
Internet Engineering Task Force (IETF) L. Lhotka
Request for Comments: 7951 CZ.NIC
Category: Standards Track August 2016
ISSN: 2070-1721

 JSON Encoding of Data Modeled with YANG

Abstract

 This document defines encoding rules for representing configuration
 data, state data, parameters of Remote Procedure Call (RPC)
 operations or actions, and notifications defined using YANG as
 JavaScript Object Notation (JSON) text.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7951.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lhotka Standards Track [Page 1]

RFC 7951 JSON Encoding of YANG Data August 2016

Table of Contents

 1. Introduction . 3
 2. Terminology and Notation 3
 3. Properties of the JSON Encoding 4
 4. Names and Namespaces . 5
 5. Encoding of YANG Data Node Instances 7
 5.1. The "leaf" Data Node 7
 5.2. The "container" Data Node 8
 5.3. The "leaf-list" Data Node 8
 5.4. The "list" Data Node 9
 5.5. The "anydata" Data Node 9
 5.6. The "anyxml" Data Node 10
 5.7. Metadata Objects . 11
 6. Representing YANG Data Types in JSON Values 11
 6.1. Numeric Types . 11
 6.2. The "string" Type . 11
 6.3. The "boolean" Type 11
 6.4. The "enumeration" Type 12
 6.5. The "bits" Type . 12
 6.6. The "binary" Type . 12
 6.7. The "leafref" Type 12
 6.8. The "identityref" Type 12
 6.9. The "empty" Type . 13
 6.10. The "union" Type . 14
 6.11. The "instance-identifier" Type 15
 7. I-JSON Compliance . 15
 8. Security Considerations 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Appendix A. A Complete Example 18
 Acknowledgements . 20
 Author’s Address . 20

Lhotka Standards Track [Page 2]

RFC 7951 JSON Encoding of YANG Data August 2016

1. Introduction

 The Network Configuration Protocol (NETCONF) [RFC6241] uses XML [XML]
 for encoding data in its Content Layer. Other management protocols
 might want to use other encodings while still benefiting from using
 YANG [RFC7950] as the data modeling language.

 For example, the RESTCONF protocol [RESTCONF] supports two encodings:
 XML (media type "application/yang.data+xml") and JavaScript Object
 Notation (JSON) (media type "application/yang.data+json").

 The specification of the YANG 1.1 data modeling language [RFC7950]
 defines only XML encoding of data trees, i.e., configuration data,
 state data, input/output parameters of Remote Procedure Call (RPC)
 operations or actions, and notifications. The aim of this document
 is to define rules for encoding the same data as JSON text [RFC7159].

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC7950]:

 o action

 o anydata

 o anyxml

 o augment

 o container

 o data node

 o data tree

 o identity

 o instance identifier

 o leaf

 o leaf-list

 o list

Lhotka Standards Track [Page 3]

RFC 7951 JSON Encoding of YANG Data August 2016

 o module

 o RPC operation

 o submodule

 The following terms are defined in [RFC6241]:

 o configuration data

 o notification

 o state data

3. Properties of the JSON Encoding

 This document defines JSON encoding for YANG data trees and their
 subtrees. It is always assumed that the top-level structure in JSON-
 encoded data is an object.

 Instances of YANG data nodes (leafs, containers, leaf-lists, lists,
 anydata nodes, and anyxml nodes) are encoded as members of a JSON
 object, i.e., name/value pairs. Section 4 defines how the name part
 is formed, and the following sections deal with the value part. The
 encoding rules are identical for all types of data trees, i.e.,
 configuration data, state data, parameters of RPC operations,
 actions, and notifications.

 With the exception of "anydata" encoding (Section 5.5), all rules in
 this document are also applicable to YANG 1.0 [RFC6020].

 Unlike XML element content, JSON values carry partial type
 information (number, string, boolean). The JSON encoding is defined
 so that this information is never in conflict with the data type of
 the corresponding YANG leaf or leaf-list.

 With the exception of anyxml and schema-less anydata nodes, it is
 possible to map a JSON-encoded data tree to XML encoding as defined
 in [RFC7950], and vice versa. However, such conversions require the
 YANG data model to be available.

 In order to achieve maximum interoperability while allowing
 implementations to use a variety of existing JSON parsers, the JSON
 encoding rules follow, as much as possible, the constraints of the
 I-JSON (Internet JSON) restricted profile [RFC7493]. Section 7
 discusses I-JSON conformance in more detail.

Lhotka Standards Track [Page 4]

RFC 7951 JSON Encoding of YANG Data August 2016

4. Names and Namespaces

 A JSON object member name MUST be in one of the following forms:

 o simple - identical to the identifier of the corresponding YANG
 data node.

 o namespace-qualified - the data node identifier is prefixed with
 the name of the module in which the data node is defined,
 separated from the data node identifier by the colon character
 (":").

 The name of a module determines the namespace of all data node names
 defined in that module. If a data node is defined in a submodule,
 then the namespace-qualified member name uses the name of the main
 module to which the submodule belongs.

 ABNF syntax [RFC5234] of a member name is shown in Figure 1, where
 the production for "identifier" is defined in Section 14 of
 [RFC7950].

 member-name = [identifier ":"] identifier

 Figure 1: ABNF Production for a JSON Member Name

 A namespace-qualified member name MUST be used for all members of a
 top-level JSON object and then also whenever the namespaces of the
 data node and its parent node are different. In all other cases, the
 simple form of the member name MUST be used.

 For example, consider the following YANG module:

 module example-foomod {

 namespace "http://example.com/foomod";

 prefix "foomod";

 container top {
 leaf foo {
 type uint8;
 }
 }
 }

Lhotka Standards Track [Page 5]

RFC 7951 JSON Encoding of YANG Data August 2016

 If the data model consists only of this module, then the following is
 valid JSON-encoded configuration data:

 {
 "example-foomod:top": {
 "foo": 54
 }
 }

 Note that the member of the top-level object uses the namespace-
 qualified name but the "foo" leaf doesn’t because it is defined in
 the same module as its parent container "top".

 Now, assume that the container "top" is augmented from another
 module, "example-barmod":

 module example-barmod {

 namespace "http://example.com/barmod";

 prefix "barmod";

 import example-foomod {
 prefix "foomod";
 }

 augment "/foomod:top" {
 leaf bar {
 type boolean;
 }
 }
 }

 Valid JSON-encoded configuration data containing both leafs may then
 look like this:

 {
 "example-foomod:top": {
 "foo": 54,
 "example-barmod:bar": true
 }
 }

 The name of the "bar" leaf is prefixed with the namespace identifier
 because its parent is defined in a different module.

Lhotka Standards Track [Page 6]

RFC 7951 JSON Encoding of YANG Data August 2016

 Explicit namespace identifiers are sometimes needed when encoding
 values of the "identityref" and "instance-identifier" types. The
 same form of namespace-qualified name as defined above is then used.
 See Sections 6.8 and 6.11 for details.

5. Encoding of YANG Data Node Instances

 Every data node instance is encoded as a name/value pair where the
 name is formed from the data node identifier using the rules of
 Section 4. The value depends on the category of the data node, as
 explained in the following subsections.

 Character encoding MUST be UTF-8.

5.1. The "leaf" Data Node

 A leaf instance is encoded as a name/value pair where the value can
 be a string, number, literal "true" or "false", or the special array
 "[null]", depending on the type of the leaf (see Section 6 for the
 type encoding rules).

 Example: For the leaf node definition

 leaf foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": 123

Lhotka Standards Track [Page 7]

RFC 7951 JSON Encoding of YANG Data August 2016

5.2. The "container" Data Node

 A container instance is encoded as a name/object pair. The
 container’s child data nodes are encoded as members of the object.

 Example: For the container definition

 container bar {
 leaf foo {
 type uint8;
 }
 }

 the following is a valid JSON-encoded instance:

 "bar": {
 "foo": 123
 }

5.3. The "leaf-list" Data Node

 A leaf-list is encoded as a name/array pair, and the array elements
 are values of some scalar type, which can be a string, number,
 literal "true" or "false", or the special array "[null]", depending
 on the type of the leaf-list (see Section 6 for the type encoding
 rules).

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing leaf-list entries in the XML encoding.
 Specifically, the "ordered-by" properties (Section 7.7.7 in
 [RFC7950]) MUST be observed.

 Example: For the leaf-list definition

 leaf-list foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": [123, 0]

Lhotka Standards Track [Page 8]

RFC 7951 JSON Encoding of YANG Data August 2016

5.4. The "list" Data Node

 A list instance is encoded as a name/array pair, and the array
 elements are JSON objects.

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing list entries in the XML encoding.
 Specifically, the "ordered-by" properties (Section 7.7.7 in
 [RFC7950]) MUST be observed.

 Unlike the XML encoding, where list keys are required to precede any
 other siblings within a list entry and appear in the order specified
 by the data model, the order of members in a JSON-encoded list entry
 is arbitrary because JSON objects are fundamentally unordered
 collections of members.

 Example: For the list definition

 list bar {
 key foo;
 leaf foo {
 type uint8;
 }
 leaf baz {
 type string;
 }
 }

 the following is a valid JSON-encoded instance:

 "bar": [
 {
 "foo": 123,
 "baz": "zig"
 },
 {
 "baz": "zag",
 "foo": 0
 }
]

5.5. The "anydata" Data Node

 The anydata data node serves as a container for an arbitrary set of
 nodes that otherwise appear as normal YANG-modeled data. A data
 model for anydata content may or may not be known at runtime. In the
 latter case, converting JSON-encoded instances to the XML encoding
 defined in [RFC7950] may be impossible.

Lhotka Standards Track [Page 9]

RFC 7951 JSON Encoding of YANG Data August 2016

 An anydata instance is encoded in the same way as a container, i.e.,
 as a name/object pair. The requirement that anydata content can be
 modeled by YANG implies the following rules for the JSON text inside
 the object:

 o It is valid I-JSON [RFC7493].

 o All object member names satisfy the ABNF production in Figure 1.

 o Any JSON array contains either only unique scalar values (as a
 leaf-list; see Section 5.3) or only objects (as a list; see
 Section 5.4).

 o The "null" value is only allowed in the single-element array
 "[null]" corresponding to the encoding of the "empty" type; see
 Section 6.9.

 Example: For the anydata definition

 anydata data;

 the following is a valid JSON-encoded instance:

 "data": {
 "ietf-notification:notification": {
 "eventTime": "2014-07-29T13:43:01Z",
 "example-event:event": {
 "event-class": "fault",
 "reporting-entity": {
 "card": "Ethernet0"
 },
 "severity": "major"
 }
 }
 }

5.6. The "anyxml" Data Node

 An anyxml instance is encoded as a JSON name/value pair. The value
 MUST satisfy I-JSON constraints.

 Example: For the anyxml definition

 anyxml bar;

 the following is a valid JSON-encoded instance:

 "bar": [true, null, true]

Lhotka Standards Track [Page 10]

RFC 7951 JSON Encoding of YANG Data August 2016

5.7. Metadata Objects

 Apart from instances of YANG data nodes, a JSON document MAY contain
 special object members whose name starts with the "@" character
 (COMMERCIAL AT). Such members are used for special purposes, such as
 encoding metadata [RFC7952]. The exact syntax and semantics of such
 members are outside the scope of this document.

6. Representing YANG Data Types in JSON Values

 The type of the JSON value in an instance of the leaf or leaf-list
 data node depends on the type of that data node, as specified in the
 following subsections.

6.1. Numeric Types

 A value of the "int8", "int16", "int32", "uint8", "uint16", or
 "uint32" type is represented as a JSON number.

 A value of the "int64", "uint64", or "decimal64" type is represented
 as a JSON string whose content is the lexical representation of the
 corresponding YANG type as specified in Sections 9.2.1 and 9.3.1 of
 [RFC7950].

 For example, if the type of the leaf "foo" in Section 5.1 was
 "uint64" instead of "uint8", the instance would have to be encoded as

 "foo": "123"

 The special handling of 64-bit numbers follows from the I-JSON
 recommendation to encode numbers exceeding the IEEE 754-2008
 double-precision range [IEEE754-2008] as strings; see Section 2.2 in
 [RFC7493].

6.2. The "string" Type

 A "string" value is represented as a JSON string, subject to JSON
 string encoding rules.

6.3. The "boolean" Type

 A "boolean" value is represented as the corresponding JSON literal
 name "true" or "false".

Lhotka Standards Track [Page 11]

RFC 7951 JSON Encoding of YANG Data August 2016

6.4. The "enumeration" Type

 An "enumeration" value is represented as a JSON string -- one of the
 names assigned by "enum" statements in YANG.

 The representation is identical to the lexical representation of the
 "enumeration" type in XML; see Section 9.6 in [RFC7950].

6.5. The "bits" Type

 A "bits" value is represented as a JSON string -- a space-separated
 sequence of names of bits that are set. The permitted bit names are
 assigned by "bit" statements in YANG.

 The representation is identical to the lexical representation of the
 "bits" type; see Section 9.7 in [RFC7950].

6.6. The "binary" Type

 A "binary" value is represented as a JSON string -- base64 encoding
 of arbitrary binary data.

 The representation is identical to the lexical representation of the
 "binary" type in XML; see Section 9.8 in [RFC7950].

6.7. The "leafref" Type

 A "leafref" value is represented using the same rules as the type of
 the leaf to which the leafref value refers.

6.8. The "identityref" Type

 An "identityref" value is represented as a string -- the name of an
 identity. If the identity is defined in a module other than the leaf
 node containing the identityref value, the namespace-qualified form
 (Section 4) MUST be used. Otherwise, both the simple and namespace-
 qualified forms are permitted.

Lhotka Standards Track [Page 12]

RFC 7951 JSON Encoding of YANG Data August 2016

 For example, consider the following schematic module:

 module example-mod {
 ...
 import ietf-interfaces {
 prefix if;
 }
 ...
 leaf type {
 type identityref {
 base "if:interface-type";
 }
 }
 }

 A valid instance of the "type" leaf is then encoded as follows:

 "type": "iana-if-type:ethernetCsmacd"

 The namespace identifier "iana-if-type" must be present in this case
 because the "ethernetCsmacd" identity is not defined in the same
 module as the "type" leaf.

6.9. The "empty" Type

 An "empty" value is represented as "[null]", i.e., an array with the
 "null" literal being its only element. For the purposes of this
 document, "[null]" is considered an atomic scalar value.

 This encoding of the "empty" type was chosen instead of using simply
 "null" in order to facilitate the use of empty leafs in common
 programming languages where the "null" value of a member is treated
 as if the member is not present.

 Example: For the leaf definition

 leaf foo {
 type empty;
 }

 a valid instance is

 "foo": [null]

Lhotka Standards Track [Page 13]

RFC 7951 JSON Encoding of YANG Data August 2016

6.10. The "union" Type

 A value of the "union" type is encoded as the value of any of the
 member types.

 When validating a value of the "union" type, the type information
 conveyed by the JSON encoding MUST also be taken into account. JSON
 syntax thus provides additional means for resolving the member type
 of the union that are not available in XML encoding.

 For example, consider the following YANG definition:

 leaf bar {
 type union {
 type uint16;
 type string;
 }
 }

 In RESTCONF [RESTCONF], it is possible to set the value of "bar" in
 the following way when using the "application/yang.data+xml"
 media type:

 <bar>13.5</bar>

 because the value may be interpreted as a string, i.e., the
 second member type of the union. When using the
 "application/yang.data+json" media type, however, this is an error:

 "bar": 13.5

 In this case, the JSON encoding indicates that the value is supposed
 to be a number rather than a string, and it is not a valid "uint16"
 value.

 Conversely, the value of

 "bar": "1"

 is to be interpreted as a string.

Lhotka Standards Track [Page 14]

RFC 7951 JSON Encoding of YANG Data August 2016

6.11. The "instance-identifier" Type

 An "instance-identifier" value is encoded as a string that is
 analogical to the lexical representation in XML encoding; see
 Section 9.13.2 in [RFC7950]. However, the encoding of namespaces in
 instance-identifier values follows the rules stated in Section 4,
 namely:

 o The leftmost (top-level) data node name is always in the
 namespace-qualified form.

 o Any subsequent data node name is in the namespace-qualified form
 if the node is defined in a module other than its parent node, and
 the simple form is used otherwise. This rule also holds for node
 names appearing in predicates.

 For example,

 /ietf-interfaces:interfaces/interface[name=’eth0’]/ietf-ip:ipv4/ip

 is a valid instance-identifier value because the data nodes
 "interfaces", "interface", and "name" are defined in the module
 "ietf-interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip".

7. I-JSON Compliance

 I-JSON [RFC7493] is a restricted profile of JSON that guarantees
 maximum interoperability for protocols that use JSON in their
 messages, no matter what JSON encoders/decoders are used in protocol
 implementations. The encoding defined in this document therefore
 observes the I-JSON requirements and recommendations as closely as
 possible.

 In particular, the following properties are guaranteed:

 o Character encoding is UTF-8.

 o Member names within the same JSON object are always unique.

 o The order of JSON object members is never relied upon.

 o Numbers of any type supported by YANG can be exchanged reliably.
 See Section 6.1 for details.

 The JSON encoding defined in this document deviates from I-JSON only
 in the representation of the "binary" type. In order to remain
 compatible with XML encoding, the base64 encoding scheme is used
 (Section 6.6), whilst I-JSON recommends base64url instead.

Lhotka Standards Track [Page 15]

RFC 7951 JSON Encoding of YANG Data August 2016

8. Security Considerations

 This document defines an alternative encoding for data modeled in the
 YANG data modeling language. As such, it doesn’t contribute any new
 security issues beyond those discussed in Section 17 of [RFC7950].

 This document defines no mechanisms for signing and encrypting data
 modeled with YANG. Under normal circumstances, data security and
 integrity are guaranteed by the management protocol in use, such as
 NETCONF [RFC6241] or RESTCONF [RESTCONF]. If this is not the case,
 external mechanisms, such as Public-Key Cryptography Standards (PKCS)
 #7 [RFC2315] or JSON Object Signing and Encryption (JOSE) [RFC7515]
 [RFC7516], need to be considered.

 JSON processing is rather different from XML, and JSON parsers may
 thus suffer from different types of vulnerabilities than their XML
 counterparts. To minimize these new security risks, software on the
 receiving side SHOULD reject all messages that do not comply with the
 rules of this document and reply with an appropriate error message to
 the sender.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <http://www.rfc-editor.org/info/rfc7493>.

Lhotka Standards Track [Page 16]

RFC 7951 JSON Encoding of YANG Data August 2016

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

9.2. Informative References

 [IEEE754-2008]
 IEEE, "IEEE Standard for Floating-Point Arithmetic",
 IEEE 754-2008, DOI 10.1109/IEEESTD.2008.4610935, 2008,
 <http://standards.ieee.org/findstds/
 standard/754-2008.html>.

 [RESTCONF] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", Work in Progress,
 draft-ietf-netconf-restconf-16, August 2016.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
 <http://www.rfc-editor.org/info/rfc2315>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <http://www.rfc-editor.org/info/rfc7952>.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation
 REC-xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

Lhotka Standards Track [Page 17]

RFC 7951 JSON Encoding of YANG Data August 2016

Appendix A. A Complete Example

 The JSON document shown below represents the same data as the reply
 to the NETCONF <get> request appearing in Appendix D of [RFC7223].
 The data model is a combination of two YANG modules:
 "ietf-interfaces" and "ex-vlan" (the latter is an example module from
 Appendix C of [RFC7223]). The "if-mib" feature defined in the
 "ietf-interfaces" module is supported.

 {
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": false
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": true,
 "ex-vlan:vlan-tagging": true
 },
 {
 "name": "eth1.10",
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "ex-vlan:base-interface": "eth1",
 "ex-vlan:vlan-id": 10
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "enabled": true
 }
]
 },
 "ietf-interfaces:interfaces-state": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 2,
 "phys-address": "00:01:02:03:04:05",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"

Lhotka Standards Track [Page 18]

RFC 7951 JSON Encoding of YANG Data August 2016

 }
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 7,
 "phys-address": "00:01:02:03:04:06",
 "higher-layer-if": [
 "eth1.10"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1.10",
 "type": "iana-if-type:l2vlan",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 9,
 "lower-layer-if": [
 "eth1"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth2",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 8,
 "phys-address": "00:01:02:03:04:07",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 1,
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"

Lhotka Standards Track [Page 19]

RFC 7951 JSON Encoding of YANG Data August 2016

 }
 }
]
 }
 }

Acknowledgements

 The author wishes to thank Andy Bierman, Martin Bjorklund, Dean
 Bogdanovic, Balazs Lengyel, Juergen Schoenwaelder, and Phil Shafer
 for their helpful comments and suggestions.

Author’s Address

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Lhotka Standards Track [Page 20]

