Registration Tenplate

Header Paraneter Nane:
The nane requested (e.g., "kid"). Because a core goal of this
specification is for the resulting representations to be conpact,
it is RECOWENDED that the name be short -- not to exceed 8
characters without a conpelling reason to do so. This nanme is

Jones, et al. St andards Track [Page 23]

RFC 7515 JSON Wb Signature (JWB) May 2015

9.

1

case sensitive. Nanes may not match other registered nanes in a
case-insensitive manner unless the Designated Experts state that
there is a conpelling reason to allow an exception

Header Paraneter Description:
Bri ef description of the Header Paraneter (e.g., "Key ID").

Header Paraneter Usage Location(s):
The Header Paraneter usage |ocations, which should be one or nore
of the values "JW5" or "JWE'.

Change Controller:
For Standards Track RFCs, list the "I ESG'. For others, give the
nane of the responsible party. Oher details (e.g., posta
address, emmil address, honme page URI) may al so be incl uded.

Speci ficati on Docunent (s):
Ref erence to the docunent or docunents that specify the paraneter,
preferably including URIs that can be used to retrieve copi es of
the docunents. An indication of the relevant sections may al so be
i ncluded but is not required.

2. Initial Registry Contents

This section registers the Header Paranmeter names defined in
Section 4.1 in this registry.

0 Header Paraneter Nane: "al g"

0 Header Paraneter Description: Al gorithm

0 Header Paraneter Usage Location(s): JW5

0 Change Controller: |ESG

o Specification Docunent(s): Section 4.1.1 of RFC 7515
0 Header Paraneter Nane: "jku"

0 Header Paraneter Description: JWK Set URL

0 Header Paraneter Usage Location(s): JW5

0 Change Controller: |ESG

o Specification Docunent(s): Section 4.1.2 of RFC 7515
0 Header Paraneter Nane: "jwk"

0 Header Paraneter Description: JSON Wb Key

0 Header Paraneter Usage Location(s): JWs

0 Change Controller: |ESG

o Specification Docunent(s): Section 4.1.3 of RFC 7515

Jones, et al. St andards Track [Page 24]

RFC 7515

OO0O0OO0Oo OO0OO0OO0Oo OO0OO0OO0Oo OO0OO0OO0Oo OO0OO0OO0Oo OO0OO0OO0Oo OO0OO0OO0Oo

OO0O0OO0Oo

Jones,

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

et al.

JSON Wb Signature (JW5)

Par anet er Nane: "kid"

Par aneter Description: Key ID

Par anmet er Usage Location(s): JWs

Controller: |1ESG

cation Docunent(s): Section 4.1.4 of RFC 7515

Par amet er Name: "x5u"

Par anmet er Description: X 509 URL

Par anmet er Usage Location(s): JWs

Controller: |IESG

cation Docunment(s): Section 4.1.5 of RFC 7515

Par amet er Nanme: "x5c"

Par anmet er Description: X 509 Certificate Chain
Par anmet er Usage Location(s): JWs

Controller: |IESG

cation Docunment(s): Section 4.1.6 of RFC 7515

Paranet er Nane: "x5bt"

May 2015

Paraneter Description: X 509 Certificate SHA-1 Thunbpri nt

Par anmet er Usage Location(s): JWs
Controller: |1ESG
cation Docunment(s): Section 4.1.7 of RFC 7515

Par amet er Nane: "xbt#S256"

Paraneter Description: X 509 Certificate SHA-256 Thunbpri nt

Par anmet er Usage Location(s): JWs
Controller: |1ESG
cation Docunent(s): Section 4.1.8 of RFC 7515

Par anet er Nanme: "typ"

Par anet er Description: Type

Par anmet er Usage Location(s): JWs

Controller: |1ESG

cation Docunent(s): Section 4.1.9 of RFC 7515

Par anet er Nanme: "cty"

Par anet er Description: Content Type

Par anmet er Usage Location(s): JWs

Controller: |1ESG

cation Docunent(s): Section 4.1.10 of RFC 7515

Paraneter Nane: "crit"

Par anmet er Description: Critical

Par anmet er Usage Location(s): JWs

Controller: |IESG

cation Docunent(s): Section 4.1.11 of RFC 7515

St andards Track

[Page 25]

RFC 7515 JSON Wb Signature (JWB) May 2015

9.2. Media Type Registration
9.2.1. Registry Contents

This section registers the "application/jose" nmedia type [RFC2046] in
the "Media Types" registry [| ANA Medi aTypes] in the manner descri bed
in RFC 6838 [RFC6838], which can be used to indicate that the content
is a JW or JVEE using the JW5 Conpact Serialization or the JVE
Conpact Serialization. This section also registers the "application/
joset+json" nmedia type in the "Media Types" registry, which can be
used to indicate that the content is a JW or JVWE using the JW5 JSON
Serialization or the JWE JSON Serialization.

Type nane: application

Subt ype name: jose

Requi red paraneters: n/a

Optional parameters: n/a

Encodi ng consi derations: 8bit; application/jose values are encoded

as a series of base64url -encoded val ues (sone of which nmay be the

enpty string), each separated fromthe next by a single period

(".") character.

0 Security considerations: See the Security Considerations section
of RFC 7515.

0 Interoperability considerations: n/a

o Published specification: RFC 7515

o Applications that use this nedia type: OpenlD Connect, Mzilla
Persona, Sal esforce, Google, Android, Wndows Azure, Xbox One,
Amazon Web Services, and nunerous others that use JWs

o Fragnment identifier considerations: n/a

0 Additional information

OoO0Oo0o0oo

Magi ¢ nunber(s): n/a
File extension(s): n/a
Maci ntosh file type code(s): n/a

0 Person & enmmil address to contact for further information
M chael B. Jones, nbj @i crosoft.com

o |Intended usage: COVWON

0 Restrictions on usage: none

0 Author: Mchael B. Jones, nbj @ crosoft.com

0 Change Controller: IESG

o Provisional registration? No

Jones, et al. St andards Track [Page 26]

RFC 7515 JSON Wb Signature (JWB) May 2015

10.

10.

Type nane: application

Subt ype name: j ose+j son

Requi red paraneters: n/a

Optional parameters: n/a

Encodi ng consi derations: 8bit; application/jose+json values are
represented as a JSON Obj ect; UTF-8 encodi ng SHOULD be enpl oyed
for the JSON object.

Security considerations: See the Security Considerations section
of RFC 7515

Interoperability considerations: n/a

Publ i shed specification: RFC 7515

Applications that use this nedia type: N nbus JOSE + JWI library
Fragnent identifier considerations: n/a

Addi tional infornmation:

o OO0OO0OO0Oo

Oo0oo0oo0oo

Magi ¢ nunber(s): n/a
File extension(s): n/a
Maci ntosh file type code(s): n/a

Person & email address to contact for further information:
M chael B. Jones, nbj @i crosoft.com

I nt ended usage: COVMVON

Restrictions on usage: none

Aut hor: M chael B. Jones, nbj @ crosoft.com

Change Controller: |ESG

Provi si onal registration? No

o

Oo0oo0oo0oo

Security Considerations

Al'l of the security issues that are pertinent to any cryptographic
application nust be addressed by JWs/ JWE JWK agents. Anong these
i ssues are protecting the user’s asynmetric private and symetric
secret keys and enpl oyi ng counterneasures to various attacks.

Al'l the security considerations in "XM Signature Syntax and
Processing Version 2.0" [WBC. NOTE-xnl dsi g-core2-20130411], al so apply
to this specification, other than those that are XM. specific.

Li kewi se, many of the best practices docunented in "XM. Signature
Best Practices" [WBC. NOTE-xml dsi g- best practi ces-20130411] al so apply
to this specification, other than those that are XM. specific.

1. Key Entropy and Random Val ues
Keys are only as strong as the anount of entropy used to generate

them A minimumof 128 bits of entropy should be used for all keys,
and dependi ng upon the application context, nmore may be required.

Jones, et al. St andards Track [Page 27]

RFC 7515 JSON Wb Signature (JWB) May 2015

| mpl enent ati ons nust randomy generate public/private key pairs, MAC
keys, and paddi ng values. The use of inadequate pseudorandom nunber
generators (PRNGs) to generate cryptographic keys can result in
little or no security. An attacker may find it rmuch easier to
reproduce the PRNG environment that produced the keys, searching the
resulting snmall set of possibilities rather than brute-force
searching the whol e key space. The generation of quality random
nunbers is difficult. RFC 4086 [RFC4086] offers inportant gui dance
in this area

10.2. Key Protection

| npl enent ati ons nust protect the signer’s private key. Conprom se of
the signer’s private key pernmits an attacker to nmasquerade as the
si gner.

| mpl enent ati ons nust protect the MAC key. Conprom se of the MAC key
may result in undetectable nodification of the authenticated content.

10.3. Key Origin Authentication

The key managenent techni que enpl oyed to obtain public keys nust
aut henticate the origin of the key; otherwise, it is unknown what
party signed the nessage

Li kewi se, the key nanagenent techni que enployed to distribute MAC
keys nmust provide data origin authentication; otherw se, the contents
are delivered with integrity from an unknown source.

10.4. Cryptographic Agility

See Section 8.1 of [JWA] for security considerations on cryptographic
agility.

10.5. Differences between Digital Signatures and MACs

While MACs and digital signatures can both be used for integrity
checking, there are sone significant differences between the security
properties that each of them provides. These need to be taken into
consi derati on when desi gning protocols and sel ecting the algorithns
to be used in protocols.

Bot h signatures and MACs provide for integrity checking -- verifying
that the nmessage has not been nodified since the integrity val ue was
conputed. However, MACs provide for origination identification only
under specific circunstances. It can nornmally be assuned that a
private key used for a signature is only in the hands of a single
entity (although perhaps a distributed entity, in the case of

Jones, et al. St andards Track [Page 28]

RFC 7515 JSON Wb Signature (JWB) May 2015

10.

10.

replicated servers); however, a MAC key needs to be in the hands of
all the entities that use it for integrity conmputation and checki ng.
Validation of a MAC only provides corroboration that the nmessage was
generated by one of the parties that knows the symetric MAC key.
This means that origination can only be determned if a MAC key is
known only to two entities and the recipient knows that it did not
create the nmessage. MAC validation cannot be used to prove
origination to a third party.

6. Algorithm Validation

The digital signature representations for sonme algorithns include

i nformati on about the algorithmused inside the signature value. For
i nstance, signatures produced with RSASSA- PKCS1-v1l 5 [RFC3447] encode
the hash function used, and many libraries actually use the hash

al gorithm specified inside the signature when validating the
signature. Wen using such libraries, as part of the algorithm

val i dation performed, inplenentations MJST ensure that the algorithm
i nformati on encoded in the signature corresponds to that specified
with the "al g" Header Parameter. |If this is not done, an attacker
could claimto have used a strong hash al gorithmwhile actually using
a weak one represented in the signature val ue.

7. Algorithm Protection

In sone usages of JW5, there is a risk of algorithm substitution
attacks, in which an attacker can use an existing digital signature
value with a different signature algorithmto nmake it appear that a
si gner has signed sonething that it has not. These attacks have been
di scussed in detail in the context of Cryptographic Message Syntax
(CvB) [RFC6211]. This risk arises when all of the follow ng are
true:

o Verifiers of a signature support multiple algorithns.

o Gven an existing signature, an attacker can find anot her payl oad
that produces the sane signature value with a different al gorithm

0 The payload crafted by the attacker is valid in the application
cont ext .

There are several ways for an application to nitigate algorithm
substitution attacks:

o Use only digital signature algorithns that are not vulnerable to
substitution attacks. Substitution attacks are only feasible if
an attacker can compute pre-inmages for a hash function accepted by

Jones, et al. St andards Track [Page 29]

RFC 7515 JSON Wb Signature (JWB) May 2015

the recipient. Al JWA-defined signature al gorithns use SHA-2
hashes, for which there are no known pre-image attacks, as of the
time of this witing.

0 Require that the "al g" Header Paraneter be carried in the JW5
Protected Header. (This is always the case when using the JWs
Conpact Serialization and is the approach taken by CMS [RFC6211].)

0 Include a field containing the algorithmin the application
payl oad, and require that it be matched with the "al g* Header
Paraneter during verification. (This is the approach taken by
PKI X [RFC5280] .)

10.8. Chosen Pl ai nt ext Attacks

Creators of JWss should not allowthird parties to insert arbitrary
content into the nessage w thout adding entropy not controlled by the
third party.

10.9. Timing Attacks

When crypt ographic algorithns are inplenmented in such a way that
successful operations take a different anount of tine than
unsuccessful operations, attackers may be able to use the tine
difference to obtain infornmation about the keys enployed. Therefore,
such tinmng differences nust be avoi ded.

10.10. Replay Protection

While not directly in scope for this specification, note that
applications using JWs (or JVWE) objects can thwart replay attacks by
i ncluding a uni que nessage identifier as integrity-protected content
in the JWs (or JVWE) nmessage and having the recipient verify that the
message has not been previously received or acted upon

10.11. SHA-1 Certificate Thunbprints

A SHA-1 hash is used when conputing "x5t" (X 509 certificate SHA-1
t hunmbprint) values, for conpatibility reasons. Should an effective
means of producing SHA-1 hash collisions be devel oped and shoul d an
attacker wish to interfere with the use of a known certificate on a
given system this could be acconplished by creating another
certificate whose SHA-1 hash value is the same and adding it to the
certificate store used by the intended victim A prerequisite to
this attack succeeding is the attacker having wite access to the
intended victims certificate store

Jones, et al. St andards Track [Page 30]

RFC 7515 JSON Wb Signature (JWB) May 2015

10.

10.

Alternatively, the "x5t#S256" (X 509 certificate SHA-256 thunbprint)
Header Paraneter could be used instead of "x5t". However, at the
time of this witing, no devel opnent platformis known to support
SHA- 256 certificate thunbprints.

12. JSON Security Considerations

Strict JSON [RFC7159] validation is a security requirenent. |f

mal formed JSON is received, then the intent of the producer is

i npossible to reliably discern. Anbiguous and potentially
exploitable situations could arise if the JSON parser used does not
reject mal formed JSON syntax. |In particular, any JSON i nputs not
conformng to the JSON-text syntax defined in RFC 7159 MJUST be
rejected in their entirety by JSON parsers.

Section 4 of "The JavaScript (bject Notation (JSON) Data Interchange
Format" [RFC7159] states, "The nanes wi thin an object SHOULD be
uni que", whereas this specification states that

The Header Paraneter names within the JOSE Header MUST be uni que
JWE parsers MJST either reject JWss with duplicate Header

Par anet er nanmes or use a JSON parser that returns only the
lexically last duplicate nenber name, as specified in

Section 15.12 ("The JSON Object") of ECMAScript 5.1 [ECMAScript].

Thus, this specification requires that the "SHOULD' in Section 4 of
[RFC7159] be treated as a "MJST" by producers and that it be either
treated as a "MJST" or treated in the manner specified in ECMAScri pt
5.1 by consuners. Anbi guous and potentially exploitable situations
could arise if the JSON parser used does not enforce the uni queness
of menber nanes or returns an unpredictable value for duplicate
nmenber nanes.

Some JSON parsers might not reject input that contains extra
significant characters after a valid input. For instance, the input
"{"tag":"val ue"} ABCD' contains a valid JSON-text object followed by
the extra characters "ABCD'. |Inplenentations MJST consi der JWSs
cont ai ni ng such input to be invalid.

13. Uni code Conparison Security Considerations

Header Paraneter names and al gorithm nanes are Unicode strings. For
security reasons, the representations of these names nust be conpared
verbatimafter perform ng any escape processing (as per Section 8.3
of RFC 7159 [RFC7159]). This neans, for instance, that these JSON
strings nmust conpare as being equal ("sig", "\u0073ig"), whereas
these nust all compare as being not equal to the first set or to each
other ("SIG', "Sig", "si\u0047").

Jones, et al. St andards Track [Page 31]

RFC 7515 JSON Wb Signature (JWB) May 2015

11.

11.

JSON strings can contain characters outside the Unicode Basic
Multilingual Plane. For instance, the G clef character (U+1D11E) nay
be represented in a JSON string as "\uD834\uDD1E"'. Ideally, JW5

i mpl enent ati ons SHOULD ensure that characters outside the Basic

Mul tilingual Plane are preserved and conpared correctly;
alternatively, if this is not possible due to these characters
exercising limtations present in the underlying JSON i npl enentati on,
then input containing them MJUST be rejected.

Ref er ences
1. Nornmtive References

[ECMAScript] Ecna International, "ECMAScript Language Specification,
5.1 Edition", ECMA 262, June 2011,
<http://ww. ecma-international.org/ecm-262/5. 1/
ECVA- 262. pdf >.

[1 ANA. Medi aTypes]
| ANA, "Media Types",
<http://ww. i ana. or g/ assi gnnment s/ nedi a-t ypes>.

[1 TU. X690. 2008]
I nternational Tel ecomunications Union, "Information
Technol ogy - ASN. 1 encoding rul es: Specification of
Basi ¢ Encodi ng Rul es (BER), Canonical Encodi ng Rul es
(CER) and Di stingui shed Encoding Rules (DER)", ITUT
Reconmendati on X. 690, 2008.

[IVA] Jones, M, "JSON Wb Algorithms (JWA)", RFC 7518,
DA 10.17487/ RFC7518, May 2015,
<http://ww.rfc-editor.org/info/rfc7518>.

[IVK] Jones, M, "JSON Wb Key (JWK)", RFC 7517,
DO 10.17487/ RFC7517, May 2015,
<http://ww.rfc-editor.org/info/rfc7517>.

[RFC20] Cerf, V., "ASCIl format for Network Interchange",
STD 80, RFC 20, DA 10.17487/ RFC0020, Cctober 1969,
<http://ww. rfc-editor.org/info/rfc20>.

[RFC2045] Freed, N. and N. Borenstein, "Miltipurpose |Internet Mil
Extensions (M ME) Part One: Format of |nternet Message
Bodi es", RFC 2045, DO 10. 17487/ RFC2045, Novenber 1996,
<http://ww. rfc-editor.org/info/rfc2045>.

Jones, et al. St andards Track [Page 32]

[RFC2046]

[RFC2119]

[RFC2818]

[RFC3629]

[RFC3986]

[RFC4648]

[RFC4945]

[RFC4949]

[RFC5246]

[RFC5280]

JSON Wb Signature (JW5) May 2015

Freed, N. and N. Borenstein, "Miltipurpose |Internet Mail
Extensions (M ME) Part Two: Media Types", RFC 2046,

DO 10.17487/ RFC2046, Novemnber 1996,

<http://ww. rfc-editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,

<http://ww. rfc-editor.org/info/rfc2119>.

Rescorla, E., "HTTP Over TLS', RFC 2818,
DA 10.17487/ RFC2818, May 2000,
<http://ww.rfc-editor.org/info/rfc2818>.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, DO 10. 17487/ RFC3629, Novenber
2003, <http://www. rfc-editor.org/info/rfc3629>.

Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Ceneric Syntax", STD 66,

RFC 3986, DO 10.17487/ RFC3986, January 2005,
<http://ww.rfc-editor.org/info/rfc3986>.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10. 17487/ RFC4648, Cctober
2006, <http://www.rfc-editor.org/info/rfc4648>.

Korver, B., "The Internet IP Security PKI Profile of
| KEv1/ | SAKMP, | KEv2, and PKI X', RFC 4945,

DA 10.17487/ RFC4945, August 2007,
<http://ww.rfc-editor.org/infol/rfc4945>,

Shirey, R, "lInternet Security G ossary, Version 2",
FYI 36, RFC 4949, DA 10.17487/ RFC4949, August 2007,
<http://ww. rfc-editor.org/info/rfc4949>.

Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,

<http://ww. rfc-editor.org/info/rfc5246>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, DA 10.17487/ RFC5280, Nay
2008, <http://ww. rfc-editor.org/info/rfc5280>.

St andards Track [Page 33]

RFC 7515

[RFC6125]

[RFC6176]

[RFC7159]

[UNI CODE]

11.2. Informati

[CanvasApp]

[JSS]

[JVE]

[Jwr]

JSON Wb Signature (JW5) May 2015

Sai nt-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service
Identity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport
Layer Security (TLS)", RFC 6125, DO 10.17487/ RFC6125,
March 2011, <http://ww.rfc-editor.org/info/rfc6125>.

Turner, S. and T. Polk, "Prohibiting Secure Sockets
Layer (SSL) Version 2.0", RFC 6176,

DA 10.17487/ RFC6176, March 2011,

<http://www. rfc-editor.org/info/rfc6176>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", RFC 7159,

DA 10.17487/ RFC7159, March 2014,

<http://ww. rfc-editor.org/info/rfc7159>.

The Uni code Consortium "The Uni code Standard",
<htt p: // ww. uni code. or g/ versi ons/ | at est/ >,

ve References

Facebook, "Canvas Applications”,
<htt p:// devel opers. f acebook. com docs/ aut henti cati on/
canvas>.

Bradl ey, J. and N. Sakinura, Ed., "JSON Sinple Sign",
Sept ember 2010, <http://jsonenc.info/jss/1.0/>.

Jones, M and J. Hildebrand, "JSON Web Encryption
(JWE)", RFC 7516, DA 10.17487/ RFC7516, May 2015,
<http://ww.rfc-editor.org/info/rfc7516>.

Jones, M, Bradley, J., and N Sakimura, "JSON Wb Token
(JWNn ", RFC 7519, DO 10.17487/RFC7519, My 2015,
<http://ww.rfc-editor.org/info/rfc7519>.

[Magi cSi gnat ur es]

[RFC2104]

Jones, et al.

Panzer, J., Ed., Laurie, B., and D. Bal fanz, "Magic
Si gnatures", January 2011,

<ht t p: // sal mon- pr ot ocol . googl ecode. com svn/ t runk/
draft-panzer-nagi csi g-01. htnl >,

Krawczyk, H., Bellare, M, and R Canetti, "HWAC
Keyed- Hashi ng for Message Authentication”, RFC 2104,
DA 10.17487/ RFC2104, February 1997,

<http://www. rfc-editor.org/info/rfc2104>.

St andards Track [Page 34]

RFC 7515

[REC3447]

[RFC4086]

[RFC4122]

[RFC5226]

[RFC6211]

[RFC6838]

[RFC7525]

[SHS]

JSON Wb Signature (JW5) May 2015

Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, DO 10.17487/ RFC3447, February
2003, <http://www. rfc-editor.org/info/rfc3447>.

East| ake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenents for Security", BCP 106,
RFC 4086, DO 10.17487/ RFC4086, June 2005,
<http://www. rfc-editor.org/info/rfc4086>.

Leach, P., Mealling, M, and R Salz, "A Universally
Uni que I Dentifier (UUI D) URN Nanespace", RFC 4122,
DA 10.17487/ RFC4122, July 2005,
<http://ww.rfc-editor.org/info/rfc4122>.

Narten, T. and H. Alvestrand, "Guidelines for Witing an
| ANA Considerations Section in RFCs", BCP 26, RFC 5226,
DA 10.17487/ RFC5226, May 2008,
<http://ww.rfc-editor.org/infol/rfc5226>.

Schaad, J., "Cryptographic Message Syntax (CMVS)
Algorithmldentifier Protection Attribute", RFC 6211,
DA 10.17487/ RFC6211, April 2011,
<http://ww.rfc-editor.org/info/rfc6211>.

Freed, N., Klensin, J., and T. Hansen, "Media Type
Speci fications and Regi stration Procedures", BCP 13,
RFC 6838, DO 10.17487/ RFC6838, January 2013,
<http://ww. rfc-editor.org/info/rfc6838>.

Sheffer, Y., Holz, R, and P. Saint-Andre,
"Recommendati ons for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DO 10.17487/ RFC7525, My
2015, <http://ww. rfc-editor.org/info/rfc7525>.

National Institute of Standards and Technol ogy, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fipsl80-4/
fips-180-4. pdf >.

[WBC. NOTE- xml dsi g- best practi ces-20130411]

Jones,

et al.

H rsch, F. and P. Datta, "XM. Signature Best Practices",
Wrld Wde Web Consortium Note

NOTE- xm dsi g- best practi ces-20130411, April 2013,
<http://ww. w3. org/ TR/ 2013/

NOTE- xm dsi g- best practi ces-20130411/ >.

St andards Track [Page 35]

RFC 7515

JSON Wb Signature (JW5) May 2015

[WBC. NOTE- xml dsi g- core2-20130411]

Jones,

et al.

Eastl ake, D., Reagle, J., Solo, D., Hirsch, F.

Roessler, T., Yiu, K, Datta, P., and S. Cantor, "XM

Si gnature Syntax and Processing Version 2.0", Wrld Wde
Web Consortium Note NOTE-xmi dsi g-core2-20130411, Apri

2013,
<http://ww. w3. or g/ TR/ 2013/ NOTE- xnl dsi g- cor e2- 20130411/ >.

St andards Track [Page 36]

RFC 7515 JSON Wb Signature (JWB) May 2015

Appendi x A, JWS Exanpl es

Thi s section provides several exanples of JWSs. VWhile the first
three exanples all represent JSON Wb Tokens (JWs) [JWI], the
payl oad can be any octet sequence, as shown in Appendi x A 4.

A 1. Exanple IJW5 Usi ng HVAC SHA- 256
A.1.1. Encoding

The foll owi ng exanpl e JW5 Protected Header declares that the data
structure is a JW [JWI] and the JW5 Signing Input is secured using
t he HVAC SHA- 256 al gorithm

{ll t yplI : n J\M‘ll ,
"al g":"HS256"}

To renove potential anbiguities in the representation of the JSON

obj ect above, the actual octet sequence representing UTF8(JW5
Protected Header) used in this exanple is also included below. (Note
that anbiguities can arise due to differing platformrepresentations
of line breaks (CRLF versus LF), differing spacing at the beginning
and ends of lines, whether the last line has a terminating |ine break
or not, and other causes. |In the representation used in this
exanple, the first line has no leading or trailing spaces, a CRLF
line break (13, 10) occurs between the first and second lines, the
second |line has one | eading space (32) and no trailing spaces, and
the last Iine does not have a termnating line break.) The octets
representing UTF8(JW5 Protected Header) in this exanple (using JSON
array notation) are:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJOeXAi O JKV1Q LAOKI ClhbGeci G JI Uzl 1Ni J9

The JW5 Payl oad used in this exanple is the octets of the UTF-8
representation of the JSON object below. (Note that the payl oad can
be any base64url -encoded octet sequence and need not be a base64url -
encoded JSON obj ect.)

{lli SSII: llj Oe”,
"exp": 1300819380,
"http://exanple.comis_root":true}

Jones, et al. St andards Track [Page 37]

RFC 7515 JSON Wb Signature (JWB) May 2015

The followi ng octet sequence, which is the UTF-8 representation used
in this exanple for the JSON object above, is the JW5 Payl oad:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111

111, 116, 34, 58, 116, 114, 117, 101, 125]

Encodi ng this JW5 Payl oad as BASE64URL(UTF8(JWS Payl oad)) gives this
value (with line breaks for display purposes only):

eyJpc3M O Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 9l eGHt
cGxl LmN\vbS9pc19yb2901 j pOcnVI f Q

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '. " ||
BASE64URL(JWS Payl oad) gives this string (with |ine breaks for
di spl ay purposes only):

eyJOeXAi O JKV1Q LAOKI ClhbGeci G JI Uzl INi J9

éprc3M QG Jgb2Ui LAOKI CJI eHAI § Ez MDA4AMTkz ODAs DQogl mhOdHABLY 91 e GFt
cGxl LmM\vbS9pc19yb2901 j pOcnV f Q

The resulting JW5 Signing Input value, which is the ASCl
representation of above string, is the follow ng octet sequence
(using JSON array notation):

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81

105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74,
73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51
77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67,
74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84,
107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100,
72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76,
109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73,
106, 112, 48, 99, 110, 86, 108, 102, 81]

HVACs are generated using keys. This exanple uses the symetric key
represented in JSON Wb Key [JWK] format below (with |ine breaks
wi thin values for display purposes only):

{"kty":"oct",

"k": " AyMLSysPpbyDf gZl d3unj 1gzKCbwwWhWkoqQ Est JQLr _T- 1qSO0gZH75
aKt MN3Yj 0i PS4hcgUuTwj AzZr 1Z9CAowW!'

Jones, et al. St andards Track [Page 38]

RFC 7515 JSON Wb Signature (JWB) May 2015

Runni ng t he HVAC SHA- 256 al gorithmon the JW5 Signing Input with this
key yields this JW5 Signature octet sequence:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
132, 141, 121]

Encoding this JW5 Signature as BASE64URL(JWS Signature) gives this
val ue:

dBj f t JeZ4CVP- nB92K27uhbUJULplr WWLgFWEOE] Xk

Concat enating these values in the order Header.Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JWs Conpact Serialization (with Iine breaks
for display purposes only):

eyJO0eXAi O JKV1Q LAOKI ClhbGeci G JI Uzl 1N J9

éprcSM G Jgb2Ui LAOKI CJI eHAI § EzMDAAMIkz ODAs DQogl mhOdHAGLY 91 e Gt
cGxl Lm\vbS9pc19yb290I j pOcnV f Q

dBiftJeZ4CVP—nBQZKZ?uthJU1p1r_mMﬂgFVFCEiXk
A 1.2. Validating

Since the "al g" Header Paraneter is "HS256", we validate the HVAC
SHA- 256 val ue contained in the JW5 Signature.

To validate the HVAC val ue, we repeat the previous process of using
the correct key and the JW5 Signing Input (which is the initia
substring of the JW5 Conpact Serialization representation up unti

but not including the second period character) as input to the HVAC
SHA- 256 function and then taking the output and determining if it

mat ches the JWS Signature (which is base64url decoded fromthe val ue
encoded in the JW5 representation). |If it natches exactly, the HVAC
has been val i dat ed.

A 2. Exanple JW5 Usi ng RSASSA- PKCS1-v1_5 SHA- 256
A.2.1. Encoding

The JW5 Protected Header in this exanple is different fromthe
previous exanple in two ways. First, because a different algorithm
is being used, the "alg" value is different. Second, for
illustration purposes only, the optional "typ" (type) Header
Paraneter is not used. (This difference is not related to the

al gorithm enpl oyed.) The JW5 Protected Header used is:

Jones, et al. St andards Track [Page 39]

RFC 7515 JSON Wb Signature (JWB) May 2015

{"al g":"RS256"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbCci O JSUzI 1N J9

The JW5 Payl oad used in this exanple, which follows, is the sanme as
in the previous exanple. Since the BASE64URL(JWS Payl oad) value will
therefore be the sane, its conputation is not repeated here.

{"iss":"joe",
"exp": 1300819380,
"http://exanple.confis_root":true}

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '. " ||
BASE64URL(JWS Payl oad) gives this string (with |ine breaks for
di spl ay purposes only):

eyJhbGei G JSUzI 1IN J9

éprc3M G Jgb2Ui LAOKI CJI eHAI G Ez MDA4MIkz ODAs DQogl mhOdHAGLY 9l e Gt
cGxl Lm\vbS9pc19yb2901 j pOcnV f Q

The resulting JW5 Signing Input value, which is the ASCI
representation of above string, is the followi ng octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73,
49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

Jones, et al. St andards Track [Page 40]

RFC 7515 JSON Wb Signature (JWB) May 2015

This exanpl e uses the RSA key represented in JSON Wb Key [JVK]
format below (with |ine breaks within values for display purposes

only):

{"kty":"RSA",

"n":"of gWCuLj ybRI zo0t ZWJj Ni uSf b4p4f Akd_wWcyQoTbj i 9k0l 8\W26nPddx
Hnf HQp- Vaw 4qPCJr ¢ S2mJ PMEZ P1Pt 0BmAd4Q L- yRT- SFd21 ZS- pCgNVs
D1W_YpRPEWOW G6b32690r 2j Z47soMZo9wGzj b_70MgOLOL- bSf 63kpaSH
SXndS5z5r exMibBYUsLA9e- KXBdQOS- UTo7WIBEMA2R2CapHg665xsnt dV
MIBQY4uDZI xvb3qCo5ZwKh9kGALT6 | 51 hl JH7aGhyx XFvUK- DVWNnmoudF8
NAco9_h9i aG\j 8g2et hFkM_.s91kzk2PAcDTVWAgh54h4FRWuXpoQ',

"e": " AQAB",

"d": " Eq5xpGING vDf | JsRQBXHx1hdR1k6U we2JZD50LpXy WPEAe P88V LNOO7I
j 1 A7_GBsLKMyvT TeXZx9SE- 7YwWol 2NXCQoAJed6sui 3951 W GO pW 100
Bk TGoVENn2bKVRUCgu- G BVaYLUGT 31 9kJf FNS3EOQbVdxzubSu3Mkgzj kn
439X0M V51gf pRLI 9JYanr C4D4gAdGecopV_0ZHHzQ Bj udU2Qu Xt 4ehNYT
CBr 6 XCLQUShb1j uuOLZdi YoFaFQT5TW8bGUl _x_j Tj 3ccPDVZFD9pl uhLh
BOneuf uBi B4cS98I 2SR_RQy GABeW nczTOQUO1p1DhOVRUQopznQ',

"p": "4BZEEQ | pnVdVEZNCqS7baC4cr dOpgnRH_51 B3j w3bexGn6QLvnEt f dUdi
Yr qBdss 1l 58B@BKhooKeQra9ABOHwW Py5PJATINPY8cn7ouZ2KKDecmPG
BY5t 7yLc1Q @BxHdwWLVhvKn- nXghJTBgl Pgt | dC- KDV5z- y2XDwGUc"

"q": " uQPEf gmvit j LOUyyx88&ZFF1f QunH3- 7cepKm H4pxht CoHqpWhr8 YAn¥xa
ewHgHA] LYsplZSe7zFYH 7C6ul 7Tj eLQeZD_YwD66t 62wDnpe_H B- TnBA
-nj bgl f1 sRLt XI nDzQkv5dTI t RI11BKBBy peeF6689rj cJl DEz9RWIc",

"dp": " BwWKf V3AkQ5 MFZDFZCnW wzl - CCo83WZvnLQACTeDv8uzl uRSnni7 1l 3Q
CLdhr gE2e9YkxvuxdBf pT_PI 7Yz- FOKnulR6HsJeDC n12Sk3vmAkt V2zb
34MCdy 7cpdTh_YVr 7t ss2u6vneTw A86r Zt uSMor 1C1Xsmvkx HQAdYo0" ,

"dqg":"h_96-nK1R 7gl hsunB1dZxj TnYynPbZpHzi Zj eeHc XYs XaaMwkd ODsWA
71 9xXDoRwbKgB719r r m 20Kr 6N3Do9UW0aj aHF- NKInwgj Mi2wlcj z3_- ky
N xAr 2v4l KhGNpnivbi | gOS1VZnQz68n6_pbLBSp3nssTdl gvdot i THU',

"qi " "1 Yd7DHOhr WxkwPQs RVRt Ogr j ber f vt QJi pd- Dl cxyVuuMdsQ.dgj Vk2o
y26FOENPScGLg2MowX7f hd_QIQBydy5cY7YI Bi 87w931 KLEdf nbJt oOPLU
WOI Tr JReCgolcq9ShsxYawBgf p_gh6A5603k2- ZQWKOJKSHULFku@U'

Jones, et al. St andards Track [Page 41]

RFC 7515 JSON Wb Signature (JWB) May 2015

The RSA private key is then passed to the RSA signing function, which
al so takes the hash type, SHA-256, and the JWS Signing | nput as
inputs. The result of the digital signature is an octet sequence,
whi ch represents a big-endian integer. 1In this exanple, it is:

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69,
243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125,
131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81
102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,
229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219,
61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7,
16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31

190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244,
74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1,
48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129,
253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239,
177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202,
173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157,
105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69,
34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202,
234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90,
193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238,
251, 71]

Encodi ng the signature as BASE64URL(JWS Si gnature) produces this
value (with line breaks for display purposes only):

cC4hi UPoj 9Eet dgt v3hF80EG huB__dzERat 0XF9g2Vt Qgr 9PJbu3XO Zj 5RZnmh7
AAUHI miBh- 0Qc_| F5YKt _BW2Fp5j uj Gbds9uJdbFICUAr 7t 1dnZcAcQ bKBYNX4
BAynRFdi uB--f _nZLgr nby TyW O75vRK5h6xBAr LI ARNPvKkSj t QBVH b1L07Qe7K
0Gar ZRnB_eSN9383LcOLn6_dO - xi 12j zDwmusC- eOkHWEsqt FZESc6Bf | 7noOPqv
hJ1phCnv\Wh6l eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r qVt SAXLI hVkWww Vnt Vr B
p0i gcN_I oypd UPQGe77Rw

Jones, et al. St andards Track [Page 42]

RFC 7515 JSON Wb Signature (JWB) May 2015

Concat enating these values in the order Header.Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JWs Conpact Serialization (with |ine breaks
for display purposes only):

eyJhbCeci O JSUzI 1N J9

éprcSM G Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 91 e Gt
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

cC4hi UPoj 9Eet dgt vBhF80EG huB__dzERat 0XF9g2Vt Qgr 9PJbu3XG Zj 5RZnmh7
AAUHI miBh- 0Qc_I F5YKt _OBW2Fp5j uj Gods9uJdbFICUAr 7t 1dnZcAcQ bKBYNX4
BAynRFdi uB--f _nzZLgr nby TyWe O75vRK5h6XxBAr LI ARNPvKSj t @BVH b1L07Qe7K
0Gar ZRnmB_eSN9383LcOLn6_dO - xi 12j zDmusC- eOkHWEsqt FZESc6Bf | 7noOPqv
hJ1phCnv\Wh6l eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r gVt 5AXLI hWkWw Vit Vr B
p0i gcN_I oypd UPQGe77Rw

A . 2.2. Validating

Since the "al g" Header Paraneter is "RS256", we validate the RSASSA-
PKCS1-v1_5 SHA-256 digital signature contained in the JW5 Signature.

Validating the JW5 Signature is a bit different fromthe previous
exanple. W pass the public key (n, e), the JWS Signature (which is
base64ur|l decoded fromthe value encoded in the JW5 representation),
and the JW5 Signing Input (which is the initial substring of the JW5
Conpact Serialization representation up until but not including the
second period character) to an RSASSA- PKCS1-v1l 5 signature verifier
that has been configured to use the SHA-256 hash function

A 3. Exanple JW5 Usi ng ECDSA P-256 SHA-256

A.3.1. Encoding

The JW5 Protected Header for this exanple differs fromthe previous
exanpl e because a different algorithmis being used. The JWs
Prot ected Header used is:

{"al g":"ES256"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Jones, et al. St andards Track [Page 43]

RFC 7515 JSON Wb Signature (JWB) May 2015

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protect ed
Header)) gives this val ue:

eyJhbCci O JFUzI 1N J9

The JW5 Payl oad used in this exanple, which follows, is the sane as
in the previous exanples. Since the BASE64URL(JWS Payl oad) val ue
will therefore be the sane, its conputation is not repeated here.

{"iss":"joe",
"exp": 1300819380,
"http://exanple.confis_root":true}

Combi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '. " ||
BASE64URL(JW5 Payl oad) gives this string (with line breaks for
di spl ay purposes only):

eyJhbCei O JFUzI 1N J9

éprcSM G Jgb2Ui LAOKI CJI eHAI § EzMDAAMIkz ODAs DQogl mhOdHAGLY 91 e Gt
cGxl Lm\vbS9pc19yb290I j pOcnV f Q

The resulting JW5 Signing Input value, which is the ASCI
representation of above string, is the followi ng octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73,
49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68§,
65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This exanple uses the Elliptic Curve key represented in JSON Wb Key
[JWK] format bel ow

{"kty":"EC",
"crv":"P-256",
"x":"f83003D2xF1Bg8vub9ot LelgHVEV76e8Tus9uPHvRVEU",
"y":"x_FEZRU9NMBGHLN t ue659LNpXWspCy St i kYj KI W 5a0" ,
"d":"j ps@inGQL- YBI f f HL136cspYGE- 0i Y7X1f CE9- E9LI "

}

The Elliptic Curve Digital Signature Al gorithm (ECDSA) private part d
is then passed to an ECDSA signing function, which also takes the
curve type, P-256, the hash type, SHA-256, and the JW5 Signing | nput
as inputs. The result of the digital signature is the Elliptic Curve

Jones, et al. St andards Track [Page 44]

RFC 7515 JSON Wb Signature (JWB) May 2015

(EC) point (R, S), where Rand S are unsigned integers. 1In this
exanple, the R and S values, given as octet sequences representing
bi g-endi an integers are:

Fom e e e - o e +

| Result | Value |

| Nanme | |

E R o o m e aaa +
R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88,

| | |
| | 7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129,

| | 154, 195, 22, 158, 166, 101] |
S | [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175,

| | 8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154,

| | 143, 63, 127, 138, 131, 163, 84, 213] |

The JW5 Signature is the value R|| S. Encoding the signature as
BASE64URL(JWS Si gnature) produces this value (with line breaks for
di spl ay purposes only):

Dt EhU3I j bEg8L38VWAF UAqOy KAVB- Xx- F4GawxaepnXFCgf Tj Dxwsdj xLas! Sl SA
pMAQK KTUJgPP3- KgBNULQ

Concat enating these values in the order Header. Payl oad. Signature with
period ('.') characters between the parts yields this conplete JW
representation using the JWs Conpact Serialization (with |ine breaks
for display purposes only):

eyJhbCci O JFUzI 1N J9

éprc3M G Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 9l e G-t
cGxl LmN\vbS9pc19yb2901 j pOcnVl f Q

Dt EhUBI j bEg8L38VWAF UAGOY KAVB- Xx- F4GawxaepmXFCgf Tj Dxwsdj xLasl Sl SA
pMAQK KTUJgPP3- Kg6NULQ

A.3.2. Validating

Since the "al g" Header Paraneter is "ES256", we validate the ECDSA
P- 256 SHA-256 digital signature contained in the JWs Signature

Validating the JW5s Signature is a bit different fromthe previous
exanples. W need to split the 64 nenber octet sequence of the JWS
Signature (which is base64url decoded fromthe val ue encoded in the
JWE representation) into two 32 octet sequences, the first
representing R and the second S. W then pass the public key (x, y),
the signature (R, S), and the JW5 Signing Input (which is the initia
substring of the JW5 Conpact Serialization representation up unti

Jones, et al. St andards Track [Page 45]

RFC 7515 JSON Wb Signature (JWB) May 2015

but not including the second period character) to an ECDSA signhature
verifier that has been configured to use the P-256 curve with the
SHA- 256 hash function

A 4. Exanple JWS Using ECDSA P-521 SHA-512

A . 4.1. Encoding
The JWS5 Protected Header for this exanple differs fromthe previous
exanpl e because different ECDSA curves and hash functions are used.
The JWS5 Protected Header used is:

{"al g":"ES512"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbCci O JFUzUxM J9

The JW5 Payl oad used in this exanple is the ASCII string "Payl oad".
The representation of this string is the follow ng octet sequence:

[80, 97, 121, 108, 111, 97, 100]
Encodi ng this JW5 Payl oad as BASE64URL(JWS Payl oad) gives this val ue:
UGF5b&hZA

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '. " ||
BASE64URL(JWS Payl oad) gives this string

eyJhbCei O JFUzUxM J9. UGF5bGIhZA

The resulting JW5 Signing Input value, which is the ASCl
representation of above string, is the followi ng octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85,
120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65]

Jones, et al. St andards Track [Page 46]

RFC 7515 JSON Wb Signature (JWB) May 2015

This exanple uses the Elliptic Curve key represented in JSON Wb Key
[JWK] format below (with line breaks within values for display
pur poses only):

{"kty":"EC",
"crv":"P-521",
"x": " AekpB@ST8a8Vcf VOTN 353vSr DCLLIXmPkO6WT] Xr rj cBpXp5EONYG
Nj FZ60OvLFV1j Sf SOt sz4qUxcWeqwQaK",
"y": " ADSRA43Z1DSNx_Rvcll 87cdL071 6j QyyBXMoxVg_I| 2Th- x3S1WDhj D
y79aj L4AKkdOAZMaZnmh9ubnf 63e3kyM 2"
"d": " AY5pb7A0UFi BSRELSD64f TLOSV_j azdF7f LYyuTw8l OF RhWg6Y6r Ur PA
xer EzgdRhaj nuOf er BOd53vMenEL5j 2C"
}

The ECDSA private part d is then passed to an ECDSA signing function
whi ch al so takes the curve type, P-521, the hash type, SHA-512, and
the JW5 Signing Input as inputs. The result of the digital signature
is the EC point (R, S), where Rand S are unsigned integers. In this
exanple, the R and S val ues, given as octet sequences representing

bi g-endi an integers are:

[oo m e +

| Result | Value |

| Name | |

Fommemm e e T +
R [1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233,

	117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82,
	91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147,
	152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150,

| | 106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133,

| | 206, 209, 172, 63, 237, 119, 109] |
S | [0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92, |
	61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193,
	199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131,
	48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155,
	22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148,
	188, 222, 59, 242, 103]

The JW5 Signature is the value R|| S. Encoding the signature as
BASE64URL(JWS Si gnature) produces this value (with |line breaks for
di spl ay purposes only):

Adwivpeer wt Hoh- 1 192] 60hp9wWAHZFVIbLT D_UxM 70cwnZOYaRl 1bKPWRCc- n¥ZZq

wgT2SI - KEDKB34XQ0aw_7Xdt AGBGaSwKdCAPZgoXD2YBJ ZCPEX3x KpRwe dOOBKp
EHwWIj yqOgzDO7i KvU8vcnwiNr nk YoSWDERBXukOXol LzeO Jn

Jones, et al. St andards Track [Page 47]

RFC 7515 JSON Wb Signature (JWB) May 2015

Concat enating these values in the order Header.Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JWs Conpact Serialization (with |ine breaks
for display purposes only):

eyJhbGei O JFUzUXM J9
UGF5bGOhZA

AdwMgeer wt Hoh- | 1921 60hp9WAHZFVIbLf D_UxM 70cwnZOYaR! 1bKPWRCG - nizZq
WgT2SI - KEGDKB34X00aw_7Xdt AGSGaSwFKdCAPZgoXD2YBJ ZCPEX3x KpRwe d OO8Kp
EHwWJj yqOgz DO7i KvUSvcnwhr mk Yo SWOERBXuk OXol LzeO_Jn

A 4.2, Validating

Since the "al g" Header Paraneter is "ES512", we validate the ECDSA
P-521 SHA-512 digital signature contained in the JW5 Signature.

Validating this JW5 Signature is very sinmlar to the previous
exanple. W need to split the 132-nenber octet sequence of the IJWS
Signature into two 66-octet sequences, the first representing R and
the second S. W then pass the public key (x, y), the signature (R
S), and the JW5 Signing Input to an ECDSA signature verifier that has
been configured to use the P-521 curve with the SHA-512 hash

functi on.

A. 5. Exanple Unsecured JW5

The foll owi ng exanpl e JW5 Protected Header declares that the encoded
obj ect is an Unsecured JW5:

{"al g":"none"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbGeci O Jub25Il | nO
The JW5 Payl oad used in this exanple, which follows, is the same as
in the previous exanples. Since the BASE64URL(JWS Payl oad) val ue
will therefore be the same, its conputation is not repeated here.
{"iss":"joe",
"exp": 1300819380,
"http://exanple.conis_root":true}

The JWS5 Signature is the enpty octet string and BASE64URL(JWS
Signature) is the enpty string.

Jones, et al. St andards Track [Page 48]

RFC 7515 JSON Wb Signature (JWB) May 2015

Concat enating these values in the order Header.Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JWs Conpact Serialization (with |ine breaks
for display purposes only):

eyJhbCei G Jub25I | nO

éprcSM G Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 91 e Gt
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

A. 6. Exanple IJW5 Using General JW5 JSON Serialization

This section contains an exanpl e using the general JW JSON
Serialization syntax. This exanple denonstrates the capability for
conveying multiple digital signatures and/or MACs for the sane

payl oad.

The JW5 Payl oad used in this exanple is the sanme as that used in the
exanpl es in Appendix A 2 and Appendix A.3 (with line breaks for
di spl ay purposes only):

eyJpc3M Q Jgb2Ui LAOKI CJI eHAI § Ez MDA4MIkz ODAs DQogl mhOdHAGLY 9l eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

Two digital signatures are used in this exanple: the first using
RSASSA- PKCS1-v1_5 SHA- 256 and the second using ECDSA P-256 SHA- 256.
For the first, the JW5 Protected Header and key are the same as in
Appendi x A 2, resulting in the same JW5 Signature val ue; therefore,
its conputation is not repeated here. For the second, the JWS

Prot ected Header and key are the sane as in Appendix A 3, resulting
in the same JW5 Signature value; therefore, its conputation is not
repeat ed here.

A.6.1. JWS Per-Signature Protected Headers
The JW5 Protected Header val ue used for the first signature is:
{"al g":"RS256"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbGeci O JSUzI 1N J9
The JW5 Protected Header val ue used for the second signature is:

{"al g":"ES256"}

Jones, et al. St andards Track [Page 49]

RFC 7515 JSON Wb Signature (JW5) May 2015
Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protect ed
Header)) gives this val ue:

eyJhbCci O JFUzI 1N J9

A . 6.2. JWS Per-Signature Unprotected Headers
Key | D values are supplied for both keys using per-signature Header
Paraneters. The two JW5 Unprotected Header val ues used to represent
these key I Ds are:

{"kid":"2010-12-29"}
and
{"kid":"e9bc097a- ce51-4036-9562- d2ade882db0d"}

A . 6.3. Conplete JOSE Header Val ues
Conbi ning the JW5 Protected Header and JWS Unprot ected Header val ues
suppl i ed, the JOSE Header val ues used for the first and second

signatures, respectively, are:

{"al g": " RS256",
"kid":"2010- 12- 29"}

and

{"al g":"ES256",
"kid":"e9bc097a- ce51- 4036- 9562- d2ade882db0d" }

Jones, et al. St andards Track [Page 50]

RFC 7515 JSON Wb Signature (JWB) May 2015

A . 6.4. Conplete JW5 JSON Serialization Representation

The conplete JW5 JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{
"payl oad":
"eyJpc3M G Jgb2Ui LAOKI CJI eHAI § EzVDA4MTkz ODAsDQogl mhOdHAGLY 9l eGF
t cGxl Lm\vbS9pc19yb290l1 j pOcnVI f Q',
"signatures":|
{"protected":"eyJhbCGci G JSUzI 1N J9",

"header":
{"kid":"2010-12- 29"},
"signature":

" cCAhi UPoj 9Eet dgt v3hFS80EG huB__dzERat 0XF9g2Vt Qgr 9PJbu3XQO Zj 5RZ
mh7AAuH miBh- 0Qc_I| F5YKt _OBW2Fp5j uj Gbds9uJdbFICUAr 7t 1dnZcAcQ b
KBYNX4BAy nRFdi uB- - f _nZLgr nby TyW O75vRK5h6xBAr LI ARNPvkSj t QBVH
b1L0O7Qe7KO0Gar ZRmB_eSN9383LcOLn6_dO- - xi 12j zDmusC eCkHWEsqt FZES
c6Bf | 7noOPqvhJ1phCnvWh6el eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r gVt 5AX
LI hvkWw Vit Vr BpOi gcN_| oypG UPQGe77RW'},

{"protected":"eyJhbGci G JFUzI 1N J9",

"header":
{"kid":"e9bc097a- ce51-4036-9562- d2ade882db0d"},
"signature":

" Dt EhU3I j bEg8L38VWAf UAGOy KAMB- Xx- F4GawxaepnXFCgf Tj Dxwsdj xLasl S
| SApMAQXF KTUJqPP3- Kg6NULQ' }]

Jones, et al. St andards Track [Page 51]

RFC 7515 JSON Wb Signature (JWB) May 2015

A 7. Exanple JWs Using Flattened JW5 JSON Serialization

This section contains an exanple using the flattened JW5 JSON
Serialization syntax. This exanple denonstrates the capability for
conveying a single digital signature or MACin a flattened JSON
structure.

The values in this exanple are the sane as those in the second
signature of the previous exanple in Appendix A 6.

The conplete JW5 JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{
"payl oad":
"eyJpc3M QO Jgb2Ui LAOKI CJI eHAI § Ez MDAAMTkz ODAs DQogl mhOdHAGLY 91 eGF
t c&xI Lnm\vbS9pc19yb290I j pOcnVI f Q'
"protected":"eyJhbGei G JFUzI INi J9",

"header":
{"kid":"e9bc097a- ce51-4036- 9562- d2ade882db0d"},
"signature":

" Dt EhU3I j bEg8L38VWAF UAGOy KANVB- Xx- FAGawxaepnXFCgf Tj Dxwsdj xLasl S
| SApPMAQXF KTUJ gPP3- Kg6NULQ'

Jones, et al. St andards Track [Page 52]

RFC 7515 JSON Wb Signature (JWB) May 2015

Appendi x B. "x5c" (X. 509 Certificate Chain) Exanple

The JSON array below is an exanple of a certificate chain that could
be used as the value of an "x5c" (X 509 certificate chain) Header
Paraneter, per Section 4.1.6 (with line breaks within values for

di spl ay purposes only):

[

Jones,

'M | E3j CCA8agAW BAgl CAWEWDQYJKoZI hvcNAQEFBQAWYZ ELMAK GALUEBhMCVWM

x| TAf BgNVBA0oTGFRoZSBHby BEYWRke SBHcmB1c Ong SWBj Lj ExMC8GALUECX Mo R2
8gRGFkZHkg@@xhc3MgM BDZXJ0aWZpY2F0aWul EF1dGhvcn 0eTAeFwOwWN) ExM
TYWMIUOMzdaFwOy N Ex MI'YwMTUOMz daM HKMQs wCQYDVQQGEW] VUz EQVAA GA1 UE
CBVHQXJIpermbuYTETMBEGALUEBX MKU2Nv dHRz ZGFs ZTEaMBg GALUECh MRR29EYWR
keS5j b20s! El uYy4x Mz AxBgNVBAsS TKmhOdHAGBLY9j ZXJ0aWZpY2F0ZXMuZ29k YW
RkeS5j b20vcmvwb3Npd Ry e TEWMCAGALUEAX MhR28gRGFk ZHkgU2Vj dXJI | ENI ¢
NRpZm j YXRpb24gQXV0a@y aXR5MREWDWYDVQQFEWgWNz k2OT1 4Nz CCASI wDQYJ
KoZI hvc NAQEBBQADgg EPADCCAQuCggEBAMY 1RWWhCZM7 DI 161 +4WQFapmGBWITt
wY6vj 3D3HKr j IMONS5Dr t PDA] hl 6zMBS2sof DPZVUBJ 7f ndOLJR4Ah3mUpf j WoqV
Tr 9vecyCdQnMVZW 7/ v+W bXnv Q4] YwgqDL1CBMBNPWT270Dyqu9SoW n2r 4ar V3al
GbgGmu75RpRSgAVSMeYddi 5Kcj u+GZt Cpyz8/ x4f KL4o/ K1w ObepHBp+YI Lpyo
7RIl bnr 2EKRTc DCVwWswWr WCs 9CHRK8r 5Rs L+HOEwnWaU 1 Nc WAr x cx+AuP7g2BNgW
JCJj POg8l h8BJ6qf 92/ dFj pf M~Dni NoWLf ho3/ Rb2c RGad DAW hOUoz +EDUS CAw
EAAaOCATI wggEuMBOGALUdDgQWBBT9r CEy k2x F1luLuhV+auud2ny Moz Af BgNVH
SMVEGDAW) BT Sx LDSkdRVEXGz Yec s 9of 7dqGr U4z ASBgNVHRVBAF 8ECDAGAQH AgEA
MDMGCCs GAQUFBWEBBCcwWJI TA] Bggr BgEFBQCWAYYXaHROcDovL29j c3AuUZ29k YWR
keS5j b20wRg YDVROf BD8WPTA7oDnmgN4Y1laHROcDovL2N cnRpZmi j YXRI cy5nb2
RhZCGR5LmMvbS9yZXBvc2l 0b3J5L2dkcmBvdC5j ¢ mwwSwYDVROgBEQMY BABgRVH
SAANMDgWING Y1 KwYBBQUHAg EWKmhOdHABLY 9j ZXJ0aWZpY2F0ZXMiZ29k YWRk e S5j
b20vcnmvnb3Npd @y e TAOBg NVH@BBAF 8 EBAMCAQYWDQYJ KoZI hvc NAQEFBQADggE
BANKGMOy 9+a@G2Z+5nmC61 GOyRQ hVyr EpOl VPLN8t ESe8Hk Gsz2Zbw Fal Ez AFPI
Uyl XvIxwqoJKS@kbTJISMUA2f CENzZvD117esyf xVggwe Sel aha86ykRvOe5GPLL
5CkKSkB2XI sKd83ASe8T+500y GPWLPk9nt 0hCqU7S+8MKZCOY7I hyVIENnf zuz9
p0i RFEUQQ Zv2kW RaJBydTXRE4+uXR21al TVSz Gh6OLmawGh! d/ dQb8vx RVDsx
uxN89t xIx90 xUUAI KEngHUUHgDTMBgLdEI r Rhj ZkAzVWhb3du6/ KFUJhegwNTr Z
Ej Yx8WIM25sgVj QuHOaBs XBTW/U+4=",

"M | E+zCCBGSgAW BAgl CAQOWDQYJKoZIl hvc NAQEFBQAWgbsxJDAI BgNVBACTGLZ

hbd DZXJ0l FZhbd kYXRpb24gTmv/0d29yaz EXMBUGALUEChMOVnFsaUN cnQsl E
| uYy4xNTAzBgNVBASTLFZhbd DZXJ0I ENsYXNzI DI gU®saWNs1 FZhbd kYXRpb
24gQXV0a&@y aXR5 MSEwHwWYDVQQDEXhodHRWG 8vd3d3LnZhbG j ZXJOLmN\vbS8x
| DAeBgkghki GOWOBCQEVEW uZmBAdnFsaVWNl cnQuY29t MB4XDTAOMDYy OTE3MDY
yMFoXDTI OMDYy OTE3MDYy MFowYz EL MAk GA1UEBhMCVVIMKI TAf BgNVBAOTGFR0ZS
BHby BEYWRk e SBHcmB1c Owg SWbj Lj ExXMCBGALUECX MbR28gRGFk ZHkg@xhec3MgM
i BDZXJ0aWZpY2F0aWul EF1dGhvcm 0e TCCASAWDQYJKoZI hvc NAQEBBQADggEN
ADCCAQ CggEBANGd1+p XCEMhWHV XX0i Gor 7d/ +TvZxz0ZW zV3GgXne77Zt J6XC
APVYYYwhv2vLMID9/ Al Q VBDYs oHUWHUO S3/ Hd8MreKsaA7Ugay 9qK7HFi H7 Eux
6wwdhFJ2+qN1j 3hybX2C32qRe3H31 2TqYXP2Wrkt sgbl 2i / oj gC95/ 5Y0V4evLO
t Xi Eql TLdi Or 18SPaAl BQ 2XKVI OARFR6j YEBOxUd cml bYsUf b18aQ 4CUWMA
ri Myavx4A6l Nf 4DD+qgt a/ KFApMoZFvB6yy@ecw3ud72a9nmyv0LEHZ61 VDd2gWWEZ
Eewo+Yi hf ukEHULj PEX44dMX4/ 7Vpk| +EdOgXG58CAQG ggHhM | B3TAdBgNVHQ

et al. St andards Track [Page 53]

RFC 7515 JSON Wb Signature (JWB) May 2015

4EFgQUOs SWOpHUTBFxs2HLPaH+3ahqlOMagdl GAL1UdI wSByj CBx6GBwaSBvj CBu
ZEkMClI GALUEBXxMoVimFsaUNI cnQgVFsaWRhd@ vbi BOZXR3b3Jr MRewFQYDVQK
EWsVWWkpQ2Vy dCOwg SWBj Lj EXMDMGATUECK Ms VFsaUNI cnQy@xhc3MgM BQb2x
pY3kgVnFsaWrhdd vbi BBdXRob3JpdHkx | TAf BgNVBAMIGGhOdHAGLY93d3cudm
FsaWNl cnQuY29t LzEgMB4GCSqGSI b3DQEJARYRaWmbOB2 YW pY2VydC5) b22CA
QEWDWYDVROTAQH BAUWAWEB/ z Az Bggr Bg EFBQe BAQONMCUW wY1 KwYBBQUHMAGG
F2h0OdHAGLY9v Y3NWLndv ZGFk ZHk u Y29t MEQGAL Ud HM® MDs wCa A30 DWGVRhOd HA
6LYy9j ZXJ0aWZpY2F0ZXMuZ29k YWRk e S5] b20vcmvnwb3Npd @y eS9yb290LnNybD
BLBg NVHSAERDBCVEAGBFUdI AAWODA2Bggr BgEFBQc CARYgaHROcDovL2N cnRpZ
m j YXR cy5nb2RhZGR5LMN\vbS9y ZXBvc2l 0b3J5MA4GALUd DWEB/ wQEAW BBj AN
Bgkghki GOwWOBAQUFAAOBgQC1QPMHf bg/ qQaQ pE9xXUhUaJwL6e4+Pr xeNYi Y+
SnleocSxl 0YGyeR+sBj UZsE4ONBs Us5i BOQQeyAf Jg594RA0YC5j cdnpl DQLt gM
QLARzLr Uc+cb53S8wcd9D0OVsf SxCaFl gl | 6hR81 NMgzW Rn453HVKr ugp++85j

09VZw==",

"M | C5z2 CCAl ACAQEWDQYJKoZI hvc NAQEFBQAWGbsxJDAI BgNVBACTGLZhbG DZXJ
0l FZhbd kYXRpb24gTmV/0d29yaz EXMBUGALUEChMOVnFsaUN cn@sl El uYy4xNT
AzBgNVBAsSTLFZhbG DZXJ0I ENsYXNz| DI gu@saWN51 FZhbA kYXRpb24gQXVv0a
@@y aXR5 MSEwHWYDVQQRDEXhodHRWO 8vd3d3LnZhbd j ZXJOLm\vbS8x1 DAeBgkq
hki GOWOBCQEVEW uZnmBAdnFsaVWNl cnQuY29t MBAXDTKk5MDYyNj AWMIk INFOXDTE
5MDYy N AWMTk 1NFowgbsxJDAI BgNVBAcTGLZhbd DZXJ0I FZhbd kYXRpb24gTm
V0d29yaz EXMBUGATUEChMOVFsaUN cn(s | El uYy4xNTAzBgNVBAsSTLFZhbQd DZ
XJ0I ENsYXNz | DI gu@saWN51 FZhbQ k YXRpb24gQXV0a@y aXR5 MSEwHWYDVQQD
ExhodHRWO 8vd3d3Lnzhbd j ZXJ0Ln\vbS8xI DAeBgkghki GCOWOBCQEVEW uZnd
AdnFsaVWN cnQuY29t M Gf MAOGCSgGSI b3 DQEBAQUAAAGNADCBI QKBgQDOOnHK5a
vI WZIV16VvYdA757t n2VUdZZUc OBVXc6592PFx TXdMaz zj svUGI7SVCCSRr Ol 6zf
N1SLUz mMLNZOW npZdRJEy Ok TRxQb7XBhVQ7/ nHkO1x C+YDgk RoKWe k2Z/ M VXwb
P7Rf ZHMD47QSv4dk+NoS/ zcnwbNDu+97bi 5p9wl DAQABMAOGCSqGSI b3DQEBBQU
AA4GBAD: / UV UI SZSW 40BIL+KXI PgeCgf Yr x+j Fzug6El LLGACOTb20WH+heQ
Clu+nmNr OHZDz Tul YEZoDJJKPTE]j | bVUj POUNV+mMMD5M M M sg2az Si GvbbUVM
j 4QssxsodyanEwCW PQuZ6l cg5Kt z885hZo+L7t dEy8VOVi HOPd"]

Jones, et al. St andards Track [Page 54]

RFC 7515 JSON Wb Signature (JWB) May 2015

Appendi x C. Notes on | nplenenting base64url Encodi ng w thout Padding
Thi s appendi x describes how to inplenment base64url encodi ng and
decodi ng functions wi thout paddi ng based upon standard base64
encodi ng and decodi ng functions that do use paddi ng.

To be concrete, exanple C# code inplenenting these functions is shown
below. Sinilar code could be used in other |anguages.

static string base64url encode(byte [] arg)

{
string s = Convert.ToBase64String(arg); // Regul ar base64 encoder
s =s.5plit('"=")[0]; // Renove any trailing '='s
s = s.Replace(’'+, '-"); [/l 62nd char of encoding
s = s.Replace(’/’, *_'); I/l 63rd char of encoding
return s;
}

static byte [] base64url decode(string arg)

string s = arg;
s = s.Replace(’-", "+); // 62nd char of encoding
s = s.Replace(’ ', '/’); I/l 63rd char of encoding
switch (s.Length %4) // Pad with trailing '="s
{
case 0: break; // No pad chars in this case
case 2: s += "=="; break; // Two pad chars
case 3: s += "="; break; // One pad char

default: throw new System Excepti on(
"I'll egal base64url string!'");

}
return Convert. FronBase64String(s); // Standard base64 decoder
}
As per the exanpl e code above, the nunber of '= padding characters

that needs to be added to the end of a base64url-encoded string
wi thout padding to turn it into one with padding is a deterninistic
function of the length of the encoded string. Specifically, if the
length nod 4 is 0, no padding is added; if the length nod 4 is 2, two
'=' padding characters are added; if the length nod 4 is 3, one '=

paddi ng character is added; if the length nmod 4 is 1, the input is
mal f or ned.

Jones, et al. St andards Track [Page 55]

RFC 7515 JSON Wb Signature (JWB) May 2015

An exanpl e correspondence between unencoded and encoded val ues
follows. The octet sequence bel ow encodes into the string bel ow
whi ch when decoded, reproduces the octet sequence.

3 236 255 224 193
A-z_4NE

Appendi x D. Notes on Key Sel ection

Thi s appendi x describes a set of possible algorithns for selecting
the key to be used to validate the digital signature or MAC of a JW5
or for selecting the key to be used to decrypt a JWE. This guidance
describes a famly of possible algorithns rather than a single

al gorithm because in different contexts, not all the sources of keys
will be used, they can be tried in different orders, and sonetines
not all the collected keys will be tried; hence, different algorithns
will be used in different application contexts.

The steps bel ow are described for illustration purposes only;
specific applications can and are likely to use different algorithns
or performsonme of the steps in different orders. Specific
applications will frequently have a nmuch sinpler nethod of

determ ning the keys to use, as there may be one or two key sel ection
nmet hods that are profiled for the application’s use. This appendiXx
suppl enents the normative infornmation on key |location in Section 6.

These al gorithns include the followi ng steps. Note that the steps
can be performed in any order and do not need to be treated as
distinct. For exanple, keys can be tried as soon as they are found,
rather than collecting all the keys before trying any.

1. Collect the set of potentially applicable keys. Sources of keys
may i ncl ude:

* Keys supplied by the application protocol being used.

* Keys referenced by the "jku" (JW Set URL) Header Paraneter.

* The key provided by the "jwk" (JSON Wb Key) Header Paraneter

* The key referenced by the "x5u" (X 509 URL) Header Paraneter.

* The key provided by the
Par anet er .

x5¢" (X. 509 certificate chain) Header

* Other applicable keys available to the application

Jones, et al. St andards Track [Page 56]

RFC 7515 JSON Wb Signature (JWB) May 2015

The order for collecting and trying keys fromdifferent key
sources is typically application dependent. For exanple,
frequently, all keys froma one set of |ocations, such as |oca
caches, will be tried before collecting and trying keys from
ot her | ocations.

2. Filter the set of collected keys. For instance, sone
applications will use only keys referenced by "kid" (key ID) or
"x5t" (X. 509 certificate SHA-1 thunbprint) paranmeters. |If the
application uses the JW "alg" (algorithnm), "use" (public key
use), or "key ops" (key operations) paraneters, keys with
i nappropriate values of those paraneters woul d be excl uded.
Additionally, keys nmight be filtered to include or exclude keys
with certain other nmenber values in an application-specific
manner. For sone applications, no filtering will be applied.

3. Oder the set of collected keys. For instance, keys referenced
by "kid" (key ID) or "x5t" (X.509 certificate SHA-1 t hunbprint)
paraneters night be tried before keys with neither of these
val ues. Li kewi se, keys with certain nenber values m ght be
ordered before keys with other menber values. For sone
applications, no ordering will be applied.

4. Make trust decisions about the keys. Signatures nade with keys
not neeting the application’s trust criteria would not be
accepted. Such criteria night include, but is not linmted to,
the source of the key, whether the TLS certificate validates for
keys retrieved from URLs, whether a key in an X 509 certificate
is backed by a valid certificate chain, and other information
known by the application

5. Attenpt signature or MAC validation for a JW5 or decryption of a
JWE with some or all of the collected and possibly filtered and/
or ordered keys. A limt on the nunber of keys to be tried m ght
be applied. This process will normally termnate following a
successful validation or decryption

Note that it is reasonable for some applications to perform signature

or MAC validation prior to naking a trust decision about a key, since
keys for which the validation fails need no trust decision

Jones, et al. St andards Track [Page 57]

RFC 7515 JSON Wb Signature (JWB) May 2015

Appendi x E. Negative Test Case for "crit" Header Paraneter

Conform ng inplenmentations nust reject input containing critica

ext ensi ons that are not understood or cannot be processed. The

foll owing JW5 nust be rejected by all inplenentations, because it
uses an extensi on Header Parameter nanme "http://exanple.invalid/
UNDEFI NED' that they do not understand. Any other simlar input, in
whi ch the use of the value "http://exanple.invalid/ UNDEFI NED" is
substituted for any other Header Paraneter name not understood by the
i npl enent ati on, must al so be rejected.

The JW5 Protected Header value for this JW5 is:

{"al g":"none",
"crit":["http://exanple.invalid/ UNDEFI NED'],
"http://exanple.invalid/ UNDEFI NED": true

}

The conplete JWS that nust be rejected is as follows (with Iine
breaks for display purposes only):

eyJhbCci O Jub25Il | i wWNCi Ai Y3JpdCl 6WJodHRWO 8vZXhhbXBsZS5j b20vVUSERU
ZJTkVEI | 0sDQogl mhOdHAGLY9I eGFt cGxl LmiNvbSOVTKRFRk] CRUQ OnRy dWUNCNO.
RKFITA.

Appendi x F. Detached Content

In sone contexts, it is useful to integrity-protect content that is
not itself contained in a JWs. One way to do this is to create a JW5
in the nornal fashion using a representation of the content as the
payl oad but then delete the payl oad representation fromthe JW and
send this nodified object to the recipient rather than the JW5. Wen
usi ng the JW5 Conpact Serialization, the deletion is acconplished by
repl acing the second field (which contains BASE64URL(JW5 Payl oad))
value with the enpty string; when using the JW5 JSON Serialization
the deletion is acconplished by deleting the "payl oad" nenber. This
met hod assunes that the recipient can reconstruct the exact payl oad
used in the JW5. To use the nodified object, the recipient
reconstructs the JWs by re-inserting the payl oad representation into
the nodified object and uses the resulting JW5 in the usual manner.
Note that this method needs no support fromJWS |libraries, as
applications can use this nethod by nodifying the inputs and outputs
of standard JW5 libraries.

Jones, et al. St andards Track [Page 58]

RFC 7515 JSON Wb Signature (JWB) May 2015

Acknowl edgenent s

Sol utions for signing JSON content were previously explored by Mgic
Si gnatures [Magi cSignatures], JSON Sinple Sign [JSS], and Canvas
Applications [CanvasApp], all of which influenced this document.

Thanks to Axel Nennker for his early inplenentation and feedback on
the JW5 and JWE specifications.

This specification is the work of the JOSE worki ng group, which

i ncl udes dozens of active and dedicated participants. |In particular,
the follow ng individuals contributed ideas, feedback, and wording
that influenced this specification:

Dirk Bal fanz, Richard Barnes, Brian Canpbell, Alissa Cooper, Breno de
Medei ros, Stephen Farrell, Yaron Y. Goland, D ck Hardt, Joe

Hi | debrand, Jeff Hodges, Russ Housl ey, Edmund Jay, Tero Kivinen, Ben
Laurie, Ted Lenon, Janes Manger, Matt MIler, Kathleen Mriarty, Tony
Nadal i n, Hi deki Nara, Axel Nennker, John Panzer, Ray Pol k, Emmanuel
Raviart, Eric Rescorla, Pete Resnick, Jim Schaad, Paul Tarjan, Hannes
Tschof eni g, and Sean Tur ner.

Ji m Schaad and Karen O Donoghue chaired the JOSE wor ki ng group and

Sean Turner, Stephen Farrell, and Kathleen Mriarty served as

Security Area Directors during the creation of this specification.
Aut hors’ Addr esses

M chael B. Jones
M crosof t

EMai | : nbj @i crosoft. com
URI : http://self-issued.info/

John Bradl ey
Ping Identity

EMail: ve7jtb@e7jtb. com
URI : http://ww.thread-safe.com
Nat Saki nura

Nonmura Research Institute

EMai | : n-sakinura@ri.co.jp
URI : http://nat. sakinura. org/

Jones, et al. St andards Track [Page 59]

