I nt ernet Engi neering Task Force (I ETF) K. Bhargavan, Ed.

Request for Comments: 7627 A. Delignat-Lavaud
Updat es: 5246 A. Pironti
Cat egory: Standards Track Inria Paris-Rocquencourt
| SSN: 2070- 1721 A. Langl ey
Googl e Inc.

M Ray

M crosoft Corp

Sept ember 2015

Transport Layer Security (TLS) Session Hash and
Ext ended Master Secret Extension

Abstract

The Transport Layer Security (TLS) master secret is not
cryptographically bound to inportant session paraneters such as the
server certificate. Consequently, it is possible for an active

attacker to set up two sessions, one with a client and another with a

server, such that the naster secrets on the two sessions are the
sanme. Thereafter, any nmechanismthat relies on the master secret for

aut henti cation, including session resunption, becones vulnerable to a

man-i n-the-niddl e attack, where the attacker can sinply forward
nmessages back and forth between the client and server. This
specification defines a TLS extension that contextually binds the
master secret to a log of the full handshake that conputes it, thus
preventing such attacks.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/infol/rfc7627

Bhar gavan, et al. St andards Track [Page 1]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. INntroduCti ON ... e 3
2. Requirenments Notation, 5
3. The TLS Session Hash i 5
4. The Extended Master SeCret i 6
5. Extension Negotiation i, 6
5.1. Extension Definition 6
5.2. Cient and Server Behavior: Full Handshake 7
5.3. Cient and Server Behavior: Abbreviated Handshake 7
5.4, Interoperability Considerations 9
6. Security Considerati OnNs 9
6.1. Triple Handshake Preconditions and Inpact 9
6.2. Cryptographic Properties of the Hash Function 11
6. 3. Handshake Messages Included in the Session Hash 11
6.4. NO SSL 3.0 SUPPOrt ... e e e 12
7. TANA Considerati ONS i e e e e 12
8. Ref BreNCEeS .. . 12
8.1. Normative References i, 12
8.2. Informative References i, 13
ACKNOW EAgMENt S e 14
AUt hor s’ AdAr €SSES . ..t it e 15

Bhar gavan, et al. St andards Track [Page 2]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

1. Introduction
In TLS [RFC5246], every session has a "master_secret" conputed as:

mast er _secret = PRF(pre_naster_secret, "master secret”,
dientHello.random + ServerHel | 0. randon)
[0..47];

where the "pre_master_secret” is the result of some key exchange
protocol. For exanple, when the handshake uses an RSA ci phersuite,
this value is generated unifornmy at random by the client, whereas
for Epheneral Diffie-Hellman (DHE) ciphersuites, it is the result of
a Diffie-Hellman key agreenent.

As described in [TRIPLE-HS], in both the RSA and DHE key exchanges

an active attacker can synchronize two TLS sessions so that they
share the sane "master_secret”. For an RSA key exchange where the
client is unauthenticated, this is achieved as follows. Suppose a
client C connects to a server A, C does not realize that Ais
mal i ci ous and that A connects in the background to an honest server S
and conpl etes both handshakes. For sinplicity, assume that C and S
only use RSA ci phersuites.

1. Csends a "CientHello" to A, and A forwards it to S.
2. S sends a "ServerHello" to A, and A forwards it to C

3. S sends a "Certificate", containing its certificate chain, to A
A replaces it with its own certificate chain and sends it to C

4, S sends a "ServerHell oDone" to A, and A forwards it to C

5. C sends a "Cient KeyExchange" to A, containing the
"pre_master_secret", encrypted with A's public key. A decrypts
the "pre_master_secret", re-encrypts it with S s public key, and
sends it on to S

6. C sends a "Finished" to A A conputes a "Finished" for its
connection with S and sends it to S.

7. S sends a "Finished" to A A conputes a "Finished" for its
connection with C and sends it to C

At this point, both connections (between C and A, and between A and
S) have new sessions that share the sane "pre_master_secret",
"CientHello.randont, "ServerHello.randont', as well as other session
paraneters, including the session identifier and, optionally, the
session ticket. Hence, the "master_secret" value will be equal for

Bhar gavan, et al. St andards Track [Page 3]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

the two sessions and will be associated both at C and S with the sane
session I D, even though the server identities on the two connections
are different. Recall that Conly sees A's certificate and is
unaware of A's connection with S. Mreover, the record keys on the
two connections will also be the sane.

The scenari o above shows that TLS does not guarantee that the naster
secrets and keys used on different connections will be different.

Even if client authentication is used, the scenario still works,
except that the two sessions now differ on both client and server
identities.

A simlar scenario can be achi eved when the handshake uses a DHE

ci phersuite. Note that even if the client or server does not prefer
using RSA or DHE, the attacker can force themto use it by offering
only RSA or DHE in its hello nmessages. Handshakes using Ephenera
Elliptic Curve Diffie-Hellman (ECDHE) ciphersuites are al so
vulnerable if they allow arbitrary explicit curves or use curves with
smal | subgroups. Against nore powerful adversaries, other key
exchanges, such as Secure Renpbte Password (SRP) and Pre- Shared Key
(PSK), have also been shown to be vul nerabl e [VERI FI ED- Bl NDI NGS] .

Once A has synchroni zed the two connections, since the keys are the
sanme on the two sides, it can step away and transparently forward
messages between C and S, readi ng and nodi fying when it desires. In
t he key exchange literature, such occurrences are called unknown key-
share attacks, since C and S share a secret but they both think that
their secret is shared only with A. In thensel ves, these attacks do
not break integrity or confidentiality between honest parties, but
they offer a useful starting point fromwhich to nount inpersonation
attacks on C and S.

Suppose Ctries to resunme its session on a new connection with A A
can then resune its session with S on a new connection and forward

t he abbrevi at ed handshake nmessages unchanged between C and S. Since
t he abbrevi ated handshake only relies on the naster secret for

aut henti cation and does not mention client or server identities, both
handshakes conpl ete successfully, resulting in the sanme session keys
and the sane handshake log. A still knows the connection keys and
can send nessages to both C and S.

Critically, at the new connection, even the handshake |l og is the sanme
on Cand S, thus defeating any man-in-the-niddle protection schene
that relies on the uni queness of finished nessages, such as the
secure renegotiation indication extension [RFC5746] or TLS channe

bi ndi ngs [RFC5929]. [TRI PLE-HS] describes several exploits based on
such session synchronization attacks. |In particular, it describes a
man-in-the-niddle attack, called the "triple handshake", that

Bhar gavan, et al. St andards Track [Page 4]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

circunvents the protections of [RFC5746] to break client-

aut henticated TLS renegoti ati on after session resunption. Simlar
attacks apply to application-level authentication nmechani snms that
rely on channel bindings [RFC5929] or on key material exported from
TLS [RFC5705] .

The underlying protocol issue leading to these attacks is that the
TLS master secret is not guaranteed to be uni que across sessions,
since it is not context-bound to the full handshake that generated
it. If we fix this problemin the initial master secret conputation
then all these attacks can be prevented. This specification

i ntroduces a TLS extension that changes the way the "master_secret”
value is conputed in a full handshake by including the |og of the
handshake messages, so that different sessions will, by construction
have different naster secrets. This prevents the attacks described
in [TRIPLE-HS] and docunented in Section 2.11 of [RFC7457].

2. Requirenments Notation

Thi s docunent uses the same notation and terninology used in the TLS
protocol specification [RFC5246].

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in RFC
2119 [RFC2119].

3. The TLS Sessi on Hash
When a full TLS handshake takes pl ace, we define
session_hash = Hash(handshake nessages)

wher e "handshake_nessages" refers to all handshake nmessages sent or
received, starting at the ClientHello up to and including the

d i ent KeyExchange nessage, including the type and length fields of
t he handshake nessages. This is the concatenation of all the
exchanged Handshake structures, as defined in Section 7.4 of

[RFC5246] .

For TLS 1.2, the "Hash" function is the one defined in Section 7.4.9
of [RFC5246] for the Finished nessage conputation. For all previous
versions of TLS, the "Hash" function conputes the concatenation of
MD5 and SHAL.

There is no "session_hash" for resuned handshakes, as they do not
lead to the creation of a new session

Bhar gavan, et al. St andards Track [Page 5]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

4.

5.

5.

The Extended Master Secr et

Wien the extended master secret extension is negotiated in a ful
handshake, the "master_secret" is conputed as

mast er _secret = PRF(pre_nmster_secret, "extended naster secret"”,
sessi on_hash)
[0..47];

The extended master secret conputation differs fromthat described in
[RFC5246] in the foll owi ng ways:

0 The "extended naster secret" |abel is used instead of "nmster
secret".

0 The "session_hash" is used instead of the "dientHello.random and
"ServerHel |l o. randont'.

The "session_hash" depends upon a handshake | og that includes
"CientHello.randont and "ServerHello.randoni, in addition to

ci phersuites, key exchange information, and certificates (if any)
fromthe client and server. Consequently, the extended master secret
depends upon the choice of all these session paraneters.

This design reflects the recommendation that keys should be bound to
the security contexts that conpute them [SP800-108]. The technique
of mixing a hash of the key exchange nessages into naster key
derivation is already used in other well-known protocols such as
Secure Shell (SSH) [RFC4251].

Cients and servers SHOULD NOT accept handshakes that do not use the
extended master secret, especially if they rely on features |ike
compound aut hentication that fall into the vul nerable cases described
in Section 6. 1.

Ext ensi on Negoti ati on
1. Extension Definition

Thi s docunent defines a new TLS extension, "extended naster_secret"
(with extension type 0x0017), which is used to signal both client and
server to use the extended naster secret conputation. The
"extension_ data" field of this extension is enpty. Thus, the entire
encodi ng of the extension is 00 17 00 00 (in hexadecimal.)

Al t hough this docurment refers only to TLS, the extension proposed
here can also be used with Datagram TLS (DTLS) [RFC6347].

Bhar gavan, et al. St andards Track [Page 6]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

If the client and server agree on this extension and a full handshake
takes place, both client and server MJST use the extended naster
secret derivation algorithm as defined in Section 4. All other
cryptographi ¢ conputations remai n unchanged.

5.2. dient and Server Behavior: Full Handshake

In the followi ng, we use the phrase "abort the handshake" as
shorthand for terminating the handshake by sending a fata
"handshake failure" alert.

In all handshakes, a client inplenmenting this docunent MJST send the
"extended_nmaster_secret" extension in its CientHello.

If a server inplenenting this docunment receives the
"ext ended _master_secret" extension, it MJST include the extension in
its ServerHell o message.

If both the dientHello and ServerHell o contain the extension, the
new sessi on uses the extended master secret conputation

If the server receives a CientHello wi thout the extension, it SHOULD
abort the handshake if it does not wish to interoperate with | egacy
clients. If it chooses to continue the handshake, then it MJST NOT

i ncl ude the extension in the ServerHello.

If a client receives a ServerHello without the extension, it SHOULD
abort the handshake if it does not wish to interoperate with | egacy
servers.

If the client and server choose to continue a full handshake wi thout
the extension, they MJST use the standard naster secret derivation
for the new session. 1In this case, the new session is not protected
by the nechani sns described in this docunent. So, inplenenters
shoul d follow the guidelines in Section 5.4 to avoi d dangerous usage
scenarios. In particular, the master secret derived fromthe new
session should not be used for application-Ilevel authentication

5.3. dient and Server Behavi or: Abbrevi ated Handshake

The client SHOULD NOT of fer an abbrevi ated handshake to resune a
session that does not use an extended naster secret. Instead, it
SHOULD of fer a full handshake.

If the client chooses to offer an abbreviated handshake even for such
sessions in order to support |egacy insecure resunption, then the
current connection is not protected by the nechanisns in this
docunent. So, the client should follow the guidelines in Section 5.4

Bhar gavan, et al. St andards Track [Page 7]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

to avoi d dangerous usage scenarios. In particular, renegotiation is
no | onger secure on this connection, even if the client and server
support the renegotiation indication extension [RFC5746].

When of fering an abbrevi ated handshake, the client MJST send the
"extended_nmmster_secret" extension in its CientHello.

If a server receives a CientHello for an abbreviated handshake
offering to resume a known previous session, it behaves as foll ows:

o If the original session did not use the "extended master_secret”
extension but the new dientHello contains the extension, then the
server MJST NOT performthe abbreviated handshake. |Instead, it
SHOULD continue with a full handshake (as described in
Section 5.2) to negotiate a new session

o If the original session used the "extended_naster_secret”
extension but the new dientHello does not contain it, the server
MJUST abort the abbrevi ated handshake.

o |If neither the original session nor the new ClientHello uses the
extension, the server SHOULD abort the handshake. If it continues
wi th an abbrevi at ed handshake in order to support |egacy insecure
resunption, the connection is no |onger protected by the
mechani sns in this docunent, and the server should follow the
gui delines in Section 5.4.

o If the newdientHello contains the extension and the server
chooses to conti nue the handshake, then the server MJST i ncl ude
the "extended naster_secret" extension in its ServerHell o nessage.

If aclient receives a ServerHello that accepts an abbrevi ated
handshake, it behaves as foll ows:

o If the original session did not use the "extended master_secret”
extensi on but the new ServerHell o contains the extension, the
client MJUST abort the handshake.

o |If the original session used the extension but the new ServerHello
does not contain the extension, the client MJIST abort the
handshake.

If the client and server continue the abbrevi ated handshake, they

derive the connection keys for the new session as usual fromthe
master secret of the original session

Bhar gavan, et al. St andards Track [Page 8]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

5.4. Interoperability Considerations

6.

6.

To allow interoperability with legacy clients and servers, a TLS peer
may decide to accept full handshakes that use the |egacy naster
secret conputation. |If so, they need to differentiate between
sessions that use | egacy and extended naster secrets by adding a flag
to the session state.

If a client or server chooses to continue with a full handshake

W t hout the extended naster secret extension, then the new session
becones vul nerable to the man-in-the-m ddl e key synchroni zati on
attack described in Section 1. Hence, the client or server MJST NOT
export any key material based on the new master secret for any
subsequent application-1evel authentication. |In particular, it MJST
di sabl e [RFC5705] and any Extensi bl e Authentication Protocol (EAP)
relying on conpound aut henticati on [COWPOUND- AUTH] .

If a client or server chooses to conti nue an abbrevi ated handshake to
resune a session that does not use the extended naster secret, then
the current connection becones vul nerable to a man-in-the-mddle
handshake | og synchroni zation attack as described in Section 1

Hence, the client or server MJUST NOT use the current handshake’s
"verify_data" for application-level authentication. In particular
the client MJUST disable renegotiation and any use of the "tls-unique"
channel binding [RFC5929] on the current connection

If the original session uses an extended naster secret but the
ClientHello or ServerHello in the abbrevi ated handshake does not

i nclude the extension, it MAY be safe to continue the abbreviated
handshake since it is protected by the extended master secret of the
original session. This scenario nay occur, for exanple, when a
server that inplements this extension establishes a session but the
session is subsequently resunmed at a different server that does not
support the extension. Since such situations are unusual and likely
to be the result of transient or inadvertent misconfigurations, this
docunment recomends that the client and server MJUST abort such
handshakes.

Security Considerations
1. Triple Handshake Preconditions and | npact

One way to mount a triple handshake attack is described in Section 1,
along with a mention of the security mechanisnms that break due to the
attack; nore in-depth discussion and diagrans can be found in
[TRIPLE-HS]. Here, sonme further discussion is presented about attack
preconditi ons and i npact.

Bhar gavan, et al. St andards Track [Page 9]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

To nount a triple handshake attack, it nmust be possible to force the
sane master secret on two different sessions. For this to happen
two preconditions nmust be net:

o The client, C, nust be willing to connect to a malicious server
A. In certain contexts, like the web, this can be easily
achi eved, since a browser can be instructed to | oad content from
an untrusted origin.

0 The pre-master secret nust be synchronized on the two sessions.
This is particularly easy to achieve with the RSA and DHE key
exchanges, but under sone conditions, ECDHE, SRP, and PSK key
exchanges can be exploited to this effect as well.

Once the naster secret is synchronized on two sessions, any security
property that relies on the uni queness of the nmaster secret is
conprom sed. For exanple, a TLS exporter [RFC5705] no | onger

provi des a uni que key bound to the current session

TLS session resunption also relies on the uniqueness of the naster
secret to authenticate the resuning peers. Hence, if a synchronized
session is resuned, the peers cannot be sure about each other’s
identities, and the attacker knows the connection keys. Clearly, a
precondition to this step of the attack is that both client and
server support session resunption (either via session identifier or
session tickets [RFC5077]).

Additionally, in a synchronized abbrevi ated handshake, the whol e
transcript (which includes the "verify data" values) is synchronized.
So, after an abbrevi ated handshake, channel bindings |ike
"tls-unique" [RFC5929] will not uniquely identify the connection
anynor e.

Synchroni zation of the "verify_data"” in abbreviated handshakes al so
underm nes the security guarantees of the renegotiation indication
extension [RFC5746], re-enabling a prefix-injection flaw sinmlar to
the renegotiation attack [Ray09]. However, in a triple handshake
attack, the client sees the server certificate changi ng across
different full handshakes. Hence, a precondition to nount this stage
of the attack is that the client accepts different certificates at
each handshake, even if their comon names do not match. Before the
triple handshake attack was di scovered, this used to be w despread
behavi or, at | east anbng some web browsers; such browsers were hence
vul nerable to the attack.

The extended master secret extension thwarts triple handshake attacks

at their first stage by ensuring that different sessions necessarily
end up with different naster secret values. Hence, all security

Bhar gavan, et al. St andards Track [Page 10]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

properties relying on the uniqueness of the naster secret are now
expected to hold. |In particular, if a TLS session is protected by

t he extended naster secret extension, it is safe to resume it, to use
its channel bindings, and to allow for certificate changes across
renegoti ation, neaning that all certificates are controlled by the
same peer. A synbolic cryptographic protocol analysis justifying the
ext ended naster secret extension appears in [VER Fl ED- Bl NDI NGS] .

6.2. Cryptographic Properties of the Hash Function

The session hashes of two different sessions need to be distinct;
hence, the "Hash" function used to conpute the "session_hash" needs
to be collision resistant. As such, hash functions such as MD5 or
SHA1 are NOT RECOMVMVENDED.

W observe that the "Hash" function used in the Finished message
conmput ation already needs to be collision resistant for the
renegoti ation indication extension [RFC5746] to work, because a
meani ngf ul col li sion on the handshake nessages (and hence on the
"verify data") may re-enable the renegotiation attack [Ray09].

The hash function used to conpute the session hash depends on the TLS
protocol version. Al current ciphersuites defined for TLS 1.2 use
SHA256 or better, and so does the session hash. For earlier versions
of the protocol, only MD)5 and SHALl can be assuned to be supported,
and this docunent does not require | egacy inplenentations to add
support for new hash functions. |In these versions, the session hash
uses the concatenation of M5 and SHA1l, as in the Finished nessage.

6.3. Handshake Messages Included in the Session Hash

The "session_hash" is intended to enconpass all relevant session

i nformation, including ciphersuite negotiation, key exchange
messages, and client and server identities. The hash is needed to
comput e the extended nmaster secret and hence nust be avail able before
the Fini shed nessages.

Thi s docunent sets the "session_hash" to cover all handshake nessages
up to and including the CientKeyExchange. For existing TLS

ci phersuites, these nessages include all the significant contents of
the new session -- CertificateVerify does not change the session
content. At the sane tinme, this allows the extended master secret to
be conputed inmedi ately after the pre-nmaster secret, so that

i mpl enent ati ons can shred the tenporary pre-naster secret from nmenory
as early as possible.

Bhar gavan, et al. St andards Track [Page 11]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

6.

8.

8.

It is possible that new ci phersuites or TLS extensions nay include
addi ti onal nessages between Cient KeyExchange and Fi ni shed that add

i mportant session context. In such cases, some of the security
guarantees of this specification may no | onger apply, and new man-in-
the-m ddl e attacks nmay be possible. For exanple, if the client and
server support the session ticket extension [RFC5077], the session
hash does not cover the new session ticket sent by the server

Hence, a man-in-the-middle may be able to cause a client to store a
session ticket that was not nmeant for the current session. Attacks
based on this vector are not yet known, but applications that store
additional information in session tickets beyond those covered in the
session hash require careful analysis.

4. No SSL 3.0 Support

The Secure Sockets Layer (SSL) protocol version 3.0 [RFC6101] is a
predecessor of the TLS protocol, and it is equally vulnerable to
triple handshake attacks, alongside other vulnerabilities stenmn ng
fromits use of obsolete cryptographic constructions that are now
consi dered weak. SSL 3.0 has been deprecated [RFC7568].

The counternmeasure described in this docunent relies on a TLS

ext ensi on and hence cannot be used with SSL 3.0. dients and servers
i npl enenting this document SHOULD refuse SSL 3.0 handshakes. |[If they
choose to support SSL 3.0, the resulting sessions MJST use the | egacy
mast er secret conputation, and the interoperability considerations of
Section 5.4 apply.

| ANA Consi derations

| ANA has added the extension code point 23 (0x0017), which has been
used by prototype inplenentations, for the "extended master secret”
extension to the "Extensi onType Val ues" registry specified in the TLS
speci fication [RFC5246] .

Ref er ences
1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997
<http://ww.rfc-editor.org/info/rfc2119>

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008
<http://ww.rfc-editor.org/infol/rfc5246>

Bhar gavan, et al. St andards Track [Page 12]

RFC 7627

TLS Sessi on Hash Extension Sept ember 2015

8.2. Infornmative References

[COMPOUND- AUTH]

[Ray09]

[RFC4251]

[RFC5077]

[RFC5705]

[RFC5746]

[RFC5929]

[RFC6101]

[RFC6347]

[RFC7457]

Asokan, N., Valtteri, N, and K Nyberg, "Mn-in-the-

M ddl e in Tunnel |l ed Aut hentication Protocol s", Security
Protocol s, LNCS, Volunme 3364, DO 10.1007/11542322_6,
2005.

Ray, M, "Authentication Gap in TLS Renegotiation", 2009.

Yl onen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Protocol Architecture", RFC 4251, DO 10.17487/ RFC4251,
January 2006, <http://ww.rfc-editor.org/info/rfcd4251>.

Sal owey, J., Zhou, H., Eronen, P., and H Tschofenig,
"Transport Layer Security (TLS) Session Resunption
wi t hout Server-Side State", RFC 5077,

DA 10.17487/ RFC5077, January 2008,
<http://ww.rfc-editor.org/infol/rfc5077>.

Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, DA 10.17487/ RFC5705,
March 2010, <http://www.rfc-editor.org/info/rfc5705>.

Rescorla, E., Ray, M, Dispensa, S., and N Oskov,
"Transport Layer Security (TLS) Renegotiation Indication
Extensi on", RFC 5746, DO 10. 17487/ RFC5746, February
2010, <http://ww. rfc-editor.org/info/rfc5746>.

Altman, J., WIllianms, N, and L. Zhu, "Channel Bi ndings
for TLS', RFC 5929, DA 10.17487/ RFC5929, July 2010,
<http://ww.rfc-editor.org/info/rfc5929>.

Freier, A, Karlton, P., and P. Kocher, "The Secure
Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
DA 10.17487/ RFC6101, August 2011,
<http://ww.rfc-editor.org/info/rfc6101>.

Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <http://ww. rfc-editor.org/info/rfc6347>.

Sheffer, Y., Holz, R, and P. Saint-Andre, "Sunmarizing
Known Attacks on Transport Layer Security (TLS) and

Dat agram TLS (DTLS)", RFC 7457, DA 10.17487/ RFC7457,
February 2015, <http://www. rfc-editor.org/info/rfc7457>.

Bhar gavan, et al. St andards Track [Page 13]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

[RFC7568] Barnes, R, Thonson, M, Pironti, A, and A Langl ey,
"Deprecating Secure Sockets Layer Version 3.0", RFC 7568,
DA 10.17487/ RFC7568, June 2015,
<http://ww. rfc-editor.org/info/rfc7568>.

[SPB00-108] Chen, L., "Recommendation for Key Derivation Using
Pseudor andom Functions (Revised)", N ST Speci al
Publ i cati on 800-108, 2009.

[TRI PLE- HS] Bhargavan, K., Delignat-Lavaud, A, Fournet, C, Pironti,
A., and P-Y. Strub, "Triple Handshakes and Cookie
Cutters: Breaking and Fi xi ng Aut hentication over TLS",
| EEE Synposi um on Security and Privacy,
DO 10.1109/ SP. 2014. 14, 2014.

[VERI FI ED- Bl NDI NGS]
Bhar gavan, K., Delignat-Lavaud, A, and A. Pironti,
"Verified Contributive Channel Bindings for Conpound
Aut henti cation", Network and Distributed System Security
Synposi um (NDSS), 2015.

Acknow edgrent s

Tripl e handshake attacks were originally discovered by Antoine

Del i gnat - Lavaud, Karthi keyan Bhargavan, and Al fredo Pironti. They
were further devel oped by the m TLS team Cedric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, and Santiago Zanel | a- Beguelin. Mny of the
ideas in this docunent energed from di scussions with Martin Abadi,
Ben Laurie, N kos Mvrogi annopoul os, Manuel Pegourie-Gonnard, Eric
Rescorla, Martin Rex, and Brian Smith.

Bhar gavan, et al. St andards Track [Page 14]

RFC 7627 TLS Sessi on Hash Extension Sept ember 2015

Aut hors’ Addr esses

Kart hi keyan Bhargavan (editor)
Inria Paris-Rocquencourt

23, Avenue d'ltalie

Paris 75214 CEDEX 13

France

Emai | : kart hi keyan. bhargavan@nria.fr

Ant oi ne Del i gnat - Lavaud
Inria Paris-Rocquencourt
23, Avenue d'ltalie
Paris 75214 CEDEX 13
France

Enmai | : antoi ne.delignat-lavaud@nria.fr

Al fredo Pironti

Inria Paris-Rocquencourt
23, Avenue d’'ltalie
Paris 75214 CEDEX 13
France

Email: alfredo.pironti @nria.fr

Adam Langl ey

Googl e Inc.

1600 Anphit heatre Par kway
Mountain View, CA 94043
United States

Enmai | : agl @oogl e. com
Mar sh Ray

M crosoft Corp.

1 Mcrosoft Way
Redrmond, WA 98052
United States

Emai | : maray@ri crosoft. com

Bhar gavan, et al. St andards Track [Page 15]

