
Internet Engineering Task Force (IETF) T. Kivinen
Request for Comments: 7815 INSIDE Secure
Category: Informational March 2016
ISSN: 2070-1721

Minimal Internet Key Exchange Version 2 (IKEv2) Initiator Implementation

Abstract

 This document describes a minimal initiator version of the Internet
 Key Exchange version 2 (IKEv2) protocol for constrained nodes. IKEv2
 is a component of IPsec used for performing mutual authentication and
 establishing and maintaining Security Associations (SAs). IKEv2
 includes several optional features, which are not needed in minimal
 implementations. This document describes what is required from the
 minimal implementation and also describes various optimizations that
 can be done. The protocol described here is interoperable with a
 full IKEv2 implementation using shared secret authentication (IKEv2
 does not require the use of certificate authentication). This
 minimal initiator implementation can only talk to a full IKEv2
 implementation acting as the responder; thus, two minimal initiator
 implementations cannot talk to each other.

 This document does not update or modify RFC 7296 but provides a more
 compact description of the minimal version of the protocol. If this
 document and RFC 7296 conflict, then RFC 7296 is the authoritative
 description.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7815.

Kivinen Informational [Page 1]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Kivinen Informational [Page 2]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

Table of Contents

 1. Introduction . 4
 1.1. Use Cases . 5
 2. Exchanges . 5
 2.1. Initial Exchange . 5
 2.2. Other Exchanges . 12
 2.3. Generating Keying Material 12
 3. Conformance Requirements 13
 4. Implementation Status . 14
 5. Security Considerations 14
 6. References . 15
 6.1. Normative References 15
 6.2. Informative References 15
 Appendix A. Header and Payload Formats 17
 A.1. The IKE Header . 17
 A.2. Generic Payload Header 19
 A.3. Security Association Payload 21
 A.3.1. Proposal Substructure 23
 A.3.2. Transform Substructure 24
 A.3.3. Valid Transform Types by Protocol 26
 A.3.4. Transform Attributes 26
 A.4. Key Exchange Payload 27
 A.5. Identification Payloads 27
 A.6. Certificate Payload 29
 A.7. Certificate Request Payload 30
 A.8. Authentication Payload 31
 A.9. Nonce Payload . 31
 A.10. Notify Payload . 32
 A.10.1. Notify Message Types 33
 A.11. Traffic Selector Payload 34
 A.11.1. Traffic Selector 36
 A.12. Encrypted Payload . 37
 Appendix B. Useful Optional Features 39
 B.1. IKE SA Delete Notification 39
 B.2. Raw Public Keys . 40
 Acknowledgements . 41
 Author’s Address . 41

Kivinen Informational [Page 3]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

1. Introduction

 The Internet Protocol Suite is increasingly used on small devices
 with severe constraints on power, memory, and processing resources.
 This document describes a minimal IKEv2 implementation designed for
 use on such constrained nodes that is interoperable with "Internet
 Key Exchange Protocol Version 2 (IKEv2)" [RFC7296].

 A minimal IKEv2 implementation only supports the initiator end of the
 protocol. It only supports the initial IKE_SA_INIT and IKE_AUTH
 exchanges and does not initiate any other exchanges. It also replies
 with an empty (or error) message to all incoming requests.

 This means that most of the optional features of IKEv2 are left out:
 NAT traversal, IKE SA rekey, Child SA rekey, multiple Child SAs,
 deleting Child / IKE SAs, Configuration payloads, Extensible
 Authentication Protocol (EAP) authentication, COOKIEs, etc.

 Some optimizations can be done because of the limited set of
 supported features, and this text should not be considered for
 generic IKEv2 implementations (for example, Message IDs can be done
 as specified because minimal implementation is only sending out an
 IKE_SA_INIT and IKE_AUTH request and not any other request).

 This document is intended to be standalone, meaning everything needed
 to implement IKEv2 is copied here except the description of the
 cryptographic algorithms. The IKEv2 specification has lots of
 background information and rationale that has been omitted from this
 document.

 Numerous additional numeric values from IANA registries have been
 omitted from this document; only those which are of interest for a
 minimal implementation are listed.

 The main body of this document describes how to use the shared secret
 authentication in IKEv2, as it is easiest to implement. In some
 cases, that is not enough, and Appendix B.2 describes how to use raw
 public keys instead of shared secret authentication.

 For more information, check the full IKEv2 specification in [RFC7296]
 and [IKEV2IANA].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. The term
 "Constrained Node" is defined in "Terminology for Constrained-Node
 Networks" [RFC7228].

Kivinen Informational [Page 4]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

1.1. Use Cases

 One use case for this kind of minimal implementation is in small
 devices doing machine-to-machine communication. In such
 environments, the node initiating connections can be very small, and
 the other end of the communication channel is some kind of larger
 device.

 An example of the small initiating node could be a remote garage door
 opener device, i.e., a device having buttons that open and close a
 garage door and that connects to the home area network server over a
 wireless link.

 Another example of such a device is some kind of sensor device, for
 example, a room temperature sensor, which sends periodic temperature
 data to some centralized node.

 Those devices usually sleep for a long time and only wake up
 periodically or because of user interaction. The data transfer is
 always initiated from that sleeping node when they wake up; after
 they send packets, there might be ACKs or other packets coming back
 before they go back to sleep. If some data needs to be transferred
 from a server node to the small device, it can be implemented by
 polling, i.e., the small node periodically polls for the server to
 see if it, for example, has some configuration changes or similar.
 While the device is sleeping, it will not maintain the IKEv2 SA.
 That is, it will always create the IKEv2 SA again when it wakes up.
 This means there is no need to do liveness checks for the server, as
 after the device wakes up again, the minimal implementation will
 start from the beginning again.

2. Exchanges

2.1. Initial Exchange

 All IKEv2 communications consist of pairs of messages: a request and
 a response. The pair is called an "exchange" and is sometimes called
 a "request/response pair". Every request requires a response.

 For every pair of IKEv2 messages, the initiator is responsible for
 retransmission in the event of a timeout. The responder MUST never
 retransmit a response unless it receives a retransmission of the
 request.

 IKEv2 is a reliable protocol: the initiator MUST retransmit a request
 until it either receives a corresponding response or deems the IKE SA
 to have failed. A retransmission from the initiator MUST be bitwise

Kivinen Informational [Page 5]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 identical to the original request. Retransmission times MUST
 increase exponentially.

 IKEv2 is run over UDP port 500. All IKEv2 implementations MUST be
 able to send, receive, and process IKEv2 messages that are up to 1280
 octets long. An implementation MUST accept incoming requests even if
 the source port is not 500 and MUST respond to the address and port
 from which the request was received.

 The minimal implementation of IKEv2 only uses the first two
 exchanges, called IKE_SA_INIT and IKE_AUTH. These are used to create
 the IKE SA and the first Child SA. In addition to those messages, a
 minimal IKEv2 implementation needs to understand the CREATE_CHILD_SA
 request enough to generate a CREATE_CHILD_SA response containing the
 NO_ADDITIONAL_SAS error notify. It needs to understand the
 INFORMATIONAL request enough to generate an empty INFORMATIONAL
 response to it. There is no requirement to be able to respond to any
 other requests.

 All messages following the IKE_SA_INIT exchange are cryptographically
 protected using the cryptographic algorithms and keys negotiated in
 the IKE_SA_INIT exchange.

 Every IKEv2 message contains a Message ID as part of its fixed
 header. This Message ID is used to match up requests and responses
 and to identify retransmissions of messages.

 Minimal implementations only need to support the role of initiator,
 so it typically only sends an IKE_SA_INIT request that, when
 answered, is followed by an IKE_AUTH. As those messages have fixed
 Message IDs (0 and 1), it does not need to keep track of its own
 Message IDs for outgoing requests after that.

 Minimal implementations can also optimize Message ID handling of the
 incoming requests, as they do not need to protect incoming requests
 against replays. This is possible because minimal implementations
 will only return error or empty notification replies to incoming
 requests. This means that any of those incoming requests do not have
 any effect on the minimal implementation, thus processing them again
 does not cause any harm. Because of this, a minimal implementation
 can always answer a request coming in, with the same Message ID than
 what the request had, and then forget the request/response pair
 immediately. This means there is no need to keep track of Message
 IDs of the incoming requests.

Kivinen Informational [Page 6]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 In the following descriptions, the payloads contained in the message
 are indicated by the names listed below.

 Notation Payload

 AUTH Authentication
 CERTREQ Certificate Request
 D Delete
 HDR IKE header (not a payload)
 IDi Identification - Initiator
 IDr Identification - Responder
 KE Key Exchange
 Ni, Nr Nonce
 N Notify
 SA Security Association
 SK Encrypted and Authenticated
 TSi Traffic Selector - Initiator
 TSr Traffic Selector - Responder

 The initial exchanges are as follows:

 Initiator Responder

 HDR(SPIi=xxx, SPIr=0, IKE_SA_INIT,
 Flags: Initiator, Message ID=0),
 SAi1, KEi, Ni -->

 <-- HDR(SPIi=xxx, SPIr=yyy, IKE_SA_INIT,
 Flags: Response, Message ID=0),
 SAr1, KEr, Nr, [CERTREQ]

 HDR contains the Security Parameter Indexes (SPIs), version numbers,
 and flags of various sorts. Each endpoint chooses one of the two
 SPIs and MUST choose them so as to be unique identifiers of an IKE
 SA. An SPI value of zero is special: it indicates that the remote
 SPI value is not yet known by the sender.

 Incoming IKEv2 packets are mapped to an IKE SA using only the
 packet’s SPI, not using (for example) the source IP address of the
 packet.

 The SAi1 payload states the cryptographic algorithms the initiator
 supports for the IKE SA. The KEi and KEr payloads contain Diffie-
 Hellman values, and Ni and Nr are the nonces. The SAr1 contains the
 chosen cryptographic suite from the initiator’s offered choices. A
 minimal implementation using shared secrets will ignore the CERTREQ
 payload.

Kivinen Informational [Page 7]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 Minimal implementation will most likely support exactly one set of
 cryptographic algorithms, meaning the SAi1 payload will be static.
 It needs to check that the SAr1 received matches the proposal it
 sent.

 At this point in the negotiation, each party can generate SKEYSEED,
 from which all keys are derived for that IKE SA.

 SKEYSEED = prf(Ni | Nr, g^ir)

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr }
 = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

 prf+ (K,S) = T1 | T2 | T3 | T4 | ...

 where:
 T1 = prf (K, S | 0x01)
 T2 = prf (K, T1 | S | 0x02)
 T3 = prf (K, T2 | S | 0x03)
 T4 = prf (K, T3 | S | 0x04)
 ...

 (indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er,
 SK_pi, and SK_pr are taken in order from the generated bits of the
 prf+). g^ir is the shared secret from the ephemeral Diffie-Hellman
 exchange. g^ir is represented as a string of octets in big endian
 order padded with zeros if necessary to make it the length of the
 modulus. Ni and Nr are the nonces, stripped of any headers.

 The SK_d is used for deriving new keys for the Child SAs. The SK_ai
 and SK_ar are used as a key to the integrity protection algorithm for
 authenticating the component messages of subsequent exchanges. The
 SK_ei and SK_er are used for encrypting (and of course decrypting)
 all subsequent exchanges. The SK_pi and SK_pr are used when
 generating an AUTH payload. The lengths of SK_d, SK_pi, and SK_pr
 MUST be the preferred key length of the Pseudorandom Function (PRF)
 agreed upon.

 A separate SK_e and SK_a is computed for each direction. The keys
 used to protect messages from the original initiator are SK_ai and
 SK_ei. The keys used to protect messages in the other direction are
 SK_ar and SK_er. The notation SK { ... } indicates that these
 payloads are encrypted and integrity protected using that direction’s
 SK_e and SK_a.

Kivinen Informational [Page 8]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 Initiator Responder

 HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH,
 Flags: Initiator, Message ID=1),
 SK {IDi, AUTH, SAi2, TSi, TSr,
 N(INITIAL_CONTACT)} -->

 <-- HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH, Flags:
 Response, Message ID=1),
 SK {IDr, AUTH, SAr2, TSi, TSr}

 The initiator asserts its identity with the IDi payload, proves
 knowledge of the secret corresponding to IDi, and integrity protects
 the contents of the first message using the AUTH payload. The
 responder asserts its identity with the IDr payload, authenticates
 its identity, and protects the integrity of the second message with
 the AUTH payload.

 As minimal implementation usually has only one host where it
 connects, that means it has only one shared secret. This means it
 does not need to care about the IDr payload that much. If the other
 end sends an AUTH payload that the initiator can verify using the
 shared secret it has, then it knows the other end is the peer it was
 configured to talk to.

 In the IKE_AUTH request, the initiator sends the SA offer(s) in the
 SAi2 payload and the proposed Traffic Selectors (TSs) for the Child
 SA in the TSi and TSr payloads. The responder replies with the
 accepted offer in an SAr2 payload and with the selected Traffic
 Selectors. The selected Traffic Selectors may be a subset of what
 the initiator proposed.

 In the minimal implementation, both SA payloads and TS payloads are
 going to be mostly static. The SA payload will have the SPI value
 used in the Encapsulating Security Payload (ESP), but the algorithms
 are most likely going to be the one and only supported set. The TS
 payloads on the initiator end will most likely say from any to any,
 i.e., full wildcard ranges, or from the local IP to the remote IP.
 In the wildcard case, the responder quite often narrows the range
 down to the one IP address pair. Using a single IP address pair as
 the Traffic Selectors when sending the IKE_AUTH request will simplify
 processing as the responder will either accept the IP address pair or
 return an error. If wildcard ranges are used, there is a possibility
 that the responder will narrow the Traffic Selector range to range
 that is not acceptable by the initiator.

 The IKE_AUTH (and IKE_SA_INIT) response may contain multiple status
 notification payloads that can be ignored by minimal implementations.

Kivinen Informational [Page 9]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 There can also be Vendor ID, Certificate, Certificate Request, or
 Configuration payloads, but any payload unknown to minimal
 implementations can simply be skipped over (response messages cannot
 have critical unsupported payloads).

 The exchange above includes N(INITIAL_CONTACT) notification in the
 request as that is quite commonly sent by a minimal implementation.
 It indicates to the other end that the initiator does not have any
 other IKE SAs between it and the responder, and if there is any left
 from previous runs, those can be deleted by the responder. As
 minimal implementations delete IKE SAs without sending IKE SA delete
 requests, this will help the responder to clean up leftover state.

 When using shared secret authentication, the peers are authenticated
 by having each calculating a Message Authentication Code (MAC) over a
 block of data:

 For the initiator:
 AUTH = prf(prf(Shared Secret, "Key Pad for IKEv2"),
 <InitiatorSignedOctets>)
 For the responder:
 AUTH = prf(prf(Shared Secret, "Key Pad for IKEv2"),
 <ResponderSignedOctets>)

 The string "Key Pad for IKEv2" is 17 ASCII characters without null
 termination. The implementation can precalculate the inner prf and
 only store the output of it. This is possible because a minimal
 IKEv2 implementation usually only supports one PRF.

 In the following calculations, IDi’ and IDr’ are the entire ID
 payloads excluding the fixed header, and the Ni and Nr are only the
 values, not the payloads containing it. Note that neither the nonce
 Ni/Nr nor the value prf(SK_pr, IDr’)/prf(SK_pi, IDi’) are
 transmitted.

 The initiator signs the first message (IKE_SA_INIT request), starting
 with the first octet of the first SPI in the header and ending with
 the last octet of the last payload in that first message. Appended
 to this (for purposes of computing the signature) are the responder’s
 nonce Nr and the value prf(SK_pi, IDi’).

 For the responder, the octets to be signed start with the first octet
 of the first SPI in the header of the second message (IKE_SA_INIT
 response) and end with the last octet of the last payload in that
 second message. Appended to this are the initiator’s nonce Ni and
 the value prf(SK_pr, IDr’).

Kivinen Informational [Page 10]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The initiator’s signed octets can be described as:

 InitiatorSignedOctets = RealMessage1 | NonceRData | MACedIDForI
 RealIKEHDR = SPIi | SPIr | . . . | Length
 RealMessage1 = RealIKEHDR | RestOfMessage1
 NonceRPayload = PayloadHeader | NonceRData
 InitiatorIDPayload = PayloadHeader | RestOfInitIDPayload
 RestOfInitIDPayload = IDType | RESERVED | InitIDData
 MACedIDForI = prf(SK_pi, RestOfInitIDPayload)

 The responder’s signed octets can be described as:

 ResponderSignedOctets = RealMessage2 | NonceIData | MACedIDForR
 RealIKEHDR = SPIi | SPIr | . . . | Length
 RealMessage2 = RealIKEHDR | RestOfMessage2
 NonceIPayload = PayloadHeader | NonceIData
 ResponderIDPayload = PayloadHeader | RestOfRespIDPayload
 RestOfRespIDPayload = IDType | RESERVED | RespIDData
 MACedIDForR = prf(SK_pr, RestOfRespIDPayload)

 Note that all of the payloads inside the RestOfMessageX are included
 under the signature, including any payload types not listed in this
 document.

 The initiator might also get an unauthenticated response back that
 has a notification payload with an error code inside. As that error
 code will be unauthenticated and may be faked, there is no need to do
 anything for those. A minimal implementation can simply ignore those
 errors and retransmit its request until it times out, and if that
 happens, then the IKE SA (and Child SA) creation failed.

 The responder might also reply with an IKE_AUTH response packet that
 does not contain the payloads needed to set up a Child SA (SAr2, TSi,
 and TSr) but instead contain AUTH payload and an error. Minimal
 implementation that does not support the CREATE_CHILD_SA exchange
 cannot recover from this scenario. It can delete the IKE SA and
 start over from the beginning (which might fail again if this is a
 configuration error, or it might succeed if this was temporal
 failure).

Kivinen Informational [Page 11]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

2.2. Other Exchanges

 Minimal implementations MUST be able to reply to INFORMATIONAL
 requests by sending back an empty INFORMATIONAL response:

 Minimal implementation Other end

 <-- HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
 Flags: none, Message ID=m),
 SK {...}

 HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
 Flags: Initiator | Response,
 Message ID=m),
 SK {} -->

 Minimal implementations MUST be able to reply to incoming
 CREATE_CHILD_SA requests. A typical implementation will reject the
 CREATE_CHILD_SA exchanges by sending a NO_ADDITIONAL_SAS error notify
 back:

 Minimal implementation Other end

 <-- HDR(SPIi=xxx, SPIy=yyy, CREATE_CHILD_SA,
 Flags: none, Message ID=m),
 SK {...}

 HDR(SPIi=xxx, SPIr=yyy, CREATE_CHILD_SA,
 Flags: Initiator | Response, Message ID=m),
 SK {N(NO_ADDITIONAL_SAS)} -->

 Note that INFORMATIONAL and CREATE_CHILD_SA requests might contain
 unsupported critical payloads, in which case a compliant
 implementation MUST ignore the request and send a response message
 back that has the UNSUPPORTED_CRITICAL_PAYLOAD notification. That
 notification payload data contains a 1-octet payload type of the
 unsupported critical payload.

2.3. Generating Keying Material

 The keying material for the Child SA created by the IKE_AUTH exchange
 is generated as follows:

 KEYMAT = prf+(SK_d, Ni | Nr)

 Where Ni and Nr are the nonces from the IKE_SA_INIT exchange.

Kivinen Informational [Page 12]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 A single CHILD_SA negotiation may result in multiple Security
 Associations. ESP and Authentication Header (AH) SAs exist in pairs
 (one in each direction), so two SAs are created in a single Child SA
 negotiation for them. The keying material for each Child SA MUST be
 taken from the expanded KEYMAT using the following rules:

 o All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going from the responder to the initiator.

 o If an IPsec protocol requires multiple keys, the order in which
 they are taken from the SA’s keying material needs to be described
 in the protocol’s specification. For ESP and AH, [IPSECARCH]
 defines the order, namely: the encryption key (if any) MUST be
 taken from the first bits, and the integrity key (if any) MUST be
 taken from the remaining bits.

 Each cryptographic algorithm takes a fixed number of bits of keying
 material specified as part of the algorithm or negotiated in SA
 payloads.

3. Conformance Requirements

 For an implementation to be called conforming to the RFC 7296
 specification, it MUST be possible to configure it to accept the
 following:

 o Public Key Infrastructure using X.509 (PKIX) Certificates
 containing and signed by RSA keys of size 1024 or 2048 bits, where
 the ID passed is any of ID_KEY_ID, ID_FQDN, ID_RFC822_ADDR, or
 ID_DER_ASN1_DN.

 o Shared key authentication where the ID passed is any of ID_KEY_ID,
 ID_FQDN, or ID_RFC822_ADDR.

 o Authentication where the responder is authenticated using PKIX
 Certificates, and the initiator is authenticated using shared key
 authentication.

 This document only supports the second bullet; it does not support
 PKIX Certificates at all. As full RFC 7296 responders must also
 support that shared key authentication, this allows a minimal
 implementation to be able to interoperate with all implementations
 that are compliant with RFC 7296.

 PKIX Certificates are left out from the minimal implementation as
 those would add quite a lot of complexity to the implementation. The
 actual code changes needed in the IKEv2 protocol are small, but the
 certificate validation code would be more complex than the whole

Kivinen Informational [Page 13]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 minimal IKEv2 implementation itself. If public-key-based
 authentication is needed for scalability reasons, then raw public
 keys would probably be the best compromise (see Appendix B.2).

4. Implementation Status

 This document describes a minimal implementation written by the
 author of this document. The minimal implementation supported the
 base IKE_SA_INIT and IKE_AUTH exchanges and successfully
 interoperated with a full IKEv2 server. This minimal implementation
 was presented in the Interconnecting Smart Objects with Internet
 Workshop in Prague in March 2011 [Kiv11]. This implementation was
 written as proof of concept in perl.

 There was another proof-of-concept implementation written in python,
 which also interoperated with a full IKEv2 server.

 Both implementations were written just for demonstration purposes and
 included fixed configuration built into the code, and both also
 implemented ESP, ICMP, and IP layers to the level that was needed to
 send and receive one ICMP echo packet. Both implementations were
 about 1000 lines of code excluding cryptographic libraries but
 including ESP, ICMP, and IP layers.

5. Security Considerations

 As this implements the same protocol as RFC 7296, this means all
 security considerations from it also apply to this document.

Kivinen Informational [Page 14]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

6.2. Informative References

 [EAI] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, DOI 10.17487/RFC6532, February
 2012, <http://www.rfc-editor.org/info/rfc6532>.

 [IDNA] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [IKEV2IANA]
 IANA, "Internet Key Exchange Version 2 (IKEv2)
 Parameters",
 <http://www.iana.org/assignments/ikev2-parameters>.

 [IPSEARCH] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <http://www.rfc-editor.org/info/rfc4301>.

 [Kiv11] Kivinen, T., "Interconnecting Smart Objects with Internet
 Workshop 2011-03025; IKEv2 and Smart Objects", March 2011,
 <https://www.iab.org/wp-content/IAB-uploads/2011/04/
 Kivinen.pdf>.

 [MODES] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Recommendation for Block Cipher
 Modes of Operation", SP 800-38A, 2001.

 [PKCS1] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
 2003, <http://www.rfc-editor.org/info/rfc3447>.

Kivinen Informational [Page 15]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <http://www.rfc-editor.org/info/rfc5322>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7619] Smyslov, V. and P. Wouters, "The NULL Authentication
 Method in the Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 7619, DOI 10.17487/RFC7619, August 2015,
 <http://www.rfc-editor.org/info/rfc7619>.

 [RFC7670] Kivinen, T., Wouters, P., and H. Tschofenig, "Generic Raw
 Public-Key Support for IKEv2", RFC 7670,
 DOI 10.17487/RFC7670, January 2016,
 <http://www.rfc-editor.org/info/rfc7670>.

Kivinen Informational [Page 16]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

Appendix A. Header and Payload Formats

 This appendix describes actual packet payload formats. This is
 required to make the document self-contained. The descriptions are
 mostly copied from RFC 7296, and more information can be found from
 there.

 Various payloads contain RESERVED fields, and those MUST be sent as
 zero and MUST be ignored on receipt.

 All multi-octet fields representing integers are laid out in big
 endian order (also known as "most significant byte first" or "network
 byte order").

A.1. The IKE Header

 Each IKEv2 message begins with the IKE header, denoted HDR in this
 document. Following the header are one or more IKE payloads each
 identified by a Next Payload field in the preceding payload.
 Payloads are identified in the order in which they appear in an IKE
 message by looking in the Next Payload field in the IKE header and,
 subsequently, according to the Next Payload field in the IKE payload
 itself until a Next Payload field of zero indicates that no payloads
 follow. If a payload of type "Encrypted" is found, that payload is
 decrypted and its contents parsed as additional payloads. An
 Encrypted payload MUST be the last payload in a packet, and an
 Encrypted payload MUST NOT contain another Encrypted payload.

 The format of the IKE header is shown in Figure 1.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IKE SA Initiator’s SPI |
 | |
 +-+
 | IKE SA Responder’s SPI |
 | |
 +-+
 | Next Payload | MjVer | MnVer | Exchange Type | Flags |
 +-+
 | Message ID |
 +-+
 | Length |
 +-+

 Figure 1: IKE Header Format

Kivinen Informational [Page 17]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o Initiator’s SPI (8 octets) - A value chosen by the initiator to
 identify a unique IKE Security Association. This value MUST NOT
 be zero.

 o Responder’s SPI (8 octets) - A value chosen by the responder to
 identify a unique IKE Security Association. This value MUST be
 zero in the first message of an IKE initial exchange.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload are defined below.

 o Major Version (4 bits) - Indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the major version to 2 and MUST drop the messages with a
 higher major version number.

 o Minor Version (4 bits) - Indicates the minor version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the minor version to zero. They MUST ignore the minor
 version number of received messages.

 o Exchange Type (1 octet) - Indicates the type of exchange being
 used. This constrains the payloads sent in each message in an
 exchange.

 Exchange Type Value

 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37

 o Flags (1 octet) - Indicates specific options that are set for the
 message. Presence of options is indicated by the appropriate bit
 in the flags field being set. The bits are as follows:

 +-+-+-+-+-+-+-+-+
 |X|X|R|V|I|X|X|X|
 +-+-+-+-+-+-+-+-+

Kivinen Informational [Page 18]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 In the description below, a bit being ’set’ means its value is
 ’1’, while ’cleared’ means its value is ’0’. ’X’ bits MUST be
 cleared when sending and MUST be ignored on receipt.

 * R (Response) - This bit indicates that this message is a
 response to a message containing the same Message ID. This bit
 MUST be cleared in all request messages and MUST be set in all
 responses. An IKEv2 endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 * V (Version) - This bit indicates that the transmitter is
 capable of speaking a higher major version number of the
 protocol than the one indicated in the Major Version field.
 Implementations of IKEv2 MUST clear this bit when sending and
 MUST ignore it in incoming messages.

 * I (Initiator) - This bit MUST be set in messages sent by the
 original initiator of the IKE SA and MUST be cleared in
 messages sent by the original responder. It is used by the
 recipient to determine which 8 octets of the SPI were generated
 by the recipient. This bit changes to reflect who initiated
 the last rekey of the IKE SA.

 o Message ID (4 octets, unsigned integer) - Message identifier used
 to control retransmission of lost packets and matching of requests
 and responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.

 o Length (4 octets, unsigned integer) - Length of the total message
 (header + payloads) in octets.

A.2. Generic Payload Header

 Each IKE payload begins with a generic payload header, as shown in
 Figure 2. Figures for each payload below will include the generic
 payload header, but for brevity, the description of each field will
 be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+

 Figure 2: Generic Payload Header

Kivinen Informational [Page 19]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The Generic Payload Header fields are defined as follows:

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be zero. This field provides
 a "chaining" capability whereby additional payloads can be added
 to a message by appending each one to the end of the message and
 setting the Next Payload field of the preceding payload to
 indicate the new payload’s type. An Encrypted payload, which must
 always be the last payload of a message, is an exception. It
 contains data structures in the format of additional payloads. In
 the header of an Encrypted payload, the Next Payload field is set
 to the payload type of the first contained payload (instead of
 zero); conversely, the Next Payload field of the last contained
 payload is set to zero). The payload type values needed for
 minimal implementations are listed here.

 Next Payload Type Notation Value
 --
 No Next Payload 0
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35
 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted and Authenticated SK 46

 o Critical (1 bit) - MUST be set to zero if the sender wants the
 recipient to skip this payload if it does not understand the
 payload type code in the Next Payload field of the previous
 payload. MUST be set to 1 if the sender wants the recipient to
 reject this entire message if it does not understand the payload
 type. MUST be ignored by the recipient if the recipient
 understands the payload type code. MUST be set to zero for
 payload types defined in this document. Note that the critical
 bit applies to the current payload rather than the "next" payload
 whose type code appears in the first octet.

 o Payload Length (2 octets, unsigned integer) - Length in octets of
 the current payload, including the generic payload header.

Kivinen Informational [Page 20]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

A.3. Security Association Payload

 The Security Association payload, denoted SA in this document, is
 used to negotiate attributes of a Security Association.

 An SA payload consists of one or more proposals. Each proposal
 includes one protocol. Each protocol contains one or more transforms
 -- each specifying a cryptographic algorithm. Each transform
 contains zero or more attributes (attributes are needed only if the
 Transform ID does not completely specify the cryptographic algorithm;
 currently, the only attribute is the Key Length attribute for
 variable-length ciphers, meaning there is exactly zero or one
 attribute).

 The responder MUST choose a single suite, which may be any subset of
 the SA proposal following the rules below.

 Each proposal contains one protocol. If a proposal is accepted, the
 SA response MUST contain the same protocol. Each IPsec protocol
 proposal contains one or more transforms. Each transform contains a
 Transform Type. The accepted cryptographic suite MUST contain
 exactly one transform of each type included in the proposal. For
 example: if an ESP proposal includes transforms ENCR_3DES, ENCR_AES
 w/keysize 128, ENCR_AES w/keysize 256, AUTH_HMAC_MD5, and
 AUTH_HMAC_SHA, the accepted suite MUST contain one of the ENCR_
 transforms and one of the AUTH_ transforms. Thus, six combinations
 are acceptable.

 Minimal implementation can create very simple SA proposal, i.e.,
 include one proposal, which contains exactly one transform for each
 Transform Type. It is important to only include one Diffie-Hellman
 group in the proposal, so there is no need to do INVALID_KE_PAYLOAD
 processing in responses.

 When parsing an SA, an implementation MUST check that the total
 Payload Length is consistent with the payload’s internal lengths and
 counts. Proposals, Transforms, and Attributes each have their own
 variable-length encodings. They are nested such that the Payload
 Length of an SA includes the combined contents of the SA, Proposal,
 Transform, and Attribute information. The length of a Proposal
 includes the lengths of all Transforms and Attributes it contains.
 The length of a Transform includes the lengths of all Attributes it
 contains.

 Each Proposal/Protocol structure is followed by one or more transform
 structures. The number of different transforms is generally
 determined by the Protocol. AH generally has two transforms:
 Extended Sequence Numbers (ESNs) and an integrity check algorithm.

Kivinen Informational [Page 21]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 ESP generally has three: ESN, an encryption algorithm, and an
 integrity check algorithm. IKEv2 generally has four transforms: a
 Diffie-Hellman group, an integrity check algorithm, a PRF algorithm,
 and an encryption algorithm. For each Protocol, the set of
 permissible transforms is assigned Transform ID numbers, which appear
 in the header of each transform.

 If there are multiple transforms with the same Transform Type, the
 proposal is an OR of those transforms. If there are multiple
 transforms with different Transform Types, the proposal is an AND of
 the different groups.

 A given transform MAY have one or more Attributes. Attributes are
 necessary when the transform can be used in more than one way, as
 when an encryption algorithm has a variable key size. The transform
 would specify the algorithm, and the attribute would specify the key
 size. To propose alternate values for an attribute (for example,
 multiple key sizes for the AES encryption algorithm), an
 implementation MUST include multiple transforms with the same
 Transform Type each with a single Attribute.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | |
 ˜ <Proposals> ˜
 | |
 +-+

 Figure 3: Security Association Payload

 o Proposals (variable) - One or more proposal substructures.

Kivinen Informational [Page 22]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

A.3.1. Proposal Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 (last) or 2 | RESERVED | Proposal Length |
 +-+
 | Proposal Num | Protocol ID | SPI Size |Num Transforms|
 +-+
 ˜ SPI (variable) ˜
 +-+
 | |
 ˜ <Transforms> ˜
 | |
 +-+

 Figure 4: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA.

 o Proposal Length (2 octets, unsigned integer) - Length of this
 proposal, including all transforms and attributes that follow.

 o Proposal Num (1 octet) - When a proposal is made, the first
 proposal in an SA payload MUST be 1, and subsequent proposals MUST
 be one more than the previous proposal. When a proposal is
 accepted, the proposal number in the SA payload MUST match the
 number on the proposal sent that was accepted.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation.

 Protocol Protocol ID

 IKE 1
 AH 2
 ESP 3

 o SPI Size (1 octet) - For an initial IKE SA negotiation, this field
 MUST be zero; the SPI is obtained from the outer header. During
 subsequent negotiations, it is equal to the size, in octets, of
 the SPI of the corresponding protocol (8 for IKE and 4 for ESP and
 AH).

 o Num Transforms (1 octet) - Specifies the number of transforms in
 this proposal.

Kivinen Informational [Page 23]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o SPI (variable) - The sending entity’s SPI. When the SPI Size
 field is zero, this field is not present in the Security
 Association payload.

 o Transforms (variable) - One or more transform substructures.

A.3.2. Transform Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 (last) or 3 | RESERVED | Transform Length |
 +-+
 |Transform Type | RESERVED | Transform ID |
 +-+
 | |
 ˜ Transform Attributes ˜
 | |
 +-+

 Figure 5: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the
 last Transform Substructure in the Proposal.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being specified
 in this transform. Different protocols support different
 Transform Types. For some protocols, some of the transforms may
 be optional. If a transform is optional and the initiator wishes
 to propose that the transform be omitted, no transform of the
 given type is included in the proposal. If the initiator wishes
 to make use of the transform optional to the responder, it
 includes a transform substructure with Transform ID = 0 as one of
 the options.

 o Transform ID (2 octets) - The specific instance of the Transform
 Type being proposed.

Kivinen Informational [Page 24]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The relevant Transform Type values are listed below. For more
 information see [RFC7296].

 Description Trans. Used In
 Type
 --
 Encryption Algorithm (ENCR) 1 IKE and ESP
 Pseudorandom Function (PRF) 2 IKE
 Integrity Algorithm (INTEG) 3 IKE, AH, optional in ESP
 Diffie-Hellman group (D-H) 4 IKE, optional in AH & ESP
 Extended Sequence Numbers (ESN) 5 AH and ESP

 For Transform Type 1 (Encryption Algorithm), the relevant Transform
 IDs are listed below.

 Name Number

 ENCR_AES_CBC 12
 ENCR_AES-CCM_8 14

 For Transform Type 2 (Pseudorandom Function), the relevant Transform
 IDs are listed below.

 Name Number

 PRF_HMAC_SHA1 2

 For Transform Type 3 (Integrity Algorithm), the relevant Transform
 IDs are listed below.

 Name Number

 AUTH_HMAC_SHA1_96 2
 AUTH_AES_XCBC_96 5

 For Transform Type 4 (Diffie-Hellman group), the relevant Transform
 IDs are listed below.

 Name Number

 1536-bit MODP 5
 2048-bit MODP 14

Kivinen Informational [Page 25]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 For Transform Type 5 (Extended Sequence Numbers), the relevant
 Transform IDs are listed below.

 Name Number
 --
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1

 Note that an initiator who supports ESNs will usually include two ESN
 transforms, with values "0" and "1", in its proposals. A proposal
 containing a single ESN transform with value "1" means that using
 normal (non-extended) sequence numbers is not acceptable.

A.3.3. Valid Transform Types by Protocol

 The number and type of transforms that accompany an SA payload are
 dependent on the protocol in the SA itself. An SA payload proposing
 the establishment of an SA has the following mandatory and optional
 Transform Types. A compliant implementation MUST understand all
 mandatory and optional types for each protocol it supports (though it
 need not accept proposals with unacceptable suites). A proposal MAY
 omit the optional types if the only value for them it will accept is
 NONE.

 Protocol Mandatory Types Optional Types

 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR, ESN INTEG, D-H
 AH INTEG, ESN D-H

A.3.4. Transform Attributes

 Transform Type 1 (Encryption Algorithm) transforms might include one
 transform attribute: Key Length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1| Attribute Type | Attribute Value |
 +-+

 Figure 6: Data Attributes

 o Attribute Type (15 bits) - Unique identifier for each type of
 attribute (see below).

 o Attribute Value - Value of the attribute associated with the
 attribute type.

Kivinen Informational [Page 26]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 Attribute Type Value

 Key Length (in bits) 14

 The Key Length attribute specifies the key length in bits (MUST use
 network byte order) for certain transforms as follows:

 o The Key Length attribute MUST NOT be used with transforms that use
 a fixed-length key.

 o Some transforms specify that the Key Length attribute MUST be
 always included. For example, ENCR_AES_CBC.

A.4. Key Exchange Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Diffie-Hellman Group Num | RESERVED |
 +-+
 | |
 ˜ Key Exchange Data ˜
 | |
 +-+

 Figure 7: Key Exchange Payload Format

 A Key Exchange payload is constructed by copying one’s Diffie-Hellman
 public value into the "Key Exchange Data" portion of the payload.
 The length of the Diffie-Hellman public value for modular
 exponentiation groups (MODPs) MUST be equal to the length of the
 prime modulus over which the exponentiation was performed, prepending
 zero bits to the value if necessary.

 The Diffie-Hellman Group Num identifies the Diffie-Hellman group in
 which the Key Exchange Data was computed. This Diffie-Hellman Group
 Num MUST match a Diffie-Hellman group specified in a proposal in the
 SA payload that is sent in the same message.

A.5. Identification Payloads

 The Identification payloads, denoted IDi and IDr in this document,
 allow peers to assert an identity to one another. When using the
 ID_IPV4_ADDR/ID_IPV6_ADDR identity types in IDi/IDr payloads, IKEv2
 does not require this address to match the address in the IP header
 of IKEv2 packets or anything in the TSi/TSr payloads. The contents

Kivinen Informational [Page 27]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 of IDi/IDr are used purely to fetch the policy and authentication
 data related to the other party. In minimal implementation, it might
 be easiest to always use KEY_ID type. This allows the ID payload to
 be static. Using an IP address has problems in environments where IP
 addresses are dynamically allocated.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | ID Type | RESERVED |
 +-+
 | |
 ˜ Identification Data ˜
 | |
 +-+

 Figure 8: Identification Payload Format

 o ID Type (1 octet) - Specifies the type of Identification being
 used.

 o Identification Data (variable length) - Value, as indicated by the
 Identification Type. The length of the Identification Data is
 computed from the size in the ID payload header.

 The following table lists the assigned semantics for the
 Identification Type field.

 ID Type Value

 ID_IPV4_ADDR 1
 A single four (4) octet IPv4 address.

 ID_FQDN 2
 A fully qualified domain name string. An example of an ID_FQDN
 is "example.com". The string MUST NOT contain any terminators
 (e.g., NULL, CR, etc.). All characters in the ID_FQDN are ASCII;
 for an "internationalized domain name", the syntax is as defined
 in [IDNA], for example, "xn--tmonesimerkki-bfbb.example.net".

 ID_RFC822_ADDR 3
 A fully qualified RFC 822 email address string based [RFC5322].
 An example of an ID_RFC822_ADDR is "jsmith@example.com". The
 string MUST NOT contain any terminators. Because of [EAI],
 implementations would be wise to treat this field as
 UTF-8-encoded text, not as pure ASCII.

Kivinen Informational [Page 28]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 ID_IPV6_ADDR 5
 A single sixteen (16) octet IPv6 address.

 ID_KEY_ID 11
 An opaque octet stream that may be used to pass vendor-
 specific information necessary to do certain proprietary
 types of identification. Minimal implementation might use
 this type to send out a serial number or similar device-specific
 unique static Identification Data for the device.

A.6. Certificate Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Cert Encoding | |
 +-+-+-+-+-+-+-+-+ |
 ˜ Certificate Data ˜
 | |
 +-+

 Figure 9: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type of
 certificate or certificate-related information contained in the
 Certificate Data field.

 Certificate Encoding Value
 --
 X.509 Certificate - Signature 4
 Raw Public Key 15

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated by the
 Certificate Encoding field.

 The syntax of the types above are:

 o "X.509 Certificate - Signature" contains a DER-encoded X.509
 certificate whose public key is used to validate the sender’s AUTH
 payload. Note that with this encoding, if a chain of certificates
 needs to be sent, multiple CERT payloads are used, only the first
 of which holds the public key used to validate the sender’s AUTH
 payload.

Kivinen Informational [Page 29]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o "Raw Public Key" contains a raw public key. In essence, the
 Certificate Payload contains the SubjectPublicKeyInfo part of the
 PKIX Certificate (see Section 4.1.2.7 of [RFC5280]). This is a
 quite simple ASN.1 object that contains mostly static parts before
 the actual public key values. See [RFC7670] for more information.

A.7. Certificate Request Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Cert Encoding | |
 +-+-+-+-+-+-+-+-+ |
 ˜ Certification Authority (CA) ˜
 | |
 +-+

 Figure 10: Certificate Request Payload Format

 o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested.

 o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of
 certificate requested.

 The Certificate Encoding field has the same values as those defined
 by the certificate payload. The Certification Authority field
 contains an indicator of trusted authorities for this certificate
 type. The Certification Authority value is a concatenated list of
 SHA-1 hashes of the public keys of trusted Certification Authorities.
 Each is encoded as the SHA-1 hash of the Subject Public Key Info
 element (see Section 4.1.2.7 of [RFC5280]) from each Trust Anchor
 certificate. The 20-octet hashes are concatenated and included with
 no other formatting.

Kivinen Informational [Page 30]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

A.8. Authentication Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Auth Method | RESERVED |
 +-+
 | |
 ˜ Authentication Data ˜
 | |
 +-+

 Figure 11: Authentication Payload Format

 o Auth Method (1 octet) - Specifies the method of authentication
 used.

 Mechanism Value

 RSA Digital Signature 1
 Using an RSA private key with an RSASSA-PKCS1-v1_5 signature
 scheme specified in [PKCS1]; see Section 2.15 of [RFC7296] for
 details.

 Shared Key Message Integrity Code 2
 Computed as specified earlier using the shared key associated
 with the identity in the ID payload and the negotiated PRF.

 o Authentication Data (variable length) - see Section 2.1.

A.9. Nonce Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | |
 ˜ Nonce Data ˜
 | |
 +-+

 Figure 12: Nonce Payload Format

 o Nonce Data (variable length) - Contains the random data generated
 by the transmitting entity.

Kivinen Informational [Page 31]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The size of the Nonce Data MUST be between 16 and 256 octets,
 inclusive. Nonce values MUST NOT be reused.

A.10. Notify Payload

 The Notify payload, denoted N in this document, is used to transmit
 informational data, such as error conditions and state transitions,
 to an IKE peer. A Notify payload may appear in a response message
 (usually specifying why a request was rejected), in an INFORMATIONAL
 exchange (to report an error not in an IKE request), or in any other
 message to indicate sender capabilities or to modify the meaning of
 the request.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Protocol ID | SPI Size | Notify Message Type |
 +-+
 | |
 ˜ Security Parameter Index (SPI) ˜
 | |
 +-+
 | |
 ˜ Notification Data ˜
 | |
 +-+

 Figure 13: Notify Payload Format

 o Protocol ID (1 octet) - If this notification concerns an existing
 SA whose SPI is given in the SPI field, this field indicates the
 type of that SA. If the SPI field is empty, this field MUST be
 sent as zero and MUST be ignored on receipt.

 o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 IPsec protocol ID or zero if no SPI is applicable. For a
 notification concerning the IKE SA, the SPI Size MUST be zero and
 the SPI field must be empty.

 o Notify Message Type (2 octets) - Specifies the type of
 notification message.

 o SPI (variable length) - Security Parameter Index.

Kivinen Informational [Page 32]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o Notification Data (variable length) - Status or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific.

A.10.1. Notify Message Types

 Notification information can be error messages specifying why an SA
 could not be established. It can also be status data that a process
 managing an SA database wishes to communicate with a peer process.

 Types in the range 0 - 16383 are intended for reporting errors. An
 implementation receiving a Notify payload with one of these types
 that it does not recognize in a response MUST assume that the
 corresponding request has failed entirely. Unrecognized error types
 in a request and status types in a request or response MUST be
 ignored, and they should be logged.

 Notify payloads with status types MAY be added to any message and
 MUST be ignored if not recognized. They are intended to indicate
 capabilities and, as part of SA negotiation, are used to negotiate
 non-cryptographic parameters.

 NOTIFY messages: error types Value

 UNSUPPORTED_CRITICAL_PAYLOAD 1
 Indicates that the 1-octet payload type included in the
 Notification Data field is unknown.

 INVALID_SYNTAX 7
 Indicates the IKE message that was received was invalid because
 some type, length, or value was out of range or because the
 request was rejected for policy reasons. To avoid a
 Denial-of-Service (DoS) attack using forged messages, this
 status may only be returned for and in an encrypted packet if
 the Message ID and cryptographic checksum were valid. To avoid
 leaking information to someone probing a node, this status MUST
 be sent in response to any error not covered by one of the other
 status types. To aid debugging, more detailed error information
 should be written to a console or log.

 NO_PROPOSAL_CHOSEN 14
 None of the proposed crypto suites was acceptable. This can be
 sent in any case where the offered proposals are not acceptable
 for the responder.

 NO_ADDITIONAL_SAS 35
 Specifies that the node is unwilling to accept any more Child
 SAs.

Kivinen Informational [Page 33]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 NOTIFY messages: status types Value

 INITIAL_CONTACT 16384
 Asserts that this IKE SA is the only IKE SA currently active
 between the authenticated identities.

A.11. Traffic Selector Payload

 Traffic Selector (TS) payloads allow endpoints to communicate some of
 the information from their Security Policy Database (SPD) to their
 peers. TS payloads specify the selection criteria for packets that
 will be forwarded over the newly set up SA.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Number of TSs | RESERVED |
 +-+
 | |
 ˜ <Traffic Selectors> ˜
 | |
 +-+

 Figure 14: Traffic Selectors Payload Format

 o Number of TSs (1 octet) - Number of Traffic Selectors being
 provided.

 o Traffic Selectors (variable length) - One or more individual
 Traffic Selectors.

 The length of the Traffic Selector payload includes the TS header and
 all the Traffic Selectors.

 There is no requirement that TSi and TSr contain the same number of
 individual Traffic Selectors. Thus, they are interpreted as follows:
 a packet matches a given TSi/TSr if it matches at least one of the
 individual selectors in TSi and at least one of the individual
 selectors in TSr.

 Two TS payloads appear in each of the messages in the exchange that
 creates a Child SA pair. Each TS payload contains one or more
 Traffic Selectors. Each Traffic Selector consists of an address
 range (IPv4 or IPv6), a port range, and an IP protocol ID.

Kivinen Informational [Page 34]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The first of the two TS payloads is known as TSi (Traffic Selector -
 initiator). The second is known as TSr (Traffic Selector -
 responder). TSi specifies the source address of traffic forwarded
 from (or the destination address of traffic forwarded to) the
 initiator of the Child SA pair. TSr specifies the destination
 address of the traffic forwarded to (or the source address of the
 traffic forwarded from) the responder of the Child SA pair.

 IKEv2 allows the responder to choose a subset of the traffic proposed
 by the initiator.

 When the responder chooses a subset of the traffic proposed by the
 initiator, it narrows the Traffic Selectors to some subset of the
 initiator’s proposal (provided the set does not become the null set).
 If the type of Traffic Selector proposed is unknown, the responder
 ignores that Traffic Selector, so that the unknown type is not
 returned in the narrowed set.

 To enable the responder to choose the appropriate range, if the
 initiator has requested the SA due to a data packet, the initiator
 SHOULD include as the first Traffic Selector in each TSi and TSr a
 very specific Traffic Selector including the addresses in the packet
 triggering the request. If the initiator creates the Child SA pair
 not in response to an arriving packet, but rather, say, upon startup,
 then there may be no specific addresses the initiator prefers for the
 initial tunnel over any other. In that case, the first values in TSi
 and TSr can be ranges rather than specific values.

 As minimal implementations might only support one SA, the Traffic
 Selectors will usually be from the initiator’s IP address to the
 responder’s IP address (i.e., no port or protocol selectors and only
 one range).

Kivinen Informational [Page 35]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

A.11.1. Traffic Selector

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TS Type |IP Protocol ID | Selector Length |
 +-+
 | Start Port | End Port |
 +-+
 | |
 ˜ Starting Address ˜
 | |
 +-+
 | |
 ˜ Ending Address ˜
 | |
 +-+

 Figure 15: Traffic Selector

 o TS Type (1 octet) - Specifies the type of Traffic Selector.

 o IP protocol ID (1 octet) - Value specifying an associated IP
 protocol ID (such as UDP, TCP, and ICMP). A value of zero means
 that the protocol ID is not relevant to this Traffic Selector --
 the SA can carry all protocols.

 o Selector Length - Specifies the length of this Traffic Selector
 substructure including the header.

 o Start Port (2 octets, unsigned integer) - Value specifying the
 smallest port number allowed by this Traffic Selector. For
 protocols for which port is undefined (including protocol 0), or
 if all ports are allowed, this field MUST be zero.

 o End Port (2 octets, unsigned integer) - Value specifying the
 largest port number allowed by this Traffic Selector. For
 protocols for which port is undefined (including protocol 0), or
 if all ports are allowed, this field MUST be 65535.

 o Starting Address - The smallest address included in this Traffic
 Selector (length determined by TS Type).

 o Ending Address - The largest address included in this Traffic
 Selector (length determined by TS Type).

Kivinen Informational [Page 36]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The following table lists values for the Traffic Selector Type field
 and the corresponding Address Selector Data.

 TS Type Value

 TS_IPV4_ADDR_RANGE 7
 A range of IPv4 addresses, represented by two 4-octet
 values. The first value is the beginning IPv4 address
 (inclusive), and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8
 A range of IPv6 addresses, represented by two 16-octet
 values. The first value is the beginning IPv6 address
 (inclusive), and the second value is the ending IPv6 address
 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

A.12. Encrypted Payload

 The Encrypted payload, denoted as SK{...} in this document, contains
 other payloads in encrypted form.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Initialization Vector |
 | (length is block size for the encryption algorithm) |
 +-+
 ˜ Encrypted IKE Payloads ˜
 + +-+
 | | Padding (0-255 octets) |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | Pad Length |
 +-+
 ˜ Integrity Checksum Data ˜
 +-+

 Figure 16: Encrypted Payload Format

Kivinen Informational [Page 37]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the message;
 therefore, the Next Payload field would normally be zero. But
 because the content of this payload is embedded payloads and there
 was no natural place to put the type of the first one, that type
 is placed here.

 o Payload Length - Includes the lengths of the header,
 initialization vector (IV), Encrypted IKE payloads, Padding, Pad
 Length, and Integrity Checksum Data.

 o Initialization Vector - For Cipher Block Chaining (CBC) mode
 ciphers, the length of the initialization vector (IV) is equal to
 the block length of the underlying encryption algorithm. Senders
 MUST select a new unpredictable IV for every message; recipients
 MUST accept any value. The reader is encouraged to consult
 [MODES] for advice on IV generation. In particular, using the
 final ciphertext block of the previous message is not considered
 unpredictable. For modes other than CBC, the IV format and
 processing is specified in the document specifying the encryption
 algorithm and mode.

 o IKE payloads are as specified earlier in this section. This field
 is encrypted with the negotiated cipher.

 o Padding MAY contain any value chosen by the sender and MUST have a
 length that makes the combination of the payloads, the Padding,
 and the Pad Length to be a multiple of the encryption block size.
 This field is encrypted with the negotiated cipher.

 o Pad Length is the length of the Padding field. The sender SHOULD
 set the Pad Length to the minimum value that makes the combination
 of the payloads, the Padding, and the Pad Length a multiple of the
 block size, but the recipient MUST accept any length that results
 in proper alignment. This field is encrypted with the negotiated
 cipher.

 o Integrity Checksum Data is the cryptographic checksum of the
 entire message starting with the Fixed IKE header through the Pad
 Length. The checksum MUST be computed over the encrypted message.
 Its length is determined by the integrity algorithm negotiated.

Kivinen Informational [Page 38]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

Appendix B. Useful Optional Features

 There are some optional features of IKEv2, which might be useful for
 minimal implementations in some scenarios. Such features include raw
 public keys authentication and sending an IKE SA delete notification.

B.1. IKE SA Delete Notification

 In some scenarios, a minimal implementation device creates an IKE SA,
 sends one or few packets, perhaps gets some packets back, and then
 the device goes back to sleep, forgetting the IKE SA. In such
 scenarios, it would be nice for the minimal implementation to send
 the IKE SA delete notification to tell the other end that the IKE SA
 is going away, so it can free the resources.

 Deleting the IKE SA can be done by sending one packet with a fixed
 Message ID and with only one payload inside the Encrypted payload.
 The other end will send back an empty response:

 Initiator Responder

 HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
 Flags: Initiator, Message ID=2),
 SK {D} -->

 <-- HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
 Flags: Response, Message ID=2),
 SK {}

 The Delete payload format is:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Protocol ID | SPI Size | Num of SPIs |
 +-+
 | |
 ˜ Security Parameter Index(es) (SPI) ˜
 | |
 +-+

 Figure 17: Delete Payload Format

 o Protocol ID (1 octet) - Must be 1 for an IKE SA.

Kivinen Informational [Page 39]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 o SPI Size (1 octet) - Length in octets of the SPI as defined by the
 protocol ID. It MUST be zero for IKE (SPI is in the message
 header).

 o Num of SPIs (2 octets, unsigned integer) - The number of SPIs
 contained in the Delete payload. This MUST be zero for IKE.

 o Security Parameter Index(es) (variable length) - Identifies the
 specific Security Association(s) to delete. The length of this
 field is determined by the SPI Size and Num of SPIs fields. This
 field is empty for the IKE SA delete.

B.2. Raw Public Keys

 In some scenarios, the shared secret authentication is not safe
 enough, as anybody who knows the secret can impersonate the server.
 If the shared secret is printed on the side of the device, then
 anybody who gets physical access to the device can read it. In such
 environments, public key authentication allows stronger
 authentication with minimal operational overhead. Certificate
 support is quite complex, and minimal implementations do not usually
 have need for them. Using Raw Public Keys is much simpler, and it
 scales similar to certificates. The fingerprint of the raw public
 key can still be distributed by, for example, printing it on the side
 of the device allowing setup similar to using a shared secret.

 Raw public keys can also be used in a "leap of faith" or baby duck
 style initial setup, where the device imprints itself to the first
 device it sees when it boots up the first time. After that initial
 connection, it stores the fingerprint of the Raw Public Key of the
 server in its own configuration and verifies that it never changes
 (unless a "reset to factory settings" or similar command is issued).

 This changes the initial IKE_AUTH payloads as follows:

 Initiator Responder

 HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH,
 Flags: Initiator, Message ID=1),
 SK {IDi, CERT, AUTH, SAi2, TSi, TSr,
 N(INITIAL_CONTACT)} -->

 <-- HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH, Flags:
 Response, Message ID=1),
 SK {IDr, CERT, AUTH, SAr2, TSi, TSr}

Kivinen Informational [Page 40]

RFC 7815 Minimal IKEv2 Initiator Implementation March 2016

 The CERT payloads contain the raw public keys used to sign the hash
 of the InitiatorSignedOctects/ResponderSignedOctects when generating
 an AUTH payload. Minimal implementations should use SHA-1 as the
 hash function as that is the "SHOULD" support algorithm specified in
 RFC 7296, so it is the most likely one that is supported by all
 devices.

 Note that RFC 7296 already obsoleted the old Raw RSA Key method, and
 "Generic Raw Public-Key Support for IKEv2" [RFC7670] adds a new
 format to allow using any types of raw public keys with IKEv2. This
 document only specifies how to use the new format.

 In these setups, it might be possible that authenticating the server
 is not needed at all. If a minimal device is sending, for example,
 sensor information to the server, the server wants to verify that the
 sensor is who it claims to be using raw public keys, but the sensor
 does not really care who the server is. In such cases, the NULL
 authentication method [RFC7619] would be useful, as it allows devices
 to do one-way authentication.

Acknowledgements

 Most of the content of this document is copied from RFC 7296.

Author’s Address

 Tero Kivinen
 INSIDE Secure
 Eerikinkatu 28
 HELSINKI FI-00180
 FINLAND

 Email: kivinen@iki.fi

Kivinen Informational [Page 41]

