Internet Engineering Task Force (IETF) P. Wouters
Request for Comments: 7901 Red Hat
Category: Experimental June 2016
ISSN: 2070-1721

CHAIN Query Requests in DNS
Abstract

This document defines an EDNSO extension that can be used by a
security-aware validating resolver configured to use a forwarding
resolver to send a single query, requesting a complete validation

path along with the regular query answer. The reduction in queries
potentially lowers the latency and reduces the need to send multiple
gueries at once. This extension mandates the use of source-IP-

verified transport such as TCP or UDP with EDNS-COOKIE, so it cannot
be abused in amplification attacks.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.

This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7901.

Wouters Experimental [Page 1]

RFC 7901 CHAIN Query Requests in DNS June 2016

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
1.1. Requirements Notation.................. 3
2. Terminology 4
3.0verview ... 4
4. OptionFormat 5
5. Protocol Description 6
5.1. Discovery of Support 6
5.2. GenerateaQuery 6
5.3. SendtheOption..................... 6
5.4, Generatea Response 7
6. Protocol Considerations 8
6.1. DNSSEC Considerations 8
6.2. NS Record Considerations 8
6.3. Session Management 9
6.4. Negative Trust Anchors 9
6.5. Anycast Considerations 9
7. Security Considerations 10
7.1. Additional Work and Bandwidth 10
7.2. Amplification Attacks 10
7.3. Privacy Considerations 10
8. Examples L 10
8.1. CHAIN Query for "www.example.com" 10
8.2. Out-of-Path Query for "example.com" 12
8.3. NonexistentData 13
9. IANA Considerations 14
9.1. EDNSO Option Code for CHAIN 14
10. Normative References 14
Acknowledgments 16
Author's Address 16

Wouters Experimental [Page 2]

RFC 7901 CHAIN Query Requests in DNS June 2016

1. Introduction

Traditionally, a DNS client operates in stub mode. For each DNS
guestion the DNS client needs to resolve, it sends a single query to

an upstream recursive resolver to obtain a single DNS answer. When
DNSSEC [RFC4033] is deployed on such DNS clients, validation requires
that the client obtain all the intermediate information from the DNS

root down to the queried-for host name, so it can perform DNSSEC
validation on the complete chain of trust.

Currently, applications send out many UDP requests concurrently.
This requires more resources on the DNS client with respect to state
(CPU, memory, battery) and bandwidth. There is also no guarantee
that the initial set of UDP questions will result in all the records
required for DNSSEC validation. More round trips could be required
depending on the resulting DNS answers. This especially affects
high-latency links.

This document specifies an EDNSO extension that allows a validating
resolver running as a forwarding resolver to open a TCP connection to
another resolver and request a DNS chain answer using one DNS query/
answer pair. This reduces the number of round trips to two. If

combined with long-lived TCP or [RFC7828], there is only one round

trip. While the upstream resolver still needs to perform all the

individual queries required for the complete answer, it usually has a
much bigger cache and does not experience significant slowdown from
last-mile latency.

This EDNSO extension allows the forwarding resolver to indicate which
part of the DNS hierarchy it already contains in its cache. This
reduces the amount of data required to be transferred and reduces the
work the upstream recursive resolver has to perform.

This EDNSO extension is only intended to be sent by forwarding
resolvers to recursive resolvers. It MUST be ignored by
authoritative servers.
1.1. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Wouters Experimental [Page 3]

RFC 7901 CHAIN Query Requests in DNS June 2016

2. Terminology

The DNS terminology used in this document is that of [RFC7719].
Additionally, the following terms are used:

Forwarding Resolver: A nameserver that does not do iterative
resolution itself; instead, it passes that responsibility to
another recursive resolver, called a "forwarder" in [RFC2308],
Section 1.

Recursive Resolver: A nameserver that is responsible for resolving
domain names for clients by following the domain’s delegation
chain, starting at the root. Recursive resolvers frequently use
caches to be able to respond to client queries quickly, as
described in [RFC1035], Section 7.

Validating Resolver: A recursive nameserver that also performs
DNSSEC [RFC4033] validation. Also known as "security-aware
resolver".

3. Overview

When DNSSEC is deployed on a host, it can no longer delegate all DNS
work to the upstream recursive resolver. Obtaining just the DNS
answer itself is not enough to validate that answer using DNSSEC.
For DNSSEC validation, the DNS client requires a locally running
validating resolver, so it can confirm DNSSEC validation of all
intermediary DNS answers. It can configure itself as a forwarding
resolver if it obtains the IP addresses of one or more recursive
resolvers that are available or as a stand-alone recursive resolver

if no functional recursive resolvers were obtained. Generating the
required queries for validation adds a significant delay in answering
the DNS question of the locally running application. The application
must wait while the resolver validates all intermediate answers.

Each round trip adds to the total time waiting on DNS resolution with
validation to complete. This makes DNSSEC resolving impractical for
devices on networks with a high latency.

This document defines the CHAIN option that allows the resolver to
request all intermediate DNS data it requires to resolve and validate
a particular DNS answer in a single round trip. The resolver could
be part of the application or a recursive resolver running on the
host.

Servers answering with CHAIN data should ensure that the peer’s IP

address is not a spoofed source IP address. See Section 7. This
prevents DNS amplification attacks.

Wouters Experimental [Page 4]

RFC 7901 CHAIN Query Requests in DNS June 2016

Applications that support CHAIN internally can perform validation
without requiring the host to run a recursive resolver. This is
particularly useful for virtual servers in a cloud or container-based
deployment where it is undesirable to run a recursive resolver per
virtual machine.

The format of this option is described in Section 4.

As described in Section 5.4, a recursive resolver can use this EDNSO
option to include additional data required by the resolver in the

Authority Section of the DNS answer packet. The Answer

Section remains unchanged from a traditional DNS answer and contains
the answer and related DNSSEC entries.

An empty CHAIN EDNSO option MAY be sent over any transport as a
discovery method. A DNS server receiving such an empty CHAIN option
SHOULD add an empty CHAIN option in its answer to indicate that it
supports the CHAIN option.

The mechanisms provided by CHAIN raise various security concerns
related to the additional work, bandwidth, amplification attacks, and
privacy issues with the cache. These concerns are described in
Section 7.

4. Option Format

This document uses an EDNSO option [RFC6891] to include client IP
information in DNS messages. The option is structured as follows:

1 2 3
01234567890123456789012345678901
+ + +
! OPTION-CODE ! OPTION-LENGTH !

” Closest Trust Point (FQDN) -

+
+

o OPTION-CODE, 2 octets, for CHAIN is 13.

0 OPTION-LENGTH, 2 octets, contains the length of the payload
(everything after Option-length) in octets.

o Closest trust point, a variable-length Fully-Qualified Domain Name
(FQDN) in DNS wire format of the requested start point of the
chain. This entry is the "lowest" known entry in the DNS chain
known by the recursive server seeking a CHAIN answer for which it
has a validated Delegation Signer (DS) and DNSKEY record. The

Wouters Experimental [Page 5]

RFC 7901 CHAIN Query Requests in DNS June 2016

endpoint of the chain is obtained from the DNS Query
Section itself. No DNS name compression is allowed for this
value.

5. Protocol Description
5.1. Discovery of Support

A forwarding resolver may include a zero-length CHAIN option in a
regular query over any transport to discover the DNS server
capability for CHAIN. Recursive resolvers that support and are
willing to accept CHAIN queries over source IP verified transport
respond to a zero-length CHAIN received by including a zero-length
CHAIN option in the answer. If not already using a source-IP-
verified transport, the forwarding resolver MAY then switch to a
source-1P-verified transport and start sending queries with the CHAIN
option to request a CHAIN response from the recursive resolver.
Examples of source-IP-verified transports are the three-way TCP
handshake and UDP with DNS cookies [RFC7873].

5.2. Generate a Query

In this option value, the forwarding resolver sets the closest trust
point in the chain -- furthest from the root -- that it already has a
DNSSEC-validated (secure or not) answer for in its cache. The
upstream recursive resolver does not need to include any part of the
chain from the root down to this option’s FQDN. A complete example
is described in Section 8.1.

The CHAIN option should generally be sent by system forwarding
resolvers and resolvers within an application that also performs
DNSSEC validation.

5.3. Send the Option

When CHAIN is available, the downstream recursive resolver can adjust
its query strategy based on the desired queries and its cache
contents.

A forwarding resolver can request the CHAIN option with every
outgoing DNS query. However, itis RECOMMENDED that forwarding
resolvers remember which upstream recursive resolvers did not return
the option (and additional data) with their response. The forwarding
resolver SHOULD fall back to regular DNS for subsequent queries to
those recursive resolvers. It MAY switch to another recursive

resolver that does support the CHAIN option or try again later to see

if the server has become less loaded and is now willing to answer
with CHAIN queries. A fallback strategy similar to that described in

Wouters Experimental [Page 6]

RFC 7901 CHAIN Query Requests in DNS June 2016

[RFC6891], Section 6.2.2 SHOULD be employed to avoid persistent
interference due to non-clean paths.

5.4. Generate a Response

When a query containing a non-zero CHAIN option is received from a
forwarding resolver, the upstream recursive resolver supporting CHAIN
MAY respond by confirming that it is returning a CHAIN. To do so, it
MUST set the CHAIN option to the lowest trust point sent as part of

the chain, with its corresponding OPTION-LENGTH. It extends the
Authority Section in the DNS answer packet with the DNS RRsets
required for validating the answer. The added DNS RRsets start with

the first chain element below the received closest trust point up to

and including the NS and DS RRsets that represent the zone cut
(authoritative servers) of the QNAME. The added RRsets MAY be added
in matching hierarchical order, but a DNS client MUST NOT depend on
the order of the added RRsets for validation. The actual DNS answer

to the question in the Query Section is placed in the DNS Answer
Section identical to the traditional DNS answer. All required
DNSSEC-related records must be added to their appropriate sections.
This includes records required for proof of nonexistence of regular

and/or wildcard records, such as NextSECure (NSEC) or NSEC3 records.

Recursive resolvers that have not implemented or enabled support for
the CHAIN option, or are otherwise unwilling to perform the

additional work for a CHAIN query due to workload, may safely ignore
the option in the incoming queries. Such a server MUST NOT include a
CHAIN option when sending DNS answer replies back, thus indicating it
is not able or willing to support CHAIN queries at this time.

Requests with wrongly formatted options (i.e., bogus FQDN) MUST be
rejected; a FORMERR response must be returned to the sender, as
described by [RFC6891].

Requests resulting in chains that the receiving resolver is unwilling

to serve can be rejected by answering the query as a regular DNS

reply but with an empty CHAIN payload. Replying with an empty CHAIN
can be used for chains that would be too big or for chains that would
reveal too much information considered private.

At any time, a recursive resolver that has determined that it is
running low on resources can refuse CHAIN queries by replying with a
regular DNS reply with an empty CHAIN payload.

If a CHAIN answer would be bigger than the recursive resolver is
willing to serve, it SHOULD send a partial chain starting with the
data closest to the top of the chain. The client MAY resend the
guery with an updated closest trust point until it has received the

Wouters Experimental [Page 7]

RFC 7901 CHAIN Query Requests in DNS June 2016

full chain. The CHAIN response will contain the lowest closest trust
point that was included in the CHAIN answer.

If the DNS request results in a CNAME or DNAME for the Answer

Section, the recursive resolver MUST return these records in the

Answer Section similar to regular DNS processing. The CNAME or DNAME
target MAY be placed in the Additional Section only if all supporting

records for DNSSEC validation of the CNAME or DNAME target are also
added to the Authority Section.

The response from a recursive resolver to a resolver MUST NOT contain
the CHAIN option if none was present in the resolver’s original
request.

A DNS query that contains the CHAIN option MUST also have the "DNSSEC
OK" (DO) bit set. If this bit is not set, or if the "Checking
Disabled" (CD) bit is set, the CHAIN option received MUST be ignored.

6. Protocol Considerations
6.1. DNSSEC Considerations

The presence or absence of an OPT resource record containing a CHAIN
option in a DNS query does not change the usage of those resource
records and mechanisms used to provide data origin authentication and
data integrity to the DNS, as described in [RFC4033], [RFC4034], and
[RFC4035].

6.2. NS Record Considerations

CHAIN responses SHOULD include the authoritative NS RRset with its
RRSIG records required for validation. It MUST NOT include the NS
RRset from the parent zone, as this RRset is not signed. If the size

of the answer is an important factor, the NS RRset MAY be omitted.

When a DNSSEC chain is supplied via CHAIN, the forwarding resolver is
no longer required to use the NS RRset, as it can construct the
validation path via the DNSKEY and DS RRsets without using the NS
RRset. However, the forwarding resolver might be forced to switch

from forwarding resolver mode to recursive resolver mode due to a
network topology change. In recursive resolver mode, the NS RRsets
are needed to find and query authoritative servers directly. Itis
RECOMMENDED that the DNS forwarding resolver populate its cache with
this information to avoid requiring future queries to obtain any

missing NS records. Therefore, CHAIN responses MUST include the NS
RRset from the child zone, including the RRSIG records required for
validation.

Wouters Experimental [Page 8]

RFC 7901 CHAIN Query Requests in DNS June 2016

6.3. Session Management

The use of TCP keepalive [RFC7828] on DNS TCP sessions is
RECOMMENDED; thus, TCP sessions should not immediately be closed
after the DNS answer to the first query is received.

Both DNS clients and servers are subject to resource constraints that
will limit the extent to which CHAIN queries can be executed.
Effective limits for the number of active sessions that can be
maintained on individual clients and servers should be established
either as configuration options or by interrogation of process limits
imposed by the operating system.

In the event that there is greater demand for CHAIN queries than can

be accommodated, DNS servers may stop advertising the CHAIN option in
successive DNS messages. This allows, for example, clients with

other candidate servers to query to establish new sessions with

different servers in expectation that those servers might still allow

CHAIN queries.

6.4. Negative Trust Anchors

If a CHAIN answer would intersect with a negative trust anchor
[RFC7646], a partial CHAIN up to the node above the negative trust
anchor should be returned.

6.5. Anycast Considerations

Recursive resolvers of various types are commonly deployed using
anycast [RFC4786].

Successive DNS transactions between a client and server using UDP
transport may involve responses generated by different anycast nodes,
and the use of anycast in the implementation of a DNS server is
effectively undetectable by the client. The CHAIN option SHOULD NOT
be included in responses using UDP transport from servers provisioned
using anycast unless all anycast server nodes are capable of
processing the CHAIN option.

Since DNS queries using CHAIN may result in longer TCP sessions,
network topology changes may disrupt them more frequently. Anycast
servers MAY make use of Multipath TCP [RFC6824] to anchor the server
side of the TCP connection to an unambiguously unicast address in
order to avoid disruption due to topology changes.

Wouters Experimental [Page 9]

RFC 7901 CHAIN Query Requests in DNS June 2016

7. Security Considerations
7.1. Additional Work and Bandwidth

Producing CHAIN answers incurs additional load and bandwidth on the
recursive resolver. At any time, a recursive resolver may decide to

no longer answer with CHAIN answers and fall back to traditional DNS
answers.

7.2. Amplification Attacks

CHAIN queries can potentially send very large DNS answers. Attackers
could abuse this using spoofed source IP addresses to inflict large
distributed denial-of-service attacks using CHAINS as an

amplification vector in their attack. While TCP is not vulnerable

for this type of abuse, the UDP protocol is vulnerable to this.

A recursive resolver MUST NOT return CHAIN answers to clients over
UDP without source IP address verification. An example of UDP-based
source IP address verification is [RFC7873]. A recursive resolver
refusing a CHAIN option MUST respond with a zero-length CHAIN option
to indicate support for CHAIN queries when a proper transport is

used. It MUST NOT send an RCODE of REFUSED.

7.3. Privacy Considerations

A client producing CHAIN queries reveals a little more information
about its cache contents than regular DNS clients. This could be
used to fingerprint a client across network reconnections. If DNS
privacy is a concern, a CHAIN query client MAY try to use a DNS
transport that provides privacy, such as [RFC7858] or a trusted DNS
server that is contacted through a VPN connection such as IPsec.

8. Examples
8.1. CHAIN Query for "www.example.com"

o A web browser on a client machine asks the forwarding resolver
running on the local host to resolve the A record of
"www.example.com." by sending a regular DNS UDP query on port 53
to 127.0.0.1.

0 The resolver on the client machine checks its cache and notices it
already has a DNSSEC-validated entry of "com." in its cache. This
includes the DNSKEY RRset with its RRSIG records. In other words,
according to its cache, ".com" is DNSSEC validated as "secure" and
can be used to continue a DNSSEC-validated chain.

Wouters Experimental [Page 10]

RFC 7901 CHAIN Query Requests in DNS June 2016

0 The resolver on the client opens a TCP connection to its upstream
recursive resolver on port 53. It adds the CHAIN option as
follows:

* Option-code, set to 13
* Option-length, setto 5
* Closest trust point set to "com." (0x03 0x63 Ox6f Ox6d 0x00)

0 The upstream recursive resolver receives a DNS query over TCP with
the CHAIN closest trust point set to "com.". After accepting the
query, it starts constructing a DNS reply packet.

0 The upstream recursive resolver performs all the regular work to
ensure it has all the answers to the query for the A record of
"www.example.com.”. It does so without using the CHAIN option --
unless it is also configured as a forwarding resolver. The answer
to the original DNS question could be the actual A record, the
DNSSEC proof of nonexistence, or an insecure NXDOMAIN response.

0 The upstream recursive resolver adds the CHAIN option to the DNS
response as follows:

* Option-code, set to 13
* Option-length, setto 5

* The closest trust point is set to "com." (0x03 0x63 0x6f 0x6d
0x00)

0 The upstream recursive resolver constructs the DNS Authority
Section and fills it (in any order) with:

* The DS RRset for "example.com.” and its corresponding RRSIGs
(made by the "com." DNSKEY(s))

* The DNSKEY RRset for "example.com." and its corresponding
RRSIGs (made by the "example.com." DNSKEY(s))

* The authoritative NS RRset for "example.com.” and its
corresponding RRSIGs (from the child zone)

If the answer does not exist, and the zone uses DNSSEC, it also

adds the proof of nonexistence, such as NSEC or NSEC3 records, to
the Authority Section.

Wouters Experimental [Page 11]

RFC 7901 CHAIN Query Requests in DNS June 2016

0 The upstream recursive resolver constructs the DNS Answer section
and fills it with:

* The A record of "www.example.com." and its corresponding
RRSIGs.

If the answer does not exist (NODATA or NXDOMAIN), the Answer
Section remains empty. For the NXDOMAIN case, the RCODE of the
DNS answer packet is set to NXDOMAIN. Otherwise, it remains as
NOERROR.

0 The upstream recursive resolver returns the DNS answer over the
existing TCP connection. When all data is sent, it SHOULD keep
the TCP connection open to allow for additional incoming DNS
queries -- provided it has enough resources to do so.

0 The resolver on the client receives the DNS answer. It processes
the Authority and the Answer Sections and places the information
in its local cache. It ensures that no data is accepted into the
cache without having proper DNSSEC validation. It MAY do so by
looping over the entries in the Authority and Answer Sections.
When an entry is validated for its cache, it is removed from the
processing list. If an entry cannot be validated, it is left in
the process list. When the end of the list is reached, the list
is processed again until either all entries are placed in the
cache or the remaining items cannot be placed in the cache due to
lack of validation. Those entries are then discarded.

o If the cache contains a valid answer to the application’s query,
this answer is returned to the application via a regular DNS
answer packet. This packet MUST NOT contain a CHAIN option. If
no valid answer can be returned, normal error processing is done.
For example, an NXDOMAIN or an empty Answer Section could be
returned depending on the error condition.

8.2. Out-of-Path Query for "example.com"
A recursive resolver receives a query for the A record for
"example.com”. It includes the CHAIN option with the following
parameters:
0 Option-code, setto 13

0 Option-length, set to 14

0 The closest trust point set to "unrelated.ca." (0x09 0x75 Ox6e
0x72 0x65 0x6¢ 0x61 0x74 0x65 0x64 0x03 0x63 0x61 0x00)

Wouters Experimental [Page 12]

RFC 7901 CHAIN Query Requests in DNS June 2016

As there is no chain that leads from "unrelated.ca." to

"example.com.”, the resolving nameserver answers with an empty CHAIN
specified using:

o0 Option-code, set to 13

0 Option-length, set to 0x00 0x00

0 The closest trust point is omitted (zero length)

Note that the regular answer is still present just as it would be for
a query that did not specify the CHAIN option.

8.3. Nonexistent Data
A recursive resolver receives a query for the A record for
"ipv6.toronto.redhat.ca”. It includes the CHAIN option with the
following parameters:
0 Option-code, setto 13
0 Option-length, set to 0x00 0x03
0 The closest trust point set to "ca."
Using regular UDP queries towards authoritative nameservers, it
locates the NS RRset for "toronto.redhat.ca.”". When querying for the
A record, it receives a reply with RCODE "NoError" and an empty
Answer Section. The Authority Section contains NSEC3 and RRSIG
records proving there is no A RRTYPE for the QNAME
"ipv6.toronto.redhat.ca".

The recursive resolver constructs a DNS reply with the following
CHAIN option parameters:

0 Option-code, setto 13
o Option-length, set to 0x00 0x00
0 The closest trust point is omitted (zero length)

The RCODE is set to "NoError". The Authority Section is filled in
with:

0 The DS RRset for "redhat.ca." plus RRSIGs

0 The DNSKEY RRset for "redhat.ca.” plus RRSIGs

Wouters Experimental [Page 13]

RFC 7901 CHAIN Query Requests in DNS June 2016

0 The NS RRset for "redhat.ca.” plus RRSIGs (e.g., ns[01].redhat.ca)
0 The A RRset for "ns0.redhat.ca." and "nsl.redhat.ca." plus RRSIGs
0 The DS RRset for "toronto.redhat.ca.” plus RRSIGs

0 The NS RRset for "toronto.redhat.ca.” plus RRSIGs (e.g.,
ns[01].toronto.redhat.ca)

0 The DNSKEY RRset for "toronto.redhat.ca." plus RRSIGs

o0 The A RRset and/or AAAA RRset for "ns0.toronto.redhat.ca.” and
"nsl.toronto.redhat.ca." plus RRSIGs

0 The NSEC record for "ipv6.toronto.redhat.ca." (proves what RRTYPEs
do exist; does not include A)

0 The NSEC record for "toronto.redhat.ca.”" (proves no wildcard
exists)

The Answer Section is empty. The RCODE is set to NOERROR.
9. IANA Considerations
9.1. EDNSO Option Code for CHAIN

IANA has assigned option code 13 in the "DNS EDNSO0 Option Codes
(OPT)" registry to CHAIN.

10. Normative References

[RFC1035] Mockapetris, P., "Domain names - implementation and
specification”, STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <http://www.rfc-editor.org/info/rfc1035>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
<http://www.rfc-editor.org/info/rfc2308>.

[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements”,
RFC 4033, DOI 10.17487/RFC4033, March 2005,
<http://www.rfc-editor.org/info/rfc4033>.

Wouters Experimental [Page 14]

RFC 7901 CHAIN Query Requests in DNS June 2016

[RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Resource Records for the DNS Security Extensions”,
RFC 4034, DOI 10.17487/RFC4034, March 2005,
<http://www.rfc-editor.org/info/rfc4034>.

[RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security
Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
<http://www.rfc-editor.org/info/rfc4035>.

[RFC4786] Abley, J. and K. Lindgvist, "Operation of Anycast
Services", BCP 126, RFC 4786, DOI 10.17487/RFCA4786,
December 2006, <http://www.rfc-editor.org/info/rfc4786>.

[RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
"TCP Extensions for Multipath Operation with Multiple
Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
<http://www.rfc-editor.org/info/rfc6824>.

[RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
for DNS (EDNS(0))", STD 75, RFC 6891,
DOI 10.17487/RFC6891, April 2013,
<http://www.rfc-editor.org/info/rfc6891>.

[RFC7646] Ebersman, P., Kumari, W., Griffiths, C., Livingood, J.,
and R. Weber, "Definition and Use of DNSSEC Negative Trust
Anchors", RFC 7646, DOI 10.17487/RFC7646, September 2015,
<http://www.rfc-editor.org/info/rfc7646>.

[RFC7719] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
Terminology", RFC 7719, DOI 10.17487/RFC7719, December
2015, <http://www.rfc-editor.org/info/rfc7719>.

[RFC7828] Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
edns-tcp-keepalive EDNSO Option", RFC 7828,
DOI 10.17487/RFC7828, April 2016,
<http://www.rfc-editor.org/info/rfc7828>.

[RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
and P. Hoffman, "Specification for DNS over Transport
Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
2016, <http://www.rfc-editor.org/info/rfc7858>.

[RFC7873] Eastlake 3rd, D. and M. Andrews, "Domain Name System (DNS)

Cookies", RFC 7873, DOI 10.17487/RFC7873, May 2016,
<http://www.rfc-editor.org/info/rfc7873>.

Wouters Experimental [Page 15]

RFC 7901 CHAIN Query Requests in DNS June 2016

Acknowledgments
Andrew Sullivan pointed out that we do not need any new data formats
to support DNS chains. Olafur Gudmundsson ensured the RRsets are
returned in the proper sections. Thanks to Tim Wicinski for his
thorough review.

Author’'s Address

Paul Wouters
Red Hat

Email: pwouters@redhat.com

Wouters Experimental [Page 16]

