I nt ernet Engi neering Task Force (I ETF) M Jones

Request for Comments: 7516 M crosoft
Cat egory: Standards Track J. Hildebrand
| SSN: 2070-1721 Cisco

May 2015

JSON Wb Encryption (JVE)
Abstr act

JSON Wb Encryption (JWE) represents encrypted content using

JSON based data structures. Cryptographic algorithnms and identifiers
for use with this specification are described in the separate JSON
Web Al gorithms (JWA) specification and | ANA registries defined by
that specification. Related digital signature and Message

Aut henti cati on Code (MAC) capabilities are described in the separate
JSON Wb Signature (JW5) specification.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc7516

Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Jones & Hil debrand St andards Track [Page 1]

RFC 7516 JSON Wb Encryption (JVE)

Tabl e of Contents

1. Introduction e
1.1. Notational Conventions

2. Termnology . .

3. JSON Wb Encryptl on (J\/\E) O/erw ew
3.1. JVE Conpact Serialization Overview

3.2. JWE JSON Serialization Overview .
3.3. Exanple JVE .
4. JOSE Header . .

4.1. Regi st ered Header Par anet er Nanes .
4.1.1. "alg" (A gorithm Header Paraneter .o
4.1.2. "enc" (Encryption Algorithn) Header Paraneter
4.1.3. "zip" (Conpression Algorithn) Header Paraneter
4.1.4. "jku" (JWK Set URL) Header Paraneter .o
4.1.5. "jwk" (JSON Wb Key) Header Paraneter
4.1.6. "kid" (Key ID) Header Paraneter
4.1.7. "x5u" (X. 509 URL) Header Paraneter Coe
4.1.8. "xbc" (X. 509 Certificate Chain) Header Paraneter
4.1.9. "x5t" (X.509 Certificate SHA-1 Thunbprint) Header

Paranmeter . .
4.1.10. "x5t#S256" (X 509 Oert i f| cate SHA- 256 Thunbprl nt)
Header Paraneter . . -

4.1.11. "typ" (Type) Header Pararreter .o
4.1.12. "cty" (Content Type) Header Paraneter
4.1.13. "crit" (Critical) Header Paraneter

4.2. Public Header Paraneter Nanes .

4.3. Private Header Paraneter Nanes

5. Produci ng and Consum ng JWEs

5.1. Message Encryption

5.2. Message Decryption .

5.3. String Conparison Rules .

6. Key ldentification
7. Serializations

7.1. JVEE Conpact Seri aI i zat| on .
7.2. JWVE JSON Serialization . .
7.2.1. Ceneral JWE JSON Seriali zat| on Synt ax .o
7.2.2. Flattened JWE JSON Serialization Syntax .
8. TLS Reqw rements . .
9. Distinguishing betvveen JV\S and JV\E ij ects
10. I ANA Considerations . . . Coe
10.1. JSON Web Signature and Encryptl on Header Par anet er s

Regi stration . .
10.1.1. Registry Cont ents
11. Security Considerations . .
11.1. Key Entropy and Random Val ues
11.2. Key Protection . .
11.3. Using Matching Al gor| t hm St rengt hs .

Jones & Hil debrand St andards Track

May 2015

PRRRRERRRRRERR
WWWWWNRNNRRPOO®OUAD

14

14
14
14
14
14
15
15
15
17

20
20
20
20
21
23
24
24
25

25
25
27
27
27
28

[Page 2]

RFC 7516 JSON Wb Encryption (JVE) May 2015

11. 4. Adaptive Chosen-Ci phertext Attacks 28
11.5. Timng Attacks . 28
12. References . . A
12.1. Normative References e e e s s 29
12.2. Informative References 30
Appendi x A JVE Exanples .o . 4
A 1. Exanple JWE using RSAES—OAEP and AES CImA e 4
A 1.1. JOSE Header . . . S 4
A 1.2. Content Encryptlon Key (CEK) R Y24
A.1.3. Key Encryption . . . R X
A.1.4. Initialization Véctor S . 7
A. 1.5, Additional Authenticated Eeta 35
A.1.6. Content Encryption 35
A.1.7. Conplete Representation. 36
A.1.8. Validation 36
A. 2. Exanple JWE using RSAES-PKCSl v1 5 and
AES 128 CBCHMWAC SHA 256 36
A 2.1. JOSE Header . . . < Y
A 2.2. Content Encryptlon Key (CEK) < V4
A . 2.3. Key Encryption N 1
A 2.4, Initialization Vector . . 2 1]
A.2.5. Additional Authenticated Data - (0]
A.2.6. Content Encryption 40
A 2.7. Conplete Representation 40
A 2.8. Validation . . A
A 3. Exanple JWE Using AES Key VVap and
AES 128 CBC HVAC SHA 256 N
A 3.1. JOSE Header . . . e X
A.3.2. Content Encryptlon Key (CEK) Y < 924
A 3.3. Key Encryption e 24
A.3.4. Initialization Vector . . Y < 922
A . 3.5. Additional Authenticated Data e e e 43
A.3.6. Content Encryption 43
A.3.7. Conplete Representation 43
A.3.8. Validation . . -
A 4. Exanple JWE Using GEneraI JWE JSON Serialization 44
A 4.1. JVE Per-Recipient Unprotected Headers 45
A 4.2. JVE Protected Header . . - 1)
A 4.3. JWE Shared Unprotected Fbader 45
A 4.4. Conplete JOSE Header Values 45
A.4.5. Additional Authenticated Data 46
A . 4.6. Content Encryption 46
A 4.7. Conplete JVWE JSON Serlallzatlon Representatlon ... 47
A. 5. Exanple JWE Using Flattened JWE JSON Serialization . . . 47
Appendi x B. Exanple AES 128 CBC HVAC SHA 256 Cbnputatlon 48
B.1. Extract MAC KEY and ENC_KEY fron1Key Coe 48
B.2. Encrypt Plaintext to Create G phertext 49
B.3. 64-Bit Bi g-Endi an Representati on of AAD Length 49

Jones & Hil debrand St andards Track [Page 3]

RFC 7516 JSON Wb Encryption (JVE) May 2015

B.4. Initialization Vector vValue 49
B.5. Create Input to HWAC Conputation 50
B.6. Conpute HWAC Value b0
B.7. Truncate HVAC Value to Create Authentication Tag 50
Acknowl edgenents b0
Authors’ Addresses B

1. Introduction

JSON Wb Encryption (JVE) represents encrypted content using JSON
based data structures [RFC7159]. The JVE cryptographi c nmechanisns
encrypt and provide integrity protection for an arbitrary sequence of
octets.

Two closely related serializations for JWEs are defined. The JWE
Compact Serialization is a conpact, URL-safe representation intended
for space constrained environnents such as HITP Authorization headers
and URI query paraneters. The JWE JSON Serialization represents JWEs
as JSON obj ects and enabl es the sane content to be encrypted to

mul tiple parties. Both share the sane cryptographi ¢ under pi nni ngs.

Cryptographic algorithns and identifiers for use with this
specification are described in the separate JSON Web Al gorithns (JWA)
[JWA] specification and | ANA registries defined by that
specification. Related digital signature and MAC capabilities are
described in the separate JSON Wb Signature (JWS) [JW5

speci fication.

Names defined by this specification are short because a core goal is
for the resulting representations to be conpact.

1.1. Notational Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirenent Levels" [RFC2119].
The interpretation should only be applied when the terns appear in
all capital letters.

BASE64URL(OCTETS) denotes the base64url encodi ng of OCTETS, per
Section 2 of [JWF].

UTF8(STRI NG denotes the octets of the UTF-8 [RFC3629] representation

of STRING where STRING is a sequence of zero or nore Uni code
[UNI CODE] characters.

Jones & Hil debrand St andards Track [Page 4]

RFC 7516 JSON Wb Encryption (JVE) May 2015

ASCI | (STRING denotes the octets of the ASCI|I [RFC20] representation
of STRING where STRING is a sequence of zero or nore ASCI |
characters.

The concatenation of two values A and B is denoted as A || B.
2. Term nol ogy

The ternms "JSON Wb Signature (JW5)", "Base64url Encodi ng",
"Col l'i si on-Resi stant Nane", "Header Paraneter", "JOSE Header", and
"StringOrURI" are defined by the JW5 specification [JW5].

The terns "Ciphertext", "Digital Signature", "lnitialization Vector
(Iv)", "Message Authentication Code (MAC)", and "Plaintext" are
defined by the "Internet Security d ossary, Version 2" [RFC4949].

These terns are defined by this specification:

JSON Wb Encryption (JVE)
A data structure representing an encrypted and integrity-protected
nessage.

Aut henti cated Encryption with Associ ated Data (AEAD)
An AEAD algorithmis one that encrypts the plaintext, allows
Addi tional Authenticated Data to be specified, and provides an
integrated content integrity check over the ciphertext and
Addi tional Authenticated Data. AEAD al gorithns accept two inputs,
the plaintext and the Additional Authenticated Data val ue, and
produce two outputs, the ciphertext and the Authentication Tag
val ue. AES Gal oi s/ Counter Mdde (GCM is one such algorithm

Addi tional Authenticated Data (AAD)
An input to an AEAD operation that is integrity protected but not
encrypt ed.

Aut henti cation Tag
An out put of an AEAD operation that ensures the integrity of the
ci phertext and the Additional Authenticated Data. Note that sone
al gorithms may not use an Authentication Tag, in which case this
value is the enpty octet sequence.

Content Encryption Key (CEK)

A symetric key for the AEAD al gorithmused to encrypt the
pl ai ntext to produce the ciphertext and the Authentication Tag.

Jones & Hil debrand St andards Track [Page 5]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JVE Encrypted Key
Encrypted Content Encryption Key value. Note that for sone
al gorithms, the JWE Encrypted Key value is specified as being the
enpty octet sequence.

JVWE Initialization Vector
Initialization Vector val ue used when encrypting the plaintext.
Note that sonme algorithns nay not use an Initialization Vector, in
whi ch case this value is the enpty octet sequence

JVE AAD
Additional value to be integrity protected by the authenticated
encryption operation. This can only be present when using the JWE
JSON Serialization. (Note that this can also be achi eved when
using either the JWE Conpact Serialization or the JWE JSON
Serialization by including the AAD value as an integrity-protected
Header Paraneter value, but at the cost of the val ue being double
base64url encoded.)

JVWE Ci phertext
Ci phertext value resulting fromauthenticated encryption of the
pl ai ntext with Additional Authenticated Data.

JVE Aut hentication Tag
Aut henti cation Tag value resulting from authenticated encryption
of the plaintext with Additional Authenticated Data.

JVE Protected Header
JSON obj ect that contains the Header Paranmeters that are integrity
protected by the authenticated encryption operation. These
paraneters apply to all recipients of the JWE. For the JVWE
Conmpact Serialization, this conprises the entire JOSE Header. For
the JWE JSON Serialization, this is one conponent of the JOSE
Header .

JWE Shar ed Unprotected Header
JSON obj ect that contains the Header Paraneters that apply to al
reci pients of the JWE that are not integrity protected. This can
only be present when using the JWE JSON Serialization

JVE Per - Reci pi ent Unprot ect ed Header
JSON obj ect that contains Header Paraneters that apply to a single
reci pient of the JWE. These Header Paraneter val ues are not
integrity protected. This can only be present when using the JWE
JSON Serialization.

JVE Conpact Serialization
A representation of the JWE as a conpact, URL-safe string.

Jones & Hil debrand St andards Track [Page 6]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JWE JSON Serialization
A representation of the JWE as a JSON object. The JWE JSON
Serialization enables the sanme content to be encrypted to multiple
parties. This representation is neither optimnm zed for conpactness
nor URL safe.

Key Managenent Mbde
A nmethod of determ ning the Content Encryption Key value to use.
Each al gorithmused for deternining the CEK val ue uses a specific
Key Managenent Mbde. Key Managenent Modes enpl oyed by this
specification are Key Encryption, Key Wapping, Direct Key
Agreenment, Key Agreenent with Key Wapping, and Direct Encryption.

Key Encryption
A Key Managenment Mdde in which the CEK value is encrypted to the
i ntended recipient using an asymmetric encryption algorithm

Key W appi ng
A Key Managenent Mode in which the CEK value is encrypted to the
i ntended recipient using a symmetric key wrapping algorithm

Direct Key Agreenent
A Key Managenment Mode in which a key agreenent algorithmis used
to agree upon the CEK val ue.

Key Agreenent w th Key Wapping
A Key Managenent Mode in which a key agreenent algorithmis used
to agree upon a symetric key used to encrypt the CEK value to the
i ntended recipient using a symmetric key wapping al gorithm

Direct Encryption

A Key Managenment Mdde in which the CEK value used is the secret
symretric key val ue shared between the parties.

Jones & Hil debrand St andards Track [Page 7]

RFC 7516 JSON Wb Encryption (JVE) May 2015

3. JSON Wb Encryption (JWE) Overview

JVE represents encrypted content using JSON data structures and
base64url encoding. These JSON data structures MAY contain
whi t espace and/or |ine breaks before or after any JSON val ues or
structural characters, in accordance with Section 2 of RFC 7159
[RFC7159]. A JWE represents these |ogical values (each of which is
defined in Section 2):

JOSE Header

JVE Encrypted Key

JVWE Initialization Vector
JVE AAD

JVWE Ci phertext

JVE Aut hentication Tag

O O0OO0O0O0O0

For a JWE, the JOSE Header nenbers are the union of the nenbers of
t hese val ues (each of which is defined in Section 2):

o JVE Protected Header
o0 JWE Shared Unprotected Header
0 JWE Per-Reci pi ent Unprotected Header

JVE utilizes authenticated encryption to ensure the confidentiality
and integrity of the plaintext and the integrity of the JWE Protected
Header and the JWE AAD

Thi s docunent defines two serializations for JWES: a conpact, URL-
safe serialization called the JWE Conpact Serialization and a JSON
serialization called the JWE JSON Serialization. |In both
serializations, the JWE Protected Header, JWE Encrypted Key, JVE
Initialization Vector, JWE C phertext, and JWE Authentication Tag are
base64url encoded, since JSON |lacks a way to directly represent
arbitrary octet sequences. Wen present, the JWE AAD is al so
base64url encoded.

3.1. JVE Conpact Serialization Overview
In the JWE Conpact Serialization, no JWE Shared Unprotected Header or

JVE Per - Reci pi ent Unprotected Header are used. 1In this case, the
JOSE Header and the JWE Protected Header are the sane.

Jones & Hil debrand St andards Track [Page 8]

RFC 7516 JSON Wb Encryption (JVE) May 2015

In the JWE Conpact Serialization, a JWE is represented as the
concat enat i on:

BASE64URL(UTF8(JWE Protected Header)) || '. " ||
BASE64URL(JVE Encrypted Key) || .7 ||
BASE64URL(JVE I nitialization Vector) || . ||
BASE64URL(JWE Ci phertext) || . |
BASE64URL(JWE Aut hentication Tag)

See Section 7.1 for nore information about the JWE Conpact
Seri alizati on.

3.2. JWE JSON Serialization Overview

In the JWE JSON Serialization, one or nore of the JWE Protected
Header, JWE Shared Unprotected Header, and JWE Per-Reci pi ent
Unpr ot ect ed Header MJST be present. 1In this case, the nenbers of the
JOSE Header are the union of the nenbers of the JWE Protected Header,
JWE Shared Unprotected Header, and JWE Per- Reci pi ent Unpr ot ect ed
Header val ues that are present.

In the JWE JSON Serialization, a JWE is represented as a JSON obj ect
contai ning some or all of these eight nenbers:

"protected", with the val ue BASE64URL(UTF8(JWE Prot ected Header))
"unprotected", with the value JWE Shared Unprotected Header
"header", with the value JWE Per- Reci pi ent Unprotected Header
"encrypted_key", with the val ue BASE64URL(JVE Encrypted Key)
"iv", with the value BASE64URL(JVE Initialization Vector)
"ciphertext", with the val ue BASE64URL(JWE Ci phertext)

"tag", with the val ue BASE64URL(JWE Aut hentication Tag)

"aad", with the val ue BASE64URL(JWE AAD)

The six base64url -encoded result strings and the two unprotected JSON
obj ect values are represented as nenbers within a JSON object. The

i nclusion of sone of these values is OPTIONAL. The JVWE JSON
Serialization can also encrypt the plaintext to nultiple recipients.
See Section 7.2 for nore information about the JWE JSON

Seri alizati on.

Jones & Hil debrand St andards Track [Page 9]

RFC 7516 JSON Wb Encryption (JVE) May 2015

3.3. Exanple JVE

Thi s exanpl e encrypts the plaintext "The true sign of intelligence is
not knowl edge but inmagination." to the recipient.

The followi ng exanpl e JWE Protected Header declares that:

0 The Content Encryption Key is encrypted to the recipient using the
RSAES- QAEP [RFC3447] algorithmto produce the JWE Encrypted Key.

0 Authenticated encryption is performed on the plaintext using the
AES GCM [AES] [N ST. 800-38D] algorithmwith a 256-bit key to
produce the ciphertext and the Authentication Tag.

{"al g":"RSA- CAEP", "enc": " A256GCM'}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ect ed
Header)) gives this val ue:

eyJhbCci O JSUOEt TOFFUCI sl nVuYyl 61 kEy NTZHQOO0i f Q
The remaining steps to finish creating this JWE are:
0 GCenerate a random Content Encryption Key (CEK).

0o Encrypt the CEK with the recipient’s public key using the RSAES-
OAEP al gorithmto produce the JVWE Encrypted Key.

0 Base64url-encode the JWE Encrypted Key.
0 Cenerate a random JWE Initialization Vector.
0 Baseb64url-encode the JWE Initialization Vector.

0 Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JWE Pr ot ect ed Header))).

o Performauthenticated encryption on the plaintext with the AES GCM
al gorithmusing the CEK as the encryption key, the JVE
Initialization Vector, and the Additional Authenticated Data
val ue, requesting a 128-bit Authentication Tag out put.

0 Baseb64url -encode the ciphertext.

0 Baseb64url -encode the Authentication Tag.

Jones & Hil debrand St andards Track [Page 10]

RFC 7516 JSON Wb Encryption (JVE) May 2015

0 Assenble the final representation: The Conpact Serialization of
this result is the string BASE64URL(UTF8(JWE Protected Header)) ||
"." || BASE64URL(JVE Encrypted Key) || '." || BASE64URL(JVE
Initialization Vector) || .’ || BASE64URL(JWE Ci phertext) || .’
'l

BASE64URL(JVE Aut hentication Tag).
The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCci O JSUOEt TOFFUCI sl mVuYyl 61 kEy NTZHQDOi f Q.

OKCawbDo13gRp20j aHV7LFpZcgV7T6DVZKTY KOMIYUrKoTCVIRgck CL9ki MI03JGe
i psEdY3nx_et LbbW5r Fr 05kLzcSr 4gKAgQ7YN7e9j wQRb23nf a6¢c9d- St nl nGy FDb
Sv04uVux| p5Zns 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
nggf wX7XWRxv2322i - vDXRf qNzo_t ETKzpVLzf i wQyeyPGLBI C66YJ7eChdv0j e8
1860ppanmavo35UgoRdbYaBcoh9Qcf yl @ 660c6vVFWKRcZ_ZT2LawCWI| y3br GPi

6UkI f Cpl M I j f7i GAXKHzg.

48V1_ALb6US04U3b.

5eynB8TW c8SuKOI t J3r pYl zOCeDQz 7TALVt ubUoM4vpzs9t X_EFShS8i B7j 6j i

Sdi wkl r 3aj wQzaBt QD_A.

XFBoMyUZodet ZdvTi FvSkQ

See Appendix A.1 for the conplete details of conputing this JWE. See
Appendi x A for additional exanples, including exanples using the JVE
JSON Serialization in Sections A 4 and A 5.

4. JOSE Header

For a JWE, the nenbers of the JSON object(s) representing the JOSE
Header describe the encryption applied to the plaintext and
optionally additional properties of the JWE. The Header Paraneter
nanes within the JOSE Header MJST be unique, just as described in
Section 4 of [JWB]. The rul es about handling Header Paraneters that
are not understood by the inplenmentation are also the sane. The

cl asses of Header Paraneter nanes are |ikew se the sane.

4.1. Registered Header Paraneter Nanes

The foll owi ng Header Paraneter nanes for use in JWEs are registered
in the | ANA "JSON Wb Signature and Encrypti on Header Paraneters"
registry established by [JW5], with neanings as defined bel ow

As indicated by the common registry, JWSs and JWEs share a conmon
Header Paraneter space; when a paranmeter is used by both
specifications, its usage nmust be conpati bl e between the

speci fications.

Jones & Hil debrand St andards Track [Page 11]

RFC 7516 JSON Wb Encryption (JVE) May 2015

4.1.1. "alg" (A gorithm Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "al g" Header Paraneter defined in Section 4.1.1 of [JW5], except
that the Header Paraneter identifies the cryptographic al gorithm used
to encrypt or deternine the value of the CEK. The encrypted content
is not usable if the "alg" val ue does not represent a supported
algorithm or if the recipient does not have a key that can be used
with that algorithm

A list of defined "alg" values for this use can be found in the | ANA
"JSON Web Signature and Encryption Al gorithns" registry established
by [JWA]; the initial contents of this registry are the val ues
defined in Section 4.1 of [JWA].

4.1.2. "enc" (Encryption Algorithn) Header Paraneter

The "enc" (encryption algorithm Header Paraneter identifies the
content encryption algorithmused to perform authenticated encryption
on the plaintext to produce the ciphertext and the Authentication
Tag. This algorithm MIST be an AEAD algorithmw th a specified key

I ength. The encrypted content is not usable if the "enc" val ue does
not represent a supported algorithm "enc" values should either be
registered in the I ANA "JSON Wb Signature and Encryption Al gorithns"
registry established by [JWA] or be a value that contains a

Col I'i si on-Resi stant Nane. The "enc" value is a case-sensitive ASCl
string containing a StringOrURI value. This Header Paraneter MJST be
present and MJUST be understood and processed by inpl enmentations.

A list of defined "enc" values for this use can be found in the | ANA
"JSON Web Signature and Encryption Al gorithns" registry established
by [JWA]; the initial contents of this registry are the val ues
defined in Section 5.1 of [JWA].

4.1.3. "zip" (Conpression Algorithnm Header Paraneter

The "zip" (conpression algorithm applied to the plaintext before
encryption, if any. The "zip" value defined by this specification
is:

o "DEF* - Conpression with the DEFLATE [RFC1951] al gorithm

O her val ues MAY be used. Conpression algorithmvalues can be
registered in the 1 ANA "JSON Wb Encryption Conpression Al gorithns"
registry established by [JWA]. The "zip" value is a case-sensitive
string. If no "zip" paraneter is present, no conpression is applied
to the plaintext before encryption. Wen used, this Header Paraneter
MUST be integrity protected; therefore, it MJST occur only within the

Jones & Hil debrand St andards Track [Page 12]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JWE Protected Header. Use of this Header Parameter is OPTI ONAL.
Thi s Header Paraneter MJST be understood and processed by
i mpl emrent ati ons.

4.1.4. "jku" (JWK Set URL) Header Paraneter

This paraneter has the sanme neani ng, syntax, and processing rules as
the "jku" Header Paraneter defined in Section 4.1.2 of [JW5], except
that the JWK Set resource contains the public key to which the JWE
was encrypted; this can be used to determ ne the private key needed
to decrypt the JWE

4.1.5. "jwk" (JSON Wb Key) Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "jwk" Header Paraneter defined in Section 4.1.3 of [JW5], except
that the key is the public key to which the JWE was encrypted; this
can be used to determne the private key needed to decrypt the JVE.

4.1.6. "kid" (Key |ID) Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "kid" Header Paraneter defined in Section 4.1.4 of [JW5], except
that the key hint references the public key to which the JVWE was
encrypted; this can be used to determ ne the private key needed to
decrypt the JWE. This paraneter allows originators to explicitly
signal a change of key to JVE recipients.

4.1.7. "x5u" (X. 509 URL) Header Paraneter

This paraneter has the sanme neani ng, syntax, and processing rules as
the "x5u" Header Paraneter defined in Section 4.1.5 of [JW5], except
that the X 509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
used to determ ne the private key needed to decrypt the JVE.

4.1.8. "xbc" (X. 509 Certificate Chain) Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "x5c¢c" Header Paraneter defined in Section 4.1.6 of [JW5], except
that the X 509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
used to determne the private key needed to decrypt the JVE.

See Appendi x B of [JWE] for an exanple "x5c" val ue.

Jones & Hil debrand St andards Track [Page 13]

RFC 7516 JSON Wb Encryption (JVE) May 2015

4.1.9. "xb5t" (X. 509 Certificate SHA-1 Thunbprint) Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "x5t" Header Paraneter defined in Section 4.1.7 of [JW5], except
that the certificate referenced by the thunbprint contains the public
key to which the JWE was encrypted; this can be used to determ ne the
private key needed to decrypt the JWE. Note that certificate
thumbprints are al so sonmetimes known as certificate fingerprints.

4.1.10. "x5t#S256" (X.509 Certificate SHA-256 Thunbprint) Header
Par anet er

This paraneter has the sanme neani ng, syntax, and processing rules as
t he "x5t#S256" Header Paraneter defined in Section 4.1.8 of [JWF],
except that the certificate referenced by the thunbprint contains the
public key to which the JWE was encrypted; this can be used to
determ ne the private key needed to decrypt the JWE. Note that
certificate thunbprints are al so sonetines known as certificate
fingerprints.

4.1.11. "typ" (Type) Header Paraneter

This paraneter has the same neani ng, syntax, and processing rules as
the "typ" Header Paraneter defined in Section 4.1.9 of [JW5], except
that the type is that of this conplete JVE.

4.1.12. "cty" (Content Type) Header Paraneter

This paraneter has the same neani ng, syntax, and processing rules as
the "cty" Header Paraneter defined in Section 4.1.10 of [JWB], except
that the type is that of the secured content (the plaintext).

4.1.13. "crit" (Critical) Header Paraneter

This paraneter has the same neani ng, syntax, and processing rules as
the "crit" Header Paraneter defined in Section 4.1.11 of [JWE]

except that Header Paranmeters for a JWE are being referred to, rather
t han Header Paraneters for a JW5

4. 2. Publ i ¢ Header Paraneter Nanes

Addi tional Header Paraneter names can be defined by those using JVWEs.
However, in order to prevent collisions, any new Header Paraneter
name should either be registered in the | ANA "JSON Wb Si gnature and
Encrypti on Header Paraneters" registry established by [JW5] or be a
Public Nane: a value that contains a Collision-Resistant Nane. In
each case, the definer of the name or value needs to take reasonable

Jones & Hil debrand St andards Track [Page 14]

RFC 7516 JSON Wb Encryption (JVE) May 2015

precautions to nake sure they are in control of the part of the
nanespace they use to define the Header Paraneter nane.

New Header Paraneters should be introduced sparingly, as they can
result in non-interoperable JWES.

4.3. Private Header Paraneter Nanes

A producer and consuner of a JWE nmay agree to use Header Paraneter
nanes that are Private Nanes: nanes that are not Registered Header
Par anet er nanmes (Section 4.1) or Public Header Parameter nanes
(Section 4.2). Unlike Public Header Paraneter nanes, Private Header
Par anet er names are subject to collision and should be used with
cauti on.

5. Produci ng and Consum ng JWEs
5.1. Message Encryption

The nmessage encryption process is as follows. The order of the steps
is not significant in cases where there are no dependenci es between
the inputs and outputs of the steps.

1. Det erm ne the Key Managenent Modde enpl oyed by the al gorithm used
to determne the Content Encryption Key value. (This is the
algorithmrecorded in the "al g" (algorithn Header Paraneter of
the resulting JVWE.)

2. When Key Wappi ng, Key Encryption, or Key Agreement with Key
W appi ng are enpl oyed, generate a random CEK val ue. See RFC
4086 [RFC4086] for considerations on generating random val ues.
The CEK MUST have a length equal to that required for the
content encryption al gorithm

3. When Direct Key Agreenent or Key Agreement with Key Wapping are
enpl oyed, use the key agreenent algorithmto conpute the val ue
of the agreed upon key. Wen Direct Key Agreenent is enpl oyed,
let the CEK be the agreed upon key. Wen Key Agreenent with Key
W apping is enployed, the agreed upon key will be used to wap
t he CEK

4, When Key W appi ng, Key Encryption, or Key Agreenent with Key
W appi ng are enpl oyed, encrypt the CEK to the recipient and | et
the result be the JWE Encrypted Key.

5. When Direct Key Agreenent or Direct Encryption are enployed, |et
the JWE Encrypted Key be the enpty octet sequence.

Jones & Hil debrand St andards Track [Page 15]

RFC 7516

10.

11.

12.

13.

14.

15.

16.

JSON Wb Encryption (JVE) May 2015

When Direct Encryption is enployed, let the CEK be the shared
symmetric key.

Comput e the encoded key val ue BASE64URL(JWVE Encrypted Key).

If the JWE JSON Serialization is being used, repeat this process
(steps 1-7) for each recipient.

Generate a random JVE Initialization Vector of the correct size
for the content encryption algorithm (if required for the
algorithm; otherwise, let the JWE Initialization Vector be the
enpty octet sequence.

Comput e the encoded Initialization Vector val ue BASE64URL(JVE
Initialization Vector).

If a "zip" paraneter was included, conpress the plaintext using
the specified conpression algorithmand et Mbe the octet
sequence representing the conpressed plaintext; otherwise, let M
be the octet sequence representing the plaintext.

Create the JSON object(s) containing the desired set of Header
Par anet ers, which together conprise the JOSE Header: one or nore
of the JWE Protected Header, the JWE Shared Unprotected Header
and the JWE Per-Reci pi ent Unprotected Header.

Conpute the Encoded Protected Header val ue BASE64URL(UTF8(JVE
Protected Header)). |If the JWE Protected Header is not present
(whi ch can only happen when using the JWE JSON Seri alization and
no "protected" nenber is present), let this value be the enpty
string.

Let the Additional Authenticated Data encryption paramneter be
ASCI | (Encoded Protected Header). However, if a JWE AAD value is
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption paraneter be ASClI | (Encoded Protected Header || '.' |
BASE64URL(JVE AAD)) .

Encrypt Musing the CEK, the JWE Initialization Vector, and the
Addi tional Authenticated Data val ue using the specified content
encryption algorithmto create the JWE C phertext value and the
JWE Aut hentication Tag (which is the Authentication Tag out put
fromthe encryption operation).

Comput e the encoded ci phertext val ue BASE64URL(JWE Ci phertext).

Jones & Hil debrand St andards Track [Page 16]

RFC 7516 JSON Wb Encryption (JVE) May 2015
17. Conpute the encoded Authentication Tag val ue BASE64URL(JVE
Aut henti cati on Tag).

18. If a JWE AAD value is present, conpute the encoded AAD val ue
BASE64URL(JWE AAD) .

19. Create the desired serialized output. The Conpact Serialization
of this result is the string BASE64URL(UTF8(JWE Pr ot ect ed

Header)) || .’ || BASE64URL(JWE Encrypted Key) || '. |
BASE64URL(JVEE | nitialization Vector) || '.' || BASE64URL(JVE
Ciphertext) || '." || BASE64URL(JWVE Authentication Tag). The

JVWE JSON Serialization is described in Section 7. 2.
5.2. Message Decryption

The message decryption process is the reverse of the encryption
process. The order of the steps is not significant in cases where
there are no dependenci es between the inputs and outputs of the
steps. |If any of these steps fail, the encrypted content cannot be
val i dat ed.

When there are multiple recipients, it is an application decision
whi ch of the recipients’ encrypted content nust successfully validate

for the JWE to be accepted. In sone cases, encrypted content for al
reci pients nust successfully validate or the JWE will be considered
invalid. 1In other cases, only the encrypted content for a single

reci pient needs to be successfully validated. However, in all cases,
the encrypted content for at |east one recipient MIJST successfully
val idate or the JWE MJUST be considered invalid.

1. Parse the JWE representation to extract the serialized val ues
for the conponents of the JWE. \Wen using the JWE Conpact
Serialization, these conmponents are the base64url - encoded
representations of the JWE Protected Header, the JWE Encrypted
Key, the JWE Initialization Vector, the JWE G phertext, and the
JVE Aut hentication Tag, and when using the JWE JSON
Serialization, these conponents al so include the base64url -
encoded representation of the JWE AAD and the unencoded JWE
Shared Unprotected Header and JWE Per - Reci pi ent Unprotected
Header val ues. When using the JWE Conpact Serialization, the
JVE Protected Header, the JWE Encrypted Key, the JVE
Initialization Vector, the JWE G phertext, and the JWE
Aut hentication Tag are represented as base64url -encoded val ues
in that order, with each val ue being separated fromthe next by
a single period ('.’) character, resulting in exactly four
delinmting period characters being used. The JWE JSON
Serialization is described in Section 7.2.

Jones & Hil debrand St andards Track [Page 17]

RFC 7516

Jones &

JSON Wb Encryption (JVE) May 2015

Base64ur| decode the encoded representations of the JVE

Prot ect ed Header, the JWE Encrypted Key, the JWE Initialization
Vector, the JWE G phertext, the JWE Authentication Tag, and the
JWE AAD, following the restriction that no |ine breaks,

whi t espace, or other additional characters have been used.

Verify that the octet sequence resulting fromdecodi ng the
encoded JVWE Protected Header is a UTF-8-encoded representation
of a conpletely valid JSON object conform ng to RFC 7159

[RFC7159]; let the JWE Protected Header be this JSON object.

If using the JWE Conpact Serialization, |et the JOSE Header be
the JWE Protected Header. O herw se, when using the JWE JSON
Serialization, let the JOSE Header be the union of the nenbers
of the JWE Protected Header, the JWE Shared Unprotected Header
and the correspondi ng JVWE Per - Reci pi ent Unprotected Header, all
of which nust be conpletely valid JSON objects. During this
step, verify that the resulting JOSE Header does not contain
dupl i cat e Header Paraneter names. Wen using the JWE JSON
Serialization, this restriction includes that the same Header
Par anmet er name al so MJUST NOT occur in distinct JSON object

val ues that together conprise the JOSE Header.

Verify that the inplenentation understands and can process al
fields that it is required to support, whether required by this
specification, by the algorithns being used, or by the "crit"
Header Paraneter value, and that the values of those paraneters
are al so understood and support ed.

Det erm ne the Key Managenent Modde enpl oyed by the al gorithm
specified by the "alg" (algorithm Header Paraneter.

Verify that the JWE uses a key known to the recipient.

When Direct Key Agreenent or Key Agreement with Key Wapping are
enpl oyed, use the key agreenent algorithmto conpute the val ue
of the agreed upon key. Wen Direct Key Agreenent is enpl oyed,
let the CEK be the agreed upon key. Wen Key Agreenent with Key
W apping i s enpl oyed, the agreed upon key will be used to
decrypt the JWE Encrypted Key.

When Key W appi ng, Key Encryption, or Key Agreenent with Key
W appi ng are enpl oyed, decrypt the JWE Encrypted Key to produce
the CEK. The CEK MJST have a length equal to that required for
the content encryption algorithm Note that when there are

multiple recipients, each recipient will only be able to decrypt
JVE Encrypted Key values that were encrypted to a key in that
reci pient’s possession. It is therefore nornal to only be able

Hi | debr and St andards Track [Page 18]

RFC 7516 JSON Wb Encryption (JVE) May 2015

to decrypt one of the per-recipient JWE Encrypted Key val ues to
obtain the CEK value. Also, see Section 11.5 for security
consi derations on nitigating timning attacks.

10. When Direct Key Agreenent or Direct Encryption are enpl oyed,
verify that the JWE Encrypted Key value is an enpty octet
sequence.

11. When Direct Encryption is enployed, let the CEK be the shared
symretric key.

12. Record whether the CEK could be successfully determned for this
reci pient or not.

13. If the JWE JSON Serialization is being used, repeat this process
(steps 4-12) for each recipient contained in the representation

14. Conpute the Encoded Protected Header val ue BASE64URL(UTF8(JVE
Protected Header)). |If the JWE Protected Header is not present
(which can only happen when using the JWE JSON Serialization and
no "protected" nenber is present), let this value be the enpty
string.

15. Let the Additional Authenticated Data encryption paraneter be
ASCl | (Encoded Protected Header). However, if a JWE AAD value is
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption paraneter be ASClI | (Encoded Protected Header || '. |
BASE64URL(JVE AAD)) .

16. Decrypt the JWE Ci phertext using the CEK, the JWE Initialization
Vector, the Additional Authenticated Data value, and the JWE
Aut hentication Tag (which is the Authentication Tag i nput to the
cal cul ation) using the specified content encryption algorithm
returning the decrypted plaintext and validating the JVWE
Aut hentication Tag in the manner specified for the algorithm
rejecting the input without emtting any decrypted output if the
JWE Aut hentication Tag is incorrect.

17. If a "zip" paraneter was included, unconpress the decrypted
pl ai nt ext using the specified conpression algorithm

18. If there was no recipient for which all of the decryption steps
succeeded, then the JWE MJUST be considered invalid. O herwi se,
output the plaintext. 1In the JWE JSON Serialization case, also
return a result to the application indicating for which of the
reci pients the decryption succeeded and fail ed.

Jones & Hil debrand St andards Track [Page 19]

RFC 7516

JSON Wb Encryption (JVE) May 2015

Finally, note that it is an application decision which algorithns nay
be used in a given context. Even if a JWE can be successfully
decrypted, unless the algorithns used in the JWE are acceptable to

the application, it SHOULD consider the JWE to be invalid.

5.3. String Conparison Rules
The string conparison rules for this specification are the sane as
those defined in Section 5.3 of [JWF].
6. Key ldentification
The key identification nmethods for this specification are the same as
those defined in Section 6 of [JWE], except that the key being
identified is the public key to which the JWE was encrypted.
7. Serializations
JWEs use one of two serializations: the JWE Conpact Serialization or
the JWE JSON Serialization. Applications using this specification
need to specify what serialization and serialization features are
used for that application. For instance, applications mght specify
that only the JWE JSON Serialization is used, that only JWE JSON
Serialization support for a single recipient is used, or that support
for multiple recipients is used. JWE inplenentations only need to
i mpl enent the features needed for the applications they are designed
to support.
7.1. JVEE Conpact Serialization
The JWE Conpact Serialization represents encrypted content as a
conpact, URL-safe string. This string is:
BASE64URL(UTF8(JWE Protected Header)) || '. " ||
BASE64URL(JVE Encrypted Key) || .7 ||
BASE64URL(JVE I nitialization Vector) || . ||
BASE64URL(JWE Ci phertext) || . |
BASE64URL(JWE Aut hentication Tag)
Only one recipient is supported by the JWE Conpact Serialization and
it provides no syntax to represent JWE Shared Unprotected Header, JWVE
Per - Reci pi ent Unprotected Header, or JWE AAD val ues.
7.2. JVE JSON Serialization

The JWE JSON Serialization represents encrypted content as a JSON

obj ect.
URL safe.

This representation is

Jones & Hil debrand

St andards Track

neither optimzed for conpactness nor

[Page 20]

RFC 7516 JSON Wb Encryption (JVE) May 2015

Two closely related syntaxes are defined for the JWE JSON
Serialization: a fully general syntax, with which content can be
encrypted to nore than one recipient, and a flattened syntax, which
is optim zed for the single-recipient case.

7.2.1. General JWE JSON Serialization Syntax

The followi ng nenbers are defined for use in top-level JSON objects
used for the fully general JWE JSON Serialization syntax:

pr ot ect ed
The "protected" nenber MJUST be present and contain the val ue
BASE64URL(UTF8(JWE Pr ot ect ed Header)) when the JWE Protected
Header value is non-enpty; otherwise, it MJST be absent. These
Header Paraneter values are integrity protected.

unpr ot ect ed
The "unprotected" nmenber MJST be present and contain the value JVE
Shared Unprot ected Header when the JWE Shared Unprotected Header
val ue is non-enpty; otherw se, it MJST be absent. This value is
represented as an unencoded JSON object, rather than as a string.
These Header Paranmeter values are not integrity protected.

The "iv" menber MUST be present and contain the val ue
BASE64URL(JVE | nitialization Vector) when the JWE Initialization
Vector value is non-enpty; otherwise, it MJST be absent.

aad
The "aad" nenber MJST be present and contain the val ue
BASE64URL(JWE AAD)) when the JWE AAD val ue i s non-enpty;
otherwi se, it MJST be absent. A JWE AAD val ue can be included to
supply a base64url -encoded value to be integrity protected but not
encrypt ed.

ci phertext
The "ci phertext" menber MUST be present and contain the val ue
BASE64URL(JWE Ci phertext).

tag
The "tag" nmenber MJST be present and contain the val ue
BASE64URL(JVWE Aut hentication Tag) when the JWE Authentication Tag
val ue is non-enpty; otherwi se, it MJIST be absent.

recipients
The "recipients" nmenber val ue MJST be an array of JSON objects.
Each object contains information specific to a single recipient.
This menber MJST be present with exactly one array el enent per

Jones & Hil debrand St andards Track [Page 21]

RFC 7516 JSON Wb Encryption (JVE) May 2015

reci pient, even if some or all of the array el enent values are the
enpty JSON object "{}" (which can happen when all Header Paraneter
val ues are shared between all recipients and when no encrypted key
is used, such as when doing Direct Encryption).

The followi ng nenbers are defined for use in the JSON objects that
are elenents of the "recipients" array:

header
The "header" menber MJST be present and contain the val ue JVWE Per -
Reci pi ent Unprotected Header when the JWE Per-Reci pi ent
Unprot ect ed Header value is non-enpty; otherwise, it MJST be
absent. This value is represented as an unencoded JSON obj ect,
rather than as a string. These Header Paraneter val ues are not
integrity protected.

encrypt ed_key
The "encrypted _key" nenber MJST be present and contain the val ue
BASE64URL(JWE Encrypted Key) when the JWE Encrypted Key value is
non-enpty; otherw se, it MJST be absent.

At | east one of the "header", "protected", and "unprotected" nenbers
MUST be present so that "alg" and "enc" Header Paraneter val ues are
conveyed for each recipient conputation

Addi tional nenbers can be present in both the JSON objects defined
above; if not understood by inplenmentations encountering them they
MUST be i gnor ed.

Sonme Header Paraneters, including the "alg" paraneter, can be shared
anong all recipient conputations. Header Paraneters in the JWE

Prot ect ed Header and JWE Shared Unprotected Header val ues are shared
among all recipients.

The Header Paraneter val ues used when creating or validating per-
reci pient ciphertext and Authentication Tag val ues are the union of
the three sets of Header Paraneter values that may be present: (1)
the JWE Protected Header represented in the "protected" nmenber, (2)
the JWE Shared Unprotected Header represented in the "unprotected"
menber, and (3) the JWE Per-Recipi ent Unprotected Header represented
in the "header" menber of the recipient’s array elenent. The union
of these sets of Header Paraneters conprises the JOSE Header. The
Header Paraneter nanmes in the three |ocations MJST be disjoint.

Each JWE Encrypted Key val ue is conputed using the paranmeters of the
correspondi ng JOSE Header value in the same manner as for the JWE
Compact Serialization. This has the desirable property that each JVE
Encrypted Key value in the "recipients"” array is identical to the

Jones & Hil debrand St andards Track [Page 22]

RFC 7516 JSON Wb Encryption (JVE) May 2015

val ue that woul d have been conputed for the sanme paraneter in the JVE
Conmpact Serialization. Likew se, the JWE C phertext and JWE

Aut henti cation Tag val ues match those produced for the JWE Conpact
Serialization, provided that the JWE Protected Header val ue (which
represents the integrity-protected Header Paraneter values) matches
that used in the JWE Conpact Serialization.

Al recipients use the sane JWE Protected Header, JVWE Initialization
Vector, JWE Ciphertext, and JWE Aut hentication Tag val ues, when
present, resulting in potentially significant space savings if the
message is large. Therefore, all Header Paraneters that specify the
treatment of the plaintext value MIUST be the sane for all recipients.
This primarily nmeans that the "enc" (encryption algorithm Header
Paraneter value in the JOSE Header for each recipient and any
paraneters of that algorithm MJST be the sane

In sunmary, the syntax of a JWE using the general JWE JSON
Serialization is as follows:

{

"protected":"<integrity-protected shared header contents>"

"unprotected":<non-integrity-protected shared header contents>,

"recipients":]

{"header": <per-reci pi ent unprotected header 1 contents>,
"encrypted_key":"<encrypted key 1 contents>"},

{"header": <per-recipient unprotected header N contents>,
"encrypt ed_key": "<encrypted key N contents>"}],

"aad":"<additional authenticated data contents>",

"iv':"<initialization vector contents>",

"ci phertext":"<ci phertext contents>",

"tag":"<authentication tag contents>"

}

See Appendi x A .4 for an exanple JWE using the general JWE JSON
Serialization syntax.

7.2.2. Flattened JWE JSON Serialization Syntax

The flattened JWE JSON Serialization syntax is based upon the genera
syntax, but flattens it, optimzing it for the single-recipient case.
It flattens it by renoving the "recipients" nenber and instead

pl aci ng those nenbers defined for use in the "recipients" array (the
"header" and "encrypted key" nenbers) in the top-Ilevel JSON object
(at the sane |l evel as the "ciphertext" nenber).

Jones & Hil debrand St andards Track [Page 23]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The "recipients" nmenber MIUST NOT be present when using this syntax.
O her than this syntax difference, JWE JSON Serialization objects
using the flattened syntax are processed identically to those using
t he general syntax.

In summary, the syntax of a JWE using the flattened JWE JSON
Serialization is as foll ows:

{

"protected":"<integrity-protected header contents>"
"unprotected":<non-integrity-protected header contents>,
"header": <nore non-integrity-protected header contents>,
"encrypted _key":"<encrypted key contents>",
"aad":"<additional authenticated data contents>",
"iv':"<initialization vector contents>",

"ci phertext":"<ci phertext contents>",
"tag":"<authentication tag contents>"

}

Not e that when using the flattened syntax, just as when using the
general syntax, any unprotected Header Paraneter values can reside in
either the "unprotected" nenber or the "header" nenber, or in both.

See Appendix A5 for an exanple JVE using the flattened JWE JSON
Serialization syntax.

8. TLS Requirements

The Transport Layer Security (TLS) requirenents for this
specification are the sanme as those defined in Section 8 of [JWF].

9. Distinguishing between JWS and JWE bj ects

There are several ways of distinguishing whether an object is a JW5
or JWE. All these nethods will yield the same result for all |ega
i nput values; they nmay yield different results for mal forned inputs.

o |If the object is using the JW5 Conpact Serialization or the JWE
Conpact Serialization, the nunmber of base64url-encoded segnents
separated by period ('.’) characters differs for JWss and JVEs.
JWEs have three segnents separated by two period (’.’) characters.
JWEs have five segnments separated by four period ('.’) characters.

o If the object is using the JW5 JSON Serialization or the JWE JSON
Serialization, the nmenbers used will be different. JWSs have a
"payl oad" menber and JWEs do not. JWEsS have a "ciphertext" menber
and JWss do not.

Jones & Hil debrand St andards Track [Page 24]

RFC 7516 JSON Wb Encryption (JVE) May 2015

(o]

10.

10. 1.

The JOSE Header for a JW5 can be distinguished fromthe JOSE
Header for a JWE by examining the "alg" (algorithn) Header
Paraneter value. |f the value represents a digital signature or
MAC al gorithm or is the value "none", it is for a JW5, if it
represents a Key Encryption, Key Wapping, Direct Key Agreenent,
Key Agreenent with Key Wapping, or Direct Encryption algorithm
it is for a JWE. (Extracting the "alg" value to exanine is

strai ghtforward when using the JW5 Conpact Serialization or the
JWE Conpact Serialization and may be nore difficult when using the
JWS JSON Serialization or the JWE JSON Serialization.)

The JOSE Header for a JW5 can al so be distinguished fromthe JOSE
Header for a JWE by determini ng whether an "enc" (encryption

al gorithm nenber exists. |If the "enc" menber exists, it is a
JVE; otherwise, it is a JW.

| ANA Consi derations

JSON Wb Signature and Encryption Header Paraneters Regi stration

This section registers the Header Paraneter names defined in
Section 4.1 in the I ANA "JSON Wb Signature and Encrypti on Header
Paraneters” registry established by [JWF].

10. 1.

Oo0Oo0ooo Oo0Oo0ooo

Oo0Oo0ooo

1. Registry Contents

Header Paraneter Name: "al g"

Header Paraneter Description: Al gorithm

Header Paraneter Usage Location(s): JVE

Change Controller: |ESG

Speci fication Docunent(s): Section 4.1.1 of RFC 7516

Header Paraneter Name: "enc"

Header Paraneter Description: Encryption Al gorithm
Header Paraneter Usage Location(s): JVE

Change Controller: |ESG

Speci fication Docunent(s): Section 4.1.2 of RFC 7516

Header Paraneter Name: "zip"

Header Paraneter Description: Conpression Algorithm
Header Paraneter Usage Location(s): JVE

Change Controller: |ESG

Speci fication Docunent(s): Section 4.1.3 of RFC 7516

Jones & Hil debrand St andards Track [Page 25]

RFC 7516 JSON Wb Encryption (JVE)

0 Header Paraneter Nane: "jku"

0 Header Paraneter Description: JW Set URL

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: |IESG

o Specification Docunent(s): Section 4.1.4 of RFC

0 Header Paraneter Nane: "jwk"

0 Header Paraneter Description: JSON Wb Key

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

0o Specification Docunent(s): Section 4.1.5 of RFC

0 Header Paraneter Nane: "kid"

0 Header Paraneter Description: Key ID

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

o Specification Docunent(s): Section 4.1.6 of RFC

0 Header Paraneter Nane: "x5u"

0 Header Paraneter Description: X 509 URL

0 Header Paraneter Usage Location(s): JWVE

0 Change Controller: IESG

o Specification Docunent(s): Section 4.1.7 of RFC

0 Header Paraneter Nane: "x5c"

0 Header Paraneter Description: X 509 Certificate

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

o Specification Docunent(s): Section 4.1.8 of RFC

0 Header Paraneter Nane: "x5t"

0 Header Paraneter Description: X 509 Certificate

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

0o Specification Docunent(s): Section 4.1.9 of RFC

0 Header Paraneter Nane: "x5t#S256"

0 Header Paraneter Description: X 509 Certificate

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

0 Specification Docunent(s): Section 4.1.10 of RFC 7516

0 Header Paraneter Nane: "typ"

0 Header Paraneter Description: Type

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG

0 Specification Docunent(s): Section 4.1.11 of RFC 7516
Jones & Hil debrand St andards Track

7516

7516

7516

7516

Chain

7516

May 2015

SHA-1 Thunbpri nt

7516

SHA- 256 Thunbpri nt

[Page 26]

RFC 7516 JSON Wb Encryption (JVE) May 2015

0 Header Paraneter Nane: "cty"

0 Header Paraneter Description: Content Type

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: |IESG

o Specification Docunent(s): Section 4.1.12 of RFC 7516
0 Header Paraneter Nane: “crit"

0 Header Paraneter Description: Critical

0 Header Paraneter Usage Location(s): JWE

0 Change Controller: IESG
0o Specification Docunent(s): Section 4.1.13 of RFC 7516

11. Security Considerations

Al'l of the security issues that are pertinent to any cryptographic
application nust be addressed by JW5/ JWE JWK agents. Anong these
i ssues are protecting the user’s asynmetric private and symmetric
secret keys and enpl oyi ng counterneasures to various attacks.

Al the security considerations in the JW5 specification also apply
to this specification. Likew se, all the security considerations in
XML Encryption 1.1 [WBC. REC-xml enc-corel-20130411] al so apply, other
than those that are XM specific.

11.1. Key Entropy and Random Val ues

See Section 10.1 of [JWB] for security considerations on key entropy
and random values. 1In addition to the uses of random values |isted
there, note that random val ues are al so used for Content Encryption
Keys (CEKs) and Initialization Vectors (1Vs) when perforni ng
encryption.

11.2. Key Protection

See Section 10.2 of [JW5] for security considerations on key
protection. 1In addition to the keys listed there that nust be
protected, inplenmentations perform ng encryption nust protect the key
encryption key and the Content Encryption Key. Conpronise of the key
encryption key may result in the disclosure of all contents protected
with that key. Simlarly, conprom se of the Content Encryption Key
may result in disclosure of the associated encrypted content.

Jones & Hil debrand St andards Track [Page 27]

RFC 7516 JSON Wb Encryption (JVE) May 2015

11.3. Using Matching Al gorithm Strengths

Al gorithns of matching strengths should be used together whenever
possi ble. For instance, when AES Key Wap is used with a given key
size, using the same key size is recommended when AES GCMis al so
used. |If the key encryption and content encryption algorithns are
different, the effective security is deternined by the weaker of the
two al gorithns.

Al so, see RFC 3766 [RFC3766] for information on deternining strengths
for public keys used for exchanging symetric keys.

11. 4. Adaptive Chosen-Ci phertext Attacks

When decrypting, particular care nmust be taken not to allow the JWE
reci pient to be used as an oracle for decrypting nessages. RFC 3218
[RFC3218] should be consulted for specific countermeasures to attacks
on RSAES- PKCS1-v1l 5. An attacker might nodify the contents of the
"al g" Header Paraneter from "RSA-OQAEP" to "RSAl 5" in order to
generate a formatting error that can be detected and used to recover
the CEK even if RSAES- OAEP was used to encrypt the CEK. It is
therefore particularly inportant to report all formatting errors to
the CEK, Additional Authenticated Data, or ciphertext as a single
error when the encrypted content is rejected.

Additionally, this type of attack can be prevented by restricting the
use of a key to a limted set of algorithns -- usually one. This
means, for instance, that if the key is marked as being for

"RSA- QAEP" only, any attenpt to decrypt a message using the "RSAl_5"
algorithmwith that key should fail imediately due to invalid use of
t he key.

11.5. Timing Attacks

To mtigate the attacks described in RFC 3218 [RFC3218], the
reci pi ent MUST NOT distingui sh between format, padding, and | ength
errors of encrypted keys. It is strongly recommended, in the event
of receiving an inproperly fornatted key, that the recipient
substitute a random y generated CEK and proceed to the next step, to
mtigate timng attacks.

Jones & Hil debrand St andards Track [Page 28]

RFC 7516

JSON Wb Encryption (JVE) May 2015

12. References

12.1. Normative References

[IWA]

[IVK]

[Ive]

[RFC1951]

[RFC20]

[RFC2119]

[RFC3629]

[RFC4949]

[RFC5280]

[RFC7159]

Jones, M, "JSON Wb Al gorithns (JWA)", RFC 7518,
DA 10.17487/ RFC7518, May 2015,
<http://ww.rfc-editor.org/info/rfc7518>.

Jones, M, "JSON Wb Key (JWK)", RFC 7517,
DA 10.17487/ RFC7517, May 2015,
<http://www. rfc-editor.org/info/rfc7517>.

Jones, M, Bradley, J., and N. Sakinmura, "JSON Wb
Signature (JW8)", RFC 7515, DA 10.17487/ RFC7515, My
2015, <http://ww.rfc-editor.org/info/rfc7515>.

Deut sch, P., "DEFLATE Conpressed Data Format Specification
version 1.3", RFC 1951, DO 10.17487/RFC1951, May 1996,
<http://ww.rfc-editor.org/info/rfcl951>.

Cerf, V., "ASCI| format for Network Interchange", STD 80,
RFC 20, DA 10.17487/ RFC0020, Cctober 1969,
<http://ww. rfc-editor.org/info/rfc20>.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,

<http://www. rfc-editor.org/info/rfc2119>.

Yergeau, F., "UTF-8, a transfornmation format of |SO
10646", STD 63, RFC 3629, DO 10. 17487/ RFC3629, Novenber
2003, <http://www.rfc-editor.org/info/rfc3629>.

Shirey, R, "lInternet Security G ossary, Version 2",
FYl 36, RFC 4949, DO 10. 17487/ RFC4949, August 2007,
<http://ww.rfc-editor.org/info/rfc4949>,

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DA 10.17487/ RFC5280, May 2008,
<http://ww.rfc-editor.org/info/rfc5280>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March
2014, <http://ww. rfc-editor.org/info/rfc7159>.

Jones & Hil debrand St andards Track [Page 29]

RFC 7516 JSON Wb Encryption (JVE) May 2015

[UNI CODE] The Uni code Consortium "The Uni code Standard",
<htt p: //www. uni code. org/ versi ons/ | at est/ >.

12.2. Informative References

[AES] National Institute of Standards and Technol ogy (N ST),
"Advanced Encryption Standard (AES)", FIPS PUB 197,
Novenber 2001, <http://csrc.nist.gov/publications/
fips/fipsl97/fips-197. pdf>.

[JSE] Bradley, J. and N. Sakinmura (editor), "JSON Sinple
Encryption", Septenber 2010,
<http://jsonenc.info/enc/1l.0/>.

[ISME] Rescorla, E. and J. Hildebrand, "JavaScript Message

Security Format", Work in Progress,
draft-rescorla-jsns-00, March 2011.

[NI ST. 800- 38D]

[RFC3218]

[RFC3447]

[RFC3766]

[RFC4086]

National Institute of Standards and Technol ogy (N ST),
"Recommendati on for Bl ock C pher Mdes of Qperation:
Gal oi s/ Counter Mdde (GCM and GVAC', NI ST PUB 800- 38D,
Novenber 2007, <http://csrc.nist.gov/publications/

ni st pubs/ 800- 38D/ SP- 800- 38D. pdf >.

Rescorla, E., "Preventing the MIIlion Message Attack on
Crypt ographi ¢ Message Syntax", RFC 3218,

DA 10.17487/ RFC3218, January 2002,

<http://ww. rfc-editor.org/info/rfc3218>.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, DO 10.17487/ RFC3447, February
2003, <http://ww. rfc-editor.org/info/rfc3447>.

O man, H and P. Hof frman, "Determ ning Strengths For
Public Keys Used For Exchanging Symretric Keys", BCP 86,
RFC 3766, DO 10.17487/ RFC3766, April 2004,

<http://ww. rfc-editor.org/info/rfc3766>.

East| ake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenents for Security", BCP 106, RFC 4086,
DA 10.17487/ RFC4086, June 2005,
<http://ww.rfc-editor.org/info/rfc4086>.

Jones & Hil debrand St andards Track [Page 30]

RFC 7516 JSON Wb Encryption (JVE) May 2015

[RFC5652] Housley, R, "Cryptographic Message Syntax (CvB)", STD 70,
RFC 5652, DA 10.17487/ RFC5652, Septenber 2009,
<http://www. rfc-editor.org/info/rfc5652>.

[WBC. REC- xml enc-corel-20130411]
Eastl ake, D., Reagle, J., Hrsch, F., and T. Roessler,
"XM. Encryption Syntax and Processing Version 1.1", Wrld
W de Web Consortium Recommendati on
REC- xm enc-corel-20130411, April 2013,
<ht t p: // www. W3. or g/ TR/ 2013/ REC- xm enc- cor el- 20130411/ >.

Jones & Hil debrand St andards Track [Page 31]

RFC 7516 JSON Wb Encryption (JVE) May 2015

App

A 1.

A 1.

endi x A, JVWE Exanpl es
This section provides exanples of JWE conputations.
Exanpl e JWE usi ng RSAES- OAEP and AES GCM

This exanple encrypts the plaintext "The true sign of intelligence is
not know edge but inmagination." to the recipient using RSAES- OAEP f or
key encryption and AES GCM for content encryption. The
representation of this plaintext (using JSON array notation) is:

[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32,
111, 102, 32, 105, 110, 116, 101, 108, 108, 105, 103, 101, 110, 99,
101, 32, 105, 115, 32, 110, 111, 116, 32, 107, 110, 111, 119, 108,
101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105,

110, 97, 116, 105, 111, 110, 46]

1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

0 The Content Encryption Key is encrypted to the recipient using the

RSAES- OAEP al gorithmto produce the JWE Encrypted Key.

0 Authenticated encryption is performed on the plaintext using the
AES GCM al gorithmwith a 256-bit key to produce the ciphertext and
t he Aut hentication Tag.

{"al g":"RSA- QAEP", "enc": " A256GCM'}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ect ed
Header)) gives this val ue:

eyJhbGei O JSUOEt TOFFUCI s| mVuYy! 61 kEyNTZHQOOi f Q

A.1.2. Content Encryption Key (CEK)

Cenerate a 256-bit random CEK. In this exanple, the value (using
JSON array notation) is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252]

Jones & Hil debrand St andards Track [Page 32]

RFC 7516

A 1. 3.

JSON Wb Encryption (JVE) May 2015

Key Encryption

Encrypt the CEK with the recipient’s public key using the RSAES- CAEP
algorithmto produce the JWE Encrypted Key. This exanple uses the
RSA key represented in JSON Wb Key [JWK] format below (with Iine
breaks within values for display purposes only):

{"kty":"RSA",
"n": " oahU oWWKOus KNuOR6HAwWKf 40BUXHTXxRvgb48E- BWwxkeDN bC4he8r UW

n dpu

n dqu

Jones & Hil debrand St andards Track [Page 33]

cJoZnmds2h7M70i mEVhRUSd] | NXt gl | XI 4DFqgcl 1Dgj T9LewND8MA2Kr f 3S
psk_ZkoFni | akGygTwpZ3uesH PFABNI UYpGO N15dsQRkgr OVEhxN92i 2a
sbQenSzZeyaxzi K72Uwxr r KOExv6kc5t wXTg4h- QChLA n0_nt UZwf sRaMVs
t Ps6nS6Xr gxnxbWhoj f 663t uUEQueGC- FCM r a36COknDFGz Ks Na7LZK2dj
YgyD3JR_MB_4ANUJW TgOQx wHYbxevoJAr m L5St owj zGy- _bq6GwW',
AQAB",

"KkLdt | j 6GbDks_ApCSTYQ el cNt t | Ki OyPzM XHel - yk1F7- kpDx Y4- W5N

W/5Knt aEeXS1j 82E375xxhWWHXyvj YecPTOf pwR_MBgV8n9Hr h2anTpTD9
3Dt 62ypWByDsJzBnTnr Yuli WARgBKr EYY46qAZI r A2X Awnn2 X7uGR1hghk
gDp0Vgj 3kbSCz1Xyf Cs6_LehBwt xHl yh8Ri py40p24noQAbgxVWwW3r xT_vl
t 3UVedWBJIkJ Ozl pUf - KTVI 2Pt gm dARXTEL E- i d- 4QJr Oh- K- VFs3VSnd
VTl znSxfyrj 81 LL6M5G Uv8YAu7VI LSB3l OM85- 4qE3Dzgr Tj gyQ',

"1r 52Xk46¢- Lsf B5P442p7at dPUr xQSy4nt i _t ZI 3Mgf 2EuFVbUoDBvaRGQ-

SWkkbKmEzL7JXr 0SBj Sr K3YI QgYdMyyAEPTPj Xv_hl 2_1eTSPVZf zLOI f
f Nn031 XqWF5MDFuoUYEOhzb2vhr | N_r Kr bf DI wubTr j j gi eRowCsd 0",

"WLb35x7hnQNZsWInmB_vl e87i hgZ19S8| BEROLI sZGayZVe9H 9gDVCOBmM

UDdaDYVTSNx_8FywlYYa9XG GnDew00J28cRUoeBB j KI 1ona00r v1T9aX
| WkKwd4gvx FI mOW 3QRLOKEBRz k2Rat UBnnDZJ Tl Af wTs0g68UZHvt ¢,

1" ZK- YwE7di UhOgR1t R7wW8WHE ol Dx3MZ_OTowi Fvgf e@3Si r esXj nBgZ5KL

hMXvo- uz- KUIWDx S5pFQ_MevdoldKi RTj Vw_x4Nyqy XPMenULPkcpU827
r npZz AJKpdhWAgqr XGKAECQHOXt 4t aznj nd_zVpAnZZq60WPVBM KcuE",

: " DqOgf gJ1DdFGXi LvQEZNnuKENOUUNsJBXxKj ydc3j 4ZYdBi MRAy86x0vHG

ywcM YYg4yoC4AYZa9hNvesj qA3Fei L19r k8g6Qn29Tt Ocj 8qqyFpz9vNDB
Uf CAl JVeESQ JDZPYHdHY8v1b- 0- Z2X5t vLx- TCekf 7oxyeKDUgKW i s",

" " VI MoMYbPf 47dT1w_z DUXf Pi ms SegnMOAlz TaX7aGk _8ur Y6R8- ZWLFx U7

Al WAYLWbqq6t 16VFd7hQdOy6f | UKASI OydB61gwanOs XGOAOY82¢HJOE3
eL4Hr t ZkUuKvnPr MusUUFI f UdybVzxyj z9JF_XyaYldar dLSj f 4L_FNY"

RFC 7516 JSON Wb Encryption (JVE) May 2015

The resulting JWE Encrypted Key val ue is:

[56, 163, 154, 192, 58, 53, 222, 4, 105, 218, 136, 218, 29, 94, 203,
22, 150, 92, 129, 94, 211, 232, 53, 89, 41, 60, 138, 56, 196, 216,
82, 98, 168, 76, 37, 73, 70, 7, 36, 8, 191, 100, 136, 196, 244, 220,
145, 158, 138, 155, 4, 117, 141, 230, 199, 247, 173, 45, 182, 214,
74, 177, 107, 211, 153, 11, 205, 196, 171, 226, 162, 128, 171, 182,
13, 237, 239, 99, 193, 4, 91, 219, 121, 223, 107, 167, 61, 119, 228,
173, 156, 137, 134, 200, 80, 219, 74, 253, 56, 185, 91, 177, 34, 158,
89, 154, 205, 96, 55, 18, 138, 43, 96, 218, 215, 128, 124, 75, 138,
243, 85, 25, 109, 117, 140, 26, 155, 249, 67, 167, 149, 231, 100, 6,
41, 65, 214, 251, 232, 87, 72, 40, 182, 149, 154, 168, 31, 193, 126,
215, 89, 28, 111, 219, 125, 182, 139, 235, 195, 197, 23, 234, 55, 58,
63, 180, 68, 202, 206, 149, 75, 205, 248, 176, 67, 39, 178, 60, 98,
193, 32, 238, 122, 96, 158, 222, 57, 183, 111, 210, 55, 188, 215,
206, 180, 166, 150, 166, 106, 250, 55, 229, 72, 40, 69, 214, 216,
104, 23, 40, 135, 212, 28, 127, 41, 80, 175, 174, 168, 115, 171, 197,
89, 116, 92, 103, 246, 83, 216, 182, 176, 84, 37, 147, 35, 45, 219,
172, 99, 226, 233, 73, 37, 124, 42, 72, 49, 242, 35, 127, 184, 134,
117, 114, 135, 206]

Encodi ng this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with Iine breaks for display purposes only):

OKCawDo13gRp20j aHV7LFpZcgV7 T6DVZKTY KOMTYUnKo TCVIRgck CL9ki MI03JGe
i psEdY3nx_et LbbW5r Fr 05kLzcSr 4gKAg7YN7e9j wQRb23nf a6¢c9d- St nl mGy FDb
Sv04uVux! p5Zms 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
o gf wX7XWRxv2322i - vDXRf qNzo_t ETKzpVLzf i wQyeyPGLBI G56YJ7eChbdv0j e8
1860ppanmavo35UgoRdbYaBcoh9Qcf yl Q 660c6vFWKRcZ_ZT2LawCW | y3br GP

66Ukl f Cpl M 1] f7i GdXKHzg

Al 4. Initialization Vector

CGenerate a random 96-bit JWE Initialization Vector. |In this exanple,
the val ue is:

[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]

Encoding this JVWE Initialization Vector as BASE64URL(JWVE
Initialization Vector) gives this val ue:

48V1_ALb6US04U3b

Jones & Hil debrand St andards Track [Page 34]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 1.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JWVE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73,
54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 102, 81]

A.1.6. Content Encryption

Per form aut henti cated encryption on the plaintext with the AES GCM
al gorithmusing the CEK as the encryption key, the JWE Initialization
Vector, and the Additional Authenticated Data val ue above, requesting
a 128-bit Authentication Tag output. The resulting ciphertext is:

[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122,
233, 96, 140, 206, 120, 52, 51, 237, 48, 11, 190, 219, 186, 80, 111
104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40, 82, 242, 32,
123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205,
160, 109, 64, 63, 192]

The resulting Authentication Tag val ue is:

[92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91
210, 145]

Encodi ng this JWE G phertext as BASE64URL(JWE Ci phertext) gives this
value (with line breaks for display purposes only):

5eynmBTW ¢c8SuKoOl t J3r pYl zOeDQ 7TALVt u6UX@oM4vpzs9t X EFShS8i B7j 6j i
Sdi wkl r 3aj wQzaBt QD_A

Encodi ng this JWE Aut hentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

XFBoMyUZodet ZdvTi FvSkQ

Jones & Hil debrand St andards Track [Page 35]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.1.7. Conplete Representation

Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '. ||
BASE64URL(JVE Encrypted Key) || . " || BASE64URL(JVEE Initialization

Vector) || .’ || BASE64URL(JWE Ciphertext) || . || BASE64URL(JVE

Aut henti cation Tag).

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCeci O JSUOEt TOFFUCI sl mVuYyl 61 kEy NTZHQOO0i f Q.

OKCawDo13gRp20j aHV7LFpZcgV7 T6DVZKTY KOMTYUnKo TCVIRgck CL9ki MI03JGe
i psEdY3nx_et LbbW5r Fr 05kLzcSr 4gKAQ7YN7e9j wQRb23nf a6¢c9d- St nl mGy FDb
Sv04uVux! p5Zms 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
nmogf wX7XWRxv2322i - vDXRf qNzo_t ETKzpVLzf i wQyeyPGLBI G56YJ7eChbdv0j e8
1860ppanmavo35UgoRdbYaBcoh9Qcf yl @ 660c6vFWKRcZ_ZT2LawCWI| y3br GPi

66Ukl f Cpl M1 j f7i GAXKHzg.

48V1_ALb6US04U3b.

5eynB8TW c8SuKOIl t J3r pYl zCeDQz 7TALVt u6UR0oM4vpzs9t X_EFShS8i B7j 6j i

Sdi wkl r 3aj wQzaBt QD_A.

XFBoMyUZodet ZdvTi FvSkQ

A 1.8. Validation

This exanple illustrates the process of creating a JWE with

RSAES- OAEP for key encryption and AES GCM for content encryption.
These results can be used to validate JWE decryption inplenentations
for these algorithms. Note that since the RSAES- QAEP conputation

i ncl udes random val ues, the encryption results above will not be
conpl etely reproduci ble. However, since the AES GCM conputation is
determnistic, the JWE Encrypted Ciphertext values will be the same
for all encryptions perforned using these inputs.

A 2. Exanple JWE using RSAES-PKCS1-v1l 5 and AES 128 CBC HMAC SHA 256
This exanple encrypts the plaintext "Live |long and prosper."” to the
reci pi ent using RSAES-PKCS1-v1l 5 for key encryption and
AES 128 CBC HVAC SHA 256 for content encryption. The representation
of this plaintext (using JSON array notation) is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

Jones & Hil debrand St andards Track [Page 36]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 2.1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

o0 The Content Encryption Key is encrypted to the recipient using the
RSAES- PKCS1-v1l 5 algorithmto produce the JWE Encrypted Key.

0 Authenticated encryption is performed on the plaintext using the
AES 128 CBC HVAC SHA 256 algorithmto produce the ciphertext and
t he Aut hentication Tag.
{"al g":"RSA1_5", "enc": " A128CBC- HS256" }

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ected
Header)) gives this val ue:

eyJhbCGci O JSWExXzUi LCII bnM G JBMTI 4Q0JDLURTM U2I nO
A . 2.2. Content Encryption Key (CEK)
Generate a 256-bit random CEK. In this exanple, the key value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,

206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

Jones & Hil debrand St andards Track [Page 37]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A . 2.3. Key Encryption

Encrypt the CEK with the recipient’s public key using the

RSAES- PKCS1-v1 5 algorithmto produce the JWE Encrypted Key. This
exanpl e uses the RSA key represented in JSON Wb Key [JWK] format
below (with line breaks wthin values for display purposes only):

{"kty":"RSA",

"n":"sXchDaQebHnPi GvryDOAT4saGEUet Syo9MKLCoWFsuer i 23bQdgWp4Dy 1W
Uz ewbgBHod5pc MOHO5GORV3JDXbol RROSBi geChyj ULhGz HHy Xss8UDpr e
cbAYxknTcQkhsl ANGRUZmMITOQBgTRsLAt 6BTYuyvVRIhS8exSZEy _c4gs_
7svl JJQAHI_Nxsi | oLWAEK7- QBUXERGYw_75I Dr GA84- | A_- Ct 4eTl XHBI
Y2EaV7t 7Lj JaynVJICpkv4LKj TTAum GUI uGhr NhZLuF_RJILgHpM2kgWFLU
7-VTdL1VbC2t ej vcl 2Bl MkEpk 1Bz BZI OKQBOGaDWFLN- aEAW3VRW' ,

"e":" AQAB",

"d": " VFCOWOg Xr 8nvZNyaaJLXdnNPXZKRaWC) kU5QRegQQpTBMahpr Mz W pR8Sxq
10PThh_J6MJD8Z35wky9b8e EQOpwWNS8xI h1ll OFRRBoNgDl KVCkuOazb-ry
ng8cxj DTLZQBFz 7] Sj R1KI op- YKaUHc9Gs Eof QqYr uPhz SA- Qgaj ZGPbE_
0ZaVDJHf yd7UUBUKUnFNMScbf | YAAOYJqVI VwaYR5zWEEceUj NnTNo_ CVSj
- WXLOBVZf CUAVLgWAdpf 1Srt Zj St 34YLsRar Sb127r eG_DUwg9Ch- Kyv|
T1SkHgUWRVGeyY| y 7uvVGRSDws Xy pdr Ni nPA4j | hoNdi zK2zF2C0WY',

"p":"9gY2wel 6S6L0j uEKsbeDAWpd9WM ggFoeA9v Ey EUuk4k LwBKcoelx4HG68
i k918hdDSE9v DQSccA3x XHOAFOPJ8RIEe! AbTi 1VwBYnbTp87X- xcPW EP
kr doUKWS0t gslaNd Nnc9LEVVPMS390zbFxt 8TN _bi aBgel NgbC95sM',

"q": " uKl CKvKv_ZJMWcdl s5vVSU 6¢Pt YI 11 j Wt ExV_skst vRSNi 9r 66j dd9-y
BhVf uG4shsp2j 7r Gnl i 0901RBeHo6 TPKW/VyKkPuli YhQXwdj | ABf w- MVsN
- 3bQ76WLdt 2SDxsHs7q7zPyUyHXnps7ycZ5¢c72wGk UWMNG Yel nki NSO",

"dp": "w0kZbV63cVRvVX6yk3C8cMk0o2qCvlY8nsgll mVBYhGHAEcL6FWX5h9yuv
ngs4i LEFk6eALoUS4vI WEwc L4t xWOLsSWH_zKI - hwoReoP77cCOdSL4AvVcr a
Hawl kpyd2TW E5evgbhW OxnZee3cXJIBKAI 641 k6] Zxbvk- RR3pEhnCs" ,

"dq":"o0_8V14SezckO6CNLKs bt PdFi @9 _kClDsuUTd2LAf I | VeMZ7j nlGus_Ff
7B71 Vx3p5KUuBGOVFSL- qi f Lb6nQnLysgHDh132NDi 0ZkhH7m 7hPG- PYE_

odApKdngECHWAOJ - FOJWAUd6D2B_1TvFIMXA2Qx- i GYn8OVV1Bsnp6qU"',
"qgi":"eNho5yRBEBxhGBt QRwOQ r ZsB66Tr f FReG_Cct el 1aCneTOELGhYI R C

t UKTRcl | f uEPMNsNDPbLoLgqCVznFbvdB7x- Tl - nDl _eFTj 2Ki gwGqE9PZ

BONNTWWV H3VRRSLWACY PnSi wP8N5Usy - WRXS- V7 Tbpx| hvepTf EONNo”

Jones & Hil debrand St andards Track [Page 38]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The resulting JWE Encrypted Key val ue is:

[80, 104, 72, 58, 11, 130, 236, 139, 132, 189, 255, 205, 61, 86, 151
176, 99, 40, 44, 233, 176, 189, 205, 70, 202, 169, 72, 40, 226, 181
156, 223, 120, 156, 115, 232, 150, 209, 145, 133, 104, 112, 237, 156,
116, 250, 65, 102, 212, 210, 103, 240, 177, 61, 93, 40, 71, 231, 223,
226, 240, 157, 15, 31, 150, 89, 200, 215, 198, 203, 108, 70, 117, 66,
212, 238, 193, 205, 23, 161, 169, 218, 243, 203, 128, 214, 127, 253,
215, 139, 43, 17, 135, 103, 179, 220, 28, 2, 212, 206, 131, 158, 128,
66, 62, 240, 78, 186, 141, 125, 132, 227, 60, 137, 43, 31, 152, 199,
54, 72, 34, 212, 115, 11, 152, 101, 70, 42, 219, 233, 142, 66, 151
250, 126, 146, 141, 216, 190, 73, 50, 177, 146, 5, 52, 247, 28, 197,
21, 59, 170, 247, 181, 89, 131, 241, 169, 182, 246, 99, 15, 36, 102,
166, 182, 172, 197, 136, 230, 120, 60, 58, 219, 243, 149, 94, 222,
150, 154, 194, 110, 227, 225, 112, 39, 89, 233, 112, 207, 211, 241,
124, 174, 69, 221, 179, 107, 196, 225, 127, 167, 112, 226, 12, 242,
16, 24, 28, 120, 182, 244, 213, 244, 153, 194, 162, 69, 160, 244,
248, 63, 165, 141, 4, 207, 249, 193, 79, 131, 0, 169, 233, 127, 167,
101, 151, 125, 56, 112, 111, 248, 29, 232, 90, 29, 147, 110, 169,
146, 114, 165, 204, 71, 136, 41, 252]

Encodi ng this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with Iine breaks for display purposes only):

UGhI QguC71 uEvf _NPVaXsGWwLOmwc1Gyql | KOKLnN94nHPol t GRhWhw7 Zx0- kFm
1NJN8LE9XShH59 i 8J0PH5ZZy Nf Gy 2x GdULU7sHNF6Gp2vPLgNZ__ delLKxGHZ7Pc
HALUz0OegEl - 8E66] X2E4zyJKX- YxzZI | t RzC5hl Ri r b6Y5C _p- ko3YvkkysZl F
NPccxRU7qvelWYPxgbb2Yw8kZga2r M 5ng8Qt vzl V7el pr CbuPhcCdZ6XDP0_F8
r kXds2vE4X- ncO MBhAYHH 29NXOntKi RaDO- D- | j QTP- cFPgwCp6X- nZZd90HBv
- B3oWh2ThgnBScgXMR4gp_A

A 2. 4. Initialization Vector

CGenerate a random 128-bit JWE Initialization Vector. |In this
exanpl e, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Encoding this JWE Initialization Vector as BASE64URL(JWE
Initialization Vector) gives this val ue:

AxY8DCt Dad sbhd j b3RoZQ

Jones & Hil debrand St andards Track [Page 39]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 2.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JWVE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105,
74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85,
50, 73, 110, 48]

A.2.6. Content Encryption

Per f orm aut henti cated encryption on the plaintext with the

AES 128 CBC HWMAC SHA 256 al gorithmusing the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
Appendi x A 3 are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100,
191]

Encodi ng this JWE G phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KDI Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9woGY

Encodi ng this JWE Aut hentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

9hHOVgRf YgPnAHOd8st kvw
A.2.7. Conplete Representation
Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '. |
BASE64URL(JWE Encrypted Key) || '." || BASE64URL(JVE Initialization

Vector) || '." || BASE64URL(JWE Ciphertext) || '.' || BASE64URL(JVE
Aut henti cati on Tag).

Jones & Hil debrand St andards Track [Page 40]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCei O JSUOExXzUi LCII bnM G IJBMTI 4Q0JDLUNTM U2I nO.

UGhl OguC7I1 uBEvf _NPVaXsGWwLOmwc1Gyql | KOKInN94nHPol t GRhWhw7Zx0- kFm
ININ8LE9XShH59_i 8J0PH5ZZy Nf Gy2x GAULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
HALUzoQegEl - 8E66j X2E4zyJKX- YxzZI | t RzC5hl Ri r b6Y5C _p- ko3YvkkysZI F
NPccxRU7qvelWYPxqbb2Yw8kZga2r M 5ng8Ct vzl V7el pr CouPhcCdZ6XDP0O_F8
r kXds2vE4X- ncO MBhAYHH 29NXOntKi RaDO- D- | j QTP- c FPgwCp6X- nZZd90OHBv
- B3oWh2ThgnScgXMr4gp_A.

AxY8DCt Dad sbd j b3RozZQ

KDI Tt XchhZTGuf MYnmOYGS4Hf f x PSUr f mgCHXal 9wOGY.

9hHOVgRf YgPnAHCd8st kvw

A.2.8. Validation

This exanple illustrates the process of creating a JWE with

RSAES- PKCS1-v1l 5 for key encryption and AES CBC HVAC SHA2 for content
encryption. These results can be used to validate JWE decryption

i mpl ementations for these algorithms. Note that since the

RSAES- PKCS1-v1_5 conputation includes random val ues, the encryption
results above will not be conpletely reproducible. However, since
the AES-CBC conputation is determ nistic, the JWE Encrypted

Ci phertext values will be the sane for all encryptions perforned

usi ng these inputs.

A 3. Exanple JWE Using AES Key Wap and AES 128 CBC HVAC SHA 256

This exanpl e encrypts the plaintext "Live |long and prosper.” to the
reci pient using AES Key Wap for key encryption and

AES 128 CBC HVAC SHA 256 for content encryption. The representation
of this plaintext (using JSON array notation) is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

A 3.1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

o0 The Content Encryption Key is encrypted to the recipient using the
AES Key Wap algorithmwith a 128-bit key to produce the JWE
Encrypt ed Key.

0 Authenticated encryption is performed on the plaintext using the
AES 128 CBC HVAC SHA 256 algorithmto produce the ciphertext and
the Authentication Tag.

{"al g":"A128KW, "enc": " A128CBC- HS256" }

Jones & Hil debrand St andards Track [Page 41]

RFC 7516 JSON Wb Encryption (JVE) May 2015
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ected
Header)) gives this val ue:

eyJhbCci O JBMII 4S1ci LCII bmM G JBMII 4Q0JDLURTM U2I nO
A 3.2. Content Encryption Key (CEK)
Generate a 256-bit random CEK. In this exanple, the value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

A 3.3. Key Encryption
Encrypt the CEK with the shared synmetric key using the AES Key Wap
algorithmto produce the JWE Encrypted Key. This exanple uses the
symretric key represented in JSON Wb Key [JWK] format bel ow

{"kty":"oct",
"k": " GawgguFy G WKKav 7 AX4VKUg"
The resulting JWE Encrypted Key val ue is:
[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216,
22, 67, 201, 138, 193, 186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3,
76, 124, 193, 11, 98, 37, 173, 61, 104, 57]

Encodi ng this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
t his val ue:

6KB707dMBYTI gHt Lvt gWBnKwboJWBof 91 oci zkDTHzBC2I | r TLoOQ
A.3.4. Initialization Vector

Cenerate a random 128-bit JWE Initialization Vector. In this
exanpl e, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Encoding this JWE Initialization Vector as BASE64URL(JVE
Initialization Vector) gives this val ue:

AXY8DCt Dad sbhd j b3RoZQ

Jones & Hil debrand St andards Track [Page 42]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 3.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JWVE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]

A.3.6. Content Encryption

Per f orm aut henti cated encryption on the plaintext with the

AES 128 CBC HWMAC SHA 256 al gorithmusing the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
this exanple are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]

Encodi ng this JWE G phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KDI Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9woGY

Encodi ng this JWE Aut hentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

U0m Ynj NO4DJvceFl CbCVQ
A.3.7. Conplete Representation
Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '. |
BASE64URL(JWE Encrypted Key) || '." || BASE64URL(JVE Initialization

Vector) || '." || BASE64URL(JWE Ciphertext) || '.' || BASE64URL(JVE
Aut henti cati on Tag).

Jones & Hil debrand St andards Track [Page 43]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCci QG JBMTI 4S1ci LCII bniM O IJBMI 4Q0JDLUNTM U21 nO
6KB707dMDYTI gHt Lvt gWBnKwboJWBof 91 oci zkDTHzBC21 | r T1LoOQ
AxY8DCt Dad sbd j b3RoZQ

KDl Tt XchhZTGuf MYnOYGS4Hf f x PSUr f ngCHXal 9wOGY.

U0m Ynj NO4DJvceFl CbCVQ

A.3.8. Validation

This exanple illustrates the process of creating a JWE with AES Key
Wap for key encryption and AES GCM for content encryption. These
results can be used to validate JWE decryption inplenentations for
these algorithms. Also, since both the AES Key Wap and AES GCM
conmputations are determnistic, the resulting JWE value will be the
same for all encryptions performed using these inputs. Since the
conputation is reproducible, these results can also be used to
val i date JWE encryption inplenentations for these al gorithns.

A 4. Exanple JWE Using Ceneral JWE JSON Serialization

This section contains an exanpl e using the general JWE JSON
Serialization syntax. This exanple denbnstrates the capability for
encrypting the sane plaintext to nultiple recipients.

Two recipients are present in this exanple. The algorithmand key
used for the first recipient are the sane as that used in

Appendi x A 2. The algorithm and key used for the second recipient
are the same as that used in Appendix A 3. The resulting JVZE
Encrypted Key val ues are therefore the sane; those conputations are
not repeated here.

The plaintext, the CEK, JWE Initialization Vector, and JWE Protected

Header are shared by all recipients (which nust be the case, since
the ci phertext and Authentication Tag are al so shared).

Jones & Hil debrand St andards Track [Page 44]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 4.1. JVE Per-Recipient Unprotected Headers

The first recipient uses the RSAES- PKCS1-vl 5 algorithmto encrypt
the CEK. The second uses AES Key Wap to encrypt the CEK. Key ID
val ues are supplied for both keys. The two JWE Per-Reci pi ent

Unprot ect ed Header val ues used to represent these algorithns and key
| Ds are:

{"alg":"RSA1_5","kid":"2011-04-29"}
and
{"al g":"A128KW , "kid":"7"}
A 4.2, JVE Protected Header

Aut henti cated encryption is perforned on the plaintext using the
AES 128 CBC HVAC SHA 256 al gorithmto produce the comobn JWE

Ci phertext and JWE Aut hentication Tag values. The JWE Protected
Header val ue representing this is:

"enc": " A128CBC- HS256" }

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ect ed
Header)) gives this val ue:

eyJl bmM G JBMII 4Q0JDLURTM U2I nO
A.4.3. JVE Shared Unprotected Header

This JWE uses the "jku" Header Paraneter to reference a JWK Set.

This is represented in the foll owi ng JWE Shared Unprotected Header
val ue as:

{"jku":"https://server.exanpl e.conf keys. j wks"}

A 4.4. Conpl ete JOSE Header Val ues

Conbi ni ng the JWE Per - Reci pi ent Unprotected Header, JWE Protected
Header, and JWE Shared Unprotected Header val ues supplied, the JOSE

Header val ues used for the first and second recipient, respectively,
are:

{"al g":"RSA1_5",

"kid":"2011- 04- 29"

"enc": " A128CBC- HS256"
"jku":"https://server. exanpl e. com keys. jwks"}

Jones & Hil debrand St andards Track [Page 45]

RFC 7516 JSON Wb Encryption (JVE) May 2015

and
{"al g":" AL28KW ,
"kid"tT,
"enc": " A128CBC- HS256"
"jku":"https://server. exanpl e. com keys. jwks"}
A 4.5, Additional Authenticated Data

Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JVE Protected Header))). This value is:

[101, 121, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73,
52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73, 110, 48]

A.4.6. Content Encryption

Per form aut henti cated encryption on the plaintext with the

AES 128 CBC HVAC SHA 256 al gorithm using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
Appendi x A 3 are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[51, 63, 149, 60, 252, 148, 225, 25, 92, 185, 139, 245, 35, 2, 47,
207]

Encodi ng this JWE G phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KD Tt XchhZTGuf MYnOYGS4Hf f x PSUr f ngCHXal 9wOGY

Encodi ng this JWE Aut hentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

Mz- VPPyUWRl cuYvllw vzw

Jones & Hil debrand St andards Track [Page 46]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 4.7. Conplete JWE JSON Serialization Representation

The conplete JWE JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{

"protected":

"eyJl bM G JBMTI 4Q0JDLURTM W21 nO",
"unprotected":
{"jku":"https://server.exanpl e.con keys. j wks"},
"recipients":]

{" header":

{"al g":"RSA1_5", "kid":"2011-04-29"},

"encrypt ed_key":

" UCGhl OguC7I1 uEvf _NPVaXsGwLOmwc1Gyql | KOK1nN94nHPol t GRhWhw7Zx0-
KFMLNIN8LE9XShH59_i 8J0PH5ZZy Nf Gy2x GdULU7sHNF6Gp2vPLgNZ__delLKx
GHZ7PcHALUz 0CegEl - 8E66j X2E4zyJKx- YxzZI |1t RzC5hl Ri r b6Y5C _p- ko3
YvkkysZl FNPccxRU7qvelWPxgbb2Yw8kZga2r MNF 5ng8Ct vzl V7el pr CbuPh
cCdZ6XDP0_F8r kXds2vE4X- ncO MBhAYHH 29NX0OntKi RaDO- D- | j QTP- cFPg
WCp6X- nZZd9OHBv- B3oWh2ThgnScgXVR4gp_A"},

{" header":
{"al g":"A128KW, "kid":"7"},
"encrypt ed_key":
"6KB707dMBYTI gHt Lvt gWBnKwbhoJWBof 91 oci zkDTHzBC21 | r TLo0OQ'}],
vt
" AxY8DCt DaG sbd j b3RozQ',
"ci phertext":
"KDl Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9wOGY" ,
"tag":
"Mez- VPPYU4R cuYvllwl vzw!
}

A.5. Exanple JVWE Using Fl attened JWE JSON Seri alization

This section contains an exanple using the flattened JWE JSON
Serialization syntax. This exanple denbnstrates the capability for
encrypting the plaintext to a single recipient in a flattened JSON
structure.

The values in this exanple are the sane as those for the second
reci pient of the previous exanple in Appendi x A. 4.

Jones & Hil debrand St andards Track [Page 47]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The conplete JWE JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{

"protected":
"eyJl bmM O JBMTI 4Q0JDLURTM U2l n0",
"unprot ect ed":
{"jku":"https://server.exanpl e.conf keys. j wks"},
"header":
{"al g":"AL28KW, "kid":"7"},
"encrypt ed_key":
"6KB707dMBYTI gHt Lvt gWBnKwboJWBof 91 oci zkDTHzBC21 | r TLoOQ',
RAVAR
" AXY8DCt Dad sbd j b3RoZQ',
"ci phertext":
" KDl Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9woGY"
"tag":
"Mz- VPPYWMR cuYvliwi vzw!'
}

Appendi x B. Exanple AES 128 CBC HVAC SHA 256 Conputation

This exanpl e shows the steps in the AES 128 CBC HVAC SHA 256

aut henti cated encryption conputation using the values fromthe
exanple in Appendix A 3. As described where this algorithmis
defined in Sections 5.2 and 5.2.3 of JWA, the AES CBC HVAC SHA2
famly of algorithnms are inplenented using Advanced Encryption
Standard (AES) in C pher Block Chaining (CBC) node with Public-Key
Crypt ography Standards (PKCS) #7 padding to performthe encryption
and an HVAC SHA-2 function to performthe integrity calculation -- in
this case, HVAC SHA- 256.

B.1. Extract MAC _KEY and ENC KEY from Key

The 256 bit AES 128 CBC HMAC SHA 256 key K used in this exanple
(using JSON array notation) is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

Use the first 128 bits of this key as the HVAC SHA- 256 key MAC KEY,
whi ch is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206]

Jones & Hil debrand St andards Track [Page 48]

RFC 7516 JSON Wb Encryption (JVE) May 2015

Use the last 128 bits of this key as the AES-CBC key ENC KEY, which
is:

[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44,
207]

Note that the MAC key cones before the encryption key in the input
key K; this is in the opposite order of the algorithmnanes in the
identifiers "AES 128 CBC HMAC SHA 256" and " A128CBC- HS256"

B.2. Encrypt Plaintext to Create Ci phertext

Encrypt the plaintext with AES in CBC node using PKCS #7 paddi ng
usi ng the ENC _KEY above. The plaintext in this exanple is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

The encryption result is as follows, which is the ciphertext output:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

B.3. 64-Bit Bi g-Endi an Representation of AAD Length
The Additional Authenticated Data (AAD) in this exanple is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]
This AAD is 51-bytes long, which is 408-bits long. The octet string
AL, which is the nunber of bits in AAD expressed as a bi g-endian
64-bit unsigned integer is:
[0, O, O, O, O, O, 1, 152]

B.4. Initialization Vector Value

The Initialization Vector value used in this exanple is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Jones & Hil debrand St andards Track [Page 49]

RFC 7516 JSON Wb Encryption (JVE) May 2015

B.5. Create Input to HVAC Conputation

Concatenate the AAD, the Initialization Vector, the ciphertext, and
the AL value. The result of this concatenation is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48, 3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111

116, 104, 101, 40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24,
152, 230, 6, 75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215,
104, 143, 112, 56, 102, 0, O, O, O, O, O, 1, 152]

B.6. Conpute HVAC Val ue

Comput e the HVAC SHA- 256 of the concatenated val ue above. This
result Mis:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85, 9, 84, 229, 201, 219, 135, 44, 252, 145, 102, 179, 140, 105,
86, 229, 116]

B.7. Truncate HVAC Value to Create Authentication Tag

Use the first half (128 bits) of the HVAC output M as the
Aut hentication Tag output T. This truncated value is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]

Acknowl edgenent s

Solutions for encrypting JSON content were al so explored by "JSON

Si mpl e Encryption" [JSE] and "JavaScri pt Message Security Format"
[JSMS], both of which significantly influenced this docunment. This
docunent attenpts to explicitly reuse as many of the rel evant
concepts from XM. Encryption 1.1 [WBC. REC-xnl enc-corel-20130411] and
RFC 5652 [RFC5652] as possible, while utilizing sinple, conmpact JSO\
based data structures.

Speci al thanks are due to John Bradley, Eric Rescorla, and Nat

Saki nura for the discussions that hel ped informthe content of this
specification; to Eric Rescorla and Joe Hildebrand for allow ng the
reuse of text from[JSMS] in this docunent; and to Eric Rescorla for
co-aut horing many drafts of this specification

Thanks to Axel Nennker, Emmanuel Raviart, Brian Canpbell, and Ednund
Jay for validating the exanples in this specification

Jones & Hil debrand St andards Track [Page 50]

RFC 7516 JSON Wb Encryption (JVE) May 2015

This specification is the work of the JOSE worki ng group, which

i ncl udes dozens of active and dedicated participants. |In particular,
the follow ng individuals contributed ideas, feedback, and wording
that influenced this specification:

Ri chard Barnes, John Bradley, Brian Canpbell, Alissa Cooper, Breno de
Medeiros, Stephen Farrell, Dick Hardt, Jeff Hodges, Russ Housl ey,
Edmund Jay, Scott Kelly, Stephen Kent, Barry Leiba, Janmes Manger,
Matt M1 ler, Kathleen Moriarty, Tony Nadalin, Hi deki Nara, Axel
Nennker, Ray Pol k, Emmanuel Raviart, Eric Rescorla, Pete Resnick, Nat
Saki nura, Jim Schaad, Hannes Tschofeni g, and Sean Turner.

Ji m Schaad and Karen O Donoghue chaired the JOSE wor ki ng group and

Sean Turner, Stephen Farrell, and Kathleen Mriarty served as

Security Area Directors during the creation of this specification.
Aut hors’ Addresses

M chael B. Jones
M crosof t

EMai | : nbj @i crosoft. com
URI : http://self-issued.info/
Joe Hil debrand

Cisco Systems, Inc.

EMai | : j hil debr @i sco. com

Jones & Hil debrand St andards Track [Page 51]

