
Internet Engineering Task Force (IETF) P. Saint-Andre
Request for Comments: 7564 &yet
Obsoletes: 3454 M. Blanchet
Category: Standards Track Viagenie
ISSN: 2070-1721 May 2015

 PRECIS Framework: Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols

Abstract

 Application protocols using Unicode characters in protocol strings
 need to properly handle such strings in order to enforce
 internationalization rules for strings placed in various protocol
 slots (such as addresses and identifiers) and to perform valid
 comparison operations (e.g., for purposes of authentication or
 authorization). This document defines a framework enabling
 application protocols to perform the preparation, enforcement, and
 comparison of internationalized strings ("PRECIS") in a way that
 depends on the properties of Unicode characters and thus is agile
 with respect to versions of Unicode. As a result, this framework
 provides a more sustainable approach to the handling of
 internationalized strings than the previous framework, known as
 Stringprep (RFC 3454). This document obsoletes RFC 3454.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7564.

Saint-Andre & Blanchet Standards Track [Page 1]

RFC 7564 PRECIS Framework May 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..4
 2. Terminology ...7
 3. Preparation, Enforcement, and Comparison7
 4. String Classes ..8
 4.1. Overview ...8
 4.2. IdentifierClass ..9
 4.2.1. Valid ...9
 4.2.2. Contextual Rule Required10
 4.2.3. Disallowed ...10
 4.2.4. Unassigned ...11
 4.2.5. Examples ...11
 4.3. FreeformClass ...11
 4.3.1. Valid ..11
 4.3.2. Contextual Rule Required12
 4.3.3. Disallowed ...12
 4.3.4. Unassigned ...12
 4.3.5. Examples ...12
 5. Profiles ...13
 5.1. Profiles Must Not Be Multiplied beyond Necessity13
 5.2. Rules ...14
 5.2.1. Width Mapping Rule14
 5.2.2. Additional Mapping Rule14
 5.2.3. Case Mapping Rule14
 5.2.4. Normalization Rule15
 5.2.5. Directionality Rule15
 5.3. A Note about Spaces16
 6. Applications ...17
 6.1. How to Use PRECIS in Applications17
 6.2. Further Excluded Characters18
 6.3. Building Application-Layer Constructs18
 7. Order of Operations ..19

Saint-Andre & Blanchet Standards Track [Page 2]

RFC 7564 PRECIS Framework May 2015

 8. Code Point Properties ..20
 9. Category Definitions Used to Calculate Derived Property22
 9.1. LetterDigits (A) ..23
 9.2. Unstable (B) ..23
 9.3. IgnorableProperties (C)23
 9.4. IgnorableBlocks (D)23
 9.5. LDH (E) ...23
 9.6. Exceptions (F) ..23
 9.7. BackwardCompatible (G)23
 9.8. JoinControl (H) ...24
 9.9. OldHangulJamo (I) ...24
 9.10. Unassigned (J) ...24
 9.11. ASCII7 (K) ...24
 9.12. Controls (L) ...24
 9.13. PrecisIgnorableProperties (M)24
 9.14. Spaces (N) ...25
 9.15. Symbols (O) ..25
 9.16. Punctuation (P) ..25
 9.17. HasCompat (Q) ..25
 9.18. OtherLetterDigits (R)25
 10. Guidelines for Designated Experts26
 11. IANA Considerations ...27
 11.1. PRECIS Derived Property Value Registry27
 11.2. PRECIS Base Classes Registry27
 11.3. PRECIS Profiles Registry28
 12. Security Considerations29
 12.1. General Issues ...29
 12.2. Use of the IdentifierClass30
 12.3. Use of the FreeformClass30
 12.4. Local Character Set Issues31
 12.5. Visually Similar Characters31
 12.6. Security of Passwords33
 13. Interoperability Considerations34
 13.1. Encoding ...34
 13.2. Character Sets ...34
 13.3. Unicode Versions ...34
 13.4. Potential Changes to Handling of Certain Unicode
 Code Points ..34
 14. References ..35
 14.1. Normative References35
 14.2. Informative References36
 Acknowledgements ..40
 Authors’ Addresses ..40

Saint-Andre & Blanchet Standards Track [Page 3]

RFC 7564 PRECIS Framework May 2015

1. Introduction

 Application protocols using Unicode characters [Unicode] in protocol
 strings need to properly handle such strings in order to enforce
 internationalization rules for strings placed in various protocol
 slots (such as addresses and identifiers) and to perform valid
 comparison operations (e.g., for purposes of authentication or
 authorization). This document defines a framework enabling
 application protocols to perform the preparation, enforcement, and
 comparison of internationalized strings ("PRECIS") in a way that
 depends on the properties of Unicode characters and thus is agile
 with respect to versions of Unicode.

 As described in the PRECIS problem statement [RFC6885], many IETF
 protocols have used the Stringprep framework [RFC3454] as the basis
 for preparing, enforcing, and comparing protocol strings that contain
 Unicode characters, especially characters outside the ASCII range
 [RFC20]. The Stringprep framework was developed during work on the
 original technology for internationalized domain names (IDNs), here
 called "IDNA2003" [RFC3490], and Nameprep [RFC3491] was the
 Stringprep profile for IDNs. At the time, Stringprep was designed as
 a general framework so that other application protocols could define
 their own Stringprep profiles. Indeed, a number of application
 protocols defined such profiles.

 After the publication of [RFC3454] in 2002, several significant
 issues arose with the use of Stringprep in the IDN case, as
 documented in the IAB’s recommendations regarding IDNs [RFC4690]
 (most significantly, Stringprep was tied to Unicode version 3.2).
 Therefore, the newer IDNA specifications, here called "IDNA2008"
 ([RFC5890], [RFC5891], [RFC5892], [RFC5893], [RFC5894]), no longer
 use Stringprep and Nameprep. This migration away from Stringprep for
 IDNs prompted other "customers" of Stringprep to consider new
 approaches to the preparation, enforcement, and comparison of
 internationalized strings, as described in [RFC6885].

Saint-Andre & Blanchet Standards Track [Page 4]

RFC 7564 PRECIS Framework May 2015

 This document defines a framework for a post-Stringprep approach to
 the preparation, enforcement, and comparison of internationalized
 strings in application protocols, based on several principles:

 1. Define a small set of string classes that specify the Unicode
 characters (i.e., specific "code points") appropriate for common
 application protocol constructs.

 2. Define each PRECIS string class in terms of Unicode code points
 and their properties so that an algorithm can be used to
 determine whether each code point or character category is
 (a) valid, (b) allowed in certain contexts, (c) disallowed, or
 (d) unassigned.

 3. Use an "inclusion model" such that a string class consists only
 of code points that are explicitly allowed, with the result that
 any code point not explicitly allowed is forbidden.

 4. Enable application protocols to define profiles of the PRECIS
 string classes if necessary (addressing matters such as width
 mapping, case mapping, Unicode normalization, and directionality)
 but strongly discourage the multiplication of profiles beyond
 necessity in order to avoid violations of the "Principle of Least
 Astonishment".

 It is expected that this framework will yield the following benefits:

 o Application protocols will be agile with regard to Unicode
 versions.

 o Implementers will be able to share code point tables and software
 code across application protocols, most likely by means of
 software libraries.

 o End users will be able to acquire more accurate expectations about
 the characters that are acceptable in various contexts. Given
 this more uniform set of string classes, it is also expected that
 copy/paste operations between software implementing different
 application protocols will be more predictable and coherent.

 Whereas the string classes define the "baseline" code points for a
 range of applications, profiling enables application protocols to
 apply the string classes in ways that are appropriate for common
 constructs such as usernames [PRECIS-Users-Pwds], opaque strings such
 as passwords [PRECIS-Users-Pwds], and nicknames [PRECIS-Nickname].
 Profiles are responsible for defining the handling of right-to-left
 characters as well as various mapping operations of the kind also
 discussed for IDNs in [RFC5895], such as case preservation or

Saint-Andre & Blanchet Standards Track [Page 5]

RFC 7564 PRECIS Framework May 2015

 lowercasing, Unicode normalization, mapping of certain characters to
 other characters or to nothing, and mapping of fullwidth and
 halfwidth characters.

 When an application applies a profile of a PRECIS string class, it
 transforms an input string (which might or might not be conforming)
 into an output string that definitively conforms to the profile. In
 particular, this document focuses on the resulting ability to achieve
 the following objectives:

 a. Enforcing all the rules of a profile for a single output string
 (e.g., to determine if a string can be included in a protocol
 slot, communicated to another entity within a protocol, stored in
 a retrieval system, etc.).

 b. Comparing two output strings to determine if they are equivalent,
 typically through octet-for-octet matching to test for
 "bit-string identity" (e.g., to make an access decision for
 purposes of authentication or authorization as further described
 in [RFC6943]).

 The opportunity to define profiles naturally introduces the
 possibility of a proliferation of profiles, thus potentially
 mitigating the benefits of common code and violating user
 expectations. See Section 5 for a discussion of this important
 topic.

 In addition, it is extremely important for protocol designers and
 application developers to understand that the transformation of an
 input string to an output string is rarely reversible. As one
 relatively simple example, case mapping would transform an input
 string of "StPeter" to "stpeter", and information about the
 capitalization of the first and third characters would be lost.
 Similar considerations apply to other forms of mapping and
 normalization.

 Although this framework is similar to IDNA2008 and includes by
 reference some of the character categories defined in [RFC5892], it
 defines additional character categories to meet the needs of common
 application protocols other than DNS.

 The character categories and calculation rules defined under
 Sections 8 and 9 are normative and apply to all Unicode code points.
 The code point table that results from applying the character
 categories and calculation rules to the latest version of Unicode can
 be found in an IANA registry.

Saint-Andre & Blanchet Standards Track [Page 6]

RFC 7564 PRECIS Framework May 2015

2. Terminology

 Many important terms used in this document are defined in [RFC5890],
 [RFC6365], [RFC6885], and [Unicode]. The terms "left-to-right" (LTR)
 and "right-to-left" (RTL) are defined in Unicode Standard Annex #9
 [UAX9].

 As of the date of writing, the version of Unicode published by the
 Unicode Consortium is 7.0 [Unicode7.0]; however, PRECIS is not tied
 to a specific version of Unicode. The latest version of Unicode is
 always available [Unicode].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Preparation, Enforcement, and Comparison

 This document distinguishes between three different actions that an
 entity can take with regard to a string:

 o Enforcement entails applying all of the rules specified for a
 particular string class or profile thereof to an individual
 string, for the purpose of determining if the string can be used
 in a given protocol slot.

 o Comparison entails applying all of the rules specified for a
 particular string class or profile thereof to two separate
 strings, for the purpose of determining if the two strings are
 equivalent.

 o Preparation entails only ensuring that the characters in an
 individual string are allowed by the underlying PRECIS string
 class.

 In most cases, authoritative entities such as servers are responsible
 for enforcement, whereas subsidiary entities such as clients are
 responsible only for preparation. The rationale for this distinction
 is that clients might not have the facilities (in terms of device
 memory and processing power) to enforce all the rules regarding
 internationalized strings (such as width mapping and Unicode
 normalization), although they can more easily limit the repertoire of
 characters they offer to an end user. By contrast, it is assumed
 that a server would have more capacity to enforce the rules, and in
 any case acts as an authority regarding allowable strings in protocol
 slots such as addresses and endpoint identifiers. In addition, a

Saint-Andre & Blanchet Standards Track [Page 7]

RFC 7564 PRECIS Framework May 2015

 client cannot necessarily be trusted to properly generate such
 strings, especially for security-sensitive contexts such as
 authentication and authorization.

4. String Classes

4.1. Overview

 Starting in 2010, various "customers" of Stringprep began to discuss
 the need to define a post-Stringprep approach to the preparation and
 comparison of internationalized strings other than IDNs. This
 community analyzed the existing Stringprep profiles and also weighed
 the costs and benefits of defining a relatively small set of Unicode
 characters that would minimize the potential for user confusion
 caused by visually similar characters (and thus be relatively "safe")
 vs. defining a much larger set of Unicode characters that would
 maximize the potential for user creativity (and thus be relatively
 "expressive"). As a result, the community concluded that most
 existing uses could be addressed by two string classes:

 IdentifierClass: a sequence of letters, numbers, and some symbols
 that is used to identify or address a network entity such as a
 user account, a venue (e.g., a chatroom), an information source
 (e.g., a data feed), or a collection of data (e.g., a file); the
 intent is that this class will minimize user confusion in a wide
 variety of application protocols, with the result that safety has
 been prioritized over expressiveness for this class.

 FreeformClass: a sequence of letters, numbers, symbols, spaces, and
 other characters that is used for free-form strings, including
 passwords as well as display elements such as human-friendly
 nicknames for devices or for participants in a chatroom; the
 intent is that this class will allow nearly any Unicode character,
 with the result that expressiveness has been prioritized over
 safety for this class. Note well that protocol designers,
 application developers, service providers, and end users might not
 understand or be able to enter all of the characters that can be
 included in the FreeformClass -- see Section 12.3 for details.

 Future specifications might define additional PRECIS string classes,
 such as a class that falls somewhere between the IdentifierClass and
 the FreeformClass. At this time, it is not clear how useful such a
 class would be. In any case, because application developers are able
 to define profiles of PRECIS string classes, a protocol needing a
 construct between the IdentifierClass and the FreeformClass could
 define a restricted profile of the FreeformClass if needed.

Saint-Andre & Blanchet Standards Track [Page 8]

RFC 7564 PRECIS Framework May 2015

 The following subsections discuss the IdentifierClass and
 FreeformClass in more detail, with reference to the dimensions
 described in Section 5 of [RFC6885]. Each string class is defined by
 the following behavioral rules:

 Valid: Defines which code points are treated as valid for the
 string.

 Contextual Rule Required: Defines which code points are treated as
 allowed only if the requirements of a contextual rule are met
 (i.e., either CONTEXTJ or CONTEXTO).

 Disallowed: Defines which code points need to be excluded from the
 string.

 Unassigned: Defines application behavior in the presence of code
 points that are unknown (i.e., not yet designated) for the version
 of Unicode used by the application.

 This document defines the valid, contextual rule required,
 disallowed, and unassigned rules for the IdentifierClass and
 FreeformClass. As described under Section 5, profiles of these
 string classes are responsible for defining the width mapping,
 additional mappings, case mapping, normalization, and directionality
 rules.

4.2. IdentifierClass

 Most application technologies need strings that can be used to refer
 to, include, or communicate protocol strings like usernames,
 filenames, data feed identifiers, and chatroom names. We group such
 strings into a class called "IdentifierClass" having the following
 features.

4.2.1. Valid

 o Code points traditionally used as letters and numbers in writing
 systems, i.e., the LetterDigits ("A") category first defined in
 [RFC5892] and listed here under Section 9.1.

 o Code points in the range U+0021 through U+007E, i.e., the
 (printable) ASCII7 ("K") category defined under Section 9.11.
 These code points are "grandfathered" into PRECIS and thus are
 valid even if they would otherwise be disallowed according to the
 property-based rules specified in the next section.

Saint-Andre & Blanchet Standards Track [Page 9]

RFC 7564 PRECIS Framework May 2015

 Note: Although the PRECIS IdentifierClass reuses the LetterDigits
 category from IDNA2008, the range of characters allowed in the
 IdentifierClass is wider than the range of characters allowed in
 IDNA2008. The main reason is that IDNA2008 applies the Unstable
 category before the LetterDigits category, thus disallowing
 uppercase characters, whereas the IdentifierClass does not apply
 the Unstable category.

4.2.2. Contextual Rule Required

 o A number of characters from the Exceptions ("F") category defined
 under Section 9.6 (see Section 9.6 for a full list).

 o Joining characters, i.e., the JoinControl ("H") category defined
 under Section 9.8.

4.2.3. Disallowed

 o Old Hangul Jamo characters, i.e., the OldHangulJamo ("I") category
 defined under Section 9.9.

 o Control characters, i.e., the Controls ("L") category defined
 under Section 9.12.

 o Ignorable characters, i.e., the PrecisIgnorableProperties ("M")
 category defined under Section 9.13.

 o Space characters, i.e., the Spaces ("N") category defined under
 Section 9.14.

 o Symbol characters, i.e., the Symbols ("O") category defined under
 Section 9.15.

 o Punctuation characters, i.e., the Punctuation ("P") category
 defined under Section 9.16.

 o Any character that has a compatibility equivalent, i.e., the
 HasCompat ("Q") category defined under Section 9.17. These code
 points are disallowed even if they would otherwise be valid
 according to the property-based rules specified in the previous
 section.

 o Letters and digits other than the "traditional" letters and digits
 allowed in IDNs, i.e., the OtherLetterDigits ("R") category
 defined under Section 9.18.

Saint-Andre & Blanchet Standards Track [Page 10]

RFC 7564 PRECIS Framework May 2015

4.2.4. Unassigned

 Any code points that are not yet designated in the Unicode character
 set are considered unassigned for purposes of the IdentifierClass,
 and such code points are to be treated as disallowed. See
 Section 9.10.

4.2.5. Examples

 As described in the Introduction to this document, the string classes
 do not handle all issues related to string preparation and comparison
 (such as case mapping); instead, such issues are handled at the level
 of profiles. Examples for profiles of the IdentifierClass can be
 found in [PRECIS-Users-Pwds] (the UsernameCaseMapped and
 UsernameCasePreserved profiles).

4.3. FreeformClass

 Some application technologies need strings that can be used in a
 free-form way, e.g., as a password in an authentication exchange (see
 [PRECIS-Users-Pwds]) or a nickname in a chatroom (see
 [PRECIS-Nickname]). We group such things into a class called
 "FreeformClass" having the following features.

 Security Warning: As mentioned, the FreeformClass prioritizes
 expressiveness over safety; Section 12.3 describes some of the
 security hazards involved with using or profiling the
 FreeformClass.

 Security Warning: Consult Section 12.6 for relevant security
 considerations when strings conforming to the FreeformClass, or a
 profile thereof, are used as passwords.

4.3.1. Valid

 o Traditional letters and numbers, i.e., the LetterDigits ("A")
 category first defined in [RFC5892] and listed here under
 Section 9.1.

 o Letters and digits other than the "traditional" letters and digits
 allowed in IDNs, i.e., the OtherLetterDigits ("R") category
 defined under Section 9.18.

 o Code points in the range U+0021 through U+007E, i.e., the
 (printable) ASCII7 ("K") category defined under Section 9.11.

 o Any character that has a compatibility equivalent, i.e., the
 HasCompat ("Q") category defined under Section 9.17.

Saint-Andre & Blanchet Standards Track [Page 11]

RFC 7564 PRECIS Framework May 2015

 o Space characters, i.e., the Spaces ("N") category defined under
 Section 9.14.

 o Symbol characters, i.e., the Symbols ("O") category defined under
 Section 9.15.

 o Punctuation characters, i.e., the Punctuation ("P") category
 defined under Section 9.16.

4.3.2. Contextual Rule Required

 o A number of characters from the Exceptions ("F") category defined
 under Section 9.6 (see Section 9.6 for a full list).

 o Joining characters, i.e., the JoinControl ("H") category defined
 under Section 9.8.

4.3.3. Disallowed

 o Old Hangul Jamo characters, i.e., the OldHangulJamo ("I") category
 defined under Section 9.9.

 o Control characters, i.e., the Controls ("L") category defined
 under Section 9.12.

 o Ignorable characters, i.e., the PrecisIgnorableProperties ("M")
 category defined under Section 9.13.

4.3.4. Unassigned

 Any code points that are not yet designated in the Unicode character
 set are considered unassigned for purposes of the FreeformClass, and
 such code points are to be treated as disallowed.

4.3.5. Examples

 As described in the Introduction to this document, the string classes
 do not handle all issues related to string preparation and comparison
 (such as case mapping); instead, such issues are handled at the level
 of profiles. Examples for profiles of the FreeformClass can be found
 in [PRECIS-Users-Pwds] (the OpaqueString profile) and
 [PRECIS-Nickname] (the Nickname profile).

Saint-Andre & Blanchet Standards Track [Page 12]

RFC 7564 PRECIS Framework May 2015

5. Profiles

 This framework document defines the valid, contextual-rule-required,
 disallowed, and unassigned rules for the IdentifierClass and the
 FreeformClass. A profile of a PRECIS string class MUST define the
 width mapping, additional mappings (if any), case mapping,
 normalization, and directionality rules. A profile MAY also restrict
 the allowable characters above and beyond the definition of the
 relevant PRECIS string class (but MUST NOT add as valid any code
 points that are disallowed by the relevant PRECIS string class).
 These matters are discussed in the following subsections.

 Profiles of the PRECIS string classes are registered with the IANA as
 described under Section 11.3. Profile names use the following
 convention: they are of the form "Profilename of BaseClass", where
 the "Profilename" string is a differentiator and "BaseClass" is the
 name of the PRECIS string class being profiled; for example, the
 profile of the FreeformClass used for opaque strings such as
 passwords is the OpaqueString profile [PRECIS-Users-Pwds].

5.1. Profiles Must Not Be Multiplied beyond Necessity

 The risk of profile proliferation is significant because having too
 many profiles will result in different behavior across various
 applications, thus violating what is known in user interface design
 as the "Principle of Least Astonishment".

 Indeed, we already have too many profiles. Ideally we would have at
 most two or three profiles. Unfortunately, numerous application
 protocols exist with their own quirks regarding protocol strings.
 Domain names, email addresses, instant messaging addresses, chatroom
 nicknames, filenames, authentication identifiers, passwords, and
 other strings are already out there in the wild and need to be
 supported in existing application protocols such as DNS, SMTP, the
 Extensible Messaging and Presence Protocol (XMPP), Internet Relay
 Chat (IRC), NFS, the Internet Small Computer System Interface
 (iSCSI), the Extensible Authentication Protocol (EAP), and the Simple
 Authentication and Security Layer (SASL), among others.

 Nevertheless, profiles must not be multiplied beyond necessity.

 To help prevent profile proliferation, this document recommends
 sensible defaults for the various options offered to profile creators
 (such as width mapping and Unicode normalization). In addition, the
 guidelines for designated experts provided under Section 10 are meant
 to encourage a high level of due diligence regarding new profiles.

Saint-Andre & Blanchet Standards Track [Page 13]

RFC 7564 PRECIS Framework May 2015

5.2. Rules

5.2.1. Width Mapping Rule

 The width mapping rule of a profile specifies whether width mapping
 is performed on the characters of a string, and how the mapping is
 done. Typically, such mapping consists of mapping fullwidth and
 halfwidth characters, i.e., code points with a Decomposition Type of
 Wide or Narrow, to their decomposition mappings; as an example,
 FULLWIDTH DIGIT ZERO (U+FF10) would be mapped to DIGIT ZERO (U+0030).

 The normalization form specified by a profile (see below) has an
 impact on the need for width mapping. Because width mapping is
 performed as a part of compatibility decomposition, a profile
 employing either normalization form KD (NFKD) or normalization form
 KC (NFKC) does not need to specify width mapping. However, if
 Unicode normalization form C (NFC) is used (as is recommended) then
 the profile needs to specify whether to apply width mapping; in this
 case, width mapping is in general RECOMMENDED because allowing
 fullwidth and halfwidth characters to remain unmapped to their
 compatibility variants would violate the "Principle of Least
 Astonishment". For more information about the concept of width in
 East Asian scripts within Unicode, see Unicode Standard Annex #11
 [UAX11].

5.2.2. Additional Mapping Rule

 The additional mapping rule of a profile specifies whether additional
 mappings are performed on the characters of a string, such as:

 Mapping of delimiter characters (such as ’@’, ’:’, ’/’, ’+’,
 and ’-’)

 Mapping of special characters (e.g., non-ASCII space characters to
 ASCII space or control characters to nothing).

 The PRECIS mappings document [PRECIS-Mappings] describes such
 mappings in more detail.

5.2.3. Case Mapping Rule

 The case mapping rule of a profile specifies whether case mapping
 (instead of case preservation) is performed on the characters of a
 string, and how the mapping is applied (e.g., mapping uppercase and
 titlecase characters to their lowercase equivalents).

Saint-Andre & Blanchet Standards Track [Page 14]

RFC 7564 PRECIS Framework May 2015

 If case mapping is desired (instead of case preservation), it is
 RECOMMENDED to use Unicode Default Case Folding as defined in the
 Unicode Standard [Unicode] (at the time of this writing, the
 algorithm is specified in Chapter 3 of [Unicode7.0]).

 Note: Unicode Default Case Folding is not designed to handle
 various localization issues (such as so-called "dotless i" in
 several Turkic languages). The PRECIS mappings document
 [PRECIS-Mappings] describes these issues in greater detail and
 defines a "local case mapping" method that handles some locale-
 dependent and context-dependent mappings.

 In order to maximize entropy and minimize the potential for false
 positives, it is NOT RECOMMENDED for application protocols to map
 uppercase and titlecase code points to their lowercase equivalents
 when strings conforming to the FreeformClass, or a profile thereof,
 are used in passwords; instead, it is RECOMMENDED to preserve the
 case of all code points contained in such strings and then perform
 case-sensitive comparison. See also the related discussion in
 Section 12.6 and in [PRECIS-Users-Pwds].

5.2.4. Normalization Rule

 The normalization rule of a profile specifies which Unicode
 normalization form (D, KD, C, or KC) is to be applied (see Unicode
 Standard Annex #15 [UAX15] for background information).

 In accordance with [RFC5198], normalization form C (NFC) is
 RECOMMENDED.

5.2.5. Directionality Rule

 The directionality rule of a profile specifies how to treat strings
 containing what are often called "right-to-left" (RTL) characters
 (see Unicode Standard Annex #9 [UAX9]). RTL characters come from
 scripts that are normally written from right to left and are
 considered by Unicode to, themselves, have right-to-left
 directionality. Some strings containing RTL characters also contain
 "left-to-right" (LTR) characters, such as numerals, as well as
 characters without directional properties. Consequently, such
 strings are known as "bidirectional strings".

 Presenting bidirectional strings in different layout systems (e.g., a
 user interface that is configured to handle primarily an RTL script
 vs. an interface that is configured to handle primarily an LTR
 script) can yield display results that, while predictable to those
 who understand the display rules, are counter-intuitive to casual
 users. In particular, the same bidirectional string (in PRECIS

Saint-Andre & Blanchet Standards Track [Page 15]

RFC 7564 PRECIS Framework May 2015

 terms) might not be presented in the same way to users of those
 different layout systems, even though the presentation is consistent
 within any particular layout system. In some applications, these
 presentation differences might be considered problematic and thus the
 application designers might wish to restrict the use of bidirectional
 strings by specifying a directionality rule. In other applications,
 these presentation differences might not be considered problematic
 (this especially tends to be true of more "free-form" strings) and
 thus no directionality rule is needed.

 The PRECIS framework does not directly address how to deal with
 bidirectional strings across all string classes and profiles, and
 does not define any new directionality rules, since at present there
 is no widely accepted and implemented solution for the safe display
 of arbitrary bidirectional strings beyond the Unicode bidirectional
 algorithm [UAX9]. Although rules for management and display of
 bidirectional strings have been defined for domain name labels and
 similar identifiers through the "Bidi Rule" specified in the IDNA2008
 specification on right-to-left scripts [RFC5893], those rules are
 quite restrictive and are not necessarily applicable to all
 bidirectional strings.

 The authors of a PRECIS profile might believe that they need to
 define a new directionality rule of their own. Because of the
 complexity of the issues involved, such a belief is almost always
 misguided, even if the authors have done a great deal of careful
 research into the challenges of displaying bidirectional strings.
 This document strongly suggests that profile authors who are thinking
 about defining a new directionality rule think again, and instead
 consider using the "Bidi Rule" [RFC5893] (for profiles based on the
 IdentifierClass) or following the Unicode bidirectional algorithm
 [UAX9] (for profiles based on the FreeformClass or in situations
 where the IdentifierClass is not appropriate).

5.3. A Note about Spaces

 With regard to the IdentifierClass, the consensus of the PRECIS
 Working Group was that spaces are problematic for many reasons,
 including the following:

 o Many Unicode characters are confusable with ASCII space.

 o Even if non-ASCII space characters are mapped to ASCII space
 (U+0020), space characters are often not rendered in user
 interfaces, leading to the possibility that a human user might
 consider a string containing spaces to be equivalent to the same
 string without spaces.

Saint-Andre & Blanchet Standards Track [Page 16]

RFC 7564 PRECIS Framework May 2015

 o In some locales, some devices are known to generate a character
 other than ASCII space (such as ZERO WIDTH JOINER, U+200D) when a
 user performs an action like hitting the space bar on a keyboard.

 One consequence of disallowing space characters in the
 IdentifierClass might be to effectively discourage their use within
 identifiers created in newer application protocols; given the
 challenges involved with properly handling space characters
 (especially non-ASCII space characters) in identifiers and other
 protocol strings, the PRECIS Working Group considered this to be a
 feature, not a bug.

 However, the FreeformClass does allow spaces, which enables
 application protocols to define profiles of the FreeformClass that
 are more flexible than any profiles of the IdentifierClass. In
 addition, as explained in Section 6.3, application protocols can also
 define application-layer constructs containing spaces.

6. Applications

6.1. How to Use PRECIS in Applications

 Although PRECIS has been designed with applications in mind,
 internationalization is not suddenly made easy through the use of
 PRECIS. Application developers still need to give some thought to
 how they will use the PRECIS string classes, or profiles thereof, in
 their applications. This section provides some guidelines to
 application developers (and to expert reviewers of application
 protocol specifications).

 o Don’t define your own profile unless absolutely necessary (see
 Section 5.1). Existing profiles have been designed for wide
 reuse. It is highly likely that an existing profile will meet
 your needs, especially given the ability to specify further
 excluded characters (Section 6.2) and to build application-layer
 constructs (see Section 6.3).

 o Do specify:

 * Exactly which entities are responsible for preparation,
 enforcement, and comparison of internationalized strings (e.g.,
 servers or clients).

 * Exactly when those entities need to complete their tasks (e.g.,
 a server might need to enforce the rules of a profile before
 allowing a client to gain network access).

Saint-Andre & Blanchet Standards Track [Page 17]

RFC 7564 PRECIS Framework May 2015

 * Exactly which protocol slots need to be checked against which
 profiles (e.g., checking the address of a message’s intended
 recipient against the UsernameCaseMapped profile
 [PRECIS-Users-Pwds] of the IdentifierClass, or checking the
 password of a user against the OpaqueString profile
 [PRECIS-Users-Pwds] of the FreeformClass).

 See [PRECIS-Users-Pwds] and [XMPP-Addr-Format] for definitions of
 these matters for several applications.

6.2. Further Excluded Characters

 An application protocol that uses a profile MAY specify particular
 code points that are not allowed in relevant slots within that
 application protocol, above and beyond those excluded by the string
 class or profile.

 That is, an application protocol MAY do either of the following:

 1. Exclude specific code points that are allowed by the relevant
 string class.

 2. Exclude characters matching certain Unicode properties (e.g.,
 math symbols) that are included in the relevant PRECIS string
 class.

 As a result of such exclusions, code points that are defined as valid
 for the PRECIS string class or profile will be defined as disallowed
 for the relevant protocol slot.

 Typically, such exclusions are defined for the purpose of backward
 compatibility with legacy formats within an application protocol.
 These are defined for application protocols, not profiles, in order
 to prevent multiplication of profiles beyond necessity (see
 Section 5.1).

6.3. Building Application-Layer Constructs

 Sometimes, an application-layer construct does not map in a
 straightforward manner to one of the base string classes or a profile
 thereof. Consider, for example, the "simple user name" construct in
 the Simple Authentication and Security Layer (SASL) [RFC4422].
 Depending on the deployment, a simple user name might take the form
 of a user’s full name (e.g., the user’s personal name followed by a
 space and then the user’s family name). Such a simple user name
 cannot be defined as an instance of the IdentifierClass or a profile
 thereof, since space characters are not allowed in the

Saint-Andre & Blanchet Standards Track [Page 18]

RFC 7564 PRECIS Framework May 2015

 IdentifierClass; however, it could be defined using a space-separated
 sequence of IdentifierClass instances, as in the following ABNF
 [RFC5234] from [PRECIS-Users-Pwds]:

 username = userpart *(1*SP userpart)
 userpart = 1*(idbyte)
 ;
 ; an "idbyte" is a byte used to represent a
 ; UTF-8 encoded Unicode code point that can be
 ; contained in a string that conforms to the
 ; PRECIS "IdentifierClass"
 ;

 Similar techniques could be used to define many application-layer
 constructs, say of the form "user@domain" or "/path/to/file".

7. Order of Operations

 To ensure proper comparison, the rules specified for a particular
 string class or profile MUST be applied in the following order:

 1. Width Mapping Rule

 2. Additional Mapping Rule

 3. Case Mapping Rule

 4. Normalization Rule

 5. Directionality Rule

 6. Behavioral rules for determining whether a code point is valid,
 allowed under a contextual rule, disallowed, or unassigned

 As already described, the width mapping, additional mapping, case
 mapping, normalization, and directionality rules are specified for
 each profile, whereas the behavioral rules are specified for each
 string class. Some of the logic behind this order is provided under
 Section 5.2.1 (see also the PRECIS mappings document
 [PRECIS-Mappings]).

Saint-Andre & Blanchet Standards Track [Page 19]

RFC 7564 PRECIS Framework May 2015

8. Code Point Properties

 In order to implement the string classes described above, this
 document does the following:

 1. Reviews and classifies the collections of code points in the
 Unicode character set by examining various code point properties.

 2. Defines an algorithm for determining a derived property value,
 which can vary depending on the string class being used by the
 relevant application protocol.

 This document is not intended to specify precisely how derived
 property values are to be applied in protocol strings. That
 information is the responsibility of the protocol specification that
 uses or profiles a PRECIS string class from this document. The value
 of the property is to be interpreted as follows.

 PROTOCOL VALID Those code points that are allowed to be used in any
 PRECIS string class (currently, IdentifierClass and
 FreeformClass). The abbreviated term "PVALID" is used to refer to
 this value in the remainder of this document.

 SPECIFIC CLASS PROTOCOL VALID Those code points that are allowed to
 be used in specific string classes. In the remainder of this
 document, the abbreviated term *_PVAL is used, where * = (ID |
 FREE), i.e., either "FREE_PVAL" or "ID_PVAL". In practice, the
 derived property ID_PVAL is not used in this specification, since
 every ID_PVAL code point is PVALID.

 CONTEXTUAL RULE REQUIRED Some characteristics of the character, such
 as its being invisible in certain contexts or problematic in
 others, require that it not be used in labels unless specific
 other characters or properties are present. As in IDNA2008, there
 are two subdivisions of CONTEXTUAL RULE REQUIRED -- the first for
 Join_controls (called "CONTEXTJ") and the second for other
 characters (called "CONTEXTO"). A character with the derived
 property value CONTEXTJ or CONTEXTO MUST NOT be used unless an
 appropriate rule has been established and the context of the
 character is consistent with that rule. The most notable of the
 CONTEXTUAL RULE REQUIRED characters are the Join Control
 characters U+200D ZERO WIDTH JOINER and U+200C ZERO WIDTH
 NON-JOINER, which have a derived property value of CONTEXTJ. See
 Appendix A of [RFC5892] for more information.

 DISALLOWED Those code points that are not permitted in any PRECIS
 string class.

Saint-Andre & Blanchet Standards Track [Page 20]

RFC 7564 PRECIS Framework May 2015

 SPECIFIC CLASS DISALLOWED Those code points that are not to be
 included in one of the string classes but that might be permitted
 in others. In the remainder of this document, the abbreviated
 term *_DIS is used, where * = (ID | FREE), i.e., either "FREE_DIS"
 or "ID_DIS". In practice, the derived property FREE_DIS is not
 used in this specification, since every FREE_DIS code point is
 DISALLOWED.

 UNASSIGNED Those code points that are not designated (i.e., are
 unassigned) in the Unicode Standard.

 The algorithm to calculate the value of the derived property is as
 follows (implementations MUST NOT modify the order of operations
 within this algorithm, since doing so would cause inconsistent
 results across implementations):

 If .cp. .in. Exceptions Then Exceptions(cp);
 Else If .cp. .in. BackwardCompatible Then BackwardCompatible(cp);
 Else If .cp. .in. Unassigned Then UNASSIGNED;
 Else If .cp. .in. ASCII7 Then PVALID;
 Else If .cp. .in. JoinControl Then CONTEXTJ;
 Else If .cp. .in. OldHangulJamo Then DISALLOWED;
 Else If .cp. .in. PrecisIgnorableProperties Then DISALLOWED;
 Else If .cp. .in. Controls Then DISALLOWED;
 Else If .cp. .in. HasCompat Then ID_DIS or FREE_PVAL;
 Else If .cp. .in. LetterDigits Then PVALID;
 Else If .cp. .in. OtherLetterDigits Then ID_DIS or FREE_PVAL;
 Else If .cp. .in. Spaces Then ID_DIS or FREE_PVAL;
 Else If .cp. .in. Symbols Then ID_DIS or FREE_PVAL;
 Else If .cp. .in. Punctuation Then ID_DIS or FREE_PVAL;
 Else DISALLOWED;

 The value of the derived property calculated can depend on the string
 class; for example, if an identifier used in an application protocol
 is defined as profiling the PRECIS IdentifierClass then a space
 character such as U+0020 would be assigned to ID_DIS, whereas if an
 identifier is defined as profiling the PRECIS FreeformClass then the
 character would be assigned to FREE_PVAL. For the sake of brevity,
 the designation "FREE_PVAL" is used herein, instead of the longer
 designation "ID_DIS or FREE_PVAL". In practice, the derived
 properties ID_PVAL and FREE_DIS are not used in this specification,
 since every ID_PVAL code point is PVALID and every FREE_DIS code
 point is DISALLOWED.

 Use of the name of a rule (such as "Exceptions") implies the set of
 code points that the rule defines, whereas the same name as a
 function call (such as "Exceptions(cp)") implies the value that the
 code point has in the Exceptions table.

Saint-Andre & Blanchet Standards Track [Page 21]

RFC 7564 PRECIS Framework May 2015

 The mechanisms described here allow determination of the value of the
 property for future versions of Unicode (including characters added
 after Unicode 5.2 or 7.0 depending on the category, since some
 categories mentioned in this document are simply pointers to IDNA2008
 and therefore were defined at the time of Unicode 5.2). Changes in
 Unicode properties that do not affect the outcome of this process
 therefore do not affect this framework. For example, a character can
 have its Unicode General_Category value (at the time of this writing,
 see Chapter 4 of [Unicode7.0]) change from So to Sm, or from Lo to
 Ll, without affecting the algorithm results. Moreover, even if such
 changes were to result, the BackwardCompatible list (Section 9.7) can
 be adjusted to ensure the stability of the results.

9. Category Definitions Used to Calculate Derived Property

 The derived property obtains its value based on a two-step procedure:

 1. Characters are placed in one or more character categories either
 (1) based on core properties defined by the Unicode Standard or
 (2) by treating the code point as an exception and addressing the
 code point based on its code point value. These categories are
 not mutually exclusive.

 2. Set operations are used with these categories to determine the
 values for a property specific to a given string class. These
 operations are specified under Section 8.

 Note: Unicode property names and property value names might have
 short abbreviations, such as "gc" for the General_Category
 property and "Ll" for the Lowercase_Letter property value of the
 gc property.

 In the following specification of character categories, the operation
 that returns the value of a particular Unicode character property for
 a code point is designated by using the formal name of that property
 (from the Unicode PropertyAliases.txt file [PropertyAliases] followed
 by "(cp)" for "code point". For example, the value of the
 General_Category property for a code point is indicated by
 General_Category(cp).

 The first ten categories (A-J) shown below were previously defined
 for IDNA2008 and are referenced from [RFC5892] to ease the
 understanding of how PRECIS handles various characters. Some of
 these categories are reused in PRECIS, and some of them are not;
 however, the lettering of categories is retained to prevent overlap
 and to ease implementation of both IDNA2008 and PRECIS in a single
 software application. The next eight categories (K-R) are specific
 to PRECIS.

Saint-Andre & Blanchet Standards Track [Page 22]

RFC 7564 PRECIS Framework May 2015

9.1. LetterDigits (A)

 This category is defined in Section 2.1 of [RFC5892] and is included
 by reference for use in PRECIS.

9.2. Unstable (B)

 This category is defined in Section 2.2 of [RFC5892]. However, it is
 not used in PRECIS.

9.3. IgnorableProperties (C)

 This category is defined in Section 2.3 of [RFC5892]. However, it is
 not used in PRECIS.

 Note: See the PrecisIgnorableProperties ("M") category below for a
 more inclusive category used in PRECIS identifiers.

9.4. IgnorableBlocks (D)

 This category is defined in Section 2.4 of [RFC5892]. However, it is
 not used in PRECIS.

9.5. LDH (E)

 This category is defined in Section 2.5 of [RFC5892]. However, it is
 not used in PRECIS.

 Note: See the ASCII7 ("K") category below for a more inclusive
 category used in PRECIS identifiers.

9.6. Exceptions (F)

 This category is defined in Section 2.6 of [RFC5892] and is included
 by reference for use in PRECIS.

9.7. BackwardCompatible (G)

 This category is defined in Section 2.7 of [RFC5892] and is included
 by reference for use in PRECIS.

 Note: Management of this category is handled via the processes
 specified in [RFC5892]. At the time of this writing (and also at the
 time that RFC 5892 was published), this category consisted of the
 empty set; however, that is subject to change as described in
 RFC 5892.

Saint-Andre & Blanchet Standards Track [Page 23]

RFC 7564 PRECIS Framework May 2015

9.8. JoinControl (H)

 This category is defined in Section 2.8 of [RFC5892] and is included
 by reference for use in PRECIS.

9.9. OldHangulJamo (I)

 This category is defined in Section 2.9 of [RFC5892] and is included
 by reference for use in PRECIS.

9.10. Unassigned (J)

 This category is defined in Section 2.10 of [RFC5892] and is included
 by reference for use in PRECIS.

9.11. ASCII7 (K)

 This PRECIS-specific category consists of all printable, non-space
 characters from the 7-bit ASCII range. By applying this category,
 the algorithm specified under Section 8 exempts these characters from
 other rules that might be applied during PRECIS processing, on the
 assumption that these code points are in such wide use that
 disallowing them would be counter-productive.

 K: cp is in {0021..007E}

9.12. Controls (L)

 This PRECIS-specific category consists of all control characters.

 L: Control(cp) = True

9.13. PrecisIgnorableProperties (M)

 This PRECIS-specific category is used to group code points that are
 discouraged from use in PRECIS string classes.

 M: Default_Ignorable_Code_Point(cp) = True or
 Noncharacter_Code_Point(cp) = True

 The definition for Default_Ignorable_Code_Point can be found in the
 DerivedCoreProperties.txt file [DerivedCoreProperties].

Saint-Andre & Blanchet Standards Track [Page 24]

RFC 7564 PRECIS Framework May 2015

9.14. Spaces (N)

 This PRECIS-specific category is used to group code points that are
 space characters.

 N: General_Category(cp) is in {Zs}

9.15. Symbols (O)

 This PRECIS-specific category is used to group code points that are
 symbols.

 O: General_Category(cp) is in {Sm, Sc, Sk, So}

9.16. Punctuation (P)

 This PRECIS-specific category is used to group code points that are
 punctuation characters.

 P: General_Category(cp) is in {Pc, Pd, Ps, Pe, Pi, Pf, Po}

9.17. HasCompat (Q)

 This PRECIS-specific category is used to group code points that have
 compatibility equivalents as explained in the Unicode Standard (at
 the time of this writing, see Chapters 2 and 3 of [Unicode7.0]).

 Q: toNFKC(cp) != cp

 The toNFKC() operation returns the code point in normalization
 form KC. For more information, see Section 5 of Unicode Standard
 Annex #15 [UAX15].

9.18. OtherLetterDigits (R)

 This PRECIS-specific category is used to group code points that are
 letters and digits other than the "traditional" letters and digits
 grouped under the LetterDigits (A) class (see Section 9.1).

 R: General_Category(cp) is in {Lt, Nl, No, Me}

Saint-Andre & Blanchet Standards Track [Page 25]

RFC 7564 PRECIS Framework May 2015

10. Guidelines for Designated Experts

 Experience with internationalization in application protocols has
 shown that protocol designers and application developers usually do
 not understand the subtleties and tradeoffs involved with
 internationalization and that they need considerable guidance in
 making reasonable decisions with regard to the options before them.

 Therefore:

 o Protocol designers are strongly encouraged to question the
 assumption that they need to define new profiles, since existing
 profiles are designed for wide reuse (see Section 5 for further
 discussion).

 o Those who persist in defining new profiles are strongly encouraged
 to clearly explain a strong justification for doing so, and to
 publish a stable specification that provides all of the
 information described under Section 11.3.

 o The designated experts for profile registration requests ought to
 seek answers to all of the questions provided under Section 11.3
 and to encourage applicants to provide a stable specification
 documenting the profile (even though the registration policy for
 PRECIS profiles is Expert Review and a stable specification is not
 strictly required).

 o Developers of applications that use PRECIS are strongly encouraged
 to apply the guidelines provided under Section 6 and to seek out
 the advice of the designated experts or other knowledgeable
 individuals in doing so.

 o All parties are strongly encouraged to help prevent the
 multiplication of profiles beyond necessity, as described under
 Section 5.1, and to use PRECIS in ways that will minimize user
 confusion and insecure application behavior.

 Internationalization can be difficult and contentious; designated
 experts, profile registrants, and application developers are strongly
 encouraged to work together in a spirit of good faith and mutual
 understanding to achieve rough consensus on profile registration
 requests and the use of PRECIS in particular applications. They are
 also encouraged to bring additional expertise into the discussion if
 that would be helpful in adding perspective or otherwise resolving
 issues.

Saint-Andre & Blanchet Standards Track [Page 26]

RFC 7564 PRECIS Framework May 2015

11. IANA Considerations

11.1. PRECIS Derived Property Value Registry

 IANA has created and now maintains the "PRECIS Derived Property
 Value" registry that records the derived properties for the versions
 of Unicode that are released after (and including) version 7.0. The
 derived property value is to be calculated in cooperation with a
 designated expert [RFC5226] according to the rules specified under
 Sections 8 and 9.

 The IESG is to be notified if backward-incompatible changes to the
 table of derived properties are discovered or if other problems arise
 during the process of creating the table of derived property values
 or during expert review. Changes to the rules defined under
 Sections 8 and 9 require IETF Review.

11.2. PRECIS Base Classes Registry

 IANA has created the "PRECIS Base Classes" registry. In accordance
 with [RFC5226], the registration policy is "RFC Required".

 The registration template is as follows:

 Base Class: [the name of the PRECIS string class]

 Description: [a brief description of the PRECIS string class and its
 intended use, e.g., "A sequence of letters, numbers, and symbols
 that is used to identify or address a network entity."]

 Specification: [the RFC number]

 The initial registrations are as follows:

 Base Class: FreeformClass.
 Description: A sequence of letters, numbers, symbols, spaces, and
 other code points that is used for free-form strings.
 Specification: Section 4.3 of RFC 7564.

 Base Class: IdentifierClass.
 Description: A sequence of letters, numbers, and symbols that is
 used to identify or address a network entity.
 Specification: Section 4.2 of RFC 7564.

Saint-Andre & Blanchet Standards Track [Page 27]

RFC 7564 PRECIS Framework May 2015

11.3. PRECIS Profiles Registry

 IANA has created the "PRECIS Profiles" registry to identify profiles
 that use the PRECIS string classes. In accordance with [RFC5226],
 the registration policy is "Expert Review". This policy was chosen
 in order to ease the burden of registration while ensuring that
 "customers" of PRECIS receive appropriate guidance regarding the
 sometimes complex and subtle internationalization issues related to
 profiles of PRECIS string classes.

 The registration template is as follows:

 Name: [the name of the profile]

 Base Class: [which PRECIS string class is being profiled]

 Applicability: [the specific protocol elements to which this profile
 applies, e.g., "Localparts in XMPP addresses."]

 Replaces: [the Stringprep profile that this PRECIS profile replaces,
 if any]

 Width Mapping Rule: [the behavioral rule for handling of width,
 e.g., "Map fullwidth and halfwidth characters to their
 compatibility variants."]

 Additional Mapping Rule: [any additional mappings that are required
 or recommended, e.g., "Map non-ASCII space characters to ASCII
 space."]

 Case Mapping Rule: [the behavioral rule for handling of case, e.g.,
 "Unicode Default Case Folding"]

 Normalization Rule: [which Unicode normalization form is applied,
 e.g., "NFC"]

 Directionality Rule: [the behavioral rule for handling of right-to-
 left code points, e.g., "The ’Bidi Rule’ defined in RFC 5893
 applies."]

 Enforcement: [which entities enforce the rules, and when that
 enforcement occurs during protocol operations]

 Specification: [a pointer to relevant documentation, such as an RFC
 or Internet-Draft]

 In order to request a review, the registrant shall send a completed
 template to the precis@ietf.org list or its designated successor.

Saint-Andre & Blanchet Standards Track [Page 28]

RFC 7564 PRECIS Framework May 2015

 Factors to focus on while defining profiles and reviewing profile
 registrations include the following:

 o Would an existing PRECIS string class or profile solve the
 problem? If not, why not? (See Section 5.1 for related
 considerations.)

 o Is the problem being addressed by this profile well defined?

 o Does the specification define what kinds of applications are
 involved and the protocol elements to which this profile applies?

 o Is the profile clearly defined?

 o Is the profile based on an appropriate dividing line between user
 interface (culture, context, intent, locale, device limitations,
 etc.) and the use of conformant strings in protocol elements?

 o Are the width mapping, case mapping, additional mappings,
 normalization, and directionality rules appropriate for the
 intended use?

 o Does the profile explain which entities enforce the rules, and
 when such enforcement occurs during protocol operations?

 o Does the profile reduce the degree to which human users could be
 surprised or confused by application behavior (the "Principle of
 Least Astonishment")?

 o Does the profile introduce any new security concerns such as those
 described under Section 12 of this document (e.g., false positives
 for authentication or authorization)?

12. Security Considerations

12.1. General Issues

 If input strings that appear "the same" to users are programmatically
 considered to be distinct in different systems, or if input strings
 that appear distinct to users are programmatically considered to be
 "the same" in different systems, then users can be confused. Such
 confusion can have security implications, such as the false positives
 and false negatives discussed in [RFC6943]. One starting goal of
 work on the PRECIS framework was to limit the number of times that
 users are confused (consistent with the "Principle of Least
 Astonishment"). Unfortunately, this goal has been difficult to
 achieve given the large number of application protocols already in
 existence. Despite these difficulties, profiles should not be

Saint-Andre & Blanchet Standards Track [Page 29]

RFC 7564 PRECIS Framework May 2015

 multiplied beyond necessity (see Section 5.1). In particular,
 application protocol designers should think long and hard before
 defining a new profile instead of using one that has already been
 defined, and if they decide to define a new profile then they should
 clearly explain their reasons for doing so.

 The security of applications that use this framework can depend in
 part on the proper preparation, enforcement, and comparison of
 internationalized strings. For example, such strings can be used to
 make authentication and authorization decisions, and the security of
 an application could be compromised if an entity providing a given
 string is connected to the wrong account or online resource based on
 different interpretations of the string (again, see [RFC6943]).

 Specifications of application protocols that use this framework are
 strongly encouraged to describe how internationalized strings are
 used in the protocol, including the security implications of any
 false positives and false negatives that might result from various
 enforcement and comparison operations. For some helpful guidelines,
 refer to [RFC6943], [RFC5890], [UTR36], and [UTS39].

12.2. Use of the IdentifierClass

 Strings that conform to the IdentifierClass and any profile thereof
 are intended to be relatively safe for use in a broad range of
 applications, primarily because they include only letters, digits,
 and "grandfathered" non-space characters from the ASCII range; thus,
 they exclude spaces, characters with compatibility equivalents, and
 almost all symbols and punctuation marks. However, because such
 strings can still include so-called confusable characters (see
 Section 12.5), protocol designers and implementers are encouraged to
 pay close attention to the security considerations described
 elsewhere in this document.

12.3. Use of the FreeformClass

 Strings that conform to the FreeformClass and many profiles thereof
 can include virtually any Unicode character. This makes the
 FreeformClass quite expressive, but also problematic from the
 perspective of possible user confusion. Protocol designers are
 hereby warned that the FreeformClass contains code points they might
 not understand, and are encouraged to profile the IdentifierClass
 wherever feasible; however, if an application protocol requires more
 code points than are allowed by the IdentifierClass, protocol
 designers are encouraged to define a profile of the FreeformClass
 that restricts the allowable code points as tightly as possible.

Saint-Andre & Blanchet Standards Track [Page 30]

RFC 7564 PRECIS Framework May 2015

 (The PRECIS Working Group considered the option of allowing
 "superclasses" as well as profiles of PRECIS string classes, but
 decided against allowing superclasses to reduce the likelihood of
 security and interoperability problems.)

12.4. Local Character Set Issues

 When systems use local character sets other than ASCII and Unicode,
 this specification leaves the problem of converting between the local
 character set and Unicode up to the application or local system. If
 different applications (or different versions of one application)
 implement different rules for conversions among coded character sets,
 they could interpret the same name differently and contact different
 application servers or other network entities. This problem is not
 solved by security protocols, such as Transport Layer Security (TLS)
 [RFC5246] and the Simple Authentication and Security Layer (SASL)
 [RFC4422], that do not take local character sets into account.

12.5. Visually Similar Characters

 Some characters are visually similar and thus can cause confusion
 among humans. Such characters are often called "confusable
 characters" or "confusables".

 The problem of confusable characters is not necessarily caused by the
 use of Unicode code points outside the ASCII range. For example, in
 some presentations and to some individuals the string "ju1iet"
 (spelled with DIGIT ONE, U+0031, as the third character) might appear
 to be the same as "juliet" (spelled with LATIN SMALL LETTER L,
 U+006C), especially on casual visual inspection. This phenomenon is
 sometimes called "typejacking".

 However, the problem is made more serious by introducing the full
 range of Unicode code points into protocol strings. For example, the
 characters U+13DA U+13A2 U+13B5 U+13AC U+13A2 U+13AC U+13D2 from the
 Cherokee block look similar to the ASCII characters "STPETER" as they
 might appear when presented using a "creative" font family.

 In some examples of confusable characters, it is unlikely that the
 average human could tell the difference between the real string and
 the fake string. (Indeed, there is no programmatic way to
 distinguish with full certainty which is the fake string and which is
 the real string; in some contexts, the string formed of Cherokee
 characters might be the real string and the string formed of ASCII
 characters might be the fake string.) Because PRECIS-compliant
 strings can contain almost any properly encoded Unicode code point,
 it can be relatively easy to fake or mimic some strings in systems
 that use the PRECIS framework. The fact that some strings are easily

Saint-Andre & Blanchet Standards Track [Page 31]

RFC 7564 PRECIS Framework May 2015

 confused introduces security vulnerabilities of the kind that have
 also plagued the World Wide Web, specifically the phenomenon known as
 phishing.

 Despite the fact that some specific suggestions about identification
 and handling of confusable characters appear in the Unicode Security
 Considerations [UTR36] and the Unicode Security Mechanisms [UTS39],
 it is also true (as noted in [RFC5890]) that "there are no
 comprehensive technical solutions to the problems of confusable
 characters." Because it is impossible to map visually similar
 characters without a great deal of context (such as knowing the font
 families used), the PRECIS framework does nothing to map similar-
 looking characters together, nor does it prohibit some characters
 because they look like others.

 Nevertheless, specifications for application protocols that use this
 framework are strongly encouraged to describe how confusable
 characters can be abused to compromise the security of systems that
 use the protocol in question, along with any protocol-specific
 suggestions for overcoming those threats. In particular, software
 implementations and service deployments that use PRECIS-based
 technologies are strongly encouraged to define and implement
 consistent policies regarding the registration, storage, and
 presentation of visually similar characters. The following
 recommendations are appropriate:

 1. An application service SHOULD define a policy that specifies the
 scripts or blocks of characters that the service will allow to be
 registered (e.g., in an account name) or stored (e.g., in a
 filename). Such a policy SHOULD be informed by the languages and
 scripts that are used to write registered account names; in
 particular, to reduce confusion, the service SHOULD forbid
 registration or storage of strings that contain characters from
 more than one script and SHOULD restrict registrations to
 characters drawn from a very small number of scripts (e.g.,
 scripts that are well understood by the administrators of the
 service, to improve manageability).

 2. User-oriented application software SHOULD define a policy that
 specifies how internationalized strings will be presented to a
 human user. Because every human user of such software has a
 preferred language or a small set of preferred languages, the
 software SHOULD gather that information either explicitly from
 the user or implicitly via the operating system of the user’s
 device. Furthermore, because most languages are typically
 represented by a single script or a small set of scripts, and
 because most scripts are typically contained in one or more
 blocks of characters, the software SHOULD warn the user when

Saint-Andre & Blanchet Standards Track [Page 32]

RFC 7564 PRECIS Framework May 2015

 presenting a string that mixes characters from more than one
 script or block, or that uses characters outside the normal range
 of the user’s preferred language(s). (Such a recommendation is
 not intended to discourage communication across different
 communities of language users; instead, it recognizes the
 existence of such communities and encourages due caution when
 presenting unfamiliar scripts or characters to human users.)

 The challenges inherent in supporting the full range of Unicode code
 points have in the past led some to hope for a way to
 programmatically negotiate more restrictive ranges based on locale,
 script, or other relevant factors; to tag the locale associated with
 a particular string; etc. As a general-purpose internationalization
 technology, the PRECIS framework does not include such mechanisms.

12.6. Security of Passwords

 Two goals of passwords are to maximize the amount of entropy and to
 minimize the potential for false positives. These goals can be
 achieved in part by allowing a wide range of code points and by
 ensuring that passwords are handled in such a way that code points
 are not compared aggressively. Therefore, it is NOT RECOMMENDED for
 application protocols to profile the FreeformClass for use in
 passwords in a way that removes entire categories (e.g., by
 disallowing symbols or punctuation). Furthermore, it is NOT
 RECOMMENDED for application protocols to map uppercase and titlecase
 code points to their lowercase equivalents in such strings; instead,
 it is RECOMMENDED to preserve the case of all code points contained
 in such strings and to compare them in a case-sensitive manner.

 That said, software implementers need to be aware that there exist
 tradeoffs between entropy and usability. For example, allowing a
 user to establish a password containing "uncommon" code points might
 make it difficult for the user to access a service when using an
 unfamiliar or constrained input device.

 Some application protocols use passwords directly, whereas others
 reuse technologies that themselves process passwords (one example of
 such a technology is the Simple Authentication and Security Layer
 [RFC4422]). Moreover, passwords are often carried by a sequence of
 protocols with backend authentication systems or data storage systems
 such as RADIUS [RFC2865] and the Lightweight Directory Access
 Protocol (LDAP) [RFC4510]. Developers of application protocols are
 encouraged to look into reusing these profiles instead of defining
 new ones, so that end-user expectations about passwords are
 consistent no matter which application protocol is used.

Saint-Andre & Blanchet Standards Track [Page 33]

RFC 7564 PRECIS Framework May 2015

 In protocols that provide passwords as input to a cryptographic
 algorithm such as a hash function, the client will need to perform
 proper preparation of the password before applying the algorithm,
 since the password is not available to the server in plaintext form.

 Further discussion of password handling can be found in
 [PRECIS-Users-Pwds].

13. Interoperability Considerations

13.1. Encoding

 Although strings that are consumed in PRECIS-based application
 protocols are often encoded using UTF-8 [RFC3629], the exact encoding
 is a matter for the application protocol that uses PRECIS, not for
 the PRECIS framework.

13.2. Character Sets

 It is known that some existing systems are unable to support the full
 Unicode character set, or even any characters outside the ASCII
 range. If two (or more) applications need to interoperate when
 exchanging data (e.g., for the purpose of authenticating a username
 or password), they will naturally need to have in common at least one
 coded character set (as defined by [RFC6365]). Establishing such a
 baseline is a matter for the application protocol that uses PRECIS,
 not for the PRECIS framework.

13.3. Unicode Versions

 Changes to the properties of Unicode code points can occur as the
 Unicode Standard is modified from time to time. For example, three
 code points underwent changes in their GeneralCategory between
 Unicode 5.2 (current at the time IDNA2008 was originally published)
 and Unicode 6.0, as described in [RFC6452]. Implementers might need
 to be aware that the treatment of these characters differs depending
 on which version of Unicode is available on the system that is using
 IDNA2008 or PRECIS. Other such differences might arise between the
 version of Unicode current at the time of this writing (7.0) and
 future versions.

13.4. Potential Changes to Handling of Certain Unicode Code Points

 As part of the review of Unicode 7.0 for IDNA, a question was raised
 about a newly added code point that led to a re-analysis of the
 normalization rules used by IDNA and inherited by this document
 (Section 5.2.4). Some of the general issues are described in
 [IAB-Statement] and pursued in more detail in [IDNA-Unicode].

Saint-Andre & Blanchet Standards Track [Page 34]

RFC 7564 PRECIS Framework May 2015

 At the time of writing, these issues have yet to be settled.
 However, implementers need to be aware that this specification is
 likely to be updated in the future to address these issues. The
 potential changes include the following:

 o The range of characters in the LetterDigits category
 (Sections 4.2.1 and 9.1) might be narrowed.

 o Some characters with special properties that are now allowed might
 be excluded.

 o More "Additional Mapping Rules" (Section 5.2.2) might be defined.

 o Alternative normalization methods might be added.

 Nevertheless, implementations and deployments that are sensitive to
 the advice given in this specification are unlikely to encounter
 significant problems as a consequence of these issues or potential
 changes -- specifically, the advice to use the more restrictive
 IdentifierClass whenever possible or, if using the FreeformClass, to
 allow only a restricted set of characters, particularly avoiding
 characters whose implications they do not actually understand.

14. References

14.1. Normative References

 [RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <http://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <http://www.rfc-editor.org/info/rfc5198>.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
 <http://www.rfc-editor.org/info/rfc6365>.

Saint-Andre & Blanchet Standards Track [Page 35]

RFC 7564 PRECIS Framework May 2015

 [Unicode] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

 [Unicode7.0]
 The Unicode Consortium, "The Unicode Standard, Version
 7.0.0", (Mountain View, CA: The Unicode Consortium, 2014
 ISBN 978-1-936213-09-2),
 <http://www.unicode.org/versions/Unicode7.0.0/>.

14.2. Informative References

 [DerivedCoreProperties]
 The Unicode Consortium, "DerivedCoreProperties-7.0.0.txt",
 Unicode Character Database, February 2014,
 <http://www.unicode.org/Public/UCD/latest/ucd/
 DerivedCoreProperties.txt>.

 [IAB-Statement]
 Internet Architecture Board, "IAB Statement on Identifiers
 and Unicode 7.0.0", February 2015, <https://www.iab.org/
 documents/correspondence-reports-documents/
 2015-2/iab-statement-on-identifiers-and-unicode-7-0-0/>.

 [IDNA-Unicode]
 Klensin, J. and P. Faltstrom, "IDNA Update for Unicode
 7.0.0", Work in Progress,
 draft-klensin-idna-5892upd-unicode70-04, March 2015.

 [PRECIS-Mappings]
 Yoneya, Y. and T. Nemoto, "Mapping characters for PRECIS
 classes", Work in Progress, draft-ietf-precis-mappings-10,
 May 2015.

 [PRECIS-Nickname]
 Saint-Andre, P., "Preparation, Enforcement, and Comparison
 of Internationalized Strings Representing Nicknames", Work
 in Progress, draft-ietf-precis-nickname-17, April 2015.

 [PRECIS-Users-Pwds]
 Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", Work in Progress,
 draft-ietf-precis-saslprepbis-17, May 2015.

Saint-Andre & Blanchet Standards Track [Page 36]

RFC 7564 PRECIS Framework May 2015

 [PropertyAliases]
 The Unicode Consortium, "PropertyAliases-7.0.0.txt",
 Unicode Character Database, November 2013,
 <http://www.unicode.org/Public/UCD/latest/ucd/
 PropertyAliases.txt>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 DOI 10.17487/RFC3454, December 2002,
 <http://www.rfc-editor.org/info/rfc3454>.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, DOI 10.17487/RFC3490, March 2003,
 <http://www.rfc-editor.org/info/rfc3490>.

 [RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",
 RFC 3491, DOI 10.17487/RFC3491, March 2003,
 <http://www.rfc-editor.org/info/rfc3491>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4422] Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <http://www.rfc-editor.org/info/rfc4422>.

 [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510,
 DOI 10.17487/RFC4510, June 2006,
 <http://www.rfc-editor.org/info/rfc4510>.

 [RFC4690] Klensin, J., Faltstrom, P., Karp, C., and IAB, "Review and
 Recommendations for Internationalized Domain Names
 (IDNs)", RFC 4690, DOI 10.17487/RFC4690, September 2006,
 <http://www.rfc-editor.org/info/rfc4690>.

Saint-Andre & Blanchet Standards Track [Page 37]

RFC 7564 PRECIS Framework May 2015

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
 RFC 5892, DOI 10.17487/RFC5892, August 2010,
 <http://www.rfc-editor.org/info/rfc5892>.

 [RFC5893] Alvestrand, H., Ed., and C. Karp, "Right-to-Left Scripts
 for Internationalized Domain Names for Applications
 (IDNA)", RFC 5893, DOI 10.17487/RFC5893, August 2010,
 <http://www.rfc-editor.org/info/rfc5893>.

 [RFC5894] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Background, Explanation, and
 Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
 <http://www.rfc-editor.org/info/rfc5894>.

 [RFC5895] Resnick, P. and P. Hoffman, "Mapping Characters for
 Internationalized Domain Names in Applications (IDNA)
 2008", RFC 5895, DOI 10.17487/RFC5895, September 2010,
 <http://www.rfc-editor.org/info/rfc5895>.

Saint-Andre & Blanchet Standards Track [Page 38]

RFC 7564 PRECIS Framework May 2015

 [RFC6452] Faltstrom, P., Ed., and P. Hoffman, Ed., "The Unicode Code
 Points and Internationalized Domain Names for Applications
 (IDNA) - Unicode 6.0", RFC 6452, DOI 10.17487/RFC6452,
 November 2011, <http://www.rfc-editor.org/info/rfc6452>.

 [RFC6885] Blanchet, M. and A. Sullivan, "Stringprep Revision and
 Problem Statement for the Preparation and Comparison of
 Internationalized Strings (PRECIS)", RFC 6885,
 DOI 10.17487/RFC6885, March 2013,
 <http://www.rfc-editor.org/info/rfc6885>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <http://www.rfc-editor.org/info/rfc6943>.

 [UAX11] Unicode Standard Annex #11, "East Asian Width", edited by
 Ken Lunde. An integral part of The Unicode Standard,
 <http://unicode.org/reports/tr11/>.

 [UAX15] Unicode Standard Annex #15, "Unicode Normalization Forms",
 edited by Mark Davis and Ken Whistler. An integral part of
 The Unicode Standard, <http://unicode.org/reports/tr15/>.

 [UAX9] Unicode Standard Annex #9, "Unicode Bidirectional
 Algorithm", edited by Mark Davis, Aharon Lanin, and Andrew
 Glass. An integral part of The Unicode Standard,
 <http://unicode.org/reports/tr9/>.

 [UTR36] Unicode Technical Report #36, "Unicode Security
 Considerations", by Mark Davis and Michel Suignard,
 <http://unicode.org/reports/tr36/>.

 [UTS39] Unicode Technical Standard #39, "Unicode Security
 Mechanisms", edited by Mark Davis and Michel Suignard,
 <http://unicode.org/reports/tr39/>.

 [XMPP-Addr-Format]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Address Format", Work in Progress,
 draft-ietf-xmpp-6122bis-22, May 2015.

Saint-Andre & Blanchet Standards Track [Page 39]

RFC 7564 PRECIS Framework May 2015

Acknowledgements

 The authors would like to acknowledge the comments and contributions
 of the following individuals during working group discussion: David
 Black, Edward Burns, Dan Chiba, Mark Davis, Alan DeKok, Martin
 Duerst, Patrik Faltstrom, Ted Hardie, Joe Hildebrand, Bjoern
 Hoehrmann, Paul Hoffman, Jeffrey Hutzelman, Simon Josefsson, John
 Klensin, Alexey Melnikov, Takahiro Nemoto, Yoav Nir, Mike Parker,
 Pete Resnick, Andrew Sullivan, Dave Thaler, Yoshiro Yoneya, and
 Florian Zeitz.

 Special thanks are due to John Klensin and Patrik Faltstrom for their
 challenging feedback and detailed reviews.

 Charlie Kaufman, Tom Taylor, and Tim Wicinski reviewed the document
 on behalf of the Security Directorate, the General Area Review Team,
 and the Operations and Management Directorate, respectively.

 During IESG review, Alissa Cooper, Stephen Farrell, and Barry Leiba
 provided comments that led to further improvements.

 Some algorithms and textual descriptions have been borrowed from
 [RFC5892]. Some text regarding security has been borrowed from
 [RFC5890], [PRECIS-Users-Pwds], and [XMPP-Addr-Format].

 Peter Saint-Andre wishes to acknowledge Cisco Systems, Inc., for
 employing him during his work on earlier draft versions of this
 document.

Authors’ Addresses

 Peter Saint-Andre
 &yet

 EMail: peter@andyet.com
 URI: https://andyet.com/

 Marc Blanchet
 Viagenie
 246 Aberdeen
 Quebec, QC G1R 2E1
 Canada

 EMail: Marc.Blanchet@viagenie.ca
 URI: http://www.viagenie.ca/

Saint-Andre & Blanchet Standards Track [Page 40]

