I nt ernet Engi neering Task Force (I ETF) L. Lhotka
Request for Comments: 7951 CZ.N C
Cat egory: Standards Track August 2016
| SSN: 2070-1721

JSON Encodi ng of Data Model ed with YANG
Abstract

Thi s docunent defines encoding rules for representing configuration
data, state data, paraneters of Renote Procedure Call (RPC)
operations or actions, and notifications defined using YANG as
JavaScript Object Notation (JSON) text.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc7951

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Lhot ka St andards Track [Page 1]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

Tabl e of Contents

1. Introduction 3
2. Term nol ogy and hbtatlon . 3
3. Properties of the JSON Encodlng . 4
4. Nanes and Nanespaces . . 5
5. Encodi ng of YANG Data Node Instances 7
5.1. The "leaf" Data Node 7
5.2. The "container" Data Node . 8
5.3. The "leaf-list" Data Node . 8
5.4. The "list" Data Node 9
5.5. The "anydata" Dat a Node . 9
5.6. The "anyxnl " Data Node 10
5.7. Metadata bjects . . 11
6. Representing YANG Data Types in JSCN Values . 11
6.1. Numeric Types . . e 11
6.2. The "string" Type . 11
6.3. The "bool ean" Type 11
6.4. The "enuneration" Type 12
6.5. The "bits" Type . 12
6.6. The "binary" Type . 12
6.7. The "leafref" Type 12
6.8. The "identityref" Type 12
6.9. The ' ‘enpty” Type 13
6.10. The "union" Type . . .o 14
6.11. The "instance- |dent|f|er Type 15
7. 1-JSON Conpliance . Coe 15
8. Security Considerations . 16
9. References 16
9.1. Nornmmtive References 16
9.2. Informative References . 17
Appendi x A. A Conpl ete Exanple . 18
Acknow edgenent s 20
Aut hor’ s Addr ess 20

Lhot ka St andards Track [Page 2]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

1

I ntroduction
The Network Configuration Protocol (NETCONF) [RFC6241] uses XM [XM]
for encoding data in its Content Layer. O her nmanagenent protocols
m ght want to use other encodings while still benefiting from using
YANG [RFC7950] as the data nodel i ng | anguage.
For exanpl e, the RESTCONF protocol [RESTCONF] supports two encodi ngs:
XML (media type "application/yang.data+xm ") and JavaScri pt bject
Notation (JSON) (rnedia type "application/yang. data+json").
The specification of the YANG 1.1 data nodel i ng | anguage [RFC7950]
defines only XM. encoding of data trees, i.e., configuration data,
state data, input/output paraneters of Renote Procedure Call (RPC)
operations or actions, and notifications. The aimof this docunent
is to define rules for encoding the sane data as JSON text [RFC7159].
Term nol ogy and Not ati on
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].
The following terns are defined in [RFC7950]:
0 action
0 anydata
o anyxnl
0 augnent
0 container
o data node
o data tree
o identity
0 instance identifier
o |eaf

o leaf-list

o list

Lhot ka St andards Track [Page 3]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

o nodul e
0 RPC operation
0 subnodul e
The following terns are defined in [RFC6241]:
o configuration data
o notification
0 state data
3. Properties of the JSON Encodi ng

Thi s docunent defines JSON encoding for YANG data trees and their
subtrees. It is always assuned that the top-level structure in JSON
encoded data is an object.

I nstances of YANG data nodes (leafs, containers, leaf-lists, lists,
anydat a nodes, and anyxm nodes) are encoded as nembers of a JSON
object, i.e., nane/value pairs. Section 4 defines how the nane part
is fornmed, and the follow ng sections deal with the value part. The
encoding rules are identical for all types of data trees, i.e.
configuration data, state data, paraneters of RPC operations,
actions, and notifications.

Wth the exception of "anydata" encoding (Section 5.5), all rules in
this docunent are also applicable to YANG 1.0 [RFC6020].

Unli ke XM. el ement content, JSON val ues carry partial type

i nformation (nunber, string, boolean). The JSON encoding is defined
so that this information is never in conflict with the data type of
the correspondi ng YANG | eaf or leaf-list.

Wth the exception of anyxml and schena-|ess anydata nodes, it is
possible to map a JSON-encoded data tree to XML encodi ng as defi ned
in [RFC7950], and vice versa. However, such conversions require the
YANG dat a nodel to be avail abl e.

In order to achieve maxi numinteroperability while all ow ng

i mpl enentations to use a variety of existing JSON parsers, the JSON
encoding rules follow, as nuch as possible, the constraints of the
| -JSON (Internet JSON) restricted profile [RFC7493]. Section 7

di scusses | -JSON conformance in nore detail.

Lhot ka St andards Track [Page 4]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

4.

Nanmes and Nanespaces
A JSON obj ect menmber name MUST be in one of the follow ng forns:

o sinple - identical to the identifier of the correspondi ng YANG
dat a node

0 nanespace-qualified - the data node identifier is prefixed with
the name of the nodule in which the data node is defined,
separated fromthe data node identifier by the colon character

(":").
The nane of a nodul e determ nes the nanespace of all data node nanes
defined in that nodule. |If a data node is defined in a subnodul e,

then the nanespace-qualified nenber name uses the name of the main
nmodul e to which the subnodul e bel ongs.

ABNF syntax [RFC5234] of a nenber nane is shown in Figure 1, where
the production for "identifier" is defined in Section 14 of
[RFC7950] .
menber-name = [identifier ":"] identifier
Figure 1: ABNF Production for a JSON Menber Nane

A namespace-qualified nmenmber name MUST be used for all nenbers of a
top-1 evel JSON object and then al so whenever the namespaces of the
data node and its parent node are different. 1In all other cases, the
sinmple form of the nenber name MJST be used.
For exanpl e, consider the followi ng YANG nodul e:
nmodul e exanpl e- f oonod {

nanespace "http://exanpl e. com f oonod”;

prefix "foonod";

contai ner top {

| eaf foo {
type uint8;

Lhot ka St andards Track [Page 5]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

If the data nodel consists only of this nodule, then the following is
valid JSON-encoded configuration data:

"exanpl e-foonod: top”: {
"foo": 54
}
}

Note that the menber of the top-level object uses the nanespace-
qualified nane but the "foo" |eaf doesn't because it is defined in
the sane nodule as its parent container "top".

Now, assune that the container "top" is augnented from another
nmodul e, "exanpl e- bar nod"

nmodul e exanpl e- bar nod {
nanespace "http://exanpl e. conl bar nod"
prefix "barnod";

i mport exanpl e-foonod {
prefix "foonod";

}
augrment "/ foonod: top" {
| eaf bar {
type bool ean;
}

}

Valid JSON-encoded configuration data containing both | eafs may then
| ook Iike this:

"exanpl e-foonod: top": {
"foo": 54,
"exanpl e- barnod: bar": true

}

}

The nanme of the "bar" leaf is prefixed with the nanespace identifier
because its parent is defined in a different nodul e.

Lhot ka St andards Track [Page 6]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

Explicit namespace identifiers are sonetines needed when encodi ng
val ues of the "identityref" and "instance-identifier" types. The
same form of namespace-qualified nane as defi ned above is then used
See Sections 6.8 and 6.11 for details.

5. Encodi ng of YANG Data Node | nstances
Every data node instance is encoded as a nane/val ue pair where the
name is forned fromthe data node identifier using the rules of
Section 4. The value depends on the category of the data node, as
expl ained in the followi ng subsections.
Character encodi ng MJST be UTF-8.

5.1. The "leaf" Data Node
A leaf instance is encoded as a nane/val ue pair where the val ue can
be a string, nunber, literal "true" or "false", or the special array
"[null]", depending on the type of the |leaf (see Section 6 for the
type encoding rul es).
Exanpl e: For the | eaf node definition
| eaf foo {

type uint8;

the following is a valid JSON encoded i nstance:

foo": 123

Lhot ka St andards Track [Page 7]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

5.2. The "contai ner" Data Node

A container instance is encoded as a nane/object pair. The
container’s child data nodes are encoded as nmenbers of the object.

Exanpl e: For the container definition

cont ai ner bar {
| eaf foo {
type uint8;

}
}
the following is a valid JSO\ encoded i nstance:
"bar": {

"foo": 123
}

5.3. The "leaf-list" Data Node

A leaf-list is encoded as a nanme/array pair, and the array el ements
are val ues of sone scal ar type, which can be a string, nunber
literal "true" or "false", or the special array "[null]", depending
on the type of the leaf-list (see Section 6 for the type encoding
rul es).

The ordering of array elements follows the sane rules as the ordering
of XML elements representing leaf-list entries in the XM. encodi ng.
Specifically, the "ordered-by" properties (Section 7.7.7 in
[RFC7950]) MUJST be observed.
Exanpl e: For the leaf-list definition
leaf-list foo {

type uint8;

the following is a valid JSO\ encoded i nstance:

foo": [123, 0]

Lhot ka St andards Track [Page 8]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

5.4, The "list" Data Node

A list instance is encoded as a nane/array pair, and the array
el ements are JSON obj ects.

The ordering of array elenents follows the sane rules as the ordering
of XML elenments representing list entries in the XM. encodi ng.
Specifically, the "ordered-by" properties (Section 7.7.7 in

[RFC7950]) MJUST be observed.

Unl i ke the XML encodi ng, where |ist keys are required to precede any
other siblings within a list entry and appear in the order specified
by the data nodel, the order of nmenbers in a JSO\-encoded list entry
is arbitrary because JSON objects are fundanental |y unordered

col I ections of nenbers.

Exanpl e: For the list definition

list bar {
key foo;
| eaf foo {
type uint8;

| eaf baz {
type string;

}

the following is a valid JSON encoded i nstance:

"bar": [
"foo": 123
n bazll : IIZi gII

}
{

"baz": "zag",
"foo": O
}
]

5.5. The "anydata" Data Node

The anydata data node serves as a container for an arbitrary set of
nodes that otherw se appear as normal YANG nodel ed data. A data
nmodel for anydata content may or nay not be known at runtinme. |In the
| atter case, converting JSON-encoded instances to the XML encodi ng
defined in [RFC7950] nmy be i npossi bl e.

Lhot ka St andards Track [Page 9]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

An anydata instance is encoded in the sane way as a container, i.e.
as a nane/object pair. The requirenent that anydata content can be
nodel ed by YANG inplies the following rules for the JSON text inside
t he object:

o It is valid |I-JSON [RFC7493] .
o Al object nenber names satisfy the ABNF production in Figure 1

0 Any JSON array contains either only unique scalar values (as a
leaf-list; see Section 5.3) or only objects (as a list; see

Section 5.4).

o The "null" value is only allowed in the single-elenment array
"[nul1]" corresponding to the encoding of the "enpty" type; see
Section 6.9.

Exanpl e: For the anydata definition
anydat a dat a;
the following is a valid JSON encoded i nstance:

"data": {
"ietf-notification:notification": {
"event Tine": "2014-07-29T13:43:01Z2"
"exanpl e-event:event": {
"event-class": "fault",
"reporting-entity": {
"card": "Ethernet0"
}

everity": "major"
}
}
}

5.6. The "anyxn " Data Node

An anyxm instance is encoded as a JSON nane/value pair. The value
MUST satisfy I-JSON constraints

Exanpl e: For the anyxml definition
anyxm bar;
the following is a valid JSON encoded i nstance:

bar": [true, null, true]

Lhot ka St andards Track [Page 10]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

5.7. Metadata bjects

Apart frominstances of YANG data nodes, a JSON docunment MAY contain
speci al object menbers whose nane starts with the "@ character
(COMMERCI AL AT). Such nenbers are used for special purposes, such as
encodi ng netadata [RFC7952]. The exact syntax and semantics of such
menbers are outside the scope of this docunent.

6. Representing YANG Data Types in JSON Val ues

The type of the JSON value in an instance of the leaf or leaf-list
dat a node depends on the type of that data node, as specified in the
fol |l owi ng subsecti ons.

6.1. Numeric Types

A value of the "int8", "intl6", "int32", "uint8", "uintl16", or
"uint32" type is represented as a JSON nunber.

A value of the "int64", "uint64", or "decinml 64" type is represented
as a JSON string whose content is the lexical representation of the
correspondi ng YANG type as specified in Sections 9.2.1 and 9.3.1 of
[RFC7950] .

For exanple, if the type of the leaf "foo" in Section 5.1 was
"ui nt 64" instead of "uint8", the instance would have to be encoded as

"foo": "123"
The special handling of 64-bit nunbers follows fromthe I|-JSON
recommendati on to encode nunbers exceedi ng the | EEE 754-2008
doubl e- preci si on range [| EEE754-2008] as strings; see Section 2.2 in
[RFC7493] .

6.2. The "string" Type

A "string" value is represented as a JSON string, subject to JSON
string encodi ng rul es.

6.3. The "bool ean" Type

A "bool ean" value is represented as the corresponding JSON litera
name "true" or "fal se"

Lhot ka St andards Track [Page 11]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

6.4. The "enuneration" Type

An "enuneration" value is represented as a JSON string -- one of the
nanes assigned by "enum' statenments in YANG

The representation is identical to the lexical representation of the
"enuneration" type in XM.; see Section 9.6 in [RFC7950].

6.5. The "bits" Type
A "bits" value is represented as a JSON string -- a space-separat ed
sequence of nanes of bits that are set. The pernmitted bit nanes are
assigned by "bit" statenments in YANG

The representation is identical to the lexical representation of the
"bits" type; see Section 9.7 in [RFC7950].

6.6. The "binary" Type

A "binary" value is represented as a JSON string -- base64 encoding
of arbitrary binary data.

The representation is identical to the lexical representation of the
"bi nary" type in XM.; see Section 9.8 in [RFC7950].

6.7. The "leafref" Type

A "leafref" value is represented using the sane rules as the type of
the leaf to which the |eafref value refers.

6.8. The "identityref" Type

An "identityref" value is represented as a string -- the name of an
identity. |If the identity is defined in a nodule other than the | eaf
node containing the identityref val ue, the nanmespace-qualified form
(Section 4) MJST be used. Oherw se, both the sinple and nanespace-
qualified forns are permtted.

Lhot ka St andards Track [Page 12]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

For exanpl e, consider the followi ng schematic nodul e:
nmodul e exanpl e- nod {
iﬁﬁort ietf-interfaces {
prefix if;
}
iééf type {
type identityref {
base "if:interface-type"
}

}
}

A valid instance of the "type" leaf is then encoded as foll ows:
"type": "iana-if-type:ethernetCsnacd"

The nanespace identifier "iana-if-type" nust be present in this case
because the "ethernetCsnacd" identity is not defined in the sane

nmodul e as the "type" |eaf.

6.9. The "enpty" Type

An "enpty" value is represented as "[null]", i.e., an array with the
"null" literal being its only element. For the purposes of this
docunent, "[null]" is considered an atonic scal ar val ue.

This encoding of the "enpty" type was chosen instead of using sinply
"null" in order to facilitate the use of enpty leafs in comon
programi ng | anguages where the "null" value of a menber is treated
as if the nenber is not present.

Exanpl e: For the leaf definition
| eaf foo {

type enpty;
}

a valid instance is

foo": [null]

Lhot ka St andards Track [Page 13]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

6.10. The "union" Type

A value of the "union" type is encoded as the value of any of the
menber types.

When validating a value of the "union" type, the type infornmation
conveyed by the JSON encodi ng MUST al so be taken into account. JSON
syntax thus provides additional nmeans for resolving the nenber type
of the union that are not available in XML encodi ng.

For exanple, consider the followi ng YANG definition

| eaf bar {
type union {
type uint16;
type string;
}
}

In RESTCONF [RESTCONF], it is possible to set the value of "bar" in
the followi ng way when using the "application/yang. data+xm "
medi a type

<bar>13. 5</ bar >

because the value nay be interpreted as a string, i.e., the
second nenber type of the union. Wen using the
"appl i cati on/yang. dat a+j son" nmedi a type, however, this is an error:

"bar": 13.5

In this case, the JSON encodi ng indicates that the value is supposed
to be a nunber rather than a string, and it is not a valid "uintl16"
val ue.

Conversely, the val ue of

bar": "1"

is to be interpreted as a string.

Lhot ka St andards Track [Page 14]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

6.11. The "instance-identifier" Type

An "instance-identifier" value is encoded as a string that is

anal ogical to the lexical representation in XM encodi ng; see
Section 9.13.2 in [RFC7950]. However, the encoding of namespaces in
i nstance-identifier values follows the rules stated in Section 4,
nanel y:

o The leftnost (top-level) data node nane is always in the
nanespace-qualified form

0 Any subsequent data node nane is in the nanespace-qualified form
if the node is defined in a nodule other than its parent node, and
the sinple formis used otherwise. This rule also holds for node
names appearing in predicates.

For exanpl e,

/ietf-interfaces:interfaces/interface[nanme="ethQ]J/ietf-ip:ipvdlip

is avalid instance-identifier value because the data nodes

"interfaces", "interface", and "nane" are defined in the nodul e

"ietf-interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip"
7. 1-JSON Conpliance

| -JSON [RFC7493] is a restricted profile of JSON that guarantees

maxi mum i nteroperability for protocols that use JSON in their

messages, no matter what JSON encoders/decoders are used in protoco

i npl enentations. The encoding defined in this docunent therefore

observes the |-JSON requirenents and recommendati ons as cl osely as

possi bl e.

In particular, the follow ng properties are guaranteed:

0 Character encoding is UTF-8.

0 Menber names within the same JSON object are always uni que.

0o The order of JSON object menbers is never relied upon

0 Nunbers of any type supported by YANG can be exchanged reliably.
See Section 6.1 for details.

The JSON encoding defined in this docunent deviates fromI-JSON only
in the representation of the "binary" type. |In order to remain
conmpati ble with XM. encodi ng, the base64 encodi ng schene is used
(Section 6.6), whilst |-JSON recomends base64url instead.

Lhot ka St andards Track [Page 15]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

8.

9.

9.

Security Considerations

Thi s docunent defines an alternative encoding for data nodeled in the
YANG dat a nodel i ng | anguage. As such, it doesn’'t contribute any new
security issues beyond those discussed in Section 17 of [RFC7950].

Thi s docunent defines no nechani sns for signing and encrypting data
nodel ed with YANG Under normal circunstances, data security and
integrity are guaranteed by the nmanagenent protocol in use, such as
NETCONF [RFC6241] or RESTCONF [RESTCONF]. If this is not the case,
ext ernal nechani sns, such as Public-Key Cryptography Standards (PKCS)
#7 [RFC2315] or JSON Ohj ect Signing and Encryption (JOSE) [RFC7515]

[RFC7516], need to be consi dered.

JSON processing is rather different from XM, and JSON parsers nmay
thus suffer fromdifferent types of vulnerabilities than their XM
counterparts. To mnimze these new security risks, software on the
recei ving side SHOULD reject all nessages that do not conply with the
rules of this docunent and reply with an appropriate error nessage to
t he sender.

Ref er ences
1. Nornmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<http://www. rfc-editor.org/info/rfc2119>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234,
DA 10. 17487/ RFC5234, January 2008,
<http://ww. rfc-editor.org/info/rfc5234>.

[RFC6241] Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DA 10.17487/ RFC6241, June 2011,
<http://ww. rfc-editor.org/info/rfc6241>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DA 10.17487/ RFC7159, March
2014, <http://ww.rfc-editor.org/info/rfc7159>,

[RFC7493] Bray, T., Ed., "The 1-JSON Message Format", RFC 7493,
DA 10.17487/ RFC7493, March 2015,
<http://ww. rfc-editor.org/info/rfc7493>.

Lhot ka St andards Track [Page 16]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016
[RFC7950] Bjorklund, M, Ed., "The YANG 1.1 Data Model i ng Language",
RFC 7950, DA 10. 17487/ RFC7950, August 2016,
<http://ww. rfc-editor.org/info/rfc7950>.
9.2. Informative References

[| EEE754- 2008]

[RESTCONF]

[RFC2315]

[RFC6020]

[RFC7223]

[RFC7515]

[RFC7516]

[RFC7952]

[XM]

Lhot ka

| EEE, "I|EEE Standard for Floating-Point Arithmetic",

| EEE 754-2008, DA 10.1109/ | EEESTD. 2008. 4610935, 2008,
<http://standards.ieee.org/findstds/

st andar d/ 754- 2008. ht m >.

Bi erman, A, Bjorklund, M, and K Witsen, "RESTCONF
Protocol", Wrk in Progress,
draft-ietf-netconf-restconf-16, August 2016.

Kal i ski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, DA 10.17487/ RFC2315, March 1998,
<http://ww.rfc-editor.org/info/rfc2315>.

Bj orklund, M, Ed., "YANG - A Data Mbdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DA 10.17487/ RFC6020, Cctober 2010,
<http://ww.rfc-editor.org/info/rfc6020>.

Bj orklund, M, "A YANG Data Mdel for Interface
Managenment ", RFC 7223, DO 10.17487/ RFC7223, May 2014,
<http://www. rfc-editor.org/info/rfc7223>.

Jones, M, Bradley, J., and N Sakinmura, "JSON Wb
Signature (JW5)", RFC 7515, DA 10.17487/ RFC7515, May
2015, <http://ww.rfc-editor.org/info/rfc7515>.

Jones, M and J. Hildebrand, "JSON Wb Encryption (JVE)",
RFC 7516, DA 10. 17487/ RFC7516, My 2015,
<http://ww.rfc-editor.org/info/rfc7516>.

Lhotka, L., "Defining and Using Metadata with YANG',
RFC 7952, DA 10. 17487/ RFC7952, August 2016,
<http://ww. rfc-editor.org/info/rfc7952>.

Bray, T., Paoli, J., Sperberg-MQueen, M, Miler, E, and
F. Yergeau, "Extensible Markup Language (XM.) 1.0 (Fifth
Edition)", Wrld Wde Wb Consortium Reconmendati on

REC- xm - 20081126, Novemnber 2008,

<htt p: // ww. w3. or g/ TR/ 2008/ REC- xm - 20081126>.

St andards Track [Page 17]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

Appendi x A, A Conpl ete Exanpl e

The JSON docunent shown bel ow represents the sane data as the reply
to the NETCONF <get> request appearing in Appendix D of [RFC7223].
The data nodel is a conbination of two YANG nodul es:

"ietf-interfaces" and "ex-vlan" (the latter is an exanple nodule from
Appendi x C of [RFC7223]). The "if-nib" feature defined in the
"ietf-interfaces" nodule is supported.

{
"ietf-interfaces:interfaces": {
"interface": [

{
"name": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"enabl ed": false

1

{
"nanme": "ethl",
"type": "iana-if-type:ethernetCsmacd",
"enabl ed": true,
"ex-vl an: vl an-taggi ng": true

1

{
"nanme": "ethl. 10",
"type": "iana-if-type:l2vlan",
"enabl ed": true,
"ex-vl an: base-interface": "ethl"
"ex-vlan:vlan-id": 10

1

{
"name": "lol",
"type": "iana-if-type:softwarelLoopback",
"enabl ed": true

}

]
}

ietf-interfaces:interfaces-state": {
"interface": [

{
"name": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"adni n-status": "down",
"oper-status": "down",
"if-index": 2,

"phys-address”: "00:01:02: 03: 04: 05"
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"

Lhot ka St andards Track [Page 18]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

}
b
{
"name": "ethl",
"type": "iana-if-type:ethernetCsmacd",
"adm n-status": "up",
"oper-status": "up",
"if-index": 7,
"phys-address”: "00:01:02: 03: 04: 06",
"hi gher-layer-if": [
"ethl. 10"
1,
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"
}
H
{
"name": "ethl. 10",
"type": "iana-if-type:l2vlan",
"adm n-status": "up",
"oper-status": "up",
"if-index": 9,
"l ower-layer-if": [
"ethl"
1,
"statistics": {
"discontinuity-tinme": "2013-04-01T03: 00: 00+00: 00"
}
}
{
"name": "eth2",
"type": "iana-if-type:ethernetCsmacd",
"adm n-status": "down",
"oper-status": "down",
"if-index": 8,
"phys-address”: "00:01:02: 03: 04: 07",
"statistics": {
"discontinuity-tinme": "2013-04-01T03: 00: 00+00: 00"
}
H
{
"name": "lol",
"type": "iana-if-type: softwareLoopback",
"adm n-status": "up",
"oper-status": "up",
"if-index": 1,

"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"

Lhot ka St andards Track [Page 19]

RFC 7951 JSON Encodi ng of YANG Dat a August 2016

Acknowl edgenent s
The aut hor w shes to thank Andy Bierman, Mrtin Bjorklund, Dean
Bogdanovi ¢, Bal azs Lengyel, Juergen Schoenwael der, and Phil Shafer
for their hel pful comments and suggesti ons.

Aut hor’ s Address

Ladi sl av Lhot ka
CZ.N C

Emai |l : | hotka@ic. cz

Lhot ka St andards Track [Page 20]

