
Independent Submission J. Chroboczek
Request for Comments: 7557 PPS, University of Paris-Diderot
Updates: 6126 May 2015
Category: Experimental
ISSN: 2070-1721

 Extension Mechanism for the Babel Routing Protocol

Abstract

 This document defines the encoding of extensions to the Babel routing
 protocol, as specified in RFC 6126.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This is a contribution to the RFC Series, independently
 of any other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7557.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Chroboczek Experimental [Page 1]

RFC 7557 Babel Extension Mechanism May 2015

Table of Contents

 1. Introduction . 2
 2. Mechanisms for Extending the Babel Protocol 3
 2.1. New Versions of the Babel Protocol 3
 2.2. New TLVs . 3
 2.3. Sub-TLVs . 4
 2.4. The Flags Field . 4
 2.5. Packet Trailer . 5
 3. Format of Sub-TLVs . 5
 3.1. Sub-TLVs Specified in This Document 5
 3.2. Unknown Sub-TLVs . 6
 4. Choosing between Extension Mechanisms 6
 5. IANA Considerations . 7
 6. Security Considerations 9
 7. References . 10
 7.1. Normative References 10
 7.2. Informative References 10
 Acknowledgments . 10
 Author’s Address . 11

1. Introduction

 A Babel packet [RFC6126] contains a header followed by a sequence of
 TLVs, each of which is a sequence of octets having an explicit type
 and length. The original Babel protocol has the following provisions
 for including extension data:

 o A Babel packet with a version number different from 2 MUST be
 silently ignored ([RFC6126], Section 4.2).

 o An unknown TLV MUST be silently ignored ([RFC6126], Section 4.3).

 o Except for Pad1 and PadN, all TLVs are self-terminating, and any
 extra data included in a TLV MUST be silently ignored ([RFC6126],
 Section 4.2).

 o The Flags field of the Update TLV contains 6 undefined bits that
 MUST be silently ignored ([RFC6126], Section 4.4.9).

 o Any data following the last TLV of a Babel packet MUST be silently
 ignored ([RFC6126], Section 4.2).

 Each of these provisions provides a place to store data needed by
 extensions of the Babel protocol. However, in the absence of any
 further conventions, independently developed extensions to the Babel
 protocol might make conflicting uses of the available space, and
 therefore lead to implementations that would fail to interoperate.

Chroboczek Experimental [Page 2]

RFC 7557 Babel Extension Mechanism May 2015

 This document formalises a set of rules for extending the Babel
 protocol that are designed to ensure that no such incompatibilities
 arise, and that are currently respected by a number of deployed
 extensions.

 In the rest of this document, we use the term "original protocol" for
 the protocol defined in [RFC6126], and "extended protocol" for any
 extension of the Babel protocol that follows the rules set out in
 this document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC2119].

2. Mechanisms for Extending the Babel Protocol

 This section describes each of the mechanisms available for extending
 the Babel protocol.

2.1. New Versions of the Babel Protocol

 The header of a Babel packet contains an eight-bit protocol version.
 The current version of the Babel protocol is version 2; any packets
 containing a version number different from 2 MUST be silently
 ignored.

 Versions 0 and 1 were earlier experimental versions of the Babel
 protocol that have seen some modest deployment; these version numbers
 SHOULD NOT be reused by future versions of the Babel protocol.
 Version numbers larger than 2 might be used by a future incompatible
 protocol.

2.2. New TLVs

 An extension may carry its data in a new TLV type. Such new TLVs
 will be silently ignored by implementations of the original Babel
 protocol, as well as by other extended implementations of the Babel
 protocol, as long as the TLV types do not collide.

 All new TLVs MUST have the format defined in [RFC6126], Section 4.3.
 New TLVs SHOULD be self-terminating, in the sense defined in the next
 section, and any data found after the main data section of the TLV
 SHOULD be treated as a series of sub-TLVs.

 TLV types 224 through 254 are reserved for Experimental Use
 [RFC3692]. TLV type 255 is reserved for expansion of the TLV type
 space, in the unlikely event that eight bits turn out not to be
 enough.

Chroboczek Experimental [Page 3]

RFC 7557 Babel Extension Mechanism May 2015

2.3. Sub-TLVs

 With the exception of the Pad1 TLV, all Babel TLVs carry an explicit
 length. With the exception of Pad1 and PadN, all TLVs defined by the
 original protocol are self-terminating, in the sense that the length
 of the meaningful data that they contain (the "natural length") can
 be determined without reference to the explicitly encoded length. In
 some cases, the natural length is trivial to determine: for example,
 a HELLO TLV always has a natural length of 2 (4 including the Type
 and Length fields). In other cases, determining the natural length
 is not that easy, but this needs to be done anyway by an
 implementation that interprets the given TLV. For example, the
 natural length of an Update TLV depends on both the prefix length and
 the amount of prefix compression being performed.

 If the explicit length of a TLV defined by the original protocol is
 larger than its natural length, the extra space present in the TLV is
 silently ignored by an implementation of the original protocol;
 extended implementations MAY use it to store arbitrary data and
 SHOULD structure the additional data as a sequence of sub-TLVs.
 Unlike TLVs, the sub-TLVs themselves need not be self-terminating.

 An extension MAY be assigned one or more sub-TLV types. Sub-TLV
 types are assigned independently from TLV types: the same numeric
 type can be assigned to a TLV and a sub-TLV. Sub-TLV types are
 assigned globally: once an extension is assigned a given sub-TLV
 number, it MAY use this number within any TLV. However, the
 interpretation of a given sub-TLV type can depend on which particular
 TLV it is embedded within.

 Sub-TLV types 224 through 254 are reserved for Experimental Use
 [RFC3692]. TLV type 255 is reserved for expansion of the sub-TLV
 type space, in the unlikely event that eight bits turn out not to be
 enough. The format of sub-TLVs is defined in Section 3 below.

2.4. The Flags Field

 The Flags field is an eight-bit field in the Update TLV. Bits 0 and
 1 (the bits with values 80 and 40 hexadecimal) are defined by the
 original protocol and MUST be recognised and used by every
 implementation. The remaining six bits are not currently used and
 are silently ignored by implementations of the original protocol.

 Due to the small size of the Flags field, it is NOT RECOMMENDED that
 one or more bits be assigned to an extension; a sub-TLV SHOULD be
 assigned instead. An implementation MUST ignore any bits in the
 Flags field that it does not know about and MUST send them as zero.

Chroboczek Experimental [Page 4]

RFC 7557 Babel Extension Mechanism May 2015

2.5. Packet Trailer

 A Babel packet carries an explicit length in its header. A Babel
 packet is carried by a UDP datagram, which in turn contains an
 explicit length in its header. It is possible for a UDP datagram
 carrying a Babel packet to be larger than the size of the Babel
 packet. In that case, the extra space after the Babel packet, known
 as the packet trailer, is silently ignored by an implementation of
 the original protocol.

 The packet trailer was originally intended to be used as a
 cryptographic trailer. However, the authentication extension to
 Babel [RFC7298] ended up using a pair of new TLVs, and no currently
 deployed extension of Babel uses the packet trailer. The format and
 purpose of the packet trailer is therefore currently left undefined.

3. Format of Sub-TLVs

 A sub-TLV has exactly the same structure as a TLV. Except for Pad1
 (Section 3.1.1), all sub-TLVs have the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Body...
 +-

 Fields:

 Type The type of the sub-TLV.

 Length The length of the body, in octets, exclusive of the Type
 and Length fields.

 Body The sub-TLV body, the interpretation of which depends on
 both the type of the sub-TLV and the type of the TLV within
 which it is embedded.

3.1. Sub-TLVs Specified in This Document

 This document defines two types of sub-TLVs, Pad1 and PadN. These
 two sub-TLVs MUST be correctly parsed and ignored by any extended
 implementation of the Babel protocol that uses sub-TLVs.

Chroboczek Experimental [Page 5]

RFC 7557 Babel Extension Mechanism May 2015

3.1.1. Pad1

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Type = 0 |
 +-+-+-+-+-+-+-+-+

 Fields:

 Type Set to 0 to indicate a Pad1 sub-TLV.

 This sub-TLV is silently ignored on reception.

3.1.2. PadN

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 1 | Length | MBZ...
 +-

 Fields:

 Type Set to 1 to indicate a PadN sub-TLV.

 Length The length of the body, in octets, exclusive of the Type
 and Length fields.

 MBZ Set to 0 on transmission.

 This sub-TLV is silently ignored on reception.

3.2. Unknown Sub-TLVs

 Any unknown sub-TLV MUST be silently ignored by an extended
 implementation that uses sub-TLVs.

4. Choosing between Extension Mechanisms

 New versions of the Babel protocol should only be defined if the new
 version is not backwards compatible with the original protocol.

 In many cases, an extension could be implemented either by defining a
 new TLV or by adding a new sub-TLV to an existing TLV. For example,
 an extension whose purpose is to attach additional data to route
 updates can be implemented either by creating a new "enriched" Update
 TLV or by adding a sub-TLV to the Update TLV.

Chroboczek Experimental [Page 6]

RFC 7557 Babel Extension Mechanism May 2015

 The two encodings are treated differently by implementations that do
 not understand the extension. In the case of a new TLV, the whole
 unknown TLV is ignored by an implementation of the original protocol,
 while in the case of a new sub-TLV, the TLV is parsed and acted upon,
 and the unknown sub-TLV is silently ignored. Therefore, a sub-TLV
 should be used by extensions that extend the Update in a compatible
 manner (the extension data may be silently ignored), while a new TLV
 must be used by extensions that make incompatible extensions to the
 meaning of the TLV (the whole TLV must be thrown away if the
 extension data is not understood).

 Using a new bit in the Flags field is equivalent to defining a new
 sub-TLV while using less space in the Babel packet. Due to the
 limited Flags space, and the doubtful space savings, we do not
 recommend the use of bits in the Flags field -- a new sub-TLV should
 be used instead.

 We refrain from making any recommendations about the usage of the
 packet trailer due to the lack of implementation experience.

5. IANA Considerations

 IANA has created three new registries, called "Babel TLV Types",
 "Babel Sub-TLV Types", and "Babel Flags Values". The allocation
 policy for each of these registries is Specification Required
 [RFC5226].

Chroboczek Experimental [Page 7]

RFC 7557 Babel Extension Mechanism May 2015

 The initial values in the "Babel TLV Types" registry are as follows:

 +---------+---+---------------+
 | Type | Name | Reference |
 +---------+---+---------------+
0	Pad1	[RFC6126]
1	PadN	[RFC6126]
2	Acknowledgment Request	[RFC6126]
3	Acknowledgment	[RFC6126]
4	Hello	[RFC6126]
5	IHU	[RFC6126]
6	Router-Id	[RFC6126]
7	Next Hop	[RFC6126]
8	Update	[RFC6126]
9	Route Request	[RFC6126]
10	Seqno Request	[RFC6126]
11	TS/PC	[RFC7298]
12	HMAC	[RFC7298]
13	Source-specific Update	[BABEL-SS]
14	Source-specific Request	[BABEL-SS]
15	Source-specific Seqno Request	[BABEL-SS]
224-254	Reserved for Experimental Use	this document
255	Reserved for expansion of the type	this document
	space	
 +---------+---+---------------+

Chroboczek Experimental [Page 8]

RFC 7557 Babel Extension Mechanism May 2015

 The initial values in the "Babel Sub-TLV Types" registry are as
 follows:

 +---------+---+---------------+
 | Type | Name | Reference |
 +---------+---+---------------+
0	Pad1	this document
1	PadN	this document
2	Diversity	[BABEL-DIV]
3	Timestamp	[BABEL-RTT]
224-254	Reserved for Experimental Use	this document
255	Reserved for expansion of the type	this document
	space	
 +---------+---+---------------+

 The initial values in the "Babel Flags Values" registry are as
 follows:

 +-----+-------------------+-----------+
 | Bit | Name | Reference |
 +-----+-------------------+-----------+
 | 0 | Default prefix | [RFC6126] |
 | | | |
 | 1 | Default router-id | [RFC6126] |
 | | | |
 | 2-7 | Unassigned | |
 +-----+-------------------+-----------+

6. Security Considerations

 This document specifies the structure of fields that are already
 present in the original Babel protocol and does not, by itself, raise
 any new security considerations. Specific extensions may change the
 security properties of the protocol, for example, by adding security
 mechanisms [RFC7298] or by enabling new kinds of attack.

Chroboczek Experimental [Page 9]

RFC 7557 Babel Extension Mechanism May 2015

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692,
 DOI 10.17487/RFC3692, January 2004,
 <http://www.rfc-editor.org/info/rfc3692>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6126] Chroboczek, J., "The Babel Routing Protocol", RFC 6126,
 DOI 10.17487/RFC6126, April 2011,
 <http://www.rfc-editor.org/info/rfc6126>.

7.2. Informative References

 [BABEL-DIV] Chroboczek, J., "Diversity Routing for the Babel Routing
 Protocol", Work in Progress, draft-chroboczek-babel-
 diversity-routing-00, July 2014.

 [BABEL-RTT] Jonglez, B. and J. Chroboczek, "Delay-based Metric
 Extension for the Babel Routing Protocol", Work in
 Progress, draft-jonglez-babel-rtt-extension-01, May 2015.

 [BABEL-SS] Boutier, M. and J. Chroboczek, "Source-Specific Routing
 in Babel", Work in Progress, draft-boutier-babel-
 source-specific-01, May 2015.

 [RFC7298] Ovsienko, D., "Babel Hashed Message Authentication Code
 (HMAC) Cryptographic Authentication", RFC 7298,
 DOI 10.17487/RFC7298, July 2014,
 <http://www.rfc-editor.org/info/rfc7298>.

Chroboczek Experimental [Page 10]

RFC 7557 Babel Extension Mechanism May 2015

Acknowledgments

 I am grateful to Denis Ovsienko and Gabriel Kerneis for their
 feedback on previous draft versions of this document.

Author’s Address

 Juliusz Chroboczek
 PPS, University of Paris-Diderot
 Case 7014
 75205 Paris Cedex 13
 France

 EMail: jch@pps.univ-paris-diderot.fr

Chroboczek Experimental [Page 11]

