
Network Working Group A. Katz
Request for Comments: 798 ISI
 September 1981

 DECODING FACSIMILE DATA FROM THE RAPICOM 450

I. Introduction

 This note describes the implementation of a program to decode
 facsimile data from the Rapicom 450 facsimile (fax) machine into an
 ordinary bitmap. This bitmap can then be displayed on other devices
 or edited and then encoded back into the Rapicom 450 format. In
 order to do this, it was necessary to understand the how the
 encoding/decoding process works within the fax machine and to
 duplicate that process in a program. This algorithm is descibed in
 an article by Weber [1] as well as in a memo by Mills [2], however,
 more information than is presented in these papers is necessary to
 successfully decode the data.

 The program was written in L10 as a subsystem of NLS running on
 TOPS20. The fax machine is interfaced to TOPS20 as a terminal
 through a microprocessor-based interface called FAXIE.

 Grateful acknowledgment is made to Steve Treadwell of University
 College, London and Jon Postel of Information Sciences Institute for
 their assistance.

II. Interface to TOPS20

 The fax machine is connected to a microprocessor-based unit called
 FAXIE, designed and built by Steve Casner and Bob Parker. More
 detailed information can be found in reference [3]. FAXIE is
 connected to TOPS20 over a terminal line, and a program was written
 to read data over this line and store it in a file. The decoding
 program reads the fax data from this file.

 The data comes from the fax machine serially. FAXIE reads this data
 into an 8-bit shift register and sends the 8-bit byte (octet) over
 the terminal line. Since the fax machine assigns MARK to logical 0’s
 and SPACE to logical 1’s (which is backward from RS232), FAXIE
 complements each bit in the octet. The data is sent to TOPS20 in
 octets, the most significant bit first. If you read each octet from
 most significant bit to least significant bit in the order FAXIE
 sends the data to TOPS20, you would be reading the data in the same
 order in comes into FAXIE from the fax machine.

 The standard for storing Rapicom 450 Facsimile Data is described in
 RFC 769 [4]. According to this standard, each octet coming from
 FAXIE must be complemented and inverted (i.e. invert the order of the
 bits in the octet). Thus, the receiving program did this before

Alan R. Katz [page 1]

DECODING FACSIMILE DATA RFC 798
II. Interface to TOPS20

 storing the data in a file. When the decoding program reads this
 file, it must invert and complement each octet before reading the
 data.

 Each data block from the fax machine is 585 bits long. The end of
 this data is padded with 7 0’s to make 592 bits or 74 octets.
 According to RFC 769, this data is stored in a file preceded by a
 length octet and a command octet. The possible commands are:

 56 (70 octal)--This is a Set-Up block (the first block of the
 file, contains information about the fax image)

 57 (71 octal)--This is a data block (the rest of the blocks in the
 file except for the last one)

 58 (72 octal)--End command (the last block of the file)

 The length field tells how many octets in this block and is always 76
 (114 octal) except for the END command which can be 2 (no data). The
 length and command octets are NOT inverted and complemented.

 Below is a diagram of each block in the file:

 +--------+--------+--------+--------+--------+--------+--------
 | length | command| data | data | ... | |
 +--------+--------+--------+--------+--------+--------+--------

III. The Rapicom 450 Encoding Algorithm

 An ordinary 8 1/2" by 11" document is made up of about 2100 scan
 lines, each line has 1726 pels (picture elements) in it. Each pel
 can be either black (1) or white (0).

 The Rapicom 450 has three picture quality modes. In fine detail
 mode, all of the document is encoded. In quality mode only every
 other scan line is encoded and it is intended that these missing
 lines are filled in on playback by replicating the previous line.
 There is also express mode, where only every third line is encoded.

[page 2] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 III. The Rapicom 450 Encoding Algorithm

 Data is encoded two lines at a time, using a special two dimensional
 run-length encoding scheme. There are 1726 pels on top and 1726 pels
 on the bottom. Each pair (top-bottom) of pels is called a column.
 For each of the 1726 columns you can have any one of four
 configurations (called states):

 column
 (top-bottom) pels state
 ------------ ---- ------
 W-W 0,0 0
 W-B 0,1 1
 B-W 1,0 2
 B-B 1,1 3

 The encoding algorithm can be described in terms of a
 non-deterministic finite-state automaton shown in Fig. 1 (after Mills
 [2]). You start out in a state (0-3) and transform to another state
 by emitting the appropriate bits marked along the arcs of the
 diagram. For example, suppose you are in state 1 (WB). To go to
 state 2 (BW), you would output the bits 101 (binary); to go to state
 0 (WW) you would output the bits 1000. Note that the number of bits
 on each transition is variable.

 In states 0 (WW) and 3 (BB), a special run length encoding scheme is
 used. There are two state variables associated with each of these
 states. One variable is a run-length counter and the other is the
 field length (in bits) of this counter. Upon entry to either of
 these two states, the counter is initialized to zero and is
 incremented for every additional column of the same state. At the
 end of the run, this counter is transmitted, extending with high
 order zeros if necessary. If the count fills up the field, it is
 transmitted, the field length is incremented by one, and the count
 starts again. This count is called the run length word and it is
 between 2 and 7 bits long.

 For example, suppose we are in state 0 (WW) and the run length for
 this state (refered to as the white run length) is 3. Suppose there
 are three 0’s in a row. The first 0 was encoded when we came to this
 state, there are two more 0’s that must be encoded. Thus we would
 send a 010 (binary). Similarly, if there are seven 0’s in a row, we
 would send a 110, but eight 0’s would be sent by 111 followed by 0000
 and the white run length becomes 4. (Ten 0’s would be encoded as 111
 followed by 0010 and the white run length would be 4).

Alan R. Katz [page 3]

DECODING FACSIMILE DATA RFC 798
III. The Rapicom 450 Encoding Algorithm

 0100
 ------------------------>-----------------------------------
 | |
 | -------------------<------------------------------- |
 | | 1 | |
 | V | |
 ---------------- ----------------- | |
 | | | | | | | |
 | | 010 | | | |
 |->| 2 |---------------------->| 1 |->| | |
 | | | | | | | |
 0| | B-W | 101 | W-B | |1 | |
<-		<----------------------		<-		
 | | | | | |
 | | ----->| | | |
 ---------------- | ----------------- | |
 | ^ | | | ^ | | | |
 | | ------------>------| | | | | |
 | | | 1 | | | | |
 | | | | | | ^ V
 | | | | | | | |
 0111| |1 | | 1000| |1 | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | 1011 | | | | |
 | | | ----------<----------- | | | |
 V | | | V | | |
 ---------------- | ----------------- | |
 | |<--- | | | |
 | | 0 | | | |
 | 3 |<----------------------| 0 |------ |
 | | | | |
 | B-B | | W-W | |
 | |---------------------->| |<---------
 | | 0 | |
 | | | |
 ---------------- -----------------
 | ^ | ^
 | | | |
 ------ ------
 run run
 Figure 1.
 Non-deterministic finite-state machine diagram for RAPICOM 450

[page 4] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 III. The Rapicom 450 Encoding Algorithm

 Run length word lengths must be between 2 and 7. The field length is
 decremented if the run is encoded in one word and:

 1. If the run length is 3 and the highest order bit is 0.

 2. Or, if the run length is 4, 5, 6, or 7 and the highest order 2
 bits are 0.

 In addition to all this, there is a special rule to follow if the run
 occupies at least two run words (and can involve incrementing the run
 word size) and the run ends exactly at the end of a scan line. In
 this case, the last word of the run is tested for decrement as if the
 previous words in the run did not exist.

 An Example:

 To confirm the reader’s understanding of the encoding procedure,
 suppose we had the following portion of a document (1=black,
 0=white):

 top row: 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 ...
 bottom row: 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 ...
 ----------- -------------------------------
 state: 1 3 3 3 3 2 0 0 0 0 0 2 2 1 0 0 ...

 Suppose also that the black run field length is 2, the white run
 length is 3, and the state is 1. (This example comes from
 reference [1].)

 This portion would be encoded as:

 1 1011 11 000 1 0100 100 1 0 010 1000 ...

 NOTE: It turns out that the Rapicom 450 sends the bits of a field
 in reverse order. This will be discussed in the section V.
 However, since each run length field is sent reversed, the above
 encoded bit pattern would actually be sent as:

 1 1011 11 000 1 0100 001 1 0 010 1000 ...
 ^
 |-this is actually 100 reversed

Alan R. Katz [page 5]

DECODING FACSIMILE DATA RFC 798
III. The Rapicom 450 Encoding Algorithm

 Another Example:

 This example illustrates the rule for decrementing the run length
 word lengths:

 top row: 0 1 1 0 0 1 1 1 1 1 0 0 ...
 bottom row: 1 1 1 1 1 0 1 1 1 1 1 0 ...
 ----------- -----------------------
 state: 1 3 3 1 1 2 3 3 3 3 1 0 ...

 Here, let us suppose that the black run field length is now 4, the
 white is still 3, and the state is 1.

 This portion would be encoded as:

 1 1011 0001 1 1 101 0111 011 1 1000 ...
 ^ ^
 |-goes to 3 |-blk cnt goes to 2

 When we reverse the order of the run fields, the bit pattern that
 is actually sent is:

 1 1011 1000 1 1 101 0111 110 1 1000 ...
 ^
 |-this is actually 0001 reversed, etc.

IV. The Setup Block and the Data Header

 Each data block from the fax machine is 585 bits long. The number of
 blocks in a picture is variable and depends on the size and
 characteristics of the picture. It should be emphasized that a block
 can end in the middle of a scan line of the document. There can in
 fact be many scan lines in a block.

 The 585 bit data block is composed of a 24 bit sync code which is
 used to recognize the beginning of a block, a 37 bit header, 512 bits
 of actual data, and a 12 bit CRC checksum:

 --
 | 24-bit | 37-bit | 512-bit | 12-bit |
 |sync code | header | data | checksum |
 --

 The number of useful data bits is variable and can be between 0 and
 512 (although there are always 512 bits there, some of them are to be
 ignored). The number of data bits to be used is given in the header.

[page 6] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 IV. The Setup Block and the Data Header

 The 37 bits of header is composed of:

 --
 | 2-bit |5-bit| 10-bit | 12-bit | 3-bit | 3-bit |2-bit|
 |seq num|flags|data count| x position|black size|white size|state|
 --

 An explanation of these fields follows:

 IMPORTANT NOTE: Most (but not all) of these fields are sent by
 the fax machine in REVERSE ORDER. The order of each n-bit field
 must be inverted.

 Sync code

 This is used to synchronize on each block. The value of this
 24 bit field is 30474730 octal (not reversed).

 Sequence number

 This number cycles through 0, 1, 2, 3 for the data blocks. It
 is 0 for the Set-Up block (not reversed).

 Flags

 Each of these flags are 1 bit wide:

 Run

 Purpose unknown, it always seems to be 1.

 Cofb

 Purpose unknown, it always seems to be 0.

 Rpt

 1 for Set-Up blocks (which are repeated when coming from
 the fax machine though only one of them is transfered by
 FAXIE to TOPS20 and stored in the file) and 0 for data
 blocks.

 Spare

 Purpose unknown, doesn’t matter.

Alan R. Katz [page 7]

DECODING FACSIMILE DATA RFC 798
IV. The Setup Block and the Data Header

 Sub

 1 if this is a Set-Up block.

 Data Count

 Number of useful bits to use out of the 512 data bits. NOT ALL
 of the 512 data bits are used, only this number of them. This
 number can be 0 (usually in one of the first data blocks) which
 means to throw away this block. (This field is reversed!)

 X Position

 Current position on the scan line, a value between 0 and 1725.
 If this number is greater than where the previous block left
 off, the intervening space should be filled with white (0’s).
 If this number is less than where the previous block left off,
 set the X position to this value and replace the overlapped
 data with the new data from this block. If this number is
 greater than 1726, ignore this field and continue from where
 the previous block left off. (This field is reversed!)

 Black Size

 The size of the black run length field, must be between 2 and
 7. This is the correct value for the black size. It may
 differ from what was found at the end of the previous block.
 (This field is reversed!)

 White Size

 The size of the white run length field, must be between 2 and
 7. It may differ from what was found at the end of the
 previous block. (This field is reversed!)

 State

 The current state. This is the correct state. It may differ
 from the state at the end of the previous block. (This field is
 not reversed.)

 Data

 512 bits of the actual encoding of the document. NOT ALL of
 this data is used in general, only the amount specified by the

[page 8] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 IV. The Setup Block and the Data Header

 data count. If this is a set up block, the data contains
 information about the type of document (see below).

 Checksum

 CRC checksum on the entire block. Uses polynomial
 x**12+x**8+x**7+x**5+x**3+1.

 In a setup block, the data portion of the data block consists of:

 | 6-bit | 5-bit | 1-bit | 20-bits | 480-bits
 | flags | spare |multi page| of zeros | 1’s and 0’s

 Specifically these are:

 6 flags (each are 1 bit):

 Start bit

 Always 0.

 Speed

 Is 1 if express mode.

 Detail

 Is 1 if detail mode. (NOTE: If the Detail and Speed flags
 are both 0, then data is in Quality mode).

 14 inch paper

 is 1 if 14 inch paper length.

 5.5 inch paper

 is 1 if 5.5 inch paper length. (NOTE: If the 14 inch and 5
 inch flags are both 0, then paper length is 11 inch).

 paper present

 is 1 if paper is present at scanner (should be always 1).

Alan R. Katz [page 9]

DECODING FACSIMILE DATA RFC 798
IV. The Setup Block and the Data Header

 Spare:

 These 5 bits can be any value.

 Multi-page:

 1 if multi page mode

 Rest of data of set-up block:

 The above fields are followed by twenty 0 bits and the rest of
 the 512 bits of the block are alternating 0’s and 1’s.

 There are a number of important points to be remembered in regard to
 the header of a data block. First of all, the data count, the
 x-position, and the black and white run sizes must be read IN REVERSE
 ORDER. The reason for this is that the fax machine sends these bits
 in reverse order. However, the sequence number and the state fields
 ARE NOT REVERSED. In addition to this, each run field in the data IS
 REVERSED. This reversing of the bits in each n-bit field is
 completely separate from the reversing and complementing of each
 octet mentioned earlier.

 Second, only the first n bits, where n is the value of the data count
 field (remember its reversed!), of the data is valid, the rest is to
 be ignored. If n is zero, the whole block is to be ignored.

 Third, if the x position is beyond where the last block ended, fill
 the space between where the last block ended and the current x
 postion with white (0’s). If the x postition is less then where the
 last block ended, replace the overlapped data with the data in the
 new block. If the x postition is greater than 1726, ignore it and
 continue from where the previous block left off.

 Fourth, the black size, white size (reversed), and state (not
 reversed!) given in the header are the correct values even if they
 disagree with the end of the previous block.

 Finally, the sequence number (not reversed) should count through
 0,1,2,3. If it does not, a block is missing.

[page 10] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 V. The Decoding Algorithm

V. The Decoding Algorithm

 Upon first glance at the finite state diagram in Figure 1, it may
 seem that it would be difficult to create a decoding procedure. For
 example, if you are in the WW state, and the next bit is a 1, how do
 you know whether to do a transition to WB or BW? The answer to this
 is to recognize that every arc out of the BW state begins with 0 and
 every arc out of WB begins with 1. Thus, if you are in the WW state,
 and the next bit is 1, followed by a 0, you know to go to the BW
 state. If the next bit is 1, followed by a 1, you know to go to the
 WB state.

 In writing the decoding program it was necessary to have two ways of
 reading the next bit in the data stream. The first way reads the bit
 and "consumes" it, i.e. increments the bit pointer to point at the
 next bit. The other way does not "consume" it. Below are four
 statements which show how to decode fax data. The numbers in
 parentheses are not to be consumed, that is to say they will be read
 again in making the next transition.

 If I am in state BW (2) and the next bits are:
 0 (0): go to BW
 0111: go to BB
 010 (1): go to WB
 0100: go to WW

 If I am in state WB (1) and the next bits are:
 1 (1): go to WB
 1000: go to WW
 101 (0): go to BW
 1011: go to BB

 If I am in state WW (0), then first go through the run length
 algorithm, then if the next bits are:
 0: go to BB
 1 (0): go to BW
 1 (1): go to WB

 If I am in state BB (3), then first go through the run length
 algorithm, then if the next bits are:
 0: go to WW
 1 (0): go to BW
 1 (1): go to WB

 For the run length algorithm, remember, look at the next n bits,
 where n is the length of either the black or white run length

Alan R. Katz [page 11]

DECODING FACSIMILE DATA RFC 798
V. The Decoding Algorithm

 word, REVERSE the bits, and output that many BB’s or WW’s
 (depending on whether black or white run). If the field is full,
 increment the size of the word, and get that many bits more, i.e.
 get the next n+1 bits, etc. Also, the run length word length can
 be decremented according to the rules given in section III.

 You always go through the run length even if there is only one WW
 or BB, in this case, the run field will be 0.

 Let us look at the first example given in section III. Suppose we
 want to decode the bits: 110111100010100100100101000... (we have
 already reversed the run lengths to make things easier).

 We are in state 1 (WB) and the black run length word length is 2
 and the white length is 3. We get these initial values either
 from the block header, or by remembering them from the previous
 transitions if this is not the start of the block. According to
 our rules, we would parse this string as follows:

 1(1) 1011 11 000 1(0) 0100 100 1(0) 0(0) 010(1) 1000...

 The numbers in parentheses are numbers that were read but not
 "consumed", thus the next number in the sequence is the same as
 the one in parentheses. First, we see a 1 and that the next bit
 is a 1, this means that we go to WB. Then we have a 1011 which
 means to go to BB. Then we do a run, we have a 11 followed by a
 000 which means the black run length gets incremented by 1 (it is
 now 3) and we get 3 MORE BB’s. Now we have a 1 followed by 0
 which means go to BW. Next a 0100 which is WW. Then we have a
 run, 100, which means four more WW’s. We keep going like this and
 we get the original bit pattern given in the first example of
 section III.

 It is important to always start fresh when dealing with each
 block. There are many reasons for this. The first is that
 sometimes blocks are dropped, and you can recover from this if you
 resynchronize at the start of each block. Also, if at the end of
 the previous block, there is about to be a transition, instead of
 making it at the beginning of the next block, the fax machine
 gives the new state in the header of the next block and goes from
 there. Thus it is important to always start at whatever state is
 given in the header, and to align yourself at the current X
 position given there also.

 Sometimes, while decoding a block, a bit pattern will occur which

[page 12] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 V. The Decoding Algorithm

 does not correspond to any transition. If this happens, the rest
 of the block may be bad and should be discarded.

 The decoding program decodes the fax data block by block until it
 comes to an END command in the data, or runs out of data.

VI. Program Performance

 The L10 NLS program takes about two CPU minutes to run on TOPS20 on a
 DEC KL10 to decode the average document in fine detail mode. In this
 mode, the picture is about 1726 by 2100 pels, and takes about 204
 disk pages to store.

 We have a program which displays bit maps on an HP graphics terminal
 and have been able to display portions of documents. (not all of an
 8.5" by 11" document will fit in the display). We can use the
 terminal’s zoom capability to look at very small portions of the
 document.

Alan R. Katz [page 13]

DECODING FACSIMILE DATA RFC 798
References

References

 [1] Weber, D. R., "An Adaptive Run Length Encoding Algorithm",
 International Conference on Communications, ICC-75, IEEE, San
 Francisco, California, June 1975.

 [2] Mills, D. L., "Rapicom 450 Facsimile Data Decoding",
 WP2097/MD33E, COMSAT Laboratories, Washington D.C., undated.

 [3] Casner, S. L., "Faxie", ISI Internal Memo, USC/Information
 Sciences Institute, February 1980.

 [4] Postel, Jon, "Rapicom 450 Facsimile File Format", RFC 769,
 USC/Information Sciences Institute, September 1980.

[page 14] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 Appendix

Appendix

 In this appendix is given the first portion of the data which comes
 from the fax machine, this same data in RFC 769 format, and some of
 this data decoded into a bitmap. The data is represented in octal
 octets.

 The following is data of the form which comes out of the fax machine
 with length and command octets added:

 114 70 142 171 330 13 377 377 377 371 53 200 0 5 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 121 21 261 114 71 142 171
 330 40 0 102 326 270 152 42 42 44 111 0 42 151 267 122
 366 110 237 102 211 365 111 171 336 51 244 247 377 377 111 362
 177 377 377 377 377 377 377 377 377 376 104 213 241 41 111 377
 111 337 377 377 377 377 377 377 377 377 377 377 377 163 301 361
 377 377 377 377 360 177 12 0 114 71 142 171 330 141 137 177
 377 344 10 0 160 23 301 160 137 376 204 352 135 27 353 264
 0 70 100 7 20 75 0 0 0 0 0 344 0 0 0 0
 0 0 0 0 34 275 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 7 41 310 34 200 0 0 344 0 0 0 71
 13 331 204 0 114 71 142 171 330 241 137 26 302 160 0 16
 100 71 0 370 270 271 0 162 0 71 174 134 100 162 0 34
 234 200 344 7 156 100 1 310 16 107 43 323 263 220 365 313
 327 57 377 325 331 36 56 47 325 324 344 3 227 40 71 35
 200 1 310 1 313 220 0 0 7 241 330 0 0 137 342 200
 114 71 142 171 330 340 77 40 142 160 0 0 0 0 162 71
 73 162 376 276 234 277 376 67 265 301 16 20 171 1 311 313
 346 377 321 75 256 113 245 377 262 160 136 247 13 251 350 374
 270 236 235 217 136 203 220 75 166 166 364 177 305 366 72 107
 63 330 352 345 313 320 71 34 270 46 57 0

 The following is the same data after put into RFC 769 format (with
 each data octet reversed and complemented):

 114 70 271 141 344 57 0 0 0 140 53 376 377 137 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
 125 125 125 125 125 125 125 125 125 165 167 162 114 71 271 141
 344 373 377 275 224 342 251 273 273 333 155 377 273 151 22 265
 220 355 6 275 156 120 155 141 204 153 332 32 0 0 155 260
 1 0 0 0 0 0 0 0 0 200 335 56 172 173 155 0

Alan R. Katz [page 15]

DECODING FACSIMILE DATA RFC 798
Appendix

 155 4 0 0 0 0 0 0 0 0 0 0 0 61 174 160
 0 0 0 0 360 1 257 377 114 71 271 141 344 171 5 1
 0 330 357 377 361 67 174 361 5 200 336 250 105 27 50 322
 377 343 375 37 367 103 377 377 377 377 377 330 377 377 377 377
 377 377 377 377 307 102 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 37 173 354 307 376 377 377 330 377 377 377 143
 57 144 336 377 114 71 271 141 344 172 5 227 274 361 377 217
 375 143 377 340 342 142 377 261 377 143 301 305 375 261 377 307
 306 376 330 37 211 375 177 354 217 35 73 64 62 366 120 54
 24 13 0 124 144 207 213 33 124 324 330 77 26 373 143 107
 376 177 354 177 54 366 377 377 37 172 344 377 377 5 270 376
 114 71 271 141 344 370 3 373 271 361 377 377 377 377 261 143
 43 261 200 202 306 2 200 23 122 174 217 367 141 177 154 54
 230 0 164 103 212 55 132 0 262 361 205 32 57 152 350 300
 342 206 106 16 205 76 366 103 221 221 320 1 134 220 243 35
 63 344 250 130 54 364 143 307 342 233 13 377

 The following is the first part of the expanded bitmap of this data
 (there are about 4 scan lines here, or 2 pairs of scan lines):

 177 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 367 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 337 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
 377 377 377 377 377 377 377 374 0 4 327 377 377 377 377 377
 374 377 356 377 177 0 10 0 201 200 0 0 0 0 100 0
 0 0 0 0 0 0 1 140 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 204 10 0 0 10 0 0 0 100 0
 20 10 7 250 2 0 57 100 100 2 100 100 164 0 20 21
 31 310 153 137 377 377 377 377 177 32 176 344 2 200 216 0
 4 0 240 0 0 14 70 0 0 0 0 0 2 47 137 336
 137 377 377 377 377 375 377 372 20 140 45 376 377 377 377 237
 377 276 357 377 377 377 227 345 314 175 63 215 202 6 347 143
 377 337 376 70 371 370 352 300 213 373 371 377 377 343 73 334
 0 207 315 3 33 111 377 167 337 377 1 323 365 177 377 177
 377 374 377 135 377 377 365 67 343 55 377 377 377 377 357 377
 377 377 377 377 377 377 203 377 236 175 376 236 337 273 347 377

[page 16] Alan R. Katz

RFC 798 DECODING FACSIMILE DATA
 Appendix

 376 77 377 377 377 377 377 377 377 377 377 377 300 0 0 0
 200 102 177 377 277 377 377 377 376 377 366 365 173 302 12 0
 40 200 0 0 0 4 100 0 0 0 0 0 0 2 5 354
 0 0 0 0 0 0 0 0 4 0 10 0 0 0 200 10
 40 20 1 0 100 0 140 0 20 210 101 374 3 200 155 304
 0 6 100 103 376 0 120 121 31 332 243 177 377 377 377 377
 377 233 377 354 0 241 217 1 30 0 240 0 0 12 150 202
 40 0 0 0 62 47 157 376 173 373 377 377 377 377 377 377
 20 141 321 376 377 377 377 327 377 376 377 377 377 377 237 216
 316 375 167 215 202 6 300 143 377 237 374 70 175 330 377 304
 255 373 153 377 377 353 377 104 0 267 315 203 13 311 177 377
 377 377 1 223 367 377 373 167 377 376 77 137 377 345 165 67
 43 51 277 377 277 377 357 377 377 377 373 177 377 377 223 377
 366 175 376 234 377 271 347 377 376 157 377 377 377 377 377 377
 377 377 377 377 340 0 0 0 0 0 177 377 37 377 377 377
 377 376 367 357 272 300 2 0 4 0 0 0 0 0 0 0
 0 0 0 0 20 0 1 144 0 0 0 0 0 0 4 4
 0 0 100 2 100 10 201 10 0 20 75 0 0 40 142 0
 0 74 341 234 103 4 157 300 0 2 0 141 372 0 0 20
 30 376 55 277 177 377 377 367 377 371 376 100 15 61 16 200
 30 0 40 0 0 0 311 200 24 0 0 0 62 55 377 316
 367 347 377 357 377 377 377 377 170 305 5 276 377 377 377 357
 377 377 377 377 377 177 377 377 357 177 377 76 207 246 340 147
 376 336 356 10 17 320 105 235 275 377 377 373 377 347 335 317
 50 77 377 353 75 333 377 377 377 377 363 337 343 277 356 171
 7 357 76 216 377 211 207 176 257 217 377 377 367 357 357 277
 377 357 377 377 377 375 367 377 377 377 377 375 377 377 356 377
 366 377 377 377 377 377 377 377 377 377 377 377 340 0 0 0
 0 44 373 377 77 377 377 177 177 377 377 337 376 170 173 0
 0 0 100 0 1 10 0 0 0 0 0 200 160 0 223 160
 300 0 0 0 0 0 0 6 100 220 0 0 140 4 3 30
 121 20 351 300 206 74 167 0 30 64 41 234 172 30 175 300
 4 32 4 345 367 200 103 60 177 372 177 233 377 377 377 377
 376 125 207 210 233 21 364 361 277 1 50 16 140 120 41 335
 377 306 214 10 67 377 373 377 377 377 377 377 377 367 377 377
 377 363 277 377 377 377 377 377 267 177 377 377 377 377 377 237
 377 377 377 77 377 377 355 373

Alan R. Katz [page 17]

