
Internet Engineering Task Force (IETF) G. Enyedi
Request for Comments: 7811 A. Csaszar
Category: Standards Track Ericsson
ISSN: 2070-1721 A. Atlas
 C. Bowers
 Juniper Networks
 A. Gopalan
 University of Arizona
 June 2016

 An Algorithm for Computing IP/LDP Fast Reroute
 Using Maximally Redundant Trees (MRT-FRR)

Abstract

 This document supports the solution put forth in "An Architecture for
 IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR)"
 (RFC 7812) by defining the associated MRT Lowpoint algorithm that is
 used in the Default MRT Profile to compute both the necessary
 Maximally Redundant Trees with their associated next hops and the
 alternates to select for MRT-FRR.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7811.

Enyedi, et al. Standards Track [Page 1]

RFC 7811 MRT-FRR Algorithm June 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 5
 3. Terminology and Definitions 5
 4. Algorithm Key Concepts 6
 4.1. Partial Ordering for Disjoint Paths 7
 4.2. Finding an Ear and the Correct Direction 8
 4.3. Lowpoint Values and Their Uses 11
 4.4. Blocks in a Graph . 14
 4.5. Determining Localroot and Assigning Block-ID 16
 5. MRT Lowpoint Algorithm Specification 18
 5.1. Interface Ordering 18
 5.2. MRT Island Identification 21
 5.3. GADAG Root Selection 21
 5.4. Initialization . 22
 5.5. Constructing the GADAG Using Lowpoint Inheritance 23
 5.6. Augmenting the GADAG by Directing All Links 25
 5.7. Compute MRT Next Hops 29
 5.7.1. MRT Next Hops to All Nodes Ordered with Respect to
 the Computing Node 29
 5.7.2. MRT Next Hops to All Nodes Not Ordered with Respect
 to the Computing Node 30
 5.7.3. Computing Redundant Tree Next Hops in a 2-Connected
 Graph . 31
 5.7.4. Generalizing for a Graph That Isn’t 2-Connected . . . 33
 5.7.5. Complete Algorithm to Compute MRT Next Hops 34
 5.8. Identify MRT Alternates 36
 5.9. Named Proxy-Nodes . 44
 5.9.1. Determining Proxy-Node Attachment Routers 45
 5.9.2. Computing If an Island Neighbor (IN) Is Loop-Free . . 45
 5.9.3. Computing MRT Next Hops for Proxy-Nodes 47
 5.9.4. Computing MRT Alternates for Proxy-Nodes 53

Enyedi, et al. Standards Track [Page 2]

RFC 7811 MRT-FRR Algorithm June 2016

 6. MRT Lowpoint Algorithm: Next-Hop Conformance 61
 7. Broadcast Interfaces . 61
 7.1. Computing MRT Next Hops on Broadcast Networks 62
 7.2. Using MRT Next Hops as Alternates in the Event of
 Failures on Broadcast Networks 63
 8. Evaluation of Alternative Methods for Constructing GADAGs . . 64
 9. Operational Considerations 66
 9.1. GADAG Root Selection 67
 9.2. Destination-Rooted GADAGs 67
 10. Security Considerations 67
 11. References . 68
 11.1. Normative References 68
 11.2. Informative References 68
 Appendix A. Python Implementation of MRT Lowpoint Algorithm . . 70
 Appendix B. Constructing a GADAG Using SPFs 110
 Appendix C. Constructing a GADAG Using a Hybrid Method 115
 Acknowledgements . 117
 Authors’ Addresses . 118

1. Introduction

 MRT Fast Reroute requires that packets can be forwarded not only on
 the shortest-path tree, but also on two Maximally Redundant Trees
 (MRTs), referred to as the MRT-Blue and the MRT-Red. A router that
 experiences a local failure must also have predetermined which
 alternate to use. This document defines how to compute these three
 things for use in MRT-FRR and describes the algorithm design
 decisions and rationale. The algorithm is based on those presented
 in [MRTLinear] and expanded in [EnyediThesis]. The MRT Lowpoint
 algorithm is required for implementation when the Default MRT Profile
 is implemented.

 The MRT Lowpoint Algorithm defined in this document, when used for
 MRT Fast-Reroute as described in [RFC7812], guarantees 100% recovery
 for single failures when the network is 2-connected. This guaranteed
 coverage does not depend on the link metrics, which an operator may
 be using to traffic-engineer the IP network. Thus, the link metrics
 and general network topology are largely decoupled from the
 guaranteed coverage.

 Just as packets routed on a hop-by-hop basis require that each router
 compute a shortest-path tree that is consistent, it is necessary for
 each router to compute the MRT-Blue next hops and MRT-Red next hops
 in a consistent fashion. This document defines the MRT Lowpoint
 algorithm to be used as a standard in the Default MRT Profile for
 MRT-FRR.

Enyedi, et al. Standards Track [Page 3]

RFC 7811 MRT-FRR Algorithm June 2016

 A router’s Forwarding Information Base (FIB) will continue to contain
 primary next hops for the current shortest-path tree for forwarding
 traffic. In addition, a router’s FIB will contain primary next hops
 for the MRT-Blue for forwarding received traffic on the MRT-Blue and
 primary next hops for the MRT-Red for forwarding received traffic on
 the MRT-Red.

 What alternate next hops a Point of Local Repair (PLR) selects need
 not be consistent -- but loops must be prevented. To reduce
 congestion, it is possible for multiple alternate next hops to be
 selected; in the context of MRT alternates, each of those alternate
 next hops would be equal-cost paths.

 This document defines an algorithm for selecting an appropriate MRT
 alternate for consideration. Other alternates, e.g., Loop-Free
 Alternates (LFAs) that are downstream paths, may be preferred when
 available. See the "Operational Considerations" section of [RFC7812]
 for a more detailed discussion of combining MRT alternates with those
 produced by other FRR technologies.

 [E]---[D]---| [E]<--[D]<--| [E]-->[D]---|
 | | | | ^ | | |
 | | | V | | V V
 [R] [F] [C] [R] [F] [C] [R] [F] [C]
 | | | ^ ^ ^ | |
 | | | | | | V |
 [A]---[B]---| [A]-->[B]---| [A]<--[B]<--|

 (a) (b) (c)
 A 2-connected graph MRT-Blue towards R MRT-Red towards R

 Figure 1

 The MRT Lowpoint algorithm can handle arbitrary network topologies
 where the whole network graph is not 2-connected, as in Figure 2, as
 well as the easier case where the network graph is 2-connected
 (Figure 1). Each MRT is a spanning tree. The pair of MRTs provide
 two paths from every node X to the root of the MRTs. Those paths
 share the minimum number of nodes and the minimum number of links.
 Each such shared node is a cut-vertex. Any shared links are cut-
 links.

Enyedi, et al. Standards Track [Page 4]

RFC 7811 MRT-FRR Algorithm June 2016

 [E]---[D]---| |---[J]
 | | | | |
 | | | | |
 [R] [F] [C]---[G] |
 | | | | |
 | | | | |
 [A]---[B]---| |---[H]

 (a) a graph that is not 2-connected

 [E]<--[D]<--| [J] [E]-->[D]---| |---[J]
 | ^ | | | | | ^
 V | | | V V V |
 [R] [F] [C]<--[G] | [R] [F] [C]<--[G] |
 ^ ^ ^ | ^ | | |
 | | | V | V | |
 [A]-->[B]---| |---[H] [A]<--[B]<--| [H]

 (b) MRT-Blue towards R (c) MRT-Red towards R

 Figure 2: A Network That Is Not 2-Connected

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology and Definitions

 Please see the Terminology section of [RFC7812] for a complete list
 of terminology relevant to this document. The list below does not
 repeat terminology introduced in that RFC.

 spanning tree: A tree that contains links and that connects all
 nodes in the network graph.

 back-edge: In the context of a spanning tree computed via a depth-
 first search, a back-edge is a link that connects a descendant of
 a node x with an ancestor of x.

 partial ADAG: A subset of an Almost Directed Acyclic Graph (ADAG)
 that doesn’t yet contain all the nodes in the block. A partial
 ADAG is created during the MRT Lowpoint algorithm and then
 expanded until all nodes in the block are included and it becomes
 an ADAG.

 DFS: Depth-First Search

Enyedi, et al. Standards Track [Page 5]

RFC 7811 MRT-FRR Algorithm June 2016

 DFS ancestor: A node n is a DFS ancestor of x if n is on the DFS-
 tree path from the DFS root to x.

 DFS descendant: A node n is a DFS descendant of x if x is on the
 DFS-tree path from the DFS root to n.

 ear: A path along nodes that are not yet included in the Generalized
 ADAG (GADAG) that starts at a node that is already included in the
 GADAG and that ends at a node that is already included in the
 GADAG. The starting and ending nodes may be the same node if it
 is a cut-vertex.

 X>>Y or Y<<X: Indicates the relationship between X and Y in a
 partial order, such as found in a GADAG. X>>Y means that X is
 higher in the partial order than Y. Y<<X means that Y is lower in
 the partial order than X.

 X>Y or Y<X: Indicates the relationship between X and Y in the total
 order, such as found via a topological sort. X>Y means that X is
 higher in the total order than Y. Y<X means that Y is lower in
 the total order than X.

 X ?? Y: Indicates that X is unordered with respect to Y in the
 partial order.

 UNDIRECTED: In the GADAG, each link is marked as OUTGOING, INCOMING,
 or both. Until the directionality of the link is determined, the
 link is marked as UNDIRECTED to indicate that its direction hasn’t
 been determined.

 OUTGOING: A link marked as OUTGOING has direction in the GADAG from
 the interface’s router to the remote end.

 INCOMING: A link marked as INCOMING has direction in the GADAG from
 the remote end to the interface’s router.

4. Algorithm Key Concepts

 There are five key concepts that are critical for understanding the
 MRT Lowpoint algorithm. The first is the idea of partially ordering
 the nodes in a network graph with regard to each other and to the
 GADAG root. The second is the idea of finding an ear of nodes and
 adding them in the correct direction. The third is the idea of a
 Lowpoint value and how it can be used to identify cut-vertices and to
 find a second path towards the root. The fourth is the idea that a
 non-2-connected graph is made up of blocks, where a block is a

Enyedi, et al. Standards Track [Page 6]

RFC 7811 MRT-FRR Algorithm June 2016

 2-connected cluster, a cut-link or an isolated node. The fifth is
 the idea of a localroot for each node; this is used to compute ADAGs
 in each block.

4.1. Partial Ordering for Disjoint Paths

 Given any two nodes X and Y in a graph, a particular total order
 means that either X<Y or X>Y in that total order. An example would
 be a graph where the nodes are ranked based upon their unique IP
 loopback addresses. In a partial order, there may be some nodes for
 which it can’t be determined whether X<<Y or X>>Y. A partial order
 can be captured in a directed graph, as shown in Figure 3. In a
 graphical representation, a link directed from X to Y indicates that
 X is a neighbor of Y in the network graph and X<<Y.

 [A]<---[R] [E] R << A << B << C << D << E
 | ^ R << A << B << F << G << H << D << E
 | |
 V | Unspecified Relationships:
 [B]--->[C]--->[D] C and F
 | ^ C and G
 | | C and H
 V |
 [F]--->[G]--->[H]

 Figure 3: Directed Graph Showing a Partial Order

 To compute MRTs, the root of the MRTs is at both the very bottom and
 the very top of the partial ordering. This means that from any node
 X, one can pick nodes higher in the order until the root is reached.
 Similarly, from any node X, one can pick nodes lower in the order
 until the root is reached. For instance, in Figure 4, from G the
 higher nodes picked can be traced by following the directed links and
 are H, D, E, and R. Similarly, from G the lower nodes picked can be
 traced by reversing the directed links and are F, B, A, and R. A
 graph that represents this modified partial order is no longer a DAG;
 it is termed an Almost DAG (ADAG) because if the links directed to
 the root were removed, it would be a DAG.

Enyedi, et al. Standards Track [Page 7]

RFC 7811 MRT-FRR Algorithm June 2016

 [A]<---[R]<---[E] R << A << B << C << R
 | ^ ^ R << A << B << C << D << E << R
 | | | R << A << B << F << G << H << D << E << R
 V | |
 [B]--->[C]--->[D] Unspecified Relationships:
 | ^ C and F
 | | C and G
 V | C and H
 [F]--->[G]--->[H]

 Figure 4: ADAG Showing a Partial Order with R Lowest and Highest

 Most importantly, if a node Y>>X, then Y can only appear on the
 increasing path from X to the root and never on the decreasing path.
 Similarly, if a node Z<<X, then Z can only appear on the decreasing
 path from X to the root and never on the increasing path.

 When following the increasing paths, it is possible to pick multiple
 higher nodes and still have the certainty that those paths will be
 disjoint from the decreasing paths. For example, in the previous
 example, node B has multiple possibilities to forward packets along
 an increasing path: it can either forward packets to C or F.

4.2. Finding an Ear and the Correct Direction

 For simplicity, the basic idea of creating a GADAG by adding ears is
 described assuming that the network graph is a single 2-connected
 cluster so that an ADAG is sufficient. Generalizing to multiple
 blocks is done by considering the block-roots instead of the GADAG
 root -- and the actual algorithm is given in Section 5.5.

 In order to understand the basic idea of finding an ADAG, first
 suppose that we have already a partial ADAG, which doesn’t contain
 all the nodes in the block yet, and we want to extend it to cover all
 the nodes. Suppose that we find a path from a node X to Y such that
 X and Y are already contained by our partial ADAG, but all the
 remaining nodes along the path are not added to the ADAG yet. We
 refer to such a path as an "ear".

 Recall that our ADAG is closely related to a partial order. More
 precisely, if we remove root R, the remaining DAG describes a partial
 order of the nodes. If we suppose that neither X nor Y is the root,
 we may be able to compare them. If one of them is definitely lesser
 with respect to our partial order (say X<<Y), we can add the new path
 to the ADAG in a direction from X to Y. As an example, consider
 Figure 5.

Enyedi, et al. Standards Track [Page 8]

RFC 7811 MRT-FRR Algorithm June 2016

 E---D---| E<--D---| E<--D<--|
 | | | | ^ | | ^ |
 | | | V | | V | |
 R F C R F C R F C
 | | | | ^ | | ^ ^
 | | | V | | V | |
 A---B---| A-->B---| A-->B---|

 (a) (b) (c)

 (a) A 2-connected graph
 (b) Partial ADAG (C is not included)
 (c) Resulting ADAG after adding path (or ear) B-C-D

 Figure 5

 In this partial ADAG, node C is not yet included. However, we can
 find path B-C-D, where both endpoints are contained by this partial
 ADAG (we say those nodes are "ready" in the following text), and the
 remaining node (node C) is not contained yet. If we remove R, the
 remaining DAG defines a partial order, and with respect to this
 partial order, we can say that B<<D; so, we can add the path to the
 ADAG in the direction from B to D (arcs B->C and C->D are added). If
 B>>D, we would add the same path in reverse direction.

 If, in the partial order where an ear’s two ends are X and Y, X<<Y,
 then there must already be a directed path from X to Y in the ADAG.
 The ear must be added in a direction such that it doesn’t create a
 cycle; therefore, the ear must go from X to Y.

 In the case when X and Y are not ordered with each other, we can
 select either direction for the ear. We have no restriction since
 neither of the directions can result in a cycle. In the corner case
 when one of the endpoints of an ear, say X, is the root (recall that
 the two endpoints must be different), we could use both directions
 again for the ear because the root can be considered both as smaller
 and as greater than Y. However, we strictly pick that direction in
 which the root is lower than Y. The logic for this decision is
 explained in Section 5.7

 A partial ADAG is started by finding a cycle from the root R back to
 itself. This can be done by selecting a non-ready neighbor N of R
 and then finding a path from N to R that doesn’t use any links
 between R and N. The direction of the cycle can be assigned either
 way since it is starting the ordering.

Enyedi, et al. Standards Track [Page 9]

RFC 7811 MRT-FRR Algorithm June 2016

 Once a partial ADAG is already present, it will always have a node
 that is not the root R in it. The following is a brief proof that a
 partial ADAG can always have ears added to it: just select a non-
 ready neighbor N of a ready node Q, such that Q is not the root R,
 find a path from N to the root R in the graph with Q removed. This
 path is an ear where the first node of the ear is Q, the next is N,
 then the path until the first ready node the path reached (that ready
 node is the other endpoint of the path). Since the graph is
 2-connected, there must be a path from N to R without Q.

 It is always possible to select a non-ready neighbor N of a ready
 node Q so that Q is not the root R. Because the network is
 2-connected, N must be connected to two different nodes and only one
 can be R. Because the initial cycle has already been added to the
 ADAG, there are ready nodes that are not R. Since the graph is
 2-connected, while there are non-ready nodes, there must be a non-
 ready neighbor N of a ready node that is not R.

 Generic_Find_Ears_ADAG(root)
 Create an empty ADAG. Add root to the ADAG.
 Mark root as IN_GADAG.
 Select an arbitrary cycle containing root.
 Add the arbitrary cycle to the ADAG.
 Mark cycle’s nodes as IN_GADAG.
 Add cycle’s non-root nodes to process_list.
 While there exist connected nodes in graph that are not IN_GADAG
 Select a new ear. Let its endpoints be X and Y.
 If Y is root or (Y<<X)
 Add the ear towards X to the ADAG
 Else // (a) X is root, or (b) X<<Y, or (c) X, Y not ordered
 Add the ear towards Y to the ADAG

 Figure 6: Generic Algorithm to Find Ears and Their Direction in
 2-Connected Graph

 The algorithm in Figure 6 merely requires that a cycle or ear be
 selected without specifying how. Regardless of the method for
 selecting the path, we will get an ADAG. The method used for finding
 and selecting the ears is important; shorter ears result in shorter
 paths along the MRTs. The MRT Lowpoint algorithm uses the Lowpoint
 Inheritance method for constructing an ADAG (and ultimately a GADAG).
 This method is defined in Section 5.5. Other methods for
 constructing GADAGs are described in Appendices B and C. An
 evaluation of these different methods is given in Section 8.

 As an example, consider Figure 5 again. First, we select the
 shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
 costs were assumed), so we get to the situation depicted in

Enyedi, et al. Standards Track [Page 10]

RFC 7811 MRT-FRR Algorithm June 2016

 Figure 5(b). Finally, we find a node next to a ready node; that must
 be node C and assume we reached it from ready node B. We search a
 path from C to R without B in the original graph. The first ready
 node along this is node D, so the open ear is B-C-D. Since B<<D, we
 add arc B->C and C->D to the ADAG. Since all the nodes are ready, we
 stop at this point.

4.3. Lowpoint Values and Their Uses

 A basic way of computing a spanning tree on a network graph is to run
 a DFS, such as given in Figure 7. This tree has the important
 property that if there is a link (x, n), then either n is a DFS
 ancestor of x or n is a DFS descendant of x. In other words, either
 n is on the path from the root to x or x is on the path from the root
 to n.

 global_variable: dfs_number

 DFS_Visit(node x, node parent)
 D(x) = dfs_number
 dfs_number += 1
 x.dfs_parent = parent
 for each link (x, w)
 if D(w) is not set
 DFS_Visit(w, x)

 Run_DFS(node gadag_root)
 dfs_number = 0
 DFS_Visit(gadag_root, NONE)

 Figure 7: Basic DFS Algorithm

 Given a node x, one can compute the minimal DFS number of the
 neighbors of x, i.e., min(D(w) if (x,w) is a link). This gives the
 earliest attachment point neighboring x. What is interesting,
 though, is the earliest attachment point from x and x’s descendants.
 This is what is determined by computing the Lowpoint value.

 In order to compute the low point value, the network is traversed
 using DFS and the vertices are numbered based on the DFS walk. Let
 this number be represented as DFS(x). All the edges that lead to
 already-visited nodes during DFS walk are back-edges. The back-edges
 are important because they give information about reachability of a
 node via another path.

Enyedi, et al. Standards Track [Page 11]

RFC 7811 MRT-FRR Algorithm June 2016

 The low point number is calculated by finding:

 Low(x) = Minimum of ((DFS(x),
 Lowest DFS(n, x->n is a back-edge),
 Lowest Low(n, x->n is tree edge in DFS walk)).

 A detailed algorithm for computing the lowpoint value is given in
 Figure 8. Figure 9 illustrates how the Lowpoint algorithm applies to
 an example graph.

 global_variable: dfs_number

 Lowpoint_Visit(node x, node parent, interface p_to_x)
 D(x) = dfs_number
 L(x) = D(x)
 dfs_number += 1
 x.dfs_parent = parent
 x.dfs_parent_intf = p_to_x.remote_intf
 x.lowpoint_parent = NONE
 for each ordered_interface intf of x
 if D(intf.remote_node) is not set
 Lowpoint_Visit(intf.remote_node, x, intf)
 if L(intf.remote_node) < L(x)
 L(x) = L(intf.remote_node)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf
 else if intf.remote_node is not parent
 if D(intf.remote_node) < L(x)
 L(x) = D(intf.remote_node)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf

 Run_Lowpoint(node gadag_root)
 dfs_number = 0
 Lowpoint_Visit(gadag_root, NONE, NONE)

 Figure 8: Computing Lowpoint Value

Enyedi, et al. Standards Track [Page 12]

RFC 7811 MRT-FRR Algorithm June 2016

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) a non-2-connected graph

 [E]----| [J]---------[I] [P]------[O]
 (5,) | (10,) (9,) (16,) (15,)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,) (4,) (3,) (6,) (8,) (11,) (14,)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,) (2,) (7,) (12,) (13,)

 (b) with DFS values assigned (D(x), L(x))

 [E]----| [J]---------[I] [P]------[O]
 (5,0) | (10,3) (9,3) (16,11) (15,11)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,0) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,0) (2,0) (7,3) (12,11) (13,11)

 (c) with lowpoint values assigned (D(x), L(x))

 Figure 9: Example Lowpoint Value Computation

 From the lowpoint value and lowpoint parent, there are three very
 useful things that motivate our computation.

 First, if there is a child c of x such that L(c) >= D(x), then there
 are no paths in the network graph that go from c or its descendants
 to an ancestor of x; therefore, x is a cut-vertex. In Figure 9, this
 can be seen by looking at the DFS children of C. C has two children,
 D and F and L(F) = 3 = D(C); so, it is clear that C is a cut-vertex
 and F is in a block where C is the block’s root. L(D) = 0<3 = D(C),
 so D has a path to the ancestors of C; in this case, D can go via E

Enyedi, et al. Standards Track [Page 13]

RFC 7811 MRT-FRR Algorithm June 2016

 to reach R. Comparing the lowpoint values of all a node’s DFS-
 children with the node’s DFS-value is very useful because it allows
 identification of the cut-vertices and thus the blocks.

 Second, by repeatedly following the path given by lowpoint_parent,
 there is a path from x back to an ancestor of x that does not use the
 link [x, x.dfs_parent] in either direction. The full path need not
 be taken, but this gives a way of finding an initial cycle and then
 ears.

 Third, as seen in Figure 9, even if L(x)<D(x), there may be a block
 that contains both the root and a DFS-child of a node while other
 DFS-children might be in different blocks. In this example, C’s
 child D is in the same block as R while F is not. It is important to
 realize that the root of a block may also be the root of another
 block.

4.4. Blocks in a Graph

 A key idea for the MRT Lowpoint algorithm is that any non-2-connected
 graph is made up by blocks (e.g., 2-connected clusters, cut-links,
 and/or isolated nodes). To compute GADAGs and thus MRTs, computation
 is done in each block to compute ADAGs or Redundant Trees and then
 those ADAGs or Redundant Trees are combined into a GADAG or MRT.

Enyedi, et al. Standards Track [Page 14]

RFC 7811 MRT-FRR Algorithm June 2016

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) A graph with four blocks:
 three 2-connected clusters
 and one cut-link

 [E]<--| [J]<------[I] [P]<--[O]
 | | | ^ | ^
 V | V | V |
 [R] [D]<--[C] [F] [H]<---[K] [N]
 ^ | ^ ^
 | V | |
 [A]------->[B] [G]---| [L]-->[M]

 (b) MRT-Blue for destination R

 [E]---| [J]-------->[I] [P]-->[O]
 | | |
 V V V
 [R] [D]-->[C]<---[F] [H]<---[K] [N]
 ^ | ^ | ^ |
 | V | | | V
 [A]<-------[B] [G]<--| [L]<--[M]

 (c) MRT-Red for destination R

 Figure 10

 Consider the example depicted in Figure 10 (a). In this figure, a
 special graph is presented, showing us all the ways 2-connected
 clusters can be connected. It has four blocks: block 1 contains R,
 A, B, C, D, E; block 2 contains C, F, G, H, I, J; block 3 contains K,
 L, M, N, O, P; and block 4 is a cut-link containing H and K. As can
 be observed, the first two blocks have one common node (node C) and
 blocks 2 and 3 do not have any common node, but they are connected
 through a cut-link that is block 4. No two blocks can have more than
 one common node, since two blocks with at least two common nodes
 would qualify as a single 2-connected cluster.

Enyedi, et al. Standards Track [Page 15]

RFC 7811 MRT-FRR Algorithm June 2016

 Moreover, observe that if we want to get from one block to another,
 we must use a cut-vertex (the cut-vertices in this graph are C, H,
 K), regardless of the path selected, so we can say that all the paths
 from block 3 along the MRTs rooted at R will cross K first. This
 observation means that if we want to find a pair of MRTs rooted at R,
 then we need to build up a pair of RTs in block 3 with K as a root.
 Similarly, we need to find another pair of RTs in block 2 with C as a
 root, and finally, we need the last pair of RTs in block 1 with R as
 a root. When all the trees are selected, we can simply combine them;
 when a block is a cut-link (as in block 4), that cut-link is added in
 the same direction to both of the trees. The resulting trees are
 depicted in Figure 10 (b) and (c).

 Similarly, to create a GADAG it is sufficient to compute ADAGs in
 each block and connect them.

 It is necessary, therefore, to identify the cut-vertices, the blocks
 and identify the appropriate localroot to use for each block.

4.5. Determining Localroot and Assigning Block-ID

 Each node in a network graph has a localroot, which is the cut-vertex
 (or root) in the same block that is closest to the root. The
 localroot is used to determine whether two nodes share a common
 block.

 Compute_Localroot(node x, node localroot)
 x.localroot = localroot
 for each DFS child node c of x
 if L(c) < D(x) //x is not a cut-vertex
 Compute_Localroot(c, x.localroot)
 else
 mark x as cut-vertex
 Compute_Localroot(c, x)

 Compute_Localroot(gadag_root, gadag_root)

 Figure 11: A Method for Computing Localroots

 There are two different ways of computing the localroot for each
 node. The stand-alone method is given in Figure 11 and better
 illustrates the concept; it is used by the GADAG construction methods
 given in Appendices B and C. The MRT Lowpoint algorithm computes the
 localroot for a block as part of computing the GADAG using lowpoint
 inheritance; the essence of this computation is given in Figure 12.
 Both methods for computing the localroot produce the same results.

Enyedi, et al. Standards Track [Page 16]

RFC 7811 MRT-FRR Algorithm June 2016

 Get the current node, s.
 Compute an ear (either through lowpoint inheritance
 or by following dfs parents) from s to a ready node e.
 (Thus, s is not e, if there is such ear.)
 if s is e
 for each node x in the ear that is not s
 x.localroot = s
 else
 for each node x in the ear that is not s or e
 x.localroot = e.localroot

 Figure 12: Ear-Based Method for Computing Localroots

 Once the localroots are known, two nodes X and Y are in a common
 block if and only if one of the following three conditions apply.

 o Y’s localroot is X’s localroot : They are in the same block and
 neither is the cut-vertex closest to the root.

 o Y’s localroot is X: X is the cut-vertex closest to the root for
 Y’s block

 o Y is X’s localroot: Y is the cut-vertex closest to the root for
 X’s block

 Once we have computed the localroot for each node in the network
 graph, we can assign for each node, a Block-ID that represents the
 block in which the node is present. This computation is shown in
 Figure 13.

 global_var: max_block_id

 Assign_Block_ID(x, cur_block_id)
 x.block_id = cur_block_id
 foreach DFS child c of x
 if (c.local_root is x)
 max_block_id += 1
 Assign_Block_ID(c, max_block_id)
 else
 Assign_Block_ID(c, cur_block_id)

 max_block_id = 0
 Assign_Block_ID(gadag_root, max_block_id)

 Figure 13: Assigning Block-ID to Identify Blocks

Enyedi, et al. Standards Track [Page 17]

RFC 7811 MRT-FRR Algorithm June 2016

5. MRT Lowpoint Algorithm Specification

 The MRT Lowpoint algorithm computes one GADAG that is then used by a
 router to determine its MRT-Blue and MRT-Red next hops to all
 destinations. Finally, based upon that information, alternates are
 selected for each next hop to each destination. The different parts
 of this algorithm are described below.

 o Order the interfaces in the network graph. See Section 5.1.

 o Compute the local MRT Island for the particular MRT Profile. See
 Section 5.2.

 o Select the root to use for the GADAG. See Section 5.3.

 o Initialize all interfaces to UNDIRECTED. See Section 5.4.

 o Compute the DFS value, e.g., D(x), and lowpoint value, L(x). See
 Figure 8.

 o Construct the GADAG. See Section 5.5.

 o Assign directions to all interfaces that are still UNDIRECTED.
 See Section 5.6.

 o From the computing router x, compute the next hops for the MRT-
 Blue and MRT-Red. See Section 5.7.

 o Identify alternates for each next hop to each destination by
 determining which one of the MRT-Blue and the MRT-Red the
 computing router x should select. See Section 5.8.

 A Python implementation of this algorithm is given in Appendix A.

5.1. Interface Ordering

 To ensure consistency in computation, all routers MUST order
 interfaces identically down to the set of links with the same metric
 to the same neighboring node. This is necessary for the DFS in
 Lowpoint_Visit in Section 4.3, where the selection order of the
 interfaces to explore results in different trees. Consistent
 interface ordering is also necessary for computing the GADAG, where
 the selection order of the interfaces to use to form ears can result
 in different GADAGs. It is also necessary for the topological sort
 described in Section 5.8, where different topological sort orderings
 can result in undirected links being added to the GADAG in different
 directions.

Enyedi, et al. Standards Track [Page 18]

RFC 7811 MRT-FRR Algorithm June 2016

 The required ordering between two interfaces from the same router x
 is given in Figure 14.

 Interface_Compare(interface a, interface b)
 if a.metric < b.metric
 return A_LESS_THAN_B
 if b.metric < a.metric
 return B_LESS_THAN_A
 if a.neighbor.mrt_node_id < b.neighbor.mrt_node_id
 return A_LESS_THAN_B
 if b.neighbor.mrt_node_id < a.neighbor.mrt_node_id
 return B_LESS_THAN_A
 // Same metric to same node, so the order doesn’t matter for
 // interoperability.
 return A_EQUAL_TO_B

 Figure 14: Rules for Ranking Multiple Interfaces (Order Is from Low
 to High)

 In Figure 14, if two interfaces on a router connect to the same
 remote router with the same metric, the Interface_Compare function
 returns A_EQUAL_TO_B. This is because the order in which those
 interfaces are initially explored does not affect the final GADAG
 produced by the algorithm described here. While only one of the
 links will be added to the GADAG in the initial traversal, the other
 parallel links will be added to the GADAG with the same direction
 assigned during the procedure for assigning direction to UNDIRECTED
 links described in Section 5.6. An implementation is free to apply
 some additional criteria to break ties in interface ordering in this
 situation, but those criteria are not specified here since they will
 not affect the final GADAG produced by the algorithm.

 The Interface_Compare function in Figure 14 relies on the
 interface.metric and the interface.neighbor.mrt_node_id values to
 order interfaces. The exact source of these values for different
 IGPs and applications is specified in Figure 15. The metric and
 mrt_node_id values for OSPFv2, OSPFv3, and IS-IS provided here is
 normative. The metric and mrt_node_id values for IS-IS Path Control
 and Reservation (PCR) in this table should be considered
 informational. The normative values are specified in [IEEE8021Qca].

Enyedi, et al. Standards Track [Page 19]

RFC 7811 MRT-FRR Algorithm June 2016

 +--------------+-----------------------+-----------------------------+
IGP/flooding	mrt_node_id	metric of
protocol	of neighbor	interface
and	on interface	
application		
+--------------+-----------------------+-----------------------------+		
OSPFv2 for	4-octet Neighbor	2-octet Metric field
IP/LDP FRR	Router ID in	for corresponding
	Link ID field for	point-to-point link
	corresponding	in Router-LSA
	point-to-point link	
	in Router-LSA	
+--------------+-----------------------+-----------------------------+		
OSPFv3 for	4-octet Neighbor	2-octet Metric field
IP/LDP FRR	Router ID field	for corresponding
	for corresponding	point-to-point link
	point-to-point link	in Router-LSA
	in Router-LSA	
+--------------+-----------------------+-----------------------------+		
IS-IS for	7-octet neighbor	3-octet metric field
IP/LDP FRR	system ID and	in Extended IS
	pseudonode number	Reachability TLV (type 22)
	in Extended IS	or Multi-Topology
	Reachability TLV (type	IS Neighbor TLV (type 222)
	22) or Multi-Topology	
	IS Neighbor TLV (type	
	222)	
+--------------+-----------------------+-----------------------------+		
IS-IS PCR for	8-octet Bridge ID	3-octet SPB-LINK-METRIC in
protection	created from 2-octet	SPB-Metric sub-TLV (type 29)
of traffic	Bridge Priority in	in Extended IS Reachability
in bridged	Shortest Path Bridging	TLV (type 22) or
	SPB Instance sub-TLV	Multi-Topology
networks	(type 1) carried in	Intermediate Systems
	MT-Capability TLV	TLV (type 222). In the case
	(type 144) and 6-octet	of asymmetric link metrics,
	neighbor system ID in	the larger link metric
	Extended IS	is used for both link
	Reachability TLV (type	directions.
	22) or Multi-Topology	(informational)
	Intermediate Systems	
	TLV (type 222)	
	(informational)	
 +--------------+-----------------------+-----------------------------+

 Figure 15: Value of interface.neighbor.mrt_node_id and
 interface.metric to Be Used for Ranking Interfaces, for Different
 Flooding Protocols and Applications

Enyedi, et al. Standards Track [Page 20]

RFC 7811 MRT-FRR Algorithm June 2016

 The metrics are unsigned integers and MUST be compared as unsigned
 integers. The results of mrt_node_id comparisons MUST be the same as
 would be obtained by converting the mrt_node_ids to unsigned integers
 using network byte order and performing the comparison as unsigned
 integers. In the case of IS-IS for IP/LDP FRR with point-to-point
 links, the pseudonode number (the 7th octet) is zero. Broadcast
 interfaces will be discussed in Section 7.

5.2. MRT Island Identification

 The local MRT Island for a particular MRT profile can be determined
 by starting from the computing router in the network graph and doing
 a breadth-first-search (BFS). The BFS explores only links that are
 in the same area/level, are not IGP-excluded, and are not MRT-
 ineligible. The BFS explores only nodes that support the particular
 MRT profile. See Section 7 of [RFC7812] for more-precise definitions
 of these criteria.

 MRT_Island_Identification(topology, computing_rtr, profile_id, area)
 for all routers in topology
 rtr.IN_MRT_ISLAND = FALSE
 computing_rtr.IN_MRT_ISLAND = TRUE
 explore_list = { computing_rtr }
 while (explore_list is not empty)
 next_rtr = remove_head(explore_list)
 for each intf in next_rtr
 if (not intf.IN_MRT_ISLAND
 and not intf.MRT-ineligible
 and not intf.remote_intf.MRT-ineligible
 and not intf.IGP-excluded and (intf in area)
 and (intf.remote_node supports profile_id))
 intf.IN_MRT_ISLAND = TRUE
 intf.remote_intf.IN_MRT_ISLAND = TRUE
 if (not intf.remote_node.IN_MRT_ISLAND))
 intf.remote_node.IN_MRT_ISLAND = TRUE
 add_to_tail(explore_list, intf.remote_node)

 Figure 16: MRT Island Identification

5.3. GADAG Root Selection

 In Section 8.3 of [RFC7812], the GADAG Root Selection Policy is
 described for the Default MRT Profile. This selection policy allows
 routers to consistently select a common GADAG Root inside the local
 MRT Island, based on advertised priority values. The MRT Lowpoint
 algorithm simply requires that all routers in the MRT Island MUST
 select the same GADAG Root; the mechanism can vary based upon the MRT
 profile description. Before beginning computation, the network graph

Enyedi, et al. Standards Track [Page 21]

RFC 7811 MRT-FRR Algorithm June 2016

 is reduced to contain only the set of routers that support the
 specific MRT profile whose MRTs are being computed.

 As noted in Section 7, pseudonodes MUST NOT be considered for GADAG
 root selection.

 It is expected that an operator will designate a set of routers as
 good choices for selection as GADAG root by setting the GADAG Root
 Selection Priority for that set of routers to lower (more preferred)
 numerical values. For guidance on setting the GADAG Root Selection
 Priority values, refer to Section 9.1.

5.4. Initialization

 Before running the algorithm, there is the standard type of
 initialization to be done, such as clearing any computed DFS-values,
 lowpoint-values, DFS parents, lowpoint-parents, any MRT-computed next
 hops, and flags associated with algorithm.

 It is assumed that a regular SPF computation has been run so that the
 primary next hops from the computing router to each destination are
 known. This is required for determining alternates at the last step.

 Initially, all interfaces MUST be initialized to UNDIRECTED. Whether
 they are OUTGOING, INCOMING, or both is determined when the GADAG is
 constructed and augmented.

 It is possible that some links and nodes will be marked using
 standard IGP mechanisms to discourage or prevent transit traffic.
 Section 7.3.1 of [RFC7812] describes how those links and nodes are
 excluded from MRT Island formation.

 MRT-FRR also has the ability to advertise links MRT-Ineligible, as
 described in Section 7.3.2 of [RFC7812]. These links are excluded
 from the MRT Island and the GADAG. Computation of MRT next hops will
 therefore not use any MRT-ineligible links. The MRT Lowpoint
 algorithm does still need to consider MRT-ineligible links when
 computing FRR alternates, because an MRT-ineligible link can still be
 the shortest-path next hop to reach a destination.

 When a broadcast interface is advertised as MRT-ineligible, then the
 pseudonode representing the entire broadcast network MUST NOT be
 included in the MRT Island. This is equivalent to excluding all of
 the broadcast interfaces on that broadcast network from the MRT
 Island.

Enyedi, et al. Standards Track [Page 22]

RFC 7811 MRT-FRR Algorithm June 2016

5.5. Constructing the GADAG Using Lowpoint Inheritance

 As discussed in Section 4.2, it is necessary to find ears from a node
 x that is already in the GADAG (known as IN_GADAG). Two different
 methods are used to find ears in the algorithm. The first is by
 going to a DFS-child that is not IN_GADAG and then following the
 chain of lowpoint parents until an IN_GADAG node is found. The
 second is by going to a neighbor that is not IN_GADAG and then
 following the chain of DFS parents until an IN_GADAG node is found.
 As an ear is found, the associated interfaces are marked based on the
 direction taken. The nodes in the ear are marked as IN_GADAG. In
 the algorithm, first the ears via DFS-children are found and then the
 ears via DFS-neighbors are found.

 By adding both types of ears when an IN_GADAG node is processed, all
 ears that connect to that node are found. The order in which the
 IN_GADAG nodes are processed is, of course, key to the algorithm.
 The order is a stack of ears so the most recent ear is found at the
 top of the stack. Of course, the stack stores nodes and not ears, so
 an ordered list of nodes, from the first node in the ear to the last
 node in the ear, is created as the ear is explored and then that list
 is pushed onto the stack.

 Each ear represents a partial order (see Figure 4) and processing the
 nodes in order along each ear ensures that all ears connecting to a
 node are found before a node higher in the partial order has its ears
 explored. This means that the direction of the links in the ear is
 always from the node x being processed towards the other end of the
 ear. Additionally, by using a stack of ears, this means that any
 unprocessed nodes in previous ears can only be ordered higher than
 nodes in the ears below it on the stack.

 In this algorithm that depends upon Lowpoint inheritance, it is
 necessary that every node has a lowpoint parent that is not itself.
 If a node is a cut-vertex, that may not yet be the case. Therefore,
 any nodes without a lowpoint parent will have their lowpoint parent
 set to their DFS parent and their lowpoint value set to the DFS-value
 of their parent. This assignment also properly allows an ear between
 two cut-vertices.

 Finally, the algorithm simultaneously computes each node’s localroot,
 as described in Figure 12. This is further elaborated as follows.
 The localroot can be inherited from the node at the end of the ear
 unless the end of the ear is x itself, in which case the localroot
 for all the nodes in the ear would be x. This is because whenever
 the first cycle is found in a block, or an ear involving a bridge is
 computed, the cut-vertex closest to the root would be x itself. In
 all other scenarios, the properties of lowpoint/dfs parents ensure

Enyedi, et al. Standards Track [Page 23]

RFC 7811 MRT-FRR Algorithm June 2016

 that the end of the ear will be in the same block, and thus
 inheriting its localroot would be the correct localroot for all newly
 added nodes.

 The pseudocode for the GADAG algorithm (assuming that the adjustment
 of lowpoint for cut-vertices has been made) is shown in Figure 17.

 Construct_Ear(x, Stack, intf, ear_type)
 ear_list = empty
 cur_node = intf.remote_node
 cur_intf = intf
 not_done = true

 while not_done
 cur_intf.UNDIRECTED = false
 cur_intf.OUTGOING = true
 cur_intf.remote_intf.UNDIRECTED = false
 cur_intf.remote_intf.INCOMING = true

 if cur_node.IN_GADAG is false
 cur_node.IN_GADAG = true
 add_to_list_end(ear_list, cur_node)
 if ear_type is CHILD
 cur_intf = cur_node.lowpoint_parent_intf
 cur_node = cur_node.lowpoint_parent
 else // ear_type must be NEIGHBOR
 cur_intf = cur_node.dfs_parent_intf
 cur_node = cur_node.dfs_parent
 else
 not_done = false

 if (ear_type is CHILD) and (cur_node is x)
 // x is a cut-vertex and the local root for
 // the block in which the ear is computed
 x.IS_CUT_VERTEX = true
 localroot = x
 else
 // Inherit localroot from the end of the ear
 localroot = cur_node.localroot
 while ear_list is not empty
 y = remove_end_item_from_list(ear_list)
 y.localroot = localroot
 push(Stack, y)

 Construct_GADAG_via_Lowpoint(topology, gadag_root)
 gadag_root.IN_GADAG = true
 gadag_root.localroot = None
 Initialize Stack to empty

Enyedi, et al. Standards Track [Page 24]

RFC 7811 MRT-FRR Algorithm June 2016

 push gadag_root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 foreach ordered_interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is x))
 Construct_Ear(x, Stack, intf, CHILD)
 foreach ordered_interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is not x))
 Construct_Ear(x, Stack, intf, NEIGHBOR)

 Construct_GADAG_via_Lowpoint(topology, gadag_root)

 Figure 17: Lowpoint Inheritance GADAG Algorithm

5.6. Augmenting the GADAG by Directing All Links

 The GADAG, regardless of the method used to construct it, at this
 point could be used to find MRTs, but the topology does not include
 all links in the network graph. That has two impacts. First, there
 might be shorter paths that respect the GADAG partial ordering and so
 the alternate paths would not be as short as possible. Second, there
 may be additional paths between a router x and the root that are not
 included in the GADAG. Including those provides potentially more
 bandwidth to traffic flowing on the alternates and may reduce
 congestion compared to just using the GADAG as currently constructed.

 The goal is thus to assign direction to every remaining link marked
 as UNDIRECTED to improve the paths and number of paths found when the
 MRTs are computed.

 To do this, we need to establish a total order that respects the
 partial order described by the GADAG. This can be done using Kahn’s
 topological sort [Kahn_1962_topo_sort], which essentially assigns a
 number to a node x only after all nodes before it (e.g., with a link
 incoming to x) have had their numbers assigned. The only issue with
 the topological sort is that it works on DAGs and not ADAGs or
 GADAGs.

 To convert a GADAG to a DAG, it is necessary to remove all links that
 point to a root of block from within that block. That provides the
 necessary conversion to a DAG and then a topological sort can be
 done. When adding undirected links to the GADAG, links connecting
 the block root to other nodes in that block need special handling
 because the topological order will not always give the right answer
 for those links. There are three cases to consider. If the
 undirected link in question has another parallel link between the

Enyedi, et al. Standards Track [Page 25]

RFC 7811 MRT-FRR Algorithm June 2016

 same two nodes that is already directed, then the direction of the
 undirected link can be inherited from the previously directed link.
 In the case of parallel cut links, we set all of the parallel links
 to both INCOMING and OUTGOING. Otherwise, the undirected link in
 question is set to OUTGOING from the block root node. A cut-link can
 then be identified by the fact that it will be directed both INCOMING
 and OUTGOING in the GADAG. The exact details of this whole process
 are captured in Figure 18.

 Add_Undirected_Block_Root_Links(topo, gadag_root)
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if (i.remote_node.localroot is not x
 or i.PROCESSED)
 continue
 Initialize bundle_list to empty
 bundle.UNDIRECTED = true
 bundle.OUTGOING = false
 bundle.INCOMING = false
 foreach interface i2 in x
 if i2.remote_node is i.remote_node
 add_to_list_end(bundle_list, i2)
 if not i2.UNDIRECTED:
 bundle.UNDIRECTED = false
 if i2.INCOMING:
 bundle.INCOMING = true
 if i2.OUTGOING:
 bundle.OUTGOING = true
 if bundle.UNDIRECTED
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.remote_intf.INCOMING = true
 else
 if (bundle.OUTGOING and bundle.INCOMING)
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.INCOMING = true
 i3.remote_intf.INCOMING = true
 i3.remote_intf.OUTGOING = true

Enyedi, et al. Standards Track [Page 26]

RFC 7811 MRT-FRR Algorithm June 2016

 else if bundle.OUTGOING
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.remote_intf.INCOMING = true
 else if bundle.INCOMING
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.INCOMING = true
 i3.remote_intf.OUTGOING = true

 Modify_Block_Root_Incoming_Links(topo, gadag_root)
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if i.remote_node.localroot is x
 if i.INCOMING:
 i.INCOMING = false
 i.INCOMING_STORED = true
 i.remote_intf.OUTGOING = false
 i.remote_intf.OUTGOING_STORED = true

 Revert_Block_Root_Incoming_Links(topo, gadag_root)
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if i.remote_node.localroot is x
 if i.INCOMING_STORED
 i.INCOMING = true
 i.remote_intf.OUTGOING = true
 i.INCOMING_STORED = false
 i.remote_intf.OUTGOING_STORED = false

 Run_Topological_Sort_GADAG(topo, gadag_root)
 Modify_Block_Root_Incoming_Links(topo, gadag_root)
 foreach node x in topo
 node.unvisited = 0
 foreach interface i of x
 if (i.INCOMING)
 node.unvisited += 1
 Initialize working_list to empty
 Initialize topo_order_list to empty

Enyedi, et al. Standards Track [Page 27]

RFC 7811 MRT-FRR Algorithm June 2016

 add_to_list_end(working_list, gadag_root)
 while working_list is not empty
 y = remove_start_item_from_list(working_list)
 add_to_list_end(topo_order_list, y)
 foreach ordered_interface i of y
 if intf.OUTGOING
 i.remote_node.unvisited -= 1
 if i.remote_node.unvisited is 0
 add_to_list_end(working_list, i.remote_node)
 next_topo_order = 1
 while topo_order_list is not empty
 y = remove_start_item_from_list(topo_order_list)
 y.topo_order = next_topo_order
 next_topo_order += 1
 Revert_Block_Root_Incoming_Links(topo, gadag_root)

 def Set_Other_Undirected_Links_Based_On_Topo_Order(topo)
 foreach node x in topo
 foreach interface i of x
 if i.UNDIRECTED:
 if x.topo_order < i.remote_node.topo_order
 i.OUTGOING = true
 i.UNDIRECTED = false
 i.remote_intf.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 else
 i.INCOMING = true
 i.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 i.remote_intf.UNDIRECTED = false

 Add_Undirected_Links(topo, gadag_root)
 Add_Undirected_Block_Root_Links(topo, gadag_root)
 Run_Topological_Sort_GADAG(topo, gadag_root)
 Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

 Add_Undirected_Links(topo, gadag_root)

 Figure 18: Assigning Direction to UNDIRECTED Links

 Proxy-nodes do not need to be added to the network graph. They
 cannot be transited and do not affect the MRTs that are computed.
 The details of how the MRT-Blue and MRT-Red next hops are computed
 for proxy-nodes and how the appropriate alternate next hops are
 selected is given in Section 5.9.

Enyedi, et al. Standards Track [Page 28]

RFC 7811 MRT-FRR Algorithm June 2016

5.7. Compute MRT Next Hops

 As was discussed in Section 4.1, once an ADAG is found, it is
 straightforward to find the next hops from any node X to the ADAG
 root. However, in this algorithm, we will reuse the common GADAG and
 find not only the one pair of MRTs rooted at the GADAG root with it,
 but find a pair rooted at each node. This is useful since it is
 significantly faster to compute.

 The method for computing differently rooted MRTs from the common
 GADAG is based on two ideas. First, if two nodes X and Y are ordered
 with respect to each other in the partial order, then an SPF along
 OUTGOING links (an increasing-SPF) and an SPF along INCOMING links (a
 decreasing-SPF) can be used to find the increasing and decreasing
 paths. Second, if two nodes X and Y aren’t ordered with respect to
 each other in the partial order, then intermediary nodes can be used
 to create the paths by increasing/decreasing to the intermediary and
 then decreasing/increasing to reach Y.

 As usual, the two basic ideas will be discussed assuming the network
 is 2-connected. The generalization to multiple blocks is discussed
 in Section 5.7.4. The full algorithm is given in Section 5.7.5.

5.7.1. MRT Next Hops to All Nodes Ordered with Respect to the Computing
 Node

 Finding two node-disjoint paths from the computing router X to any
 node Y depends upon whether Y>>X or Y<<X. As shown in Figure 19, if
 Y>>X, then there is an increasing path that goes from X to Y without
 crossing R; this contains nodes in the interval [X,Y]. There is also
 a decreasing path that decreases towards R and then decreases from R
 to Y; this contains nodes in the interval [X,R-small] or [R-great,Y].
 The two paths cannot have common nodes other than X and Y.

 [Y]<---(Cloud 2)<--- [X]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 MRT-Blue path: X->Cloud 2->Y
 MRT-Red path: X->Cloud 1->R->Cloud 3->Y

 Figure 19: Y>>X

Enyedi, et al. Standards Track [Page 29]

RFC 7811 MRT-FRR Algorithm June 2016

 Similar logic applies if Y<<X, as shown in Figure 20. In this case,
 the increasing path from X increases to R and then increases from R
 to Y to use nodes in the intervals [X,R-great] and [R-small, Y]. The
 decreasing path from X reaches Y without crossing R and uses nodes in
 the interval [Y,X].

 [X]<---(Cloud 2)<--- [Y]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 MRT-Blue path: X->Cloud 3->R->Cloud 1->Y
 MRT-Red path: X->Cloud 2->Y

 Figure 20: Y<<X

5.7.2. MRT Next Hops to All Nodes Not Ordered with Respect to the
 Computing Node

 When X and Y are not ordered, the first path should increase until we
 get to a node G, where G>>Y. At G, we need to decrease to Y. The
 other path should be just the opposite: we must decrease until we get
 to a node H, where H<<Y, and then increase. Since R is smaller and
 greater than Y, such G and H must exist. It is also easy to see that
 these two paths must be node disjoint: the first path contains nodes
 in interval [X,G] and [Y,G], while the second path contains nodes in
 interval [H,X] and [H,Y]. This is illustrated in Figure 21. It is
 necessary to decrease and then increase for the MRT-Blue and increase
 and then decrease for the MRT-Red; if one simply increased for one
 and decreased for the other, then both paths would go through the
 root R.

Enyedi, et al. Standards Track [Page 30]

RFC 7811 MRT-FRR Algorithm June 2016

 (Cloud 6)<---[Y]<---(Cloud 5)<------------|
 | |
 | |
 V |
 [G]--->(Cloud 4)--->[R]--->(Cloud 1)--->[H]
 ^ |
 | |
 | |
 (Cloud 3)<---[X]<---(Cloud 2)<-----------|

 MRT-Blue path: decrease to H and increase to Y
 X->Cloud 2->H->Cloud 5->Y
 MRT-Red path: increase to G and decrease to Y
 X->Cloud 3->G->Cloud 6->Y

 Figure 21: X and Y Unordered

 This gives disjoint paths as long as G and H are not the same node.
 Since G>>Y and H<<Y, if G and H could be the same node, that would
 have to be the root R. This is not possible because there is only
 one incoming interface to the root R that is created when the initial
 cycle is found. Recall from Figure 6 that whenever an ear was found
 to have an end that was the root R, the ear was directed from R so
 that the associated interface on R is outgoing and not incoming.
 Therefore, there must be exactly one node M that is the largest one
 before R, so the MRT-Red path will never reach R; it will turn at M
 and decrease to Y.

5.7.3. Computing Redundant Tree Next Hops in a 2-Connected Graph

 The basic ideas for computing RT next hops in a 2-connected graph
 were given in Sections 5.7.1 and 5.7.2. Given these two ideas, how
 can we find the trees?

 If some node X only wants to find the next hops (which is usually the
 case for IP networks), it is enough to find which nodes are greater
 and less than X, and which are not ordered; this can be done by
 running an increasing-SPF and a decreasing-SPF rooted at X and not
 exploring any links from the ADAG root.

 In principle, a traversal method other than SPF could be used to
 traverse the GADAG in the process of determining blue and red next
 hops that result in maximally redundant trees. This will be the case
 as long as one traversal uses the links in the direction specified by
 the GADAG and the other traversal uses the links in the direction
 opposite of that specified by the GADAG. However, a different
 traversal algorithm will generally result in different blue and red

Enyedi, et al. Standards Track [Page 31]

RFC 7811 MRT-FRR Algorithm June 2016

 next hops. Therefore, the algorithm specified here requires the use
 of SPF to traverse the GADAG to generate MRT blue and red next hops,
 as described below.

 An increasing-SPF rooted at X and not exploring links from the root
 will find the increasing next hops to all Y>>X. Those increasing
 next hops are X’s next hops on the MRT-Blue to reach Y. A
 decreasing-SPF rooted at X and not exploring links from the root will
 find the decreasing next hops to all Z<<X. Those decreasing next
 hops are X’s next hops on the MRT-Red to reach Z. Since the root R
 is both greater than and less than X, after this increasing-SPF and
 decreasing-SPF, X’s next hops on the MRT-Blue and on the MRT-Red to
 reach R are known. For every node Y>>X, X’s next hops on the MRT-Red
 to reach Y are set to those on the MRT-Red to reach R. For every
 node Z<<X, X’s next hops on the MRT-Blue to reach Z are set to those
 on the MRT-Blue to reach R.

 For those nodes that were not reached by either the increasing-SPF or
 the decreasing-SPF, we can determine the next hops as well. The
 increasing MRT-Blue next hop for a node that is not ordered with
 respect to X is the next hop along the decreasing MRT-Red towards R,
 and the decreasing MRT-Red next hop is the next hop along the
 increasing MRT-Blue towards R. Naturally, since R is ordered with
 respect to all the nodes, there will always be an increasing and a
 decreasing path towards it. This algorithm does not provide the
 complete specific path taken but just the appropriate next hops to
 use. The identities of G and H are not determined by the computing
 node X.

 The final case to consider is when the GADAG root R computes its own
 next hops. Since the GADAG root R is << all other nodes, running an
 increasing-SPF rooted at R will reach all other nodes; the MRT-Blue
 next hops are those found with this increasing-SPF. Similarly, since
 the GADAG root R is >> all other nodes, running a decreasing-SPF
 rooted at R will reach all other nodes; the MRT-Red next hops are
 those found with this decreasing-SPF.

Enyedi, et al. Standards Track [Page 32]

RFC 7811 MRT-FRR Algorithm June 2016

 E---D---| E<--D<--|
 | | | | ^ |
 | | | V | |
 R F C R F C
 | | | | ^ ^
 | | | V | |
 A---B---| A-->B---|

 (a) (b)
 A 2-connected graph A spanning ADAG rooted at R

 Figure 22

 As an example, consider the situation depicted in Figure 22. Node C
 runs an increasing-SPF and a decreasing-SPF on the ADAG. The
 increasing-SPF reaches D, E, and R; the decreasing-SPF reaches B, A,
 and R. E>>C. So, towards E the MRT-Blue next hop is D, since E was
 reached on the increasing path through D. The MRT-Red next hop
 towards E is B, since R was reached on the decreasing path through B.
 Since E>>D, D will similarly compute its MRT-Blue next hop to be E,
 ensuring that a packet on MRT-Blue will use path C-D-E. B, A, and R
 will similarly compute the MRT-Red next hops towards E (which is
 ordered less than B, A and R), ensuring that a packet on MRT-Red will
 use path C-B-A-R-E.

 C can determine the next hops towards F as well. Since F is not
 ordered with respect to C, the MRT-Blue next hop is the decreasing
 one towards R (which is B) and the MRT-Red next hop is the increasing
 one towards R (which is D). Since F>>B, for its MRT-Blue next hop
 towards F, B will use the real increasing next hop towards F. So a
 packet forwarded to B on MRT-Blue will get to F on path C-B-F.
 Similarly, D will use the real decreasing next hop towards F as its
 MRT-Red next hop, a packet on MRT-Red will use path C-D-F.

5.7.4. Generalizing for a Graph That Isn’t 2-Connected

 If a graph isn’t 2-connected, then the basic approach given in
 Section 5.7.3 needs some extensions to determine the appropriate MRT
 next hops to use for destinations outside the computing router X’s
 blocks. In order to find a pair of maximally redundant trees in that
 graph, we need to find a pair of RTs in each of the blocks (the root
 of these trees will be discussed later) and combine them.

Enyedi, et al. Standards Track [Page 33]

RFC 7811 MRT-FRR Algorithm June 2016

 When computing the MRT next hops from a router X, there are three
 basic differences:

 1. Only nodes in a common block with X should be explored in the
 increasing-SPF and decreasing-SPF.

 2. Instead of using the GADAG root, X’s localroot should be used.
 This has the following implications:

 A. The links from X’s localroot should not be explored.

 B. If a node is explored in the outgoing SPF so Y>>X, then X’s
 MRT-Red next hops to reach Y uses X’s MRT-Red next hops to
 reach X’s localroot and if Z<<X, then X’s MRT-Blue next hops
 to reach Z uses X’s MRT-Blue next hops to reach X’s
 localroot.

 C. If a node W in a common block with X was not reached in the
 increasing-SPF or decreasing-SPF, then W is unordered with
 respect to X. X’s MRT-Blue next hops to W are X’s decreasing
 (aka MRT-Red) next hops to X’s localroot. X’s MRT-Red next
 hops to W are X’s increasing (aka MRT-Blue) next hops to X’s
 localroot.

 3. For nodes in different blocks, the next hops must be inherited
 via the relevant cut-vertex.

 These are all captured in the detailed algorithm given in
 Section 5.7.5.

5.7.5. Complete Algorithm to Compute MRT Next Hops

 The complete algorithm to compute MRT Next Hops for a particular
 router X is given in Figure 23. In addition to computing the MRT-
 Blue next hops and MRT-Red next hops used by X to reach each node Y,
 the algorithm also stores an "order_proxy", which is the proper cut-
 vertex to reach Y if it is outside the block, and which is used later
 in deciding whether the MRT-Blue or the MRT-Red can provide an
 acceptable alternate for a particular primary next hop.

Enyedi, et al. Standards Track [Page 34]

RFC 7811 MRT-FRR Algorithm June 2016

 In_Common_Block(x, y)
 if ((x.block_id is y.block_id)
 or (x is y.localroot) or (y is x.localroot))
 return true
 return false

 Store_Results(y, direction)
 if direction is FORWARD
 y.higher = true
 y.blue_next_hops = y.next_hops
 if direction is REVERSE
 y.lower = true
 y.red_next_hops = y.next_hops

 SPF_No_Traverse_Block_Root(spf_root, block_root, direction)
 Initialize spf_heap to empty
 Initialize nodes’ spf_metric to infinity and next_hops to empty
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 while (spf_heap is not empty)
 min_node = remove_lowest(spf_heap)
 Store_Results(min_node, direction)
 if ((min_node is spf_root) or (min_node is not block_root))
 foreach interface intf of min_node
 if ((((direction is FORWARD) and intf.OUTGOING) or
 ((direction is REVERSE) and intf.INCOMING))
 and In_Common_Block(spf_root, intf.remote_node))
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root
 intf.remote_node.next_hops = make_list(intf)
 else
 intf.remote_node.next_hops = min_node.next_hops
 insert_or_update(spf_heap, intf.remote_node)
 else if path_metric == intf.remote_node.spf_metric
 if min_node is spf_root
 add_to_list(intf.remote_node.next_hops, intf)
 else
 add_list_to_list(intf.remote_node.next_hops,
 min_node.next_hops)

 SetEdge(y)
 if y.blue_next_hops is empty and y.red_next_hops is empty
 SetEdge(y.localroot)
 y.blue_next_hops = y.localroot.blue_next_hops
 y.red_next_hops = y.localroot.red_next_hops
 y.order_proxy = y.localroot.order_proxy

Enyedi, et al. Standards Track [Page 35]

RFC 7811 MRT-FRR Algorithm June 2016

 Compute_MRT_NextHops(x, gadag_root)
 foreach node y
 y.higher = y.lower = false
 clear y.red_next_hops and y.blue_next_hops
 y.order_proxy = y
 SPF_No_Traverse_Block_Root(x, x.localroot, FORWARD)
 SPF_No_Traverse_Block_Root(x, x.localroot, REVERSE)

 // red and blue next hops are stored to x.localroot as different
 // paths are found via the SPF and reverse-SPF.
 // Similarly, any node whose localroot is x will have its
 // red_next_hops and blue_next_hops already set.

 // Handle nodes in the same block that aren’t the localroot
 foreach node y
 if (y.IN_MRT_ISLAND and (y is not x) and
 (y.block_id is x.block_id))
 if y.higher
 y.red_next_hops = x.localroot.red_next_hops
 else if y.lower
 y.blue_next_hops = x.localroot.blue_next_hops
 else
 y.blue_next_hops = x.localroot.red_next_hops
 y.red_next_hops = x.localroot.blue_next_hops

 // Inherit next hops and order_proxies to other components
 if (x is not gadag_root) and (x.localroot is not gadag_root)
 gadag_root.blue_next_hops = x.localroot.blue_next_hops
 gadag_root.red_next_hops = x.localroot.red_next_hops
 gadag_root.order_proxy = x.localroot
 foreach node y
 if (y is not gadag_root) and (y is not x) and y.IN_MRT_ISLAND
 SetEdge(y)

 max_block_id = 0
 Assign_Block_ID(gadag_root, max_block_id)
 Compute_MRT_NextHops(x, gadag_root)

 Figure 23: Complete Algorithm to Compute MRT Next Hops

5.8. Identify MRT Alternates

 At this point, a computing router S knows its MRT-Blue next hops and
 MRT-Red next hops for each destination in the MRT Island. The
 primary next hops along the SPT are also known. It remains to
 determine for each primary next hop to a destination D, which MRT
 avoids the primary next-hop node F. This computation depends upon
 data set in Compute_MRT_NextHops such as each node y’s

Enyedi, et al. Standards Track [Page 36]

RFC 7811 MRT-FRR Algorithm June 2016

 y.blue_next_hops, y.red_next_hops, y.order_proxy, y.higher, y.lower,
 and topo_orders. Recall that any router knows only which are the
 nodes greater and lesser than itself, but it cannot decide the
 relation between any two given nodes easily; that is why we need
 topological ordering.

 For each primary next-hop node F to each destination D, S can call
 Select_Alternates(S, D, F, primary_intf) to determine whether to use
 the MRT-Blue or MRT-Red next hops as the alternate next hop(s) for
 that primary next hop. The algorithm is given in Figure 24 and
 discussed afterwards.

 Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order):
 if D_higher and D_lower
 if F.HIGHER and F.LOWER
 if F.topo_order < D_topo_order
 return USE_RED
 else
 return USE_BLUE
 if F.HIGHER
 return USE_RED
 if F.LOWER
 return USE_BLUE
 //F unordered wrt S
 return USE_RED_OR_BLUE

 else if D_higher
 if F.HIGHER and F.LOWER
 return USE_BLUE
 if F.LOWER
 return USE_BLUE
 if F.HIGHER
 if (F.topo_order > D_topo_order)
 return USE_BLUE
 if (F.topo_order < D_topo_order)
 return USE_RED
 //F unordered wrt S
 return USE_RED_OR_BLUE

 else if D_lower
 if F.HIGHER and F.LOWER
 return USE_RED
 if F.HIGHER
 return USE_RED
 if F.LOWER
 if F.topo_order > D_topo_order
 return USE_BLUE

Enyedi, et al. Standards Track [Page 37]

RFC 7811 MRT-FRR Algorithm June 2016

 if F.topo_order < D_topo_order
 return USE_RED
 //F unordered wrt S
 return USE_RED_OR_BLUE

 else //D is unordered wrt S
 if F.HIGHER and F.LOWER
 if primary_intf.OUTGOING and primary_intf.INCOMING
 return USE_RED_OR_BLUE
 if primary_intf.OUTGOING
 return USE_BLUE
 if primary_intf.INCOMING
 return USE_RED
 //primary_intf not in GADAG
 return USE_RED
 if F.LOWER
 return USE_RED
 if F.HIGHER
 return USE_BLUE
 //F unordered wrt S
 if F.topo_order > D_topo_order:
 return USE_BLUE
 else:
 return USE_RED

 Select_Alternates(D, F, primary_intf)
 if not In_Common_Block(F, S)
 return PRIM_NH_IN_DIFFERENT_BLOCK
 if (D is F) or (D.order_proxy is F)
 return PRIM_NH_IS_D_OR_OP_FOR_D
 D_lower = D.order_proxy.LOWER
 D_higher = D.order_proxy.HIGHER
 D_topo_order = D.order_proxy.topo_order
 return Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order)

 Figure 24: Select_Alternates() and Select_Alternates_Internal()

 It is useful to first handle the case where F is also D, or F is the
 order proxy for D. In this case, only link protection is possible.
 The MRT that doesn’t use the failed primary next hop is used. If
 both MRTs use the primary next hop, then the primary next hop must be
 a cut-link, so either MRT could be used but the set of MRT next hops
 must be pruned to avoid the failed primary next-hop interface. To
 indicate this case, Select_Alternates returns
 PRIM_NH_IS_D_OR_OP_FOR_D. Explicit pseudocode to handle the three
 sub-cases above is not provided.

Enyedi, et al. Standards Track [Page 38]

RFC 7811 MRT-FRR Algorithm June 2016

 The logic behind Select_Alternates_Internal() is described in
 Figure 25. As an example, consider the first case described in the
 table, where the D>>S and D<<S. If this is true, then either S or D
 must be the block root, R. If F>>S and F<<S, then S is the block
 root. So the blue path from S to D is the increasing path to D, and
 the red path S to D is the decreasing path to D. If the
 F.topo_order>D.topo_order, then either F is ordered higher than D or
 F is unordered with respect to D. Therefore, F is either on a
 decreasing path from S to D, or it is on neither an increasing nor a
 decreasing path from S to D. In either case, it is safe to take an
 increasing path from S to D to avoid F. We know that when S is R,
 the increasing path is the blue path, so it is safe to use the blue
 path to avoid F.

 If instead F.topo_order<D.topo_order, then either F is ordered lower
 than D, or F is unordered with respect to D. Therefore, F is either
 on an increasing path from S to D, or it is on neither an increasing
 nor a decreasing path from S to D. In either case, it is safe to
 take a decreasing path from S to D to avoid F. We know that when S
 is R, the decreasing path is the red path, so it is safe to use the
 red path to avoid F.

 If F>>S or F<<S (but not both), then D is the block root. We then
 know that the blue path from S to D is the increasing path to R, and
 the red path is the decreasing path to R. When F>>S, we deduce that
 F is on an increasing path from S to R. So in order to avoid F, we
 use a decreasing path from S to R, which is the red path. Instead,
 when F<<S, we deduce that F is on a decreasing path from S to R. So
 in order to avoid F, we use an increasing path from S to R, which is
 the blue path.

 All possible cases are systematically described in the same manner in
 the rest of the table.

Enyedi, et al. Standards Track [Page 39]

RFC 7811 MRT-FRR Algorithm June 2016

+------+------------+------+------------------------------+------------+
D	MRT blue	F	additional	F	Alternate
wrt	and red	wrt	criteria	wrt	
S	path	S		MRT	
	properties			(deduced)	
+------+------------+------+-----------------+------------+------------+					
D>>S	Blue path:	F>>S	additional	F on an	Use Red
and	Increasing	only	criteria	increasing	to avoid
D<<S,	path to R.		not needed	path from	F
D is	Red path:			S to R	
R,	Decreasing +------+-----------------+------------+------------+				
	path to R.	F<<S	additional	F on a	Use Blue
		only	criteria	decreasing	to avoid
			not needed	path from	F
or				S to R	
	+------+-----------------+------------+------------+				
		F>>S	topo(F)>topo(D)	F on a	Use Blue
S is	Blue path:	and	implies that	decreasing	to avoid
R	Increasing	F<<S,	F>>D or F??D	path from	F
	path to D.			S to D or	
	Red path:			neither	
	Decreasing	+-----------------+------------+------------+			
	path to D.		topo(F)<topo(D)	F on an	Use Red
			implies that	increasing	to avoid
			F<<D or F??D	path from	F
				S to D or	
				neither	
	+------+-----------------+------------+------------+				
		F??S	Can only occur	F is on	Use Red
			when link	neither	or Blue
			between	increasing	to avoid
			F and S	nor decr.	F
			is marked	path from	
			MRT_INELIGIBLE	S to D or R	

Enyedi, et al. Standards Track [Page 40]

RFC 7811 MRT-FRR Algorithm June 2016

+------+------------+------+-----------------+------------+------------+
D>>S	Blue path:	F<<S	additional	F on	Use Blue
only	Increasing	only	criteria	decreasing	to avoid
	shortest		not needed	path from	F
	path from			S to R	
	S to D. +------+-----------------+------------+------------+				
	Red path:	F>>S	topo(F)>topo(D)	F on	Use Blue
	Decreasing	only	implies that	decreasing	to avoid
	shortest		F>>D or F??D	path from	F
	path from			R to D	
	S to R,			or	
	then			neither	
	decreasing	+-----------------+------------+------------+			
	shortest		topo(F)<topo(D)	F on	Use Red
	path from		implies that	increasing	to avoid
	R to D.		F<<D or F??D	path from	F
				S to D	
				or	
				neither	
	+------+-----------------+------------+------------+				
		F>>S	additional	F on Red	Use Blue
		and	criteria		to avoid
		F<<S,	not needed		F
		F is			
		R			
	+------+-----------------+------------+------------+				
		F??S	Can only occur	F is on	Use Red
			when link	neither	or Blue
			between	increasing	to avoid
			F and S	nor decr.	F
			is marked	path from	
			MRT_INELIGIBLE	S to D or R	

Enyedi, et al. Standards Track [Page 41]

RFC 7811 MRT-FRR Algorithm June 2016

+------+------------+------+-----------------+------------+------------+
D<<S	Blue path:	F>>S	additional	F on	Use Red
only	Increasing	only	criteria	increasing	to avoid
	shortest		not needed	path from	F
	path from			S to R	
	S to R, +------+-----------------+------------+------------+				
	then	F<<S	topo(F)>topo(D)	F on	Use Blue
	increasing	only	implies that	decreasing	to avoid
	shortest		F>>D or F??D	path from	F
	path from			R to D	
	R to D.			or	
	Red path:			neither	
	Decreasing	+-----------------+------------+------------+			
	shortest		topo(F)<topo(D)	F on	Use Red
	path from		implies that	increasing	to avoid
	S to D.		F<<D or F??D	path from	F
				S to D	
				or	
				neither	
	+------+-----------------+------------+------------+				
		F>>S	additional	F on Blue	Use Red
		and	criteria		to avoid
		F<<S,	not		F
		F is	needed		
		R			
	+------+-----------------+------------+------------+				
		F??S	Can only occur	F is on	Use Red
			when link	neither	or Blue
			between	increasing	to avoid
			F and S	nor decr.	F
			is marked	path from	
			MRT_INELIGIBLE	S to D or R	
+------+------------+------+-----------------+------------+------------+					
D??S	Blue path:	F<<S	additional	F on a	Use Red
	Decr. from	only	criteria	decreasing	to avoid
	S to first		not needed	path from	F
	node K<<D,			S to K.	
	then incr. +------+-----------------+------------+------------+				
	to D.	F>>S	additional	F on an	Use Blue
	Red path:	only	criteria	increasing	to avoid
	Incr. from		not needed	path from	F
	S to first			S to L	
	node L>>D,				
	then decr.				

Enyedi, et al. Standards Track [Page 42]

RFC 7811 MRT-FRR Algorithm June 2016

| | +------+-----------------+------------+------------+
		F??S	topo(F)>topo(D)	F on decr.	Use Blue
			implies that	path from	to avoid
			F>>D or F??D	L to D or	F
				neither	
		+-----------------+------------+------------+			
			topo(F)<topo(D)	F on incr.	Use Red
			implies that	path from	to avoid
			F<<D or F??D	K to D or	F
				neither	
	+------+-----------------+------------+------------+				
		F>>S	GADAG link	F on an	Use Blue
		and	direction	incr. path	to avoid
		F<<S,	S->F	from S	F
		F is +-----------------+------------+------------+			
		R	GADAG link	F on a	Use Red
			direction	decr. path	to avoid
			S<-F	from S	F
		+-----------------+------------+------------+			
			GADAG link	Either F is the order	
			direction	proxy for D (case	
			S<-->F	already handled) or D	
				is in a different block	
				from F, in which case	
				Red or Blue avoids F	
		+-----------------+-------------------------+			
			S-F link not	Relies on special	
			in GADAG,	construction of GADAG	
			only when	to demonstrate that	
			S-F link is	using Red avoids F	
			MRT_INELIGIBLE	(see text)	
+------+------------+------+-----------------+-------------------------+

 Determining MRT next hops and alternates based on the partial order
 and topological sort relationships between the source(S),
 destination(D), primary next hop(F), and block root(R). topo(N)
 indicates the topological sort value of node N. X??Y indicates that
 node X is unordered with respect to node Y. It is assumed that the
 case where F is D, or where F is the order proxy for D, has already
 been handled.

 Figure 25: Determining MRT Next Hops and Alternates

 The last case in Figure 25 requires additional explanation. The fact
 that the red path from S to D in this case avoids F relies on a
 special property of the GADAGs that we have constructed in this
 algorithm, a property not shared by all GADAGs in general. When D is
 unordered with respect to S, and F is the localroot for S, it can

Enyedi, et al. Standards Track [Page 43]

RFC 7811 MRT-FRR Algorithm June 2016

 occur that the link between S and F is not in the GADAG only when
 that link has been marked MRT_INELIGIBLE. For an arbitrary GADAG, S
 doesn’t have enough information based on the computed order
 relationships to determine if the red path or blue path will hit F
 (which is also the localroot) before hitting K or L, and making it
 safely to D. However, the GADAGs that we construct using the
 algorithm in this document are not arbitrary GADAGs. They have the
 additional property that incoming links to a localroot come from only
 one other node in the same block. This is a result of the method of
 construction. This additional property guarantees that the red path
 from S to D will never pass through the localroot of S. (That would
 require the localroot to play the role of L, the first node in the
 path ordered higher than D, which would in turn require the localroot
 to have two incoming links in the GADAG, which cannot happen.)
 Therefore, it is safe to use the red path to avoid F with these
 specially constructed GADAGs.

 As an example of how Select_Alternates_Internal() operates, consider
 the ADAG depicted in Figure 26 and first suppose that G is the
 source, D is the destination, and H is the failed next hop. Since
 D>>G, we need to compare H.topo_order and D.topo_order. Since
 D.topo_order>H.topo_order, D must be either higher than H or
 unordered with respect to H, so we should select the decreasing path
 towards the root. If, however, the destination were instead J, we
 must find that H.topo_order>J.topo_order, so we must choose the
 increasing Blue next hop to J, which is I. In the case, when instead
 the destination is C, we find that we need to first decrease to avoid
 using H, so the Blue, first decreasing then increasing, path is
 selected.

 [E]<-[D]<-[H]<-[J]
 | ^ ^ ^
 V | | |
 [R] [C] [G]->[I]
 | ^ ^ ^
 V | | |
 [A]->[B]->[F]---|

 Figure 26: ADAG Rooted at R for a 2-Connected Graph

5.9. Named Proxy-Nodes

 As discussed in Section 11.2 of [RFC7812], it is necessary to find
 MRT-Blue and MRT-Red next hops and MRT-FRR alternates for named
 proxy-nodes. An example use case is for a router that is not part of
 that local MRT Island, when there is only partial MRT support in the
 domain.

Enyedi, et al. Standards Track [Page 44]

RFC 7811 MRT-FRR Algorithm June 2016

5.9.1. Determining Proxy-Node Attachment Routers

 Section 11.2 of [RFC7812] discusses general considerations for
 determining the two proxy-node attachment routers for a given proxy-
 node, corresponding to a prefix. A router in the MRT Island that
 advertises the prefix is a candidate for being a proxy-node
 attachment router, with the associated named-proxy-cost equal to the
 advertised cost to the prefix.

 An Island Border Router (IBR) is a router in the MRT Island that is
 connected to an Island Neighbor (IN), which is a router not in the
 MRT Island but in the same area/level. An (IBR,IN) pair is a
 candidate for being a proxy-node attachment router, if the shortest
 path from the IN to the prefix does not enter the MRT Island. A
 method for identifying such Loop-Free Island Neighbors (LFINs) is
 given below. The named-proxy-cost assigned to each (IBR, IN) pair is
 cost(IBR, IN) + D_opt(IN, prefix).

 From the set of prefix-advertising routers and the set of IBRs with
 at least one LFIN, the two routers with the lowest named-proxy-cost
 are selected. Ties are broken based upon the lowest Router ID. For
 ease of discussion, the two selected routers will be referred to as
 proxy-node attachment routers.

5.9.2. Computing If an Island Neighbor (IN) Is Loop-Free

 As discussed above, the IN needs to be loop-free with respect to the
 whole MRT Island for the destination. This can be accomplished by
 running the usual SPF algorithm while keeping track of which shortest
 paths have passed through the MRT island. Pseudocode for this is
 shown in Figure 27. The Island_Marking_SPF() is run for each IN that
 needs to be evaluated for the loop-free condition, with the IN as the
 spf_root. Whether or not an IN is loop-free with respect to the MRT
 island can then be determined by evaluating node.PATH_HITS_ISLAND for
 each destination of interest.

Enyedi, et al. Standards Track [Page 45]

RFC 7811 MRT-FRR Algorithm June 2016

 Island_Marking_SPF(spf_root)
 Initialize spf_heap to empty
 Initialize nodes’ spf_metric to infinity and next_hops to empty
 and PATH_HITS_ISLAND to false
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 while (spf_heap is not empty)
 min_node = remove_lowest(spf_heap)
 foreach interface intf of min_node
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root
 intf.remote_node.next_hops = make_list(intf)
 else
 intf.remote_node.next_hops = min_node.next_hops
 if intf.remote_node.IN_MRT_ISLAND
 intf.remote_node.PATH_HITS_ISLAND = true
 else
 intf.remote_node.PATH_HITS_ISLAND =
 min_node.PATH_HITS_ISLAND
 insert_or_update(spf_heap, intf.remote_node)
 else if path_metric == intf.remote_node.spf_metric
 if min_node is spf_root
 add_to_list(intf.remote_node.next_hops, intf)
 else
 add_list_to_list(intf.remote_node.next_hops,
 min_node.next_hops)
 if intf.remote_node.IN_MRT_ISLAND
 intf.remote_node.PATH_HITS_ISLAND = true
 else
 intf.remote_node.PATH_HITS_ISLAND =
 min_node.PATH_HITS_ISLAND

 Figure 27: Island_Marking_SPF() for Determining If an Island Neighbor
 Is Loop-Free

 It is also possible that a given prefix is originated by a
 combination of non-island routers and island routers. The results of
 the Island_Marking_SPF() computation can be used to determine if the
 shortest path from an IN to reach that prefix hits the MRT Island.
 The shortest path for the IN to reach prefix P is determined by the
 total cost to reach prefix P, which is the sum of the cost for the IN
 to reach a prefix-advertising node and the cost with which that node
 advertises the prefix. The path with the minimum total cost to
 prefix P is chosen. If the prefix-advertising node for that minimum
 total cost path has PATH_HITS_ISLAND set to True, then the IN is not
 loop-free with respect to the MRT Island for reaching prefix P. If

Enyedi, et al. Standards Track [Page 46]

RFC 7811 MRT-FRR Algorithm June 2016

 there are multiple minimum total cost paths to reach prefix P, then
 all of the prefix-advertising routers involved in the minimum total
 cost paths MUST have PATH_HITS_ISLAND set to False for the IN to be
 considered loop-free to reach P.

 Note that there are other computations that could be used to
 determine if paths from a given IN _might_ pass through the MRT
 Island for a given prefix or destination. For example, a previous
 draft version of this document specified running the SPF algorithm on
 modified topology that treats the MRT Island as a single node (with
 intra-island links set to zero cost) in order to provide input to
 computations to determine if the path from IN to non-island
 destination hits the MRT Island in this modified topology. This
 computation is enough to guarantee that a path will not hit the MRT
 Island in the original topology. However, it is possible that a path
 that is disqualified for hitting the MRT Island in the modified
 topology will not actually hit the MRT Island in the original
 topology. The algorithm described in Island_Marking_SPF() above does
 not modify the original topology, and will only disqualify a path if
 the actual path does in fact hit the MRT Island.

 Since all routers need to come to the same conclusion about which
 routers qualify as LFINs, this specification requires that all
 routers computing LFINs MUST use an algorithm whose result is
 identical to that of the Island_Marking_SPF() in Figure 27.

5.9.3. Computing MRT Next Hops for Proxy-Nodes

 Determining the MRT next hops for a proxy-node in the degenerate case
 where the proxy-node is attached to only one node in the GADAG is
 trivial, as all needed information can be derived from that proxy-
 node attachment router. If there are multiple interfaces connecting
 the proxy-node to the single proxy-node attachment router, then some
 can be assigned to MRT-Red and others to MRT_Blue.

 Now, consider the proxy-node P that is attached to two proxy-node
 attachment routers. The pseudocode for Select_Proxy_Node_NHs(P,S) in
 Figure 28 specifies how a computing-router S MUST compute the MRT red
 and blue next hops to reach proxy-node P. The proxy-node attachment
 router with the lower value of mrt_node_id (as defined in Figure 15)
 is assigned to X, and the other proxy-node attachment router is
 assigned to Y. We will be using the relative order of X,Y, and S in
 the partial order defined by the GADAG to determine the MRT red and
 blue next hops to reach P, so we also define A and B as the order
 proxies for X and Y, respectively, with respect to S. The order
 proxies for all nodes with respect to S were already computed in
 Compute_MRT_NextHops().

Enyedi, et al. Standards Track [Page 47]

RFC 7811 MRT-FRR Algorithm June 2016

 def Select_Proxy_Node_NHs(P,S):
 if P.pnar1.node.node_id < P.pnar2.node.node_id:
 X = P.pnar1.node
 Y = P.pnar2.node
 else:
 X = P.pnar2.node
 Y = P.pnar1.node
 P.pnar_X = X
 P.pnar_Y = Y
 A = X.order_proxy
 B = Y.order_proxy
 if (A is S.localroot
 and B is S.localroot):
 // case 1.0
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is S.localroot
 and B is not S.localroot):
 // case 2.0
 if B.LOWER:
 // case 2.1
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if B.HIGHER:
 // case 2.2
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 // case 2.3
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is not S.localroot
 and B is S.localroot):
 // case 3.0
 if A.LOWER:
 // case 3.1
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if A.HIGHER:
 // case 3.2
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return

Enyedi, et al. Standards Track [Page 48]

RFC 7811 MRT-FRR Algorithm June 2016

 else:
 // case 3.3
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is not S.localroot
 and B is not S.localroot):
 // case 4.0
 if (S is A.localroot or S is B.localroot):
 // case 4.05
 if A.topo_order < B.topo_order:
 // case 4.05.1
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 // case 4.05.2
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if A.LOWER:
 // case 4.1
 if B.HIGHER:
 // case 4.1.1
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if B.LOWER:
 // case 4.1.2
 if A.topo_order < B.topo_order:
 // case 4.1.2.1
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 // case 4.1.2.2
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 // case 4.1.3
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if A.HIGHER:
 // case 4.2

Enyedi, et al. Standards Track [Page 49]

RFC 7811 MRT-FRR Algorithm June 2016

 if B.HIGHER:
 // case 4.2.1
 if A.topo_order < B.topo_order:
 // case 4.2.1.1
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 // case 4.2.1.2
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if B.LOWER:
 // case 4.2.2
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 // case 4.2.3
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 // case 4.3
 if B.LOWER:
 // case 4.3.1
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if B.HIGHER:
 // case 4.3.2
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 // case 4.3.3
 if A.topo_order < B.topo_order:
 // case 4.3.3.1
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return

Enyedi, et al. Standards Track [Page 50]

RFC 7811 MRT-FRR Algorithm June 2016

 else:
 // case 4.3.3.2
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 assert(False)

 Figure 28: Select_Proxy_Node_NHs()

 It is useful to understand up front that the blue next hops to reach
 proxy-node P produced by Select_Proxy_Node_NHs() will always be the
 next hops that reach proxy-node attachment router X, while the red
 next hops to reach proxy-node P will always be the next hops that
 reach proxy-node attachment router Y. This is different from the red
 and blue next hops produced by Compute_MRT_NextHops() where, for
 example, blue next hops to a destination that is ordered with respect
 to the source will always correspond to an INCREASING next hop on the
 GADAG. The exact choice of which next hops chosen by
 Select_Proxy_Node_NHs() as the blue next hops to reach P (which will
 necessarily go through X on its way to P) does depend on the GADAG,
 but the relationship is more complex than was the case with
 Compute_MRT_NextHops().

 There are 21 different relative order relationships between A, B, and
 S that Select_Proxy_Node_NHs() uses to determine red and blue next
 hops to P. This document does not attempt to provide an exhaustive
 description of each case considered in Select_Proxy_Node_NHs().
 Instead, we provide a high-level overview of the different cases, and
 we consider a few cases in detail to give an example of the reasoning
 that can be used to understand each case.

 At the highest level, Select_Proxy_Node_NHs() distinguishes between
 four different cases depending on whether or not A or B is the
 localroot for S. For example, for case 4.0, neither A nor B is the
 localroot for S. Case 4.05 addresses the case where S is the
 localroot for either A or B, while cases 4.1, 4.2, and 4.3 address
 the cases where A is ordered lower than S, A is ordered higher than
 S, or A is unordered with respect to S on the GADAG. In general,
 each of these cases is then further subdivided into whether or not B
 is ordered lower than S, B is ordered higher than S, or B is
 unordered with respect to S. In some cases, we also need a further
 level of discrimination, where we use the topological sort order of A
 with respect to B.

 As a detailed example, let’s consider case 4.1 and all of its sub-
 cases, and explain why the red and blue next hops to reach P are
 chosen as they are in Select_Proxy_Node_NHs(). In case 4.1, neither
 A nor B is the localroot for S, S is not the localroot for A or B,

Enyedi, et al. Standards Track [Page 51]

RFC 7811 MRT-FRR Algorithm June 2016

 and A is ordered lower than S on the GADAG. In this situation, we
 know that the red path to reach X (as computed in
 Compute_MRT_NextHops()) will follow DECREASING next hops towards A,
 while the blue path to reach X will follow INCREASING next hops to
 the localroot, and then INCREASING next hops to A.

 Now consider sub-case 4.1.1 where B is ordered higher than S. In
 this situation, we know that the blue path to reach Y will follow
 INCREASING next hops towards B, while the red next hops to reach Y
 will follow DECREASING next hops to the localroot, and then
 DECREASING next hops to B. So, to reach X and Y by two disjoint
 paths, we can choose the red next hops to X and the blue next hops to
 Y. We have chosen the convention that blue next hops to P are those
 that pass through X, and red next hops to P are those that pass
 through Y, so we can see that case 4.1.1 produces the desired result.
 Choosing blue to X and red to Y does not produce disjoint paths
 because the paths intersect at least at the localroot.

 Now consider sub-case 4.1.2 where B is ordered lower than S. In this
 situation, we know that the red path to reach Y will follow
 DECREASING next hops towards B, while the BLUE next hops to reach Y
 will follow INCREASING next hops to the localroot, and then
 INCREASING next hops to A. The choice here is more difficult than in
 4.1.1 because A and B are both on the DECREASING path from S towards
 the localroot. We want to use the direct DECREASING(red) path to the
 one that is nearer to S on the GADAG. We get this extra information
 by comparing the topological sort order of A and B. If
 A.topo_order<B.topo_order, then we use red to Y and blue to X, since
 the red path to Y will DECREASE to B without hitting A, and the blue
 path to X will INCREASE to A without hitting B. Instead, if
 A.topo_order>B.topo_order, then we use red to X and blue to Y.

 Note that when A is unordered with respect to B, the result of
 comparing A.topo_order with B.topo_order could be greater than or
 less than. In this case, the result doesn’t matter because either
 choice (red to Y and blue to X or red to X and blue to Y) would work.
 What is required is that all nodes in the network give the same
 result when comparing A.topo_order with B.topo_order. This is
 guaranteed by having all nodes run the same algorithm
 (Run_Topological_Sort_GADAG()) to compute the topological sort order.

 Finally, we consider case 4.1.3, where B is unordered with respect to
 S. In this case, the blue path to reach Y will follow the DECREASING
 next hops towards the localroot until it reaches some node (K) which
 is ordered less than B, after which it will take INCREASING next hops
 to B. The red path to reach Y will follow the INCREASING next hops
 towards the localroot until it reaches some node (L) which is ordered
 greater than B, after which it will take DECREASING next hops to B.

Enyedi, et al. Standards Track [Page 52]

RFC 7811 MRT-FRR Algorithm June 2016

 Both K and A are reached by DECREASING from S, but we don’t have
 information about whether or not that DECREASING path will hit K or A
 first. Instead, we do know that the INCREASING path from S will hit
 L before reaching A. Therefore, we use the red path to reach Y and
 the red path to reach X.

 Similar reasoning can be applied to understand the other 17 cases
 used in Select_Proxy_Node_NHs(). However, cases 2.3 and 3.3 deserve
 special attention because the correctness of the solution for these
 two cases relies on a special property of the GADAGs that we have
 constructed in this algorithm, a property not shared by all GADAGs in
 general. Focusing on case 2.3, we consider the case where A is the
 localroot for S, while B is not, and B is unordered with respect to
 S. The red path to X DECREASES from S to the localroot A, while the
 blue path to X INCREASES from S to the localroot A. The blue path to
 Y DECREASES towards the localroot A until it reaches some node (K)
 which is ordered less than B, after which the path INCREASES to B.
 The red path to Y INCREASES towards the localroot A until it reaches
 some node (L) which is ordered greater than B, after which the path
 DECREASES to B. It can be shown that for an arbitrary GADAG, with
 only the ordering relationships computed so far, we don’t have enough
 information to choose a pair of paths to reach X and Y that are
 guaranteed to be disjoint. In some topologies, A will play the role
 of K, the first node ordered less than B on the blue path to Y. In
 other topologies, A will play the role of L, the first node ordered
 greater than B on the red path to Y. The basic problem is that we
 cannot distinguish between these two cases based on the ordering
 relationships.

 As discussed Section 5.8, the GADAGs that we construct using the
 algorithm in this document are not arbitrary GADAGs. They have the
 additional property that incoming links to a localroot come from only
 one other node in the same block. This is a result of the method of
 construction. This additional property guarantees that localroot A
 will never play the role of L in the red path to Y, since L must have
 at least two incoming links from different nodes in the same block in
 the GADAG. This, in turn, allows Select_Proxy_Node_NHs() to choose
 the red path to Y and the red path to X as the disjoint MRT paths to
 reach P.

5.9.4. Computing MRT Alternates for Proxy-Nodes

 After finding the red and the blue next hops for a given proxy-node
 P, it is necessary to know which one of these to use in the case of
 failure. This can be done by Select_Alternates_Proxy_Node(), as
 shown in the pseudocode in Figure 29.

Enyedi, et al. Standards Track [Page 53]

RFC 7811 MRT-FRR Algorithm June 2016

 def Select_Alternates_Proxy_Node(P,F,primary_intf):
 S = primary_intf.local_node
 X = P.pnar_X
 Y = P.pnar_Y
 A = X.order_proxy
 B = Y.order_proxy
 if F is A and F is B:
 return ’PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y’
 if F is A:
 return ’USE_RED’
 if F is B:
 return ’USE_BLUE’

 if not In_Common_Block(A, B):
 if In_Common_Block(F, A):
 return ’USE_RED’
 elif In_Common_Block(F, B):
 return ’USE_BLUE’
 else:
 return ’USE_RED_OR_BLUE’
 if (not In_Common_Block(F, A)
 and not In_Common_Block(F, A)):
 return ’USE_RED_OR_BLUE’

 alt_to_X = Select_Alternates(X, F, primary_intf)
 alt_to_Y = Select_Alternates(Y, F, primary_intf)

 if (alt_to_X == ’USE_RED_OR_BLUE’
 and alt_to_Y == ’USE_RED_OR_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED_OR_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED_OR_BLUE’:
 return ’USE_RED’

 if (A is S.localroot
 and B is S.localroot):
 // case 1.0
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is S.localroot
 and B is not S.localroot):
 // case 2.0

Enyedi, et al. Standards Track [Page 54]

RFC 7811 MRT-FRR Algorithm June 2016

 if B.LOWER:
 // case 2.1
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if B.HIGHER:
 // case 2.2
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 else:
 // case 2.3
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is not S.localroot
 and B is S.localroot):
 // case 3.0
 if A.LOWER:
 // case 3.1
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if A.HIGHER:
 // case 3.2
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)

Enyedi, et al. Standards Track [Page 55]

RFC 7811 MRT-FRR Algorithm June 2016

 else:
 // case 3.3
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is not S.localroot
 and B is not S.localroot):
 // case 4.0
 if (S is A.localroot or S is B.localroot):
 // case 4.05
 if A.topo_order < B.topo_order:
 // case 4.05.1
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 // case 4.05.2
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if A.LOWER:
 // case 4.1
 if B.HIGHER:
 // case 4.1.1
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if B.LOWER:
 // case 4.1.2
 if A.topo_order < B.topo_order:
 // case 4.1.2.1
 if (alt_to_X == ’USE_BLUE’

Enyedi, et al. Standards Track [Page 56]

RFC 7811 MRT-FRR Algorithm June 2016

 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 // case 4.1.2.2
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 else:
 // case 4.1.3
 if (F.LOWER and not F.HIGHER
 and F.topo_order > A.topo_order):
 // case 4.1.3.1
 return ’USE_RED’
 else:
 // case 4.1.3.2
 return ’USE_BLUE’
 if A.HIGHER:
 // case 4.2
 if B.HIGHER:
 // case 4.2.1
 if A.topo_order < B.topo_order:
 // case 4.2.1.1
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 // case 4.2.1.2
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:

Enyedi, et al. Standards Track [Page 57]

RFC 7811 MRT-FRR Algorithm June 2016

 return ’USE_RED’
 assert(False)
 if B.LOWER:
 // case 4.2.2
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 // case 4.2.3
 if (F.HIGHER and not F.LOWER
 and F.topo_order < A.topo_order):
 return ’USE_RED’
 else:
 return ’USE_BLUE’
 else:
 // case 4.3
 if B.LOWER:
 // case 4.3.1
 if (F.LOWER and not F.HIGHER
 and F.topo_order > B.topo_order):
 return ’USE_BLUE’
 else:
 return ’USE_RED’
 if B.HIGHER:
 // case 4.3.2
 if (F.HIGHER and not F.LOWER
 and F.topo_order < B.topo_order):
 return ’USE_BLUE’
 else:
 return ’USE_RED’
 else:
 // case 4.3.3
 if A.topo_order < B.topo_order:
 // case 4.3.3.1
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)

Enyedi, et al. Standards Track [Page 58]

RFC 7811 MRT-FRR Algorithm June 2016

 else:
 // case 4.3.3.2
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 assert(False)

 Figure 29: Select_Alternates_Proxy_Node()

 Select_Alternates_Proxy_Node(P,F,primary_intf) determines whether it
 is safe to use the blue path to P (which goes through X), the red
 path to P (which goes through Y), or either, when the primary_intf to
 node F (and possibly node F) fails. The basic approach is to run
 Select_Alternates(X,F,primary_intf) and
 Select_Alternates(Y,F,primary_intf) to determine which of the two MRT
 paths to X and which of the two MRT paths to Y is safe to use in the
 event of the failure of F. In general, we will find that if it is
 safe to use a particular path to X or Y when F fails, and
 Select_Proxy_Node_NHs() used that path when constructing the red or
 blue path to reach P, then it will also be safe to use that path to
 reach P when F fails. This rule has one exception which is covered
 below. First, we give a concrete example of how
 Select_Alternates_Proxy_Node() works in the common case.

 The 21 ordering relationships used in Select_Proxy_Node_NHs() are
 repeated in Select_Alternates_Proxy_Node(). We focus on case 4.1.1
 to give a detailed example of the reasoning used in
 Select_Alternates_Proxy_Node(). In Select_Proxy_Node_NHs(), we
 determined for case 4.1.1 that the red next hops to X and the blue
 next hops to Y allow us to reach X and Y by disjoint paths, and are
 thus the blue and red next hops to reach P. Therefore, if
 Select_Alternates(X, F, primary_intf) is run and we find that it is
 safe to USE_RED to reach X, then we also conclude that it is safe to
 use the MRT path through X to reach P (the blue path to P) when F
 fails. Similarly, if we run Select_Alternates(Y, F, primary_intf)
 and we find that it is safe to USE_BLUE to reach Y, then we also
 conclude that it is safe to use the MRT path through Y to reach P
 (the red path to P) when F fails. If both of the paths that were
 used in Select_Proxy_Node_NHs() to construct the blue and red paths
 to P are found to be safe to use to use to reach X and Y, t then we
 conclude that we can use either the red or the blue path to P.

Enyedi, et al. Standards Track [Page 59]

RFC 7811 MRT-FRR Algorithm June 2016

 This simple reasoning gives the correct answer in most of the cases.
 However, additional logic is needed when either A or B (but not both
 A and B) is unordered with respect to S. This applies to cases
 4.1.3, 4.2.3, 4.3.1, and 4.3.2. Looking at case 4.1.3 in more
 detail, A is ordered less than S, but B is unordered with respect to
 S. In the discussion of case 4.1.3 above, we saw that
 Select_Proxy_Node_NHs() chose the red path to reach Y and the red
 path to reach X. We also saw that the red path to reach Y will
 follow the INCREASING next hops towards the localroot until it
 reaches some node (L) which is ordered greater than B, after which it
 will take DECREASING next hops to B. The problem is that the red
 path to reach P (the one that goes through Y) won’t necessarily be
 the same as the red path to reach Y. This is because the next hop
 that node L computes for its red next hop to reach P may be different
 from the next hop it computes for its red next hop to reach Y. This
 is because B is ordered lower than L, so L applies case 4.1.2 of
 Select_Proxy_Node_NHs() in order to determine its next hops to reach
 P. If A.topo_order<B.topo_order (case 4.1.2.1), then L will choose
 DECREASING next hops directly to B, which is the same result that L
 computes in Compute_MRT_NextHops() to reach Y. However, if
 A.topo_order>B.topo_order (case 4.1.2.2), then L will choose
 INCREASING next hops to reach B, which is different from what L
 computes in Compute_MRT_NextHops() to reach Y. So, testing the
 safety of the path for S to reach Y on failure of F as a surrogate
 for the safety of using the red path to reach P is not reliable in
 this case. It is possible construct topologies where the red path to
 P hits F even though the red path to Y does not hit F.

 Fortunately, there is enough information in the order relationships
 that we have already computed to still figure out which alternate to
 choose in these four cases. The basic idea is to always choose the
 path involving the ordered node, unless that path would hit F.
 Returning to case 4.1.3, we see that since A is ordered lower than S,
 the only way for S to hit F using a simple DECREASING path to A is
 for F to lie between A and S on the GADAG. This scenario is covered
 by requiring that F be lower than S (but not also higher than S) and
 that F.topo_order>A.topo_order in case 4.1.3.1.

 We just need to confirm that it is safe to use the path involving B
 in this scenario. In case 4.1.3.1, either F is between A and S on
 the GADAG, or F is unordered with respect to A and lies on the
 DECREASING path from S to the localroot. When F is between A and S
 on the GADAG, then the path through B chosen to avoid A in
 Select_Proxy_Node_NHs() will also avoid F. When F is unordered with
 respect to A and lies on the DECREASING path from S to the localroot,
 then we consider two cases. Either F.topo_order<B.topo_order or
 F.topo_order>B.topo_order. In the first case, since
 F.topo_order<B.topo_order and F.topo_order>A.topo_order, it must be

Enyedi, et al. Standards Track [Page 60]

RFC 7811 MRT-FRR Algorithm June 2016

 the case that A.topo_order<B.topo_order. Therefore, L will choose
 DECREASING next hops directly to B (case 4.1.2.1), which cannot hit F
 since F.topo_order<B.topo_order. In the second case, where
 F.topo_order>B.topo_order, the only way for the path involving B to
 hit F is if it DECREASES from L to B through F, i.e., it must be that
 L>>F>>B. However, since S>>F, this would imply that S>>B. However,
 we know that S is unordered with respect to B, so the second case
 cannot occur. So we have demonstrated that the red path to P (which
 goes via B and Y) is safe to use under the conditions of 4.1.3.1.
 Similar reasoning can be applied to the other three special cases
 where either A or B is unordered with respect to S.

6. MRT Lowpoint Algorithm: Next-Hop Conformance

 This specification defines the MRT Lowpoint algorithm, which includes
 the construction of a common GADAG and the computation of MRT-Red and
 MRT-Blue next hops to each node in the graph. An implementation MAY
 select any subset of next hops for MRT-Red and MRT-Blue that respect
 the available nodes that are described in Section 5.7 for each of the
 MRT-Red and MRT-Blue and the selected next hops are further along in
 the interval of allowed nodes towards the destination.

 For example, the MRT-Blue next hops used when the destination Y >> X,
 the computing router, MUST be one or more nodes, T, whose topo_order
 is in the interval [X.topo_order, Y.topo_order] and where Y >> T or Y
 is T. Similarly, the MRT-Red next hops MUST be have a topo_order in
 the interval [R-small.topo_order, X.topo_order] or [Y.topo_order,
 R-big.topo_order].

 Implementations SHOULD implement the Select_Alternates() function to
 pick an MRT-FRR alternate.

7. Broadcast Interfaces

 When broadcast interfaces are used to connect nodes, the broadcast
 network MUST be represented as a pseudonode, where each real node
 connects to the pseudonode. The interface metric in the direction
 from real node to pseudonode is the non-zero interface metric, while
 the interface metric in the direction from the pseudonode to the real
 node is set to zero. This is consistent with the way that broadcast
 interfaces are represented as pseudonodes in IS-IS and OSPF.

 Pseudonodes MUST be treated as equivalent to real nodes in the
 network graph used in the MRT Lowpoint algorithm with a few
 exceptions detailed below.

 The pseudonodes MUST be included in the computation of the GADAG.
 The neighbors of the pseudonode need to know the mrt_node_id of the

Enyedi, et al. Standards Track [Page 61]

RFC 7811 MRT-FRR Algorithm June 2016

 pseudonode in order to consistently order interfaces, which is needed
 to compute the GADAG. The mrt_node_id for IS-IS is the 7-octet
 neighbor system ID and pseudonode number in TLV 22 or TLV 222. The
 mrt_node_id for OSPFv2 is the 4-octet interface address of the
 Designated Router found in the Link ID field for the link type 2
 (transit network) in the Router-LSA. The mrt_node_id for OSPFv3 is
 the 4 octet interface address of the Designated Router found in the
 Neighbor Interface ID field for the link type 2 (transit network) in
 the Router-LSA. Note that this is different from the Neighbor Router
 ID field used for the mrt_node_id for point-to-point links in OSPFv3
 Router-LSAs given in Figure 15.

 Pseudonodes MUST NOT be considered candidates for selection as GADAG
 root. This rule is intended to result in a more stable network-wide
 selection of GADAG root by removing the possibility that the change
 of Designated Router or Designated Intermediate System on a broadcast
 network can result in a change of GADAG root.

7.1. Computing MRT Next Hops on Broadcast Networks

 The pseudonode does not correspond to a real node, so it is not
 actually involved in forwarding. A real node on a broadcast network
 cannot simply forward traffic to the broadcast network. It must
 specify another real node on the broadcast network as the next hop.
 On a network graph where a broadcast network is represented by a
 pseudonode, this means that if a real node determines that the next
 hop to reach a given destination is a pseudonode, it must also
 determine the next-next-hop for that destination in the network
 graph, which corresponds to a real node attached to the broadcast
 network.

 It is interesting to note that this issue is not unique to the MRT
 algorithm, but is also encountered in normal SPF computations for
 IGPs. Section 16.1.1 of [RFC2328] describes how this is done for
 OSPF. When OSPF runs its shortest-path tree calculation, it deals
 with pseudonodes in the following manner. Whenever the calculating
 router finds a shorter path to reach a real destination node and the
 shorter path to the destination is a single pseudonode hop, then the
 next hop for that destination is taken from the interface IP address
 in the Router-LSA correspond to the link to the real destination
 node.

 For IS-IS, in the example pseudocode implementation of Dijkstra’s
 algorithm in Annex C of [ISO10589-Second-Edition], whenever the
 algorithm encounters an adjacency from a real node to a pseudonode,
 it gets converted to a set of adjacencies from the real node to the
 neighbors of the pseudonode. In this way, the computed next hops
 point all the way to the real node, and not the pseudonode.

Enyedi, et al. Standards Track [Page 62]

RFC 7811 MRT-FRR Algorithm June 2016

 We could avoid the problem of determining next hops across
 pseudonodes in MRT by converting the pseudonode representation of
 broadcast networks to a full mesh of links between real nodes on the
 same network. However, if we make that conversion before computing
 the GADAG, we lose information about which links actually correspond
 to a single physical interface into the broadcast network. This
 could result computing red and blue next hops that use the same
 broadcast interface, in which case neither the red nor the blue next
 hop would be usable as an alternate on failure of the broadcast
 interface.

 Instead, we take the following approach, which maintains the property
 that either the red and blue next hop will avoid the broadcast
 network, if topologically allowed. We run the MRT Lowpoint algorithm
 treating the pseudonodes as equivalent to real nodes in the network
 graph, with the exceptions noted above. In addition to running the
 MRT Lowpoint algorithm from the point of view of itself, a computing
 router connected to a pseudonode MUST also run the MRT Lowpoint
 algorithm from the point of view of each of its pseudonode neighbors.
 For example, if a computing router S determines that its MRT red next
 hop to reach a destination D is a pseudonode P, S looks at its MRT
 Lowpoint algorithm computation from P’s point of view to determine
 P’s red next hop to reach D, say interface 1 on node X. S now knows
 that its real red next hop to reach D is interface 1 on node X on the
 broadcast network represented by P, and it can install the
 corresponding entry in its FIB.

7.2. Using MRT Next Hops as Alternates in the Event of Failures on
 Broadcast Networks

 In the previous section, we specified how to compute MRT next hops
 when broadcast networks are involved. In this section, we discuss
 how a PLR can use those MRT next hops in the event of failures
 involving broadcast networks.

 A PLR attached to a broadcast network running only OSPF or IS-IS with
 large Hello intervals has limited ability to quickly detect failures
 on a broadcast network. The only failure mode that can be quickly
 detected is the failure of the physical interface connecting the PLR
 to the broadcast network. For the failure of the interface
 connecting the PLR to the broadcast network, the alternate that
 avoids the broadcast network can be computed by using the broadcast
 network pseudonode as F, the primary next-hop node, in
 Select_Alternates(). This will choose an alternate path that avoids
 the broadcast network. However, the alternate path will not
 necessarily avoid all of the real nodes connected to the broadcast
 network. This is because we have used the pseudonode to represent
 the broadcast network. And we have enforced the node-protecting

Enyedi, et al. Standards Track [Page 63]

RFC 7811 MRT-FRR Algorithm June 2016

 property of MRT on the pseudonode to provide protection against
 failure of the broadcast network, not the real next-hop nodes on the
 broadcast network. This is the best that we can hope to do if
 failure of the broadcast interface is the only failure mode that the
 PLR can respond to.

 We can improve on this if the PLR also has the ability to quickly
 detect a lack of connectivity across the broadcast network to a given
 IP-layer node. This can be accomplished by running BFD between all
 pairs of IGP neighbors on the broadcast network. Note that in the
 case of OSPF, this would require establishing BFD sessions between
 all pairs of neighbors in the 2-WAY state. When the PLR can quickly
 detect the failure of a particular next hop across a broadcast
 network, the PLR can be more selective in its choice of alternates.
 For example, when the PLR observes that connectivity to an IP-layer
 node on a broadcast network has failed, the PLR may choose to still
 use the broadcast network to reach other IP-layer nodes that are
 still reachable. Or, if the PLR observes that connectivity has
 failed to several IP-layer nodes on the same broadcast network, it
 may choose to treat the entire broadcast network as failed. The
 choice of MRT alternates by a PLR for a particular set of failure
 conditions is a local decision, since it does not require
 coordination with other nodes.

8. Evaluation of Alternative Methods for Constructing GADAGs

 This document specifies the MRT Lowpoint algorithm. One component of
 the algorithm involves constructing a common GADAG based on the
 network topology. The MRT Lowpoint algorithm computes the GADAG
 using the method described in Section 5.5. This method aims to
 minimize the amount of computation required to compute the GADAG. In
 the process of developing the MRT Lowpoint algorithm, two alternative
 methods for constructing GADAGs were also considered. These
 alternative methods are described in Appendices B and C. In general,
 these other two methods require more computation to compute the
 GADAG. The analysis below was performed to determine if the
 alternative GADAG construction methods produce shorter MRT alternate
 paths in real network topologies, and if so, to what extent.

 Figure 30 compares results obtained using the three different methods
 for constructing GADAGs on five different service provider network
 topologies. MRT_LOWPOINT indicates the method specified in
 Section 5.5, while MRT_SPF and MRT_HYBRID indicate the methods
 specified in Appendices B and C, respectively. The columns on the
 right present the distribution of alternate path lengths for each
 GADAG construction method. Each MRT computation was performed using
 a same GADAG root chosen based on centrality.

Enyedi, et al. Standards Track [Page 64]

RFC 7811 MRT-FRR Algorithm June 2016

 For three of the topologies analyzed (T201, T206, and T211), the use
 of MRT_SPF or MRT_HYBRID methods does not appear to provide a
 significantly shorter alternate path lengths compared to the
 MRT_LOWPOINT method. However, for two of the topologies (T216 and
 T219), the use of the MRT_SPF method resulted in noticeably shorter
 alternate path lengths than the use of the MRT_LOWPOINT or MRT_HYBRID
 methods.

 It was decided to use the MRT_LOWPOINT method to construct the GADAG
 in the algorithm specified in this document, in order to initially
 offer an algorithm with lower computational requirements. These
 results indicate that in the future it may be useful to evaluate and
 potentially specify other MRT Lowpoint algorithm variants that use
 different GADAG construction methods.

Enyedi, et al. Standards Track [Page 65]

RFC 7811 MRT-FRR Algorithm June 2016

 +---+
Topology name	percentage of failure scenarios
	protected by an alternate N hops
GADAG construction	longer than the primary path
method +------------------------------------+	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T201(avg primary hops=3.5)	
MRT_HYBRID	33
MRT_SPF	33
MRT_LOWPOINT	33
+------------------------------+---+---+---+---+---+---+---+---+----+	
T206(avg primary hops=3.7)	
MRT_HYBRID	50
MRT_SPF	50
MRT_LOWPOINT	55
+------------------------------+---+---+---+---+---+---+---+---+----+	
T211(avg primary hops=3.3)	
MRT_HYBRID	86
MRT_SPF	86
MRT_LOWPOINT	85
+------------------------------+---+---+---+---+---+---+---+---+----+	
T216(avg primary hops=5.2)	
MRT_HYBRID	23
MRT_SPF	35
MRT_LOWPOINT	28
+------------------------------+---+---+---+---+---+---+---+---+----+	
T219(avg primary hops=7.7)	
MRT_HYBRID	20
MRT_SPF	31
MRT_LOWPOINT	19
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 30: The Length of Alternate Paths for Various GADAG
 Construction Methods

9. Operational Considerations

 This section discusses operational considerations related to the MRT
 Lowpoint algorithm and other potential MRT algorithm variants. For a
 discussion of operational considerations related to MRT-FRR in
 general, see the "Operational Considerations" section of [RFC7812].

Enyedi, et al. Standards Track [Page 66]

RFC 7811 MRT-FRR Algorithm June 2016

9.1. GADAG Root Selection

 The Default MRT Profile uses the GADAG Root Selection Priority
 advertised by routers as the primary criterion for selecting the
 GADAG root. It is RECOMMENDED that an operator designate a set of
 routers as good choices for selection as GADAG root by setting the
 GADAG Root Selection Priority for that set of routers to lower (more
 preferred) numerical values. Criteria for making this designation
 are discussed below.

 Analysis has shown that the centrality of a router can have a
 significant impact on the lengths of the alternate paths computed.
 Therefore, it is RECOMMENDED that off-line analysis that considers
 the centrality of a router be used to help determine how good a
 choice a particular router is for the role of GADAG root.

 If the router currently selected as GADAG root becomes unreachable in
 the IGP topology, then a new GADAG root will be selected. Changing
 the GADAG root can change the overall structure of the GADAG as well
 the paths of the red and MRT-Blue trees built using that GADAG. In
 order to minimize change in the associated red and MRT-Blue
 forwarding entries that can result from changing the GADAG root, it
 is RECOMMENDED that operators prioritize for selection as GADAG root
 those routers that are expected to consistently remain part of the
 IGP topology.

9.2. Destination-Rooted GADAGs

 The MRT Lowpoint algorithm constructs a single GADAG rooted at a
 single node selected as the GADAG root. It is also possible to
 construct a different GADAG for each destination, with the GADAG
 rooted at the destination. A router can compute the MRT-Red and MRT-
 Blue next hops for that destination based on the GADAG rooted at that
 destination. Building a different GADAG for each destination is
 computationally more expensive, but it may give somewhat shorter
 alternate paths. Using destination-rooted GADAGs would require a new
 MRT profile to be created with a new MRT algorithm specification,
 since all routers in the MRT Island would need to use destination-
 rooted GADAGs.

10. Security Considerations

 The algorithm described in this document does not introduce new
 security concerns beyond those already discussed in the document
 describing the MRT FRR architecture [RFC7812].

Enyedi, et al. Standards Track [Page 67]

RFC 7811 MRT-FRR Algorithm June 2016

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7812] Atlas, A., Bowers, C., and G. Enyedi, "An Architecture for
 IP/LDP Fast Reroute Using Maximally Redundant Trees
 (MRT-FRR)", RFC 7812, DOI 10.17487/RFC7812, June 2016,
 <http://www.rfc-editor.org/info/rfc7812>.

11.2. Informative References

 [EnyediThesis]
 Enyedi, G., "Novel Algorithms for IP Fast Reroute",
 Department of Telecommunications and Media Informatics,
 Budapest University of Technology and Economics Ph.D.
 Thesis, February 2011,
 <https://repozitorium.omikk.bme.hu/bitstream/
 handle/10890/1040/ertekezes.pdf>.

 [IEEE8021Qca]
 IEEE, "IEEE Standard for Local and metropolitan area
 networks - Bridges and Bridged Networks - Amendment 24:
 Path Control and Reservation", IEEE 802.1Qca-2015,
 DOI 10.1109/IEEESTD.2016.7434544, 2016,
 <https://standards.ieee.org/findstds/
 standard/802.1Qca-2015.html>.

 [ISO10589-Second-Edition]
 International Organization for Standardization,
 "Intermediate system to Intermediate system intra-domain
 routeing information exchange protocol for use in
 conjunction with the protocol for providing the
 connectionless-mode Network Service (ISO 8473)", ISO/
 IEC 10589:2002, Second Edition, November 2002.

 [Kahn_1962_topo_sort]
 Kahn, A., "Topological sorting of large networks",
 Communications of the ACM, Volume 5, Issue 11 DOI
 10.1145/368996.369025, November 1962,
 <http://dl.acm.org/citation.cfm?doid=368996.369025>.

Enyedi, et al. Standards Track [Page 68]

RFC 7811 MRT-FRR Algorithm June 2016

 [MRTLinear]
 Enyedi, G., Retvari, G., and A. Csaszar, "On Finding
 Maximally Redundant Trees in Strictly Linear Time", IEEE
 Symposium on Computers and Communications (ISCC), 2009,
 <http://opti.tmit.bme.hu/˜enyedi/ipfrr/
 distMaxRedTree.pdf>.

 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <http://www.rfc-editor.org/info/rfc2328>.

Enyedi, et al. Standards Track [Page 69]

RFC 7811 MRT-FRR Algorithm June 2016

Appendix A. Python Implementation of MRT Lowpoint Algorithm

 Below is Python code implementing the MRT Lowpoint algorithm
 specified in this document. The code is also posted on GitHub
 <https://github.com/cbowers/draft-ietf-rtgwg-mrt-frr-
 algorithm/blob/python_code_RFC7811/src/mrt_lowpoint_draft_text.py>.

 While this Python code is believed to correctly implement the
 pseudocode description of the algorithm, in the event of a
 difference, the pseudocode description should be considered
 normative.

<CODE BEGINS>
This program has been tested to run on Python 2.6 and 2.7
(specifically Python 2.6.6 and 2.7.8 were tested).
The program has known incompatibilities with Python 3.X.

When executed, this program will generate a text file describing
an example topology. It then reads that text file back in as input
to create the example topology, and runs the MRT Lowpoint algorithm.
This was done to simplify the inclusion of the program as a single
text file that can be extracted from the RFC.

The output of the program is four text files containing a description
of the GADAG, the blue and MRT-Reds for all destinations, and the
MRT alternates for all failures.

import random
import os.path
import heapq

simple Class definitions allow structure-like dot notation for
variables and a convenient place to initialize those variables.
class Topology:
 def __init__(self):
 self.gadag_root = None
 self.node_list = []
 self.node_dict = {}
 self.test_gr = None
 self.island_node_list_for_test_gr = []
 self.stored_named_proxy_dict = {}
 self.init_new_computing_router()
 def init_new_computing_router(self):
 self.island_node_list = []
 self.named_proxy_dict = {}

Enyedi, et al. Standards Track [Page 70]

RFC 7811 MRT-FRR Algorithm June 2016

class Node:
 def __init__(self):
 self.node_id = None
 self.intf_list = []
 self.profile_id_list = [0]
 self.GR_sel_priority = 128
 self.blue_next_hops_dict = {}
 self.red_next_hops_dict = {}
 self.blue_to_green_nh_dict = {}
 self.red_to_green_nh_dict = {}
 self.prefix_cost_dict = {}
 self.pnh_dict = {}
 self.alt_dict = {}
 self.init_new_computing_router()
 def init_new_computing_router(self):
 self.island_intf_list = []
 self.IN_MRT_ISLAND = False
 self.IN_GADAG = False
 self.dfs_number = None
 self.dfs_parent = None
 self.dfs_parent_intf = None
 self.dfs_child_list = []
 self.lowpoint_number = None
 self.lowpoint_parent = None
 self.lowpoint_parent_intf = None
 self.localroot = None
 self.block_id = None
 self.IS_CUT_VERTEX = False
 self.blue_next_hops = []
 self.red_next_hops = []
 self.primary_next_hops = []
 self.alt_list = []

class Interface:
 def __init__(self):
 self.metric = None
 self.area = None
 self.MRT_INELIGIBLE = False
 self.IGP_EXCLUDED = False
 self.SIMULATION_OUTGOING = False
 self.init_new_computing_router()
 def init_new_computing_router(self):
 self.UNDIRECTED = True
 self.INCOMING = False
 self.OUTGOING = False
 self.INCOMING_STORED = False
 self.OUTGOING_STORED = False
 self.IN_MRT_ISLAND = False

Enyedi, et al. Standards Track [Page 71]

RFC 7811 MRT-FRR Algorithm June 2016

 self.PROCESSED = False

class Bundle:
 def __init__(self):
 self.UNDIRECTED = True
 self.OUTGOING = False
 self.INCOMING = False

class Alternate:
 def __init__(self):
 self.failed_intf = None
 self.red_or_blue = None
 self.nh_list = []
 self.fec = ’NO_ALTERNATE’
 self.prot = ’NO_PROTECTION’
 self.info = ’NONE’

class Proxy_Node_Attachment_Router:
 def __init__(self):
 self.prefix = None
 self.node = None
 self.named_proxy_cost = None
 self.min_lfin = None
 self.nh_intf_list = []

class Named_Proxy_Node:
 def __init__(self):
 self.node_id = None #this is the prefix_id
 self.node_prefix_cost_list = []
 self.lfin_list = []
 self.pnar1 = None
 self.pnar2 = None
 self.pnar_X = None
 self.pnar_Y = None
 self.blue_next_hops = []
 self.red_next_hops = []
 self.primary_next_hops = []
 self.blue_next_hops_dict = {}
 self.red_next_hops_dict = {}
 self.pnh_dict = {}
 self.alt_dict = {}

def Interface_Compare(intf_a, intf_b):
 if intf_a.metric < intf_b.metric:
 return -1
 if intf_b.metric < intf_a.metric:
 return 1
 if intf_a.remote_node.node_id < intf_b.remote_node.node_id:

Enyedi, et al. Standards Track [Page 72]

RFC 7811 MRT-FRR Algorithm June 2016

 return -1
 if intf_b.remote_node.node_id < intf_a.remote_node.node_id:
 return 1
 return 0

def Sort_Interfaces(topo):
 for node in topo.island_node_list:
 node.island_intf_list.sort(Interface_Compare)

def Reset_Computed_Node_and_Intf_Values(topo):
 topo.init_new_computing_router()
 for node in topo.node_list:
 node.init_new_computing_router()
 for intf in node.intf_list:
 intf.init_new_computing_router()

This function takes a file with links represented by 2-digit
numbers in the format:
01,05,10
05,02,30
02,01,15
which represents a triangle topology with nodes 01, 05, and 02
and symmetric metrics of 10, 30, and 15.

Inclusion of a fourth column makes the metrics for the link
asymmetric. An entry of:
02,07,10,15
creates a link from node 02 to 07 with metrics 10 and 15.
def Create_Topology_From_File(filename):
 topo = Topology()
 node_id_set= set()
 cols_list = []
 # on first pass just create nodes
 with open(filename + ’.csv’) as topo_file:
 for line in topo_file:
 line = line.rstrip(’\r\n’)
 cols=line.split(’,’)
 cols_list.append(cols)
 nodea_node_id = int(cols[0])
 nodeb_node_id = int(cols[1])
 if (nodea_node_id > 999 or nodeb_node_id > 999):
 print("node_id must be between 0 and 999.")
 print("exiting.")
 exit()
 node_id_set.add(nodea_node_id)
 node_id_set.add(nodeb_node_id)
 for node_id in node_id_set:
 node = Node()

Enyedi, et al. Standards Track [Page 73]

RFC 7811 MRT-FRR Algorithm June 2016

 node.node_id = node_id
 topo.node_list.append(node)
 topo.node_dict[node_id] = node
 # on second pass create interfaces
 for cols in cols_list:
 nodea_node_id = int(cols[0])
 nodeb_node_id = int(cols[1])
 metric = int(cols[2])
 reverse_metric = int(cols[2])
 if len(cols) > 3:
 reverse_metric=int(cols[3])
 nodea = topo.node_dict[nodea_node_id]
 nodeb = topo.node_dict[nodeb_node_id]
 nodea_intf = Interface()
 nodea_intf.metric = metric
 nodea_intf.area = 0
 nodeb_intf = Interface()
 nodeb_intf.metric = reverse_metric
 nodeb_intf.area = 0
 nodea_intf.remote_intf = nodeb_intf
 nodeb_intf.remote_intf = nodea_intf
 nodea_intf.remote_node = nodeb
 nodeb_intf.remote_node = nodea
 nodea_intf.local_node = nodea
 nodeb_intf.local_node = nodeb
 nodea_intf.link_data = len(nodea.intf_list)
 nodeb_intf.link_data = len(nodeb.intf_list)
 nodea.intf_list.append(nodea_intf)
 nodeb.intf_list.append(nodeb_intf)
 return topo

def MRT_Island_Identification(topo, computing_rtr, profile_id, area):
 if profile_id in computing_rtr.profile_id_list:
 computing_rtr.IN_MRT_ISLAND = True
 explore_list = [computing_rtr]
 else:
 return
 while explore_list != []:
 next_rtr = explore_list.pop()
 for intf in next_rtr.intf_list:
 if ((not intf.IN_MRT_ISLAND)
 and (not intf.MRT_INELIGIBLE)
 and (not intf.remote_intf.MRT_INELIGIBLE)
 and (not intf.IGP_EXCLUDED) and intf.area == area
 and (profile_id in intf.remote_node.profile_id_list)):
 intf.IN_MRT_ISLAND = True
 intf.remote_intf.IN_MRT_ISLAND = True
 if (not intf.remote_node.IN_MRT_ISLAND):

Enyedi, et al. Standards Track [Page 74]

RFC 7811 MRT-FRR Algorithm June 2016

 intf.remote_INTF.IN_MRT_ISLAND = True
 explore_list.append(intf.remote_node)

def Compute_Island_Node_List_For_Test_GR(topo, test_gr):
 Reset_Computed_Node_and_Intf_Values(topo)
 topo.test_gr = topo.node_dict[test_gr]
 MRT_Island_Identification(topo, topo.test_gr, 0, 0)
 for node in topo.node_list:
 if node.IN_MRT_ISLAND:
 topo.island_node_list_for_test_gr.append(node)

def Set_Island_Intf_and_Node_Lists(topo):
 for node in topo.node_list:
 if node.IN_MRT_ISLAND:
 topo.island_node_list.append(node)
 for intf in node.intf_list:
 if intf.IN_MRT_ISLAND:
 node.island_intf_list.append(intf)

global_dfs_number = None

def Lowpoint_Visit(x, parent, intf_p_to_x):
 global global_dfs_number
 x.dfs_number = global_dfs_number
 x.lowpoint_number = x.dfs_number
 global_dfs_number += 1
 x.dfs_parent = parent
 if intf_p_to_x == None:
 x.dfs_parent_intf = None
 else:
 x.dfs_parent_intf = intf_p_to_x.remote_intf
 x.lowpoint_parent = None
 if parent != None:
 parent.dfs_child_list.append(x)
 for intf in x.island_intf_list:
 if intf.remote_node.dfs_number == None:
 Lowpoint_Visit(intf.remote_node, x, intf)
 if intf.remote_node.lowpoint_number < x.lowpoint_number:
 x.lowpoint_number = intf.remote_node.lowpoint_number
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf
 else:
 if intf.remote_node is not parent:
 if intf.remote_node.dfs_number < x.lowpoint_number:
 x.lowpoint_number = intf.remote_node.dfs_number
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf

Enyedi, et al. Standards Track [Page 75]

RFC 7811 MRT-FRR Algorithm June 2016

def Run_Lowpoint(topo):
 global global_dfs_number
 global_dfs_number = 0
 Lowpoint_Visit(topo.gadag_root, None, None)

max_block_id = None

def Assign_Block_ID(x, cur_block_id):
 global max_block_id
 x.block_id = cur_block_id
 for c in x.dfs_child_list:
 if (c.localroot is x):
 max_block_id += 1
 Assign_Block_ID(c, max_block_id)
 else:
 Assign_Block_ID(c, cur_block_id)

def Run_Assign_Block_ID(topo):
 global max_block_id
 max_block_id = 0
 Assign_Block_ID(topo.gadag_root, max_block_id)

def Construct_Ear(x, stack, intf, ear_type):
 ear_list = []
 cur_intf = intf
 not_done = True
 while not_done:
 cur_intf.UNDIRECTED = False
 cur_intf.OUTGOING = True
 cur_intf.remote_intf.UNDIRECTED = False
 cur_intf.remote_intf.INCOMING = True
 if cur_intf.remote_node.IN_GADAG == False:
 cur_intf.remote_node.IN_GADAG = True
 ear_list.append(cur_intf.remote_node)
 if ear_type == ’CHILD’:
 cur_intf = cur_intf.remote_node.lowpoint_parent_intf
 else:
 assert ear_type == ’NEIGHBOR’
 cur_intf = cur_intf.remote_node.dfs_parent_intf
 else:
 not_done = False

 if ear_type == ’CHILD’ and cur_intf.remote_node is x:
 # x is a cut-vertex and the local root for the block
 # in which the ear is computed
 x.IS_CUT_VERTEX = True
 localroot = x
 else:

Enyedi, et al. Standards Track [Page 76]

RFC 7811 MRT-FRR Algorithm June 2016

 # inherit local root from the end of the ear
 localroot = cur_intf.remote_node.localroot

 while ear_list != []:
 y = ear_list.pop()
 y.localroot = localroot
 stack.append(y)

def Construct_GADAG_via_Lowpoint(topo):
 gadag_root = topo.gadag_root
 gadag_root.IN_GADAG = True
 gadag_root.localroot = None
 stack = []
 stack.append(gadag_root)
 while stack != []:
 x = stack.pop()
 for intf in x.island_intf_list:
 if (intf.remote_node.IN_GADAG == False
 and intf.remote_node.dfs_parent is x):
 Construct_Ear(x, stack, intf, ’CHILD’)
 for intf in x.island_intf_list:
 if (intf.remote_node.IN_GADAG == False
 and intf.remote_node.dfs_parent is not x):
 Construct_Ear(x, stack, intf, ’NEIGHBOR’)

def Assign_Remaining_Lowpoint_Parents(topo):
 for node in topo.island_node_list:
 if (node is not topo.gadag_root
 and node.lowpoint_parent == None):
 node.lowpoint_parent = node.dfs_parent
 node.lowpoint_parent_intf = node.dfs_parent_intf
 node.lowpoint_number = node.dfs_parent.dfs_number

def Add_Undirected_Block_Root_Links(topo):
 for node in topo.island_node_list:
 if node.IS_CUT_VERTEX or node is topo.gadag_root:
 for intf in node.island_intf_list:
 if (intf.remote_node.localroot is not node
 or intf.PROCESSED):
 continue
 bundle_list = []
 bundle = Bundle()
 for intf2 in node.island_intf_list:
 if intf2.remote_node is intf.remote_node:
 bundle_list.append(intf2)
 if not intf2.UNDIRECTED:
 bundle.UNDIRECTED = False
 if intf2.INCOMING:

Enyedi, et al. Standards Track [Page 77]

RFC 7811 MRT-FRR Algorithm June 2016

 bundle.INCOMING = True
 if intf2.OUTGOING:
 bundle.OUTGOING = True
 if bundle.UNDIRECTED:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.remote_intf.INCOMING = True
 else:
 if (bundle.OUTGOING and bundle.INCOMING):
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.INCOMING = True
 intf3.remote_intf.INCOMING = True
 intf3.remote_intf.OUTGOING = True
 elif bundle.OUTGOING:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.remote_intf.INCOMING = True
 elif bundle.INCOMING:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.INCOMING = True
 intf3.remote_intf.OUTGOING = True

def Modify_Block_Root_Incoming_Links(topo):
 for node in topo.island_node_list:
 if (node.IS_CUT_VERTEX == True or node is topo.gadag_root):
 for intf in node.island_intf_list:
 if intf.remote_node.localroot is node:
 if intf.INCOMING:
 intf.INCOMING = False
 intf.INCOMING_STORED = True
 intf.remote_intf.OUTGOING = False

Enyedi, et al. Standards Track [Page 78]

RFC 7811 MRT-FRR Algorithm June 2016

 intf.remote_intf.OUTGOING_STORED = True

def Revert_Block_Root_Incoming_Links(topo):
 for node in topo.island_node_list:
 if (node.IS_CUT_VERTEX == True or node is topo.gadag_root):
 for intf in node.island_intf_list:
 if intf.remote_node.localroot is node:
 if intf.INCOMING_STORED:
 intf.INCOMING = True
 intf.remote_intf.OUTGOING = True
 intf.INCOMING_STORED = False
 intf.remote_intf.OUTGOING_STORED = False

def Run_Topological_Sort_GADAG(topo):
 Modify_Block_Root_Incoming_Links(topo)
 for node in topo.island_node_list:
 node.unvisited = 0
 for intf in node.island_intf_list:
 if (intf.INCOMING == True):
 node.unvisited += 1
 working_list = []
 topo_order_list = []
 working_list.append(topo.gadag_root)
 while working_list != []:
 y = working_list.pop(0)
 topo_order_list.append(y)
 for intf in y.island_intf_list:
 if (intf.OUTGOING == True):
 intf.remote_node.unvisited -= 1
 if intf.remote_node.unvisited == 0:
 working_list.append(intf.remote_node)
 next_topo_order = 1
 while topo_order_list != []:
 y = topo_order_list.pop(0)
 y.topo_order = next_topo_order
 next_topo_order += 1
 Revert_Block_Root_Incoming_Links(topo)

def Set_Other_Undirected_Links_Based_On_Topo_Order(topo):
 for node in topo.island_node_list:
 for intf in node.island_intf_list:
 if intf.UNDIRECTED:
 if node.topo_order < intf.remote_node.topo_order:
 intf.OUTGOING = True
 intf.UNDIRECTED = False
 intf.remote_intf.INCOMING = True
 intf.remote_intf.UNDIRECTED = False
 else:

Enyedi, et al. Standards Track [Page 79]

RFC 7811 MRT-FRR Algorithm June 2016

 intf.INCOMING = True
 intf.UNDIRECTED = False
 intf.remote_intf.OUTGOING = True
 intf.remote_intf.UNDIRECTED = False

def Initialize_Temporary_Interface_Flags(topo):
 for node in topo.island_node_list:
 for intf in node.island_intf_list:
 intf.PROCESSED = False
 intf.INCOMING_STORED = False
 intf.OUTGOING_STORED = False

def Add_Undirected_Links(topo):
 Initialize_Temporary_Interface_Flags(topo)
 Add_Undirected_Block_Root_Links(topo)
 Run_Topological_Sort_GADAG(topo)
 Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

def In_Common_Block(x,y):
 if ((x.block_id == y.block_id)
 or (x is y.localroot) or (y is x.localroot)):
 return True
 return False

def Copy_List_Items(target_list, source_list):
 del target_list[:] # Python idiom to remove all elements of a list
 for element in source_list:
 target_list.append(element)

def Add_Item_To_List_If_New(target_list, item):
 if item not in target_list:
 target_list.append(item)

def Store_Results(y, direction):
 if direction == ’INCREASING’:
 y.HIGHER = True
 Copy_List_Items(y.blue_next_hops, y.next_hops)
 if direction == ’DECREASING’:
 y.LOWER = True
 Copy_List_Items(y.red_next_hops, y.next_hops)
 if direction == ’NORMAL_SPF’:
 y.primary_spf_metric = y.spf_metric
 Copy_List_Items(y.primary_next_hops, y.next_hops)
 if direction == ’MRT_ISLAND_SPF’:
 Copy_List_Items(y.mrt_island_next_hops, y.next_hops)
 if direction == ’COLLAPSED_SPF’:
 y.collapsed_metric = y.spf_metric
 Copy_List_Items(y.collapsed_next_hops, y.next_hops)

Enyedi, et al. Standards Track [Page 80]

RFC 7811 MRT-FRR Algorithm June 2016

Note that the Python heapq function allows for duplicate items,
so we use the ’spf_visited’ property to only consider a node
as min_node the first time it gets removed from the heap.
def SPF_No_Traverse_Block_Root(topo, spf_root, block_root, direction):
 spf_heap = []
 for y in topo.island_node_list:
 y.spf_metric = 2147483647 # 2^31-1
 y.next_hops = []
 y.spf_visited = False
 spf_root.spf_metric = 0
 heapq.heappush(spf_heap,
 (spf_root.spf_metric, spf_root.node_id, spf_root))
 while spf_heap != []:
 #extract third element of tuple popped from heap
 min_node = heapq.heappop(spf_heap)[2]
 if min_node.spf_visited:
 continue
 min_node.spf_visited = True
 Store_Results(min_node, direction)
 if ((min_node is spf_root) or (min_node is not block_root)):
 for intf in min_node.island_intf_list:
 if (((direction == ’INCREASING’ and intf.OUTGOING)
 or (direction == ’DECREASING’ and intf.INCOMING))
 and In_Common_Block(spf_root, intf.remote_node)) :
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric:
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root:
 intf.remote_node.next_hops = [intf]
 else:
 Copy_List_Items(intf.remote_node.next_hops,
 min_node.next_hops)
 heapq.heappush(spf_heap,
 (intf.remote_node.spf_metric,
 intf.remote_node.node_id,
 intf.remote_node))
 elif path_metric == intf.remote_node.spf_metric:
 if min_node is spf_root:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,intf)
 else:
 for nh_intf in min_node.next_hops:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,nh_intf)

def Normal_SPF(topo, spf_root):
 spf_heap = []
 for y in topo.node_list:

Enyedi, et al. Standards Track [Page 81]

RFC 7811 MRT-FRR Algorithm June 2016

 y.spf_metric = 2147483647 # 2^31-1 as max metric
 y.next_hops = []
 y.primary_spf_metric = 2147483647
 y.primary_next_hops = []
 y.spf_visited = False
 spf_root.spf_metric = 0
 heapq.heappush(spf_heap,
 (spf_root.spf_metric,spf_root.node_id,spf_root))
 while spf_heap != []:
 #extract third element of tuple popped from heap
 min_node = heapq.heappop(spf_heap)[2]
 if min_node.spf_visited:
 continue
 min_node.spf_visited = True
 Store_Results(min_node, ’NORMAL_SPF’)
 for intf in min_node.intf_list:
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric:
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root:
 intf.remote_node.next_hops = [intf]
 else:
 Copy_List_Items(intf.remote_node.next_hops,
 min_node.next_hops)
 heapq.heappush(spf_heap,
 (intf.remote_node.spf_metric,
 intf.remote_node.node_id,
 intf.remote_node))
 elif path_metric == intf.remote_node.spf_metric:
 if min_node is spf_root:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,intf)
 else:
 for nh_intf in min_node.next_hops:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,nh_intf)

def Set_Edge(y):
 if (y.blue_next_hops == [] and y.red_next_hops == []):
 Set_Edge(y.localroot)
 Copy_List_Items(y.blue_next_hops,y.localroot.blue_next_hops)
 Copy_List_Items(y.red_next_hops ,y.localroot.red_next_hops)
 y.order_proxy = y.localroot.order_proxy

def Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:
 y.HIGHER = False
 y.LOWER = False

Enyedi, et al. Standards Track [Page 82]

RFC 7811 MRT-FRR Algorithm June 2016

 y.red_next_hops = []
 y.blue_next_hops = []
 y.order_proxy = y
 SPF_No_Traverse_Block_Root(topo, x, x.localroot, ’INCREASING’)
 SPF_No_Traverse_Block_Root(topo, x, x.localroot, ’DECREASING’)
 for y in topo.island_node_list:
 if (y is not x and (y.block_id == x.block_id)):
 assert (not (y is x.localroot or x is y.localroot))
 assert(not (y.HIGHER and y.LOWER))
 if y.HIGHER == True:
 Copy_List_Items(y.red_next_hops,
 x.localroot.red_next_hops)
 elif y.LOWER == True:
 Copy_List_Items(y.blue_next_hops,
 x.localroot.blue_next_hops)
 else:
 Copy_List_Items(y.blue_next_hops,
 x.localroot.red_next_hops)
 Copy_List_Items(y.red_next_hops,
 x.localroot.blue_next_hops)

 # Inherit x’s MRT next hops to reach the GADAG root
 # from x’s MRT next hops to reach its local root,
 # but first check if x is the gadag_root (in which case
 # x does not have a local root) or if x’s local root
 # is the gadag root (in which case we already have the
 # x’s MRT next hops to reach the gadag root)
 if x is not topo.gadag_root and x.localroot is not topo.gadag_root:
 Copy_List_Items(topo.gadag_root.blue_next_hops,
 x.localroot.blue_next_hops)
 Copy_List_Items(topo.gadag_root.red_next_hops,
 x.localroot.red_next_hops)
 topo.gadag_root.order_proxy = x.localroot

 # Inherit next hops and order_proxies to other blocks
 for y in topo.island_node_list:
 if (y is not topo.gadag_root and y is not x):
 Set_Edge(y)

def Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:
 if y is x:
 continue
 x.blue_next_hops_dict[y.node_id] = []
 x.red_next_hops_dict[y.node_id] = []
 Copy_List_Items(x.blue_next_hops_dict[y.node_id],
 y.blue_next_hops)

Enyedi, et al. Standards Track [Page 83]

RFC 7811 MRT-FRR Algorithm June 2016

 Copy_List_Items(x.red_next_hops_dict[y.node_id],
 y.red_next_hops)

def Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:
 x.pnh_dict[y.node_id] = []
 Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)
 x.alt_dict[y.node_id] = []
 Copy_List_Items(x.alt_dict[y.node_id], y.alt_list)

def Store_Primary_NHs_For_One_Source_To_Nodes(topo,x):
 for y in topo.node_list:
 x.pnh_dict[y.node_id] = []
 Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)

def Store_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.blue_next_hops_dict[P.node_id] = []
 x.red_next_hops_dict[P.node_id] = []
 Copy_List_Items(x.blue_next_hops_dict[P.node_id],
 P.blue_next_hops)
 Copy_List_Items(x.red_next_hops_dict[P.node_id],
 P.red_next_hops)

def Store_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.alt_dict[P.node_id] = []
 Copy_List_Items(x.alt_dict[P.node_id],
 P.alt_list)

def Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.pnh_dict[P.node_id] = []
 Copy_List_Items(x.pnh_dict[P.node_id],
 P.primary_next_hops)

def Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order):
 if D_higher and D_lower:
 if F.HIGHER and F.LOWER:
 if F.topo_order > D_topo_order:
 return ’USE_BLUE’
 else:
 return ’USE_RED’
 if F.HIGHER:

Enyedi, et al. Standards Track [Page 84]

RFC 7811 MRT-FRR Algorithm June 2016

 return ’USE_RED’
 if F.LOWER:
 return ’USE_BLUE’
 assert(primary_intf.MRT_INELIGIBLE
 or primary_intf.remote_intf.MRT_INELIGIBLE)
 return ’USE_RED_OR_BLUE’
 if D_higher:
 if F.HIGHER and F.LOWER:
 return ’USE_BLUE’
 if F.LOWER:
 return ’USE_BLUE’
 if F.HIGHER:
 if (F.topo_order > D_topo_order):
 return ’USE_BLUE’
 if (F.topo_order < D_topo_order):
 return ’USE_RED’
 assert(False)
 assert(primary_intf.MRT_INELIGIBLE
 or primary_intf.remote_intf.MRT_INELIGIBLE)
 return ’USE_RED_OR_BLUE’
 if D_lower:
 if F.HIGHER and F.LOWER:
 return ’USE_RED’
 if F.HIGHER:
 return ’USE_RED’
 if F.LOWER:
 if F.topo_order > D_topo_order:
 return ’USE_BLUE’
 if F.topo_order < D_topo_order:
 return ’USE_RED’
 assert(False)
 assert(primary_intf.MRT_INELIGIBLE
 or primary_intf.remote_intf.MRT_INELIGIBLE)
 return ’USE_RED_OR_BLUE’
 else: # D is unordered wrt S
 if F.HIGHER and F.LOWER:
 if primary_intf.OUTGOING and primary_intf.INCOMING:
 # This can happen when F and D are in different blocks
 return ’USE_RED_OR_BLUE’
 if primary_intf.OUTGOING:
 return ’USE_BLUE’
 if primary_intf.INCOMING:
 return ’USE_RED’
 #This can occur when primary_intf is MRT_INELIGIBLE.
 #This appears to be a case where the special
 #construction of the GADAG allows us to choose red,
 #whereas with an arbitrary GADAG, neither red nor blue
 #is guaranteed to work.

Enyedi, et al. Standards Track [Page 85]

RFC 7811 MRT-FRR Algorithm June 2016

 assert(primary_intf.MRT_INELIGIBLE
 or primary_intf.remote_intf.MRT_INELIGIBLE)
 return ’USE_RED’
 if F.LOWER:
 return ’USE_RED’
 if F.HIGHER:
 return ’USE_BLUE’
 assert(primary_intf.MRT_INELIGIBLE
 or primary_intf.remote_intf.MRT_INELIGIBLE)
 if F.topo_order > D_topo_order:
 return ’USE_BLUE’
 else:
 return ’USE_RED’

def Select_Alternates(D, F, primary_intf):
 S = primary_intf.local_node
 if not In_Common_Block(F, S):
 return ’PRIM_NH_IN_DIFFERENT_BLOCK’
 if (D is F) or (D.order_proxy is F):
 return ’PRIM_NH_IS_D_OR_OP_FOR_D’
 D_lower = D.order_proxy.LOWER
 D_higher = D.order_proxy.HIGHER
 D_topo_order = D.order_proxy.topo_order
 return Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order)

def Is_Remote_Node_In_NH_List(node, intf_list):
 for intf in intf_list:
 if node is intf.remote_node:
 return True
 return False

def Select_Alts_For_One_Src_To_Island_Dests(topo,x):
 Normal_SPF(topo, x)
 for D in topo.island_node_list:
 D.alt_list = []
 if D is x:
 continue
 for failed_intf in D.primary_next_hops:
 alt = Alternate()
 alt.failed_intf = failed_intf
 cand_alt_list = []
 F = failed_intf.remote_node
 #We need to test if F is in the island, as opposed
 #to just testing if failed_intf is in island_intf_list,
 #because failed_intf could be marked as MRT_INELIGIBLE.
 if F in topo.island_node_list:

Enyedi, et al. Standards Track [Page 86]

RFC 7811 MRT-FRR Algorithm June 2016

 alt.info = Select_Alternates(D, F, failed_intf)
 else:
 #The primary next hop is not in the MRT Island.
 #Either red or blue will avoid the primary next hop,
 #because the primary next hop is not even in the
 #GADAG.
 alt.info = ’USE_RED_OR_BLUE’

 if (alt.info == ’USE_RED_OR_BLUE’):
 alt.red_or_blue = random.choice([’USE_RED’,’USE_BLUE’])
 if (alt.info == ’USE_BLUE’
 or alt.red_or_blue == ’USE_BLUE’):
 Copy_List_Items(alt.nh_list, D.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’NODE_PROTECTION’
 if (alt.info == ’USE_RED’ or alt.red_or_blue == ’USE_RED’):
 Copy_List_Items(alt.nh_list, D.red_next_hops)
 alt.fec = ’RED’
 alt.prot = ’NODE_PROTECTION’
 if (alt.info == ’PRIM_NH_IN_DIFFERENT_BLOCK’):
 alt.fec = ’NO_ALTERNATE’
 alt.prot = ’NO_PROTECTION’
 if (alt.info == ’PRIM_NH_IS_D_OR_OP_FOR_D’):
 if failed_intf.OUTGOING and failed_intf.INCOMING:
 # cut-link: if there are parallel cut links, use
 # the link(s) with lowest metric that are not
 # primary intf or None
 cand_alt_list = [None]
 min_metric = 2147483647
 for intf in x.island_intf_list:
 if (intf is not failed_intf and
 (intf.remote_node is
 failed_intf.remote_node)):
 if intf.metric < min_metric:
 cand_alt_list = [intf]
 min_metric = intf.metric
 elif intf.metric == min_metric:
 cand_alt_list.append(intf)
 if cand_alt_list != [None]:
 alt.fec = ’GREEN’
 alt.prot = ’PARALLEL_CUTLINK’
 else:
 alt.fec = ’NO_ALTERNATE’
 alt.prot = ’NO_PROTECTION’
 Copy_List_Items(alt.nh_list, cand_alt_list)

 # Is_Remote_Node_In_NH_List() is used, as opposed
 # to just checking if failed_intf is in D.red_next_hops,

Enyedi, et al. Standards Track [Page 87]

RFC 7811 MRT-FRR Algorithm June 2016

 # because failed_intf could be marked as MRT_INELIGIBLE.
 elif Is_Remote_Node_In_NH_List(F, D.red_next_hops):
 Copy_List_Items(alt.nh_list, D.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’LINK_PROTECTION’
 elif Is_Remote_Node_In_NH_List(F, D.blue_next_hops):
 Copy_List_Items(alt.nh_list, D.red_next_hops)
 alt.fec = ’RED’
 alt.prot = ’LINK_PROTECTION’
 else:
 alt.fec = random.choice([’RED’,’BLUE’])
 alt.prot = ’LINK_PROTECTION’

 D.alt_list.append(alt)

def Write_GADAG_To_File(topo, file_prefix):
 gadag_edge_list = []
 for node in topo.node_list:
 for intf in node.intf_list:
 if intf.SIMULATION_OUTGOING:
 local_node = "%04d" % (intf.local_node.node_id)
 remote_node = "%04d" % (intf.remote_node.node_id)
 intf_data = "%03d" % (intf.link_data)
 edge_string=(local_node+’,’+remote_node+’,’+
 intf_data+’\n’)
 gadag_edge_list.append(edge_string)
 gadag_edge_list.sort();
 filename = file_prefix + ’_gadag.csv’
 with open(filename, ’w’) as gadag_file:
 gadag_file.write(’local_node,’\
 ’remote_node,local_intf_link_data\n’)
 for edge_string in gadag_edge_list:
 gadag_file.write(edge_string);

def Write_MRTs_For_All_Dests_To_File(topo, color, file_prefix):
 edge_list = []
 for node in topo.island_node_list_for_test_gr:
 if color == ’blue’:
 node_next_hops_dict = node.blue_next_hops_dict
 elif color == ’red’:
 node_next_hops_dict = node.red_next_hops_dict
 for dest_node_id in node_next_hops_dict:
 for intf in node_next_hops_dict[dest_node_id]:
 gadag_root = "%04d" % (topo.gadag_root.node_id)
 dest_node = "%04d" % (dest_node_id)
 local_node = "%04d" % (intf.local_node.node_id)
 remote_node = "%04d" % (intf.remote_node.node_id)
 intf_data = "%03d" % (intf.link_data)

Enyedi, et al. Standards Track [Page 88]

RFC 7811 MRT-FRR Algorithm June 2016

 edge_string=(gadag_root+’,’+dest_node+’,’+local_node+
 ’,’+remote_node+’,’+intf_data+’\n’)
 edge_list.append(edge_string)
 edge_list.sort()
 filename = file_prefix + ’_’ + color + ’_to_all.csv’
 with open(filename, ’w’) as mrt_file:
 mrt_file.write(’gadag_root,dest,’\
 ’local_node,remote_node,link_data\n’)
 for edge_string in edge_list:
 mrt_file.write(edge_string);

def Write_Both_MRTs_For_All_Dests_To_File(topo, file_prefix):
 Write_MRTs_For_All_Dests_To_File(topo, ’blue’, file_prefix)
 Write_MRTs_For_All_Dests_To_File(topo, ’red’, file_prefix)

def Write_Alternates_For_All_Dests_To_File(topo, file_prefix):
 edge_list = []
 for x in topo.island_node_list_for_test_gr:
 for dest_node_id in x.alt_dict:
 alt_list = x.alt_dict[dest_node_id]
 for alt in alt_list:
 for alt_intf in alt.nh_list:
 gadag_root = "%04d" % (topo.gadag_root.node_id)
 dest_node = "%04d" % (dest_node_id)
 prim_local_node = \
 "%04d" % (alt.failed_intf.local_node.node_id)
 prim_remote_node = \
 "%04d" % (alt.failed_intf.remote_node.node_id)
 prim_intf_data = \
 "%03d" % (alt.failed_intf.link_data)
 if alt_intf == None:
 alt_local_node = "None"
 alt_remote_node = "None"
 alt_intf_data = "None"
 else:
 alt_local_node = \
 "%04d" % (alt_intf.local_node.node_id)
 alt_remote_node = \
 "%04d" % (alt_intf.remote_node.node_id)
 alt_intf_data = \
 "%03d" % (alt_intf.link_data)
 edge_string = (gadag_root+’,’+dest_node+’,’+
 prim_local_node+’,’+prim_remote_node+’,’+
 prim_intf_data+’,’+alt_local_node+’,’+
 alt_remote_node+’,’+alt_intf_data+’,’+
 alt.fec +’\n’)
 edge_list.append(edge_string)
 edge_list.sort()

Enyedi, et al. Standards Track [Page 89]

RFC 7811 MRT-FRR Algorithm June 2016

 filename = file_prefix + ’_alts_to_all.csv’
 with open(filename, ’w’) as alt_file:
 alt_file.write(’gadag_root,dest,’\
 ’prim_nh.local_node,prim_nh.remote_node,’\
 ’prim_nh.link_data,alt_nh.local_node,’\
 ’alt_nh.remote_node,alt_nh.link_data,’\
 ’alt_nh.fec\n’)
 for edge_string in edge_list:
 alt_file.write(edge_string);

def Raise_GADAG_Root_Selection_Priority(topo,node_id):
 node = topo.node_dict[node_id]
 node.GR_sel_priority = 255

def Lower_GADAG_Root_Selection_Priority(topo,node_id):
 node = topo.node_dict[node_id]
 node.GR_sel_priority = 128

def GADAG_Root_Compare(node_a, node_b):
 if (node_a.GR_sel_priority > node_b.GR_sel_priority):
 return 1
 elif (node_a.GR_sel_priority < node_b.GR_sel_priority):
 return -1
 else:
 if node_a.node_id > node_b.node_id:
 return 1
 elif node_a.node_id < node_b.node_id:
 return -1

def Set_GADAG_Root(topo,computing_router):
 gadag_root_list = []
 for node in topo.island_node_list:
 gadag_root_list.append(node)
 gadag_root_list.sort(GADAG_Root_Compare)
 topo.gadag_root = gadag_root_list.pop()

def Add_Prefix_Advertisements_From_File(topo, filename):
 prefix_filename = filename + ’.prefix’
 cols_list = []
 if not os.path.exists(prefix_filename):
 return
 with open(prefix_filename) as prefix_file:
 for line in prefix_file:
 line = line.rstrip(’\r\n’)
 cols=line.split(’,’)
 cols_list.append(cols)
 prefix_id = int(cols[0])
 if prefix_id < 2000 or prefix_id >2999:

Enyedi, et al. Standards Track [Page 90]

RFC 7811 MRT-FRR Algorithm June 2016

 print(’skipping the following line of prefix file’)
 print(’prefix id should be between 2000 and 2999’)
 print(line)
 continue
 prefix_node_id = int(cols[1])
 prefix_cost = int(cols[2])
 advertising_node = topo.node_dict[prefix_node_id]
 advertising_node.prefix_cost_dict[prefix_id] = prefix_cost

def Add_Prefixes_for_Non_Island_Nodes(topo):
 for node in topo.node_list:
 if node.IN_MRT_ISLAND:
 continue
 prefix_id = node.node_id + 1000
 node.prefix_cost_dict[prefix_id] = 0

def Add_Profile_IDs_from_File(topo, filename):
 profile_filename = filename + ’.profile’
 for node in topo.node_list:
 node.profile_id_list = []
 cols_list = []
 if os.path.exists(profile_filename):
 with open(profile_filename) as profile_file:
 for line in profile_file:
 line = line.rstrip(’\r\n’)
 cols=line.split(’,’)
 cols_list.append(cols)
 node_id = int(cols[0])
 profile_id = int(cols[1])
 this_node = topo.node_dict[node_id]
 this_node.profile_id_list.append(profile_id)
 else:
 for node in topo.node_list:
 node.profile_id_list = [0]

def Island_Marking_SPF(topo,spf_root):
 spf_root.isl_marking_spf_dict = {}
 for y in topo.node_list:
 y.spf_metric = 2147483647 # 2^31-1 as max metric
 y.PATH_HITS_ISLAND = False
 y.next_hops = []
 y.spf_visited = False
 spf_root.spf_metric = 0
 spf_heap = []
 heapq.heappush(spf_heap,
 (spf_root.spf_metric,spf_root.node_id,spf_root))
 while spf_heap != []:
 #extract third element of tuple popped from heap

Enyedi, et al. Standards Track [Page 91]

RFC 7811 MRT-FRR Algorithm June 2016

 min_node = heapq.heappop(spf_heap)[2]
 if min_node.spf_visited:
 continue
 min_node.spf_visited = True
 spf_root.isl_marking_spf_dict[min_node.node_id] = \
 (min_node.spf_metric, min_node.PATH_HITS_ISLAND)
 for intf in min_node.intf_list:
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric:
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root:
 intf.remote_node.next_hops = [intf]
 else:
 Copy_List_Items(intf.remote_node.next_hops,
 min_node.next_hops)
 if (intf.remote_node.IN_MRT_ISLAND):
 intf.remote_node.PATH_HITS_ISLAND = True
 else:
 intf.remote_node.PATH_HITS_ISLAND = \
 min_node.PATH_HITS_ISLAND
 heapq.heappush(spf_heap,
 (intf.remote_node.spf_metric,
 intf.remote_node.node_id,
 intf.remote_node))
 elif path_metric == intf.remote_node.spf_metric:
 if min_node is spf_root:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,intf)
 else:
 for nh_intf in min_node.next_hops:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,nh_intf)
 if (intf.remote_node.IN_MRT_ISLAND):
 intf.remote_node.PATH_HITS_ISLAND = True
 else:
 if (intf.remote_node.PATH_HITS_ISLAND
 or min_node.PATH_HITS_ISLAND):
 intf.remote_node.PATH_HITS_ISLAND = True

def Create_Basic_Named_Proxy_Nodes(topo):
 for node in topo.node_list:
 for prefix in node.prefix_cost_dict:
 prefix_cost = node.prefix_cost_dict[prefix]
 if prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 P.node_prefix_cost_list.append((node,prefix_cost))
 else:
 P = Named_Proxy_Node()

Enyedi, et al. Standards Track [Page 92]

RFC 7811 MRT-FRR Algorithm June 2016

 topo.named_proxy_dict[prefix] = P
 P.node_id = prefix
 P.node_prefix_cost_list = [(node,prefix_cost)]

def Compute_Loop_Free_Island_Neighbors_For_Each_Prefix(topo):
 topo.island_nbr_set = set()
 topo.island_border_set = set()
 for node in topo.node_list:
 if node.IN_MRT_ISLAND:
 continue
 for intf in node.intf_list:
 if intf.remote_node.IN_MRT_ISLAND:
 topo.island_nbr_set.add(node)
 topo.island_border_set.add(intf.remote_node)

 for island_nbr in topo.island_nbr_set:
 Island_Marking_SPF(topo,island_nbr)

 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 P.lfin_list = []
 for island_nbr in topo.island_nbr_set:
 min_isl_nbr_to_pref_cost = 2147483647
 for (adv_node, prefix_cost) in P.node_prefix_cost_list:
 (adv_node_cost, path_hits_island) = \
 island_nbr.isl_marking_spf_dict[adv_node.node_id]
 isl_nbr_to_pref_cost = adv_node_cost + prefix_cost
 if isl_nbr_to_pref_cost < min_isl_nbr_to_pref_cost:
 min_isl_nbr_to_pref_cost = isl_nbr_to_pref_cost
 min_path_hits_island = path_hits_island
 elif isl_nbr_to_pref_cost == min_isl_nbr_to_pref_cost:
 if min_path_hits_island or path_hits_island:
 min_path_hits_island = True
 if not min_path_hits_island:
 P.lfin_list.append((island_nbr,
 min_isl_nbr_to_pref_cost))

def Compute_Island_Border_Router_LFIN_Pairs_For_Each_Prefix(topo):
 for ibr in topo.island_border_set:
 ibr.prefix_lfin_dict = {}
 ibr.min_intf_metric_dict = {}
 ibr.min_intf_list_dict = {}
 ibr.min_intf_list_dict[None] = None
 for intf in ibr.intf_list:
 if not intf.remote_node in topo.island_nbr_set:
 continue
 if not intf.remote_node in ibr.min_intf_metric_dict:

Enyedi, et al. Standards Track [Page 93]

RFC 7811 MRT-FRR Algorithm June 2016

 ibr.min_intf_metric_dict[intf.remote_node] = \
 intf.metric
 ibr.min_intf_list_dict[intf.remote_node] = [intf]
 else:
 if (intf.metric
 < ibr.min_intf_metric_dict[intf.remote_node]):
 ibr.min_intf_metric_dict[intf.remote_node] = \
 intf.metric
 ibr.min_intf_list_dict[intf.remote_node] = [intf]
 elif (intf.metric
 < ibr.min_intf_metric_dict[intf.remote_node]):
 ibr.min_intf_list_dict[intf.remote_node].\
 append(intf)

 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 for ibr in topo.island_border_set:
 min_ibr_lfin_pref_cost = 2147483647
 min_lfin = None
 for (lfin, lfin_to_pref_cost) in P.lfin_list:
 if not lfin in ibr.min_intf_metric_dict:
 continue
 ibr_lfin_pref_cost = \
 ibr.min_intf_metric_dict[lfin] + lfin_to_pref_cost
 if ibr_lfin_pref_cost < min_ibr_lfin_pref_cost:
 min_ibr_lfin_pref_cost = ibr_lfin_pref_cost
 min_lfin = lfin
 ibr.prefix_lfin_dict[prefix] = (min_lfin,
 min_ibr_lfin_pref_cost,
 ibr.min_intf_list_dict[min_lfin])

def Proxy_Node_Att_Router_Compare(pnar_a, pnar_b):
 if pnar_a.named_proxy_cost < pnar_b.named_proxy_cost:
 return -1
 if pnar_b.named_proxy_cost < pnar_a.named_proxy_cost:
 return 1
 if pnar_a.node.node_id < pnar_b.node.node_id:
 return -1
 if pnar_b.node.node_id < pnar_a.node.node_id:
 return 1
 if pnar_a.min_lfin == None:
 return -1
 if pnar_b.min_lfin == None:
 return 1

def Choose_Proxy_Node_Attachment_Routers(topo):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]

Enyedi, et al. Standards Track [Page 94]

RFC 7811 MRT-FRR Algorithm June 2016

 pnar_candidate_list = []
 for (node, prefix_cost) in P.node_prefix_cost_list:
 if not node.IN_MRT_ISLAND:
 continue
 pnar = Proxy_Node_Attachment_Router()
 pnar.prefix = prefix
 pnar.named_proxy_cost = prefix_cost
 pnar.node = node
 pnar_candidate_list.append(pnar)
 for ibr in topo.island_border_set:
 (min_lfin, prefix_cost, min_intf_list) = \
 ibr.prefix_lfin_dict[prefix]
 if min_lfin == None:
 continue
 pnar = Proxy_Node_Attachment_Router()
 pnar.named_proxy_cost = prefix_cost
 pnar.node = ibr
 pnar.min_lfin = min_lfin
 pnar.nh_intf_list = min_intf_list
 pnar_candidate_list.append(pnar)
 pnar_candidate_list.sort(cmp=Proxy_Node_Att_Router_Compare)
 #pop first element from list
 first_pnar = pnar_candidate_list.pop(0)
 second_pnar = None
 for next_pnar in pnar_candidate_list:
 if next_pnar.node is first_pnar.node:
 continue
 second_pnar = next_pnar
 break

 P.pnar1 = first_pnar
 P.pnar2 = second_pnar

def Attach_Named_Proxy_Nodes(topo):
 Compute_Loop_Free_Island_Neighbors_For_Each_Prefix(topo)
 Compute_Island_Border_Router_LFIN_Pairs_For_Each_Prefix(topo)
 Choose_Proxy_Node_Attachment_Routers(topo)

def Select_Proxy_Node_NHs(P,S):
 if P.pnar1.node.node_id < P.pnar2.node.node_id:
 X = P.pnar1.node
 Y = P.pnar2.node
 else:
 X = P.pnar2.node
 Y = P.pnar1.node
 P.pnar_X = X
 P.pnar_Y = Y
 A = X.order_proxy

Enyedi, et al. Standards Track [Page 95]

RFC 7811 MRT-FRR Algorithm June 2016

 B = Y.order_proxy
 if (A is S.localroot
 and B is S.localroot):
 #print("1.0")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is S.localroot
 and B is not S.localroot):
 #print("2.0")
 if B.LOWER:
 #print("2.1")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if B.HIGHER:
 #print("2.2")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 #print("2.3")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is not S.localroot
 and B is S.localroot):
 #print("3.0")
 if A.LOWER:
 #print("3.1")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if A.HIGHER:
 #print("3.2")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("3.3")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if (A is not S.localroot
 and B is not S.localroot):
 #print("4.0")
 if (S is A.localroot or S is B.localroot):
 #print("4.05")

Enyedi, et al. Standards Track [Page 96]

RFC 7811 MRT-FRR Algorithm June 2016

 if A.topo_order < B.topo_order:
 #print("4.05.1")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("4.05.2")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if A.LOWER:
 #print("4.1")
 if B.HIGHER:
 #print("4.1.1")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 if B.LOWER:
 #print("4.1.2")
 if A.topo_order < B.topo_order:
 #print("4.1.2.1")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("4.1.2.2")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 #print("4.1.3")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if A.HIGHER:
 #print("4.2")
 if B.HIGHER:
 #print("4.2.1")
 if A.topo_order < B.topo_order:
 #print("4.2.1.1")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("4.2.1.2")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return

Enyedi, et al. Standards Track [Page 97]

RFC 7811 MRT-FRR Algorithm June 2016

 if B.LOWER:
 #print("4.2.2")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("4.2.3")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 #print("4.3")
 if B.LOWER:
 #print("4.3.1")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 if B.HIGHER:
 #print("4.3.2")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 else:
 #print("4.3.3")
 if A.topo_order < B.topo_order:
 #print("4.3.3.1")
 Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
 Copy_List_Items(P.red_next_hops, Y.red_next_hops)
 return
 else:
 #print("4.3.3.2")
 Copy_List_Items(P.blue_next_hops, X.red_next_hops)
 Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
 return
 assert(False)

def Compute_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,S):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 if P.pnar2 == None:
 if S is P.pnar1.node:
 # set the MRT next hops for the PNAR to
 # reach the LFIN and change FEC to green
 Copy_List_Items(P.blue_next_hops,
 P.pnar1.nh_intf_list)
 S.blue_to_green_nh_dict[P.node_id] = True
 Copy_List_Items(P.red_next_hops,
 P.pnar1.nh_intf_list)

Enyedi, et al. Standards Track [Page 98]

RFC 7811 MRT-FRR Algorithm June 2016

 S.red_to_green_nh_dict[P.node_id] = True
 else:
 # inherit MRT NHs for P from pnar1
 Copy_List_Items(P.blue_next_hops,
 P.pnar1.node.blue_next_hops)
 Copy_List_Items(P.red_next_hops,
 P.pnar1.node.red_next_hops)
 else:
 Select_Proxy_Node_NHs(P,S)
 # set the MRT next hops for the PNAR to reach the LFIN
 # and change FEC to green rely on the red or blue
 # next hops being empty to figure out which one needs
 # to point to the LFIN.
 if S is P.pnar1.node:
 this_pnar = P.pnar1
 elif S is P.pnar2.node:
 this_pnar = P.pnar2
 else:
 continue
 if P.blue_next_hops == []:
 Copy_List_Items(P.blue_next_hops,
 this_pnar.nh_intf_list)
 S.blue_to_green_nh_dict[P.node_id] = True
 if P.red_next_hops == []:
 Copy_List_Items(P.red_next_hops,
 this_pnar.nh_intf_list)
 S.red_to_green_nh_dict[P.node_id] = True

def Select_Alternates_Proxy_Node(P,F,primary_intf):
 S = primary_intf.local_node
 X = P.pnar_X
 Y = P.pnar_Y
 A = X.order_proxy
 B = Y.order_proxy
 if F is A and F is B:
 return ’PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y’
 if F is A:
 return ’USE_RED’
 if F is B:
 return ’USE_BLUE’

 if not In_Common_Block(A, B):
 if In_Common_Block(F, A):
 return ’USE_RED’
 elif In_Common_Block(F, B):
 return ’USE_BLUE’
 else:
 return ’USE_RED_OR_BLUE’

Enyedi, et al. Standards Track [Page 99]

RFC 7811 MRT-FRR Algorithm June 2016

 if (not In_Common_Block(F, A)
 and not In_Common_Block(F, A)):
 return ’USE_RED_OR_BLUE’

 alt_to_X = Select_Alternates(X, F, primary_intf)
 alt_to_Y = Select_Alternates(Y, F, primary_intf)

 if (alt_to_X == ’USE_RED_OR_BLUE’
 and alt_to_Y == ’USE_RED_OR_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED_OR_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED_OR_BLUE’:
 return ’USE_RED’

 if (A is S.localroot
 and B is S.localroot):
 #print("1.0")
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is S.localroot
 and B is not S.localroot):
 #print("2.0")
 if B.LOWER:
 #print("2.1")
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if B.HIGHER:
 #print("2.2")
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 else:
 #print("2.3")

Enyedi, et al. Standards Track [Page 100]

RFC 7811 MRT-FRR Algorithm June 2016

 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is not S.localroot
 and B is S.localroot):
 #print("3.0")
 if A.LOWER:
 #print("3.1")
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if A.HIGHER:
 #print("3.2")
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("3.3")
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 if (A is not S.localroot
 and B is not S.localroot):
 #print("4.0")
 if (S is A.localroot or S is B.localroot):
 #print("4.05")
 if A.topo_order < B.topo_order:
 #print("4.05.1")
 if (alt_to_X == ’USE_BLUE’ and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’

Enyedi, et al. Standards Track [Page 101]

RFC 7811 MRT-FRR Algorithm June 2016

 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.05.2")
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if A.LOWER:
 #print("4.1")
 if B.HIGHER:
 #print("4.1.1")
 if (alt_to_X == ’USE_RED’ and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if B.LOWER:
 #print("4.1.2")
 if A.topo_order < B.topo_order:
 #print("4.1.2.1")
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.1.2.2")
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.1.3")
 if (F.LOWER and not F.HIGHER

Enyedi, et al. Standards Track [Page 102]

RFC 7811 MRT-FRR Algorithm June 2016

 and F.topo_order > A.topo_order):
 #print("4.1.3.1")
 return ’USE_RED’
 else:
 #print("4.1.3.2")
 return ’USE_BLUE’
 if A.HIGHER:
 #print("4.2")
 if B.HIGHER:
 #print("4.2.1")
 if A.topo_order < B.topo_order:
 #print("4.2.1.1")
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.2.1.2")
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 if B.LOWER:
 #print("4.2.2")
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.2.3")
 if (F.HIGHER and not F.LOWER
 and F.topo_order < A.topo_order):
 return ’USE_RED’
 else:
 return ’USE_BLUE’

Enyedi, et al. Standards Track [Page 103]

RFC 7811 MRT-FRR Algorithm June 2016

 else:
 #print("4.3")
 if B.LOWER:
 #print("4.3.1")
 if (F.LOWER and not F.HIGHER
 and F.topo_order > B.topo_order):
 return ’USE_BLUE’
 else:
 return ’USE_RED’
 if B.HIGHER:
 #print("4.3.2")
 if (F.HIGHER and not F.LOWER
 and F.topo_order < B.topo_order):
 return ’USE_BLUE’
 else:
 return ’USE_RED’
 else:
 #print("4.3.3")
 if A.topo_order < B.topo_order:
 #print("4.3.3.1")
 if (alt_to_X == ’USE_BLUE’
 and alt_to_Y == ’USE_RED’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_BLUE’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_RED’:
 return ’USE_RED’
 assert(False)
 else:
 #print("4.3.3.2")
 if (alt_to_X == ’USE_RED’
 and alt_to_Y == ’USE_BLUE’):
 return ’USE_RED_OR_BLUE’
 if alt_to_X == ’USE_RED’:
 return ’USE_BLUE’
 if alt_to_Y == ’USE_BLUE’:
 return ’USE_RED’
 assert(False)
 assert(False)

def Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 min_total_pref_cost = 2147483647
 for (adv_node, prefix_cost) in P.node_prefix_cost_list:
 total_pref_cost = (adv_node.primary_spf_metric
 + prefix_cost)
 if total_pref_cost < min_total_pref_cost:

Enyedi, et al. Standards Track [Page 104]

RFC 7811 MRT-FRR Algorithm June 2016

 min_total_pref_cost = total_pref_cost
 Copy_List_Items(P.primary_next_hops,
 adv_node.primary_next_hops)
 elif total_pref_cost == min_total_pref_cost:
 for nh_intf in adv_node.primary_next_hops:
 Add_Item_To_List_If_New(P.primary_next_hops,
 nh_intf)

def Select_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 P.alt_list = []
 for failed_intf in P.primary_next_hops:
 alt = Alternate()
 alt.failed_intf = failed_intf
 if failed_intf not in src.island_intf_list:
 alt.info = ’PRIM_NH_FOR_PROXY_NODE_NOT_IN_ISLAND’
 elif P.pnar1 is None:
 alt.info = ’NO_PNARs_EXIST_FOR_THIS_PREFIX’
 elif src is P.pnar1.node:
 alt.info = ’SRC_IS_PNAR’
 elif P.pnar2 is not None and src is P.pnar2.node:
 alt.info = ’SRC_IS_PNAR’
 elif P.pnar2 is None:
 #inherit alternates from the only pnar.
 alt.info = Select_Alternates(P.pnar1.node,
 failed_intf.remote_node, failed_intf)
 elif failed_intf in src.island_intf_list:
 alt.info = Select_Alternates_Proxy_Node(P,
 failed_intf.remote_node, failed_intf)

 if alt.info == ’USE_RED_OR_BLUE’:
 alt.red_or_blue = \
 random.choice([’USE_RED’,’USE_BLUE’])
 if (alt.info == ’USE_BLUE’
 or alt.red_or_blue == ’USE_BLUE’):
 Copy_List_Items(alt.nh_list, P.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’NODE_PROTECTION’
 elif (alt.info == ’USE_RED’
 or alt.red_or_blue == ’USE_RED’):
 Copy_List_Items(alt.nh_list, P.red_next_hops)
 alt.fec = ’RED’
 alt.prot = ’NODE_PROTECTION’
 elif (alt.info == ’PRIM_NH_IS_D_OR_OP_FOR_D’
 or alt.info == ’PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y’):
 if failed_intf.OUTGOING and failed_intf.INCOMING:
 # cut-link: if there are parallel cut links, use

Enyedi, et al. Standards Track [Page 105]

RFC 7811 MRT-FRR Algorithm June 2016

 # the link(s) with lowest metric that are not
 # primary intf or None
 cand_alt_list = [None]
 min_metric = 2147483647
 for intf in src.island_intf_list:
 if (intf is not failed_intf and
 (intf.remote_node is
 failed_intf.remote_node)):
 if intf.metric < min_metric:
 cand_alt_list = [intf]
 min_metric = intf.metric
 elif intf.metric == min_metric:
 cand_alt_list.append(intf)
 if cand_alt_list != [None]:
 alt.fec = ’GREEN’
 alt.prot = ’PARALLEL_CUTLINK’
 else:
 alt.fec = ’NO_ALTERNATE’
 alt.prot = ’NO_PROTECTION’
 Copy_List_Items(alt.nh_list, cand_alt_list)
 else:
 # set Z as the node to inherit blue next hops from
 if alt.info == ’PRIM_NH_IS_D_OR_OP_FOR_D’:
 Z = P.pnar1.node
 else:
 Z = P
 if failed_intf in Z.red_next_hops:
 Copy_List_Items(alt.nh_list, Z.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’LINK_PROTECTION’
 else:
 assert(failed_intf in Z.blue_next_hops)
 Copy_List_Items(alt.nh_list, Z.red_next_hops)
 alt.fec = ’RED’
 alt.prot = ’LINK_PROTECTION’

 elif alt.info == ’PRIM_NH_FOR_PROXY_NODE_NOT_IN_ISLAND’:
 if (P.pnar2 == None and src is P.pnar1.node):
 #MRT Island is singly connected to non-island dest
 alt.fec = ’NO_ALTERNATE’
 alt.prot = ’NO_PROTECTION’
 elif P.node_id in src.blue_to_green_nh_dict:
 # blue to P goes to failed LFIN so use red to P
 Copy_List_Items(alt.nh_list, P.red_next_hops)
 alt.fec = ’RED’
 alt.prot = ’LINK_PROTECTION’
 elif P.node_id in src.red_to_green_nh_dict:
 # red to P goes to failed LFIN so use blue to P

Enyedi, et al. Standards Track [Page 106]

RFC 7811 MRT-FRR Algorithm June 2016

 Copy_List_Items(alt.nh_list, P.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’LINK_PROTECTION’
 else:
 Copy_List_Items(alt.nh_list, P.blue_next_hops)
 alt.fec = ’BLUE’
 alt.prot = ’LINK_PROTECTION’
 elif alt.info == ’TEMP_NO_ALTERNATE’:
 alt.fec = ’NO_ALTERNATE’
 alt.prot = ’NO_PROTECTION’

 P.alt_list.append(alt)

def Run_Basic_MRT_for_One_Source(topo, src):
 MRT_Island_Identification(topo, src, 0, 0)
 Set_Island_Intf_and_Node_Lists(topo)
 Set_GADAG_Root(topo,src)
 Sort_Interfaces(topo)
 Run_Lowpoint(topo)
 Assign_Remaining_Lowpoint_Parents(topo)
 Construct_GADAG_via_Lowpoint(topo)
 Run_Assign_Block_ID(topo)
 Add_Undirected_Links(topo)
 Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,src)
 Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,src)
 Select_Alts_For_One_Src_To_Island_Dests(topo,src)
 Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,src)

def Store_GADAG_and_Named_Proxies_Once(topo):
 for node in topo.node_list:
 for intf in node.intf_list:
 if intf.OUTGOING:
 intf.SIMULATION_OUTGOING = True
 else:
 intf.SIMULATION_OUTGOING = False
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 topo.stored_named_proxy_dict[prefix] = P

def Run_Basic_MRT_for_All_Sources(topo):
 for src in topo.node_list:
 Reset_Computed_Node_and_Intf_Values(topo)
 Run_Basic_MRT_for_One_Source(topo,src)
 if src is topo.gadag_root:
 Store_GADAG_and_Named_Proxies_Once(topo)

Enyedi, et al. Standards Track [Page 107]

RFC 7811 MRT-FRR Algorithm June 2016

def Run_MRT_for_One_Source(topo, src):
 MRT_Island_Identification(topo, src, 0, 0)
 Set_Island_Intf_and_Node_Lists(topo)
 Set_GADAG_Root(topo,src)
 Sort_Interfaces(topo)
 Run_Lowpoint(topo)
 Assign_Remaining_Lowpoint_Parents(topo)
 Construct_GADAG_via_Lowpoint(topo)
 Run_Assign_Block_ID(topo)
 Add_Undirected_Links(topo)
 Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,src)
 Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,src)
 Select_Alts_For_One_Src_To_Island_Dests(topo,src)
 Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,src)
 Create_Basic_Named_Proxy_Nodes(topo)
 Attach_Named_Proxy_Nodes(topo)
 Compute_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Store_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Select_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Store_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src)

def Run_Prim_SPF_for_One_Source(topo,src):
 Normal_SPF(topo, src)
 Store_Primary_NHs_For_One_Source_To_Nodes(topo,src)
 Create_Basic_Named_Proxy_Nodes(topo)
 Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
 Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)

def Run_MRT_for_All_Sources(topo):
 for src in topo.node_list:
 Reset_Computed_Node_and_Intf_Values(topo)
 if src in topo.island_node_list_for_test_gr:
 # src runs MRT if it is in same MRT island as test_gr
 Run_MRT_for_One_Source(topo,src)
 if src is topo.gadag_root:
 Store_GADAG_and_Named_Proxies_Once(topo)
 else:
 # src still runs SPF if not in MRT island
 Run_Prim_SPF_for_One_Source(topo,src)

def Write_Output_To_Files(topo,file_prefix):
 Write_GADAG_To_File(topo,file_prefix)
 Write_Both_MRTs_For_All_Dests_To_File(topo,file_prefix)
 Write_Alternates_For_All_Dests_To_File(topo,file_prefix)

Enyedi, et al. Standards Track [Page 108]

RFC 7811 MRT-FRR Algorithm June 2016

def Create_Basic_Topology_Input_File(filename):
 data = [[01,02,10],[02,03,10],[03,04,11],[04,05,10,20],[05,06,10],
 [06,07,10],[06,07,10],[06,07,15],[07,01,10],[07,51,10],
 [51,52,10],[52,53,10],[53,03,10],[01,55,10],[55,06,10],
 [04,12,10],[12,13,10],[13,14,10],[14,15,10],[15,16,10],
 [16,17,10],[17,04,10],[05,76,10],[76,77,10],[77,78,10],
 [78,79,10],[79,77,10]]
 with open(filename + ’.csv’, ’w’) as topo_file:
 for item in data:
 if len(item) > 3:
 line = (str(item[0])+’,’+str(item[1])+’,’+
 str(item[2])+’,’+str(item[3])+’\n’)
 else:
 line = (str(item[0])+’,’+str(item[1])+’,’+
 str(item[2])+’\n’)
 topo_file.write(line)

def Create_Complex_Topology_Input_File(filename):
 data = [[01,02,10],[02,03,10],[03,04,11],[04,05,10,20],[05,06,10],
 [06,07,10],[06,07,10],[06,07,15],[07,01,10],[07,51,10],
 [51,52,10],[52,53,10],[53,03,10],[01,55,10],[55,06,10],
 [04,12,10],[12,13,10],[13,14,10],[14,15,10],[15,16,10],
 [16,17,10],[17,04,10],[05,76,10],[76,77,10],[77,78,10],
 [78,79,10],[79,77,10]]
 with open(filename + ’.csv’, ’w’) as topo_file:
 for item in data:
 if len(item) > 3:
 line = (str(item[0])+’,’+str(item[1])+’,’+
 str(item[2])+’,’+str(item[3])+’\n’)
 else:
 line = (str(item[0])+’,’+str(item[1])+’,’+
 str(item[2])+’\n’)
 topo_file.write(line)

 data = [[01,0],[02,0],[03,0],[04,0],[05,0],
 [06,0],[07,0],
 [51,0],[55,0],
 [12,0],[13,0],[14,0],[15,0],
 [16,0],[17,0],[76,0],[77,0],
 [78,0],[79,0]]
 with open(filename + ’.profile’, ’w’) as topo_file:
 for item in data:
 line = (str(item[0])+’,’+str(item[1])+’\n’)
 topo_file.write(line)

 data = [[2001,05,100],[2001,07,120],[2001,03,130],
 [2002,13,100],[2002,15,110],
 [2003,52,100],[2003,78,100]]

Enyedi, et al. Standards Track [Page 109]

RFC 7811 MRT-FRR Algorithm June 2016

 with open(filename + ’.prefix’, ’w’) as topo_file:
 for item in data:
 line = (str(item[0])+’,’+str(item[1])+’,’+
 str(item[2])+’\n’)
 topo_file.write(line)

def Generate_Basic_Topology_and_Run_MRT():
 this_gadag_root = 3
 Create_Basic_Topology_Input_File(’basic_topo_input’)
 topo = Create_Topology_From_File(’basic_topo_input’)
 res_file_base = ’basic_topo’
 Compute_Island_Node_List_For_Test_GR(topo, this_gadag_root)
 Raise_GADAG_Root_Selection_Priority(topo,this_gadag_root)
 Run_Basic_MRT_for_All_Sources(topo)
 Write_Output_To_Files(topo, res_file_base)

def Generate_Complex_Topology_and_Run_MRT():
 this_gadag_root = 3
 Create_Complex_Topology_Input_File(’complex_topo_input’)
 topo = Create_Topology_From_File(’complex_topo_input’)
 Add_Profile_IDs_from_File(topo,’complex_topo_input’)
 Add_Prefix_Advertisements_From_File(topo,’complex_topo_input’)
 Compute_Island_Node_List_For_Test_GR(topo, this_gadag_root)
 Add_Prefixes_for_Non_Island_Nodes(topo)
 res_file_base = ’complex_topo’
 Raise_GADAG_Root_Selection_Priority(topo,this_gadag_root)
 Run_MRT_for_All_Sources(topo)
 Write_Output_To_Files(topo, res_file_base)

Generate_Basic_Topology_and_Run_MRT()

Generate_Complex_Topology_and_Run_MRT()

<CODE ENDS>

Appendix B. Constructing a GADAG Using SPFs

 The basic idea in this method for constructing a GADAG is to use
 slightly modified SPF computations to find ears. In every block, an
 SPF computation is first done to find a cycle from the local root and
 then SPF computations in that block find ears until there are no more
 interfaces to be explored. The used result from the SPF computation
 is the path of interfaces indicated by following the previous hops
 from the minimized IN_GADAG node back to the SPF root.

 To do this, first all cut-vertices must be identified and localroots
 assigned as specified in Figure 12.

Enyedi, et al. Standards Track [Page 110]

RFC 7811 MRT-FRR Algorithm June 2016

 The slight modifications to the SPF are as follows. The root of the
 block is referred to as the block-root; it is either the GADAG root
 or a cut-vertex.

 a. The SPF is rooted at a neighbor x of an IN_GADAG node y. All
 links between y and x are marked as TEMP_UNUSABLE. They should
 not be used during the SPF computation.

 b. If y is not the block-root, then it is marked TEMP_UNUSABLE. It
 should not be used during the SPF computation. This prevents
 ears from starting and ending at the same node and avoids cycles;
 the exception is because cycles to/from the block-root are
 acceptable and expected.

 c. Do not explore links to nodes whose localroot is not the block-
 root. This keeps the SPF confined to the particular block.

 d. Terminate when the first IN_GADAG node z is minimized.

 e. Respect the existing directions (e.g., INCOMING, OUTGOING,
 UNDIRECTED) already specified for each interface.

 Mod_SPF(spf_root, block_root)
 Initialize spf_heap to empty
 Initialize nodes’ spf_metric to infinity
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 found_in_gadag = false
 while (spf_heap is not empty) and (found_in_gadag is false)
 min_node = remove_lowest(spf_heap)
 if min_node.IN_GADAG
 found_in_gadag = true
 else
 foreach interface intf of min_node
 if ((intf.OUTGOING or intf.UNDIRECTED) and
 ((intf.remote_node.localroot is block_root) or
 (intf.remote_node is block_root)) and
 (intf.remote_node is not TEMP_UNUSABLE) and
 (intf is not TEMP_UNUSABLE))
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 intf.remote_node.spf_prev_intf = intf
 insert_or_update(spf_heap, intf.remote_node)
 return min_node

Enyedi, et al. Standards Track [Page 111]

RFC 7811 MRT-FRR Algorithm June 2016

 SPF_for_Ear(cand_intf.local_node,cand_intf.remote_node, block_root,
 method)
 Mark all interfaces between cand_intf.remote_node
 and cand_intf.local_node as TEMP_UNUSABLE
 if cand_intf.local_node is not block_root
 Mark cand_intf.local_node as TEMP_UNUSABLE
 Initialize ear_list to empty
 end_ear = Mod_SPF(spf_root, block_root)
 y = end_ear.spf_prev_hop
 while y.local_node is not spf_root
 add_to_list_start(ear_list, y)
 y.local_node.IN_GADAG = true
 y = y.local_node.spf_prev_intf
 if(method is not hybrid)
 Set_Ear_Direction(ear_list, cand_intf.local_node,
 end_ear,block_root)
 Clear TEMP_UNUSABLE from all interfaces between
 cand_intf.remote_node and cand_intf.local_node
 Clear TEMP_UNUSABLE from cand_intf.local_node
 return end_ear

 Figure 31: Modified SPF for GADAG Construction

 Assume that an ear is found by going from y to x and then running an
 SPF that terminates by minimizing z (e.g., y<->x...q<->z). Now it is
 necessary to determine the direction of the ear; if y<<z, then the
 path should be y->x...q->z; but if y>>z, then the path should be
 y<-x...q<-z. In Section 5.5, the same problem was handled by finding
 all ears that started at a node before looking at ears starting at
 nodes higher in the partial order. In this GADAG construction
 method, using that approach could mean that new ears aren’t added in
 order of their total cost since all ears connected to a node would
 need to be found before additional nodes could be found.

 The alternative is to track the order relationship of each node with
 respect to every other node. This can be accomplished by maintaining
 two sets of nodes at each node. The first set, Higher_Nodes,
 contains all nodes that are known to be ordered above the node. The
 second set, Lower_Nodes, contains all nodes that are known to be
 ordered below the node. This is the approach used in this GADAG
 construction method.

Enyedi, et al. Standards Track [Page 112]

RFC 7811 MRT-FRR Algorithm June 2016

 Set_Ear_Direction(ear_list, end_a, end_b, block_root)
 // Default of A_TO_B for the following cases:
 // (a) end_a and end_b are the same (root)
 // or (b) end_a is in end_b’s Lower Nodes
 // or (c) end_a and end_b were unordered with respect to each
 // other
 direction = A_TO_B
 if (end_b is block_root) and (end_a is not end_b)
 direction = B_TO_A
 else if end_a is in end_b.Higher_Nodes
 direction = B_TO_A
 if direction is B_TO_A
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 else
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.OUTGOING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.INCOMING = true
 if end_a is end_b
 return
 // Next, update all nodes’ Lower_Nodes and Higher_Nodes
 if (end_a is in end_b.Higher_Nodes)
 foreach node x where x.localroot is block_root
 if end_a is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Lower_Nodes
 if end_b is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Higher_Nodes
 else
 foreach node x where x.localroot is block_root
 if end_b is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Lower_Nodes
 if end_a is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Higher_Nodes

 Figure 32: Algorithm to Assign Links of an Ear Direction

 A goal of this GADAG construction method is to find the shortest
 cycles and ears. An ear is started by going to a neighbor x of an
 IN_GADAG node y. The path from x to an IN_GADAG node is minimal,

Enyedi, et al. Standards Track [Page 113]

RFC 7811 MRT-FRR Algorithm June 2016

 since it is computed via SPF. Since a shortest path is made of
 shortest paths, to find the shortest ears requires reaching from the
 set of IN_GADAG nodes to the closest node that isn’t IN_GADAG.
 Therefore, an ordered tree is maintained of interfaces that could be
 explored from the IN_GADAG nodes. The interfaces are ordered by
 their characteristics of metric, local loopback address, remote
 loopback address, and ifindex, based on the Interface_Compare
 function defined in Figure 14.

 This GADAG construction method ignores interfaces picked from the
 ordered list that belong to the block root if the block in which the
 interface is present already has an ear that has been computed. This
 is necessary since we allow at most one incoming interface to a block
 root in each block. This requirement stems from the way next hops
 are computed as was seen in Section 5.7. After any ear gets
 computed, we traverse the newly added nodes to the GADAG and insert
 interfaces whose far end is not yet on the GADAG to the ordered tree
 for later processing.

 Finally, cut-links are a special case because there is no point in
 doing an SPF on a block of two nodes. The algorithm identifies cut-
 links simply as links where both ends of the link are cut-vertices.
 Cut-links can simply be added to the GADAG with both OUTGOING and
 INCOMING specified on their interfaces.

 add_eligible_interfaces_of_node(ordered_intfs_tree,node)
 for each interface of node
 if intf.remote_node.IN_GADAG is false
 insert(intf,ordered_intfs_tree)

 check_if_block_has_ear(x,block_id)
 block_has_ear = false
 for all interfaces of x
 if ((intf.remote_node.block_id == block_id) &&
 intf.remote_node.IN_GADAG)
 block_has_ear = true
 return block_has_ear

 Construct_GADAG_via_SPF(topology, root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)
 root.IN_GADAG = true
 add_eligible_interfaces_of_node(ordered_intfs_tree,root)
 while ordered_intfs_tree is not empty
 cand_intf = remove_lowest(ordered_intfs_tree)
 if cand_intf.remote_node.IN_GADAG is false
 if L(cand_intf.remote_node) == D(cand_intf.remote_node)
 // Special case for cut-links

Enyedi, et al. Standards Track [Page 114]

RFC 7811 MRT-FRR Algorithm June 2016

 cand_intf.UNDIRECTED = false
 cand_intf.remote_intf.UNDIRECTED = false
 cand_intf.OUTGOING = true
 cand_intf.INCOMING = true
 cand_intf.remote_intf.OUTGOING = true
 cand_intf.remote_intf.INCOMING = true
 cand_intf.remote_node.IN_GADAG = true
 add_eligible_interfaces_of_node(
 ordered_intfs_tree,cand_intf.remote_node)
 else
 if (cand_intf.remote_node.local_root ==
 cand_intf.local_node) &&
 check_if_block_has_ear(cand_intf.local_node,
 cand_intf.remote_node.block_id))
 /* Skip the interface since the block root
 already has an incoming interface in the
 block */
 else
 ear_end = SPF_for_Ear(cand_intf.local_node,
 cand_intf.remote_node,
 cand_intf.remote_node.localroot,
 SPF method)
 y = ear_end.spf_prev_hop
 while y.local_node is not cand_intf.local_node
 add_eligible_interfaces_of_node(
 ordered_intfs_tree, y.local_node)
 y = y.local_node.spf_prev_intf

 Figure 33: SPF-Based Method for GADAG Construction

Appendix C. Constructing a GADAG Using a Hybrid Method

 The idea of this method is to combine the salient features of the
 lowpoint inheritance and SPF methods. To this end, we process nodes
 as they get added to the GADAG just like in the lowpoint inheritance
 by maintaining a stack of nodes. This ensures that we do not need to
 maintain lower and higher sets at each node to ascertain ear
 directions since the ears will always be directed from the node being
 processed towards the end of the ear. To compute the ear however, we
 resort to an SPF to have the possibility of better ears (path
 lengths) thus giving more flexibility than the restricted use of
 lowpoint/dfs parents.

 Regarding ears involving a block root, unlike the SPF method, which
 ignored interfaces of the block root after the first ear, in the
 hybrid method we would have to process all interfaces of the block
 root before moving on to other nodes in the block since the direction

Enyedi, et al. Standards Track [Page 115]

RFC 7811 MRT-FRR Algorithm June 2016

 of an ear is predetermined. Thus, whenever the block already has an
 ear computed, and we are processing an interface of the block root,
 we mark the block root as unusable before the SPF run that computes
 the ear. This ensures that the SPF terminates at some node other
 than the block-root. This in turn guarantees that the block-root has
 only one incoming interface in each block, which is necessary for
 correctly computing the next hops on the GADAG.

 As in the SPF GADAG, bridge ears are handled as a special case.

 The entire algorithm is shown below in Figure 34.

 find_spf_stack_ear(stack, x, y, xy_intf, block_root)
 if L(y) == D(y)
 // Special case for cut-links
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.INCOMING = true
 xy_intf.remote_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 xy_intf.remote_node.IN_GADAG = true
 push y onto stack
 return
 else
 if (y.local_root == x) &&
 check_if_block_has_ear(x,y.block_id)
 //Avoid the block root during the SPF
 Mark x as TEMP_UNUSABLE
 end_ear = SPF_for_Ear(x,y,block_root,hybrid)
 If x was set as TEMP_UNUSABLE, clear it
 cur = end_ear
 while (cur != y)
 intf = cur.spf_prev_hop
 prev = intf.local_node
 intf.UNDIRECTED = false
 intf.remote_intf.UNDIRECTED = false
 intf.OUTGOING = true
 intf.remote_intf.INCOMING = true
 push prev onto stack
 cur = prev
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 return

Enyedi, et al. Standards Track [Page 116]

RFC 7811 MRT-FRR Algorithm June 2016

 Construct_GADAG_via_hybrid(topology,root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)
 root.IN_GADAG = true
 Initialize Stack to empty
 push root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 for each interface intf of x
 y = intf.remote_node
 if y.IN_GADAG is false
 find_spf_stack_ear(stack, x, y, intf, y.block_root)

 Figure 34: Hybrid GADAG Construction Method

Acknowledgements

 The authors would like to thank Shraddha Hegde, Eric Wu, Janos
 Farkas, Stewart Bryant, Alvaro Retana, and Deccan (Shaofu Peng) for
 their suggestions and review. We would also like to thank Anil Kumar
 SN for his assistance in clarifying the algorithm description and
 pseudocode.

Enyedi, et al. Standards Track [Page 117]

RFC 7811 MRT-FRR Algorithm June 2016

Authors’ Addresses

 Gabor Sandor Enyedi
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Gabor.Sandor.Enyedi@ericsson.com

 Andras Csaszar
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Andras.Csaszar@ericsson.com

 Alia Atlas
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 United States

 Email: akatlas@juniper.net

 Chris Bowers
 Juniper Networks
 1194 N. Mathilda Ave.
 Sunnyvale, CA 94089
 United States

 Email: cbowers@juniper.net

 Abishek Gopalan
 University of Arizona
 1230 E Speedway Blvd.
 Tucson, AZ 85721
 United States

 Email: abishek@ece.arizona.edu

Enyedi, et al. Standards Track [Page 118]

