
Internet Engineering Task Force (IETF) M. Thomson
Request for Comments: 8030 Mozilla
Category: Standards Track E. Damaggio
ISSN: 2070-1721 B. Raymor, Ed.
 Microsoft
 December 2016

 Generic Event Delivery Using HTTP Push

Abstract

 This document describes a simple protocol for the delivery of real-
 time events to user agents. This scheme uses HTTP/2 server push.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8030.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson, et al. Standards Track [Page 1]

RFC 8030 HTTP Web Push December 2016

Table of Contents

 1. Introduction . 3
 1.1. Conventions and Terminology 4
 2. Overview . 6
 2.1. HTTP Resources . 7
 3. Connecting to the Push Service 8
 4. Subscribing for Push Messages 8
 4.1. Collecting Subscriptions into Sets 9
 5. Requesting Push Message Delivery 10
 5.1. Requesting Push Message Receipts 10
 5.2. Push Message Time-To-Live 11
 5.3. Push Message Urgency 13
 5.4. Replacing Push Messages 14
 6. Receiving Push Messages for a Subscription 15
 6.1. Receiving Push Messages for a Subscription Set 17
 6.2. Acknowledging Push Messages 18
 6.3. Receiving Push Message Receipts 19
 7. Operational Considerations 20
 7.1. Load Management . 20
 7.2. Push Message Expiration 20
 7.3. Subscription Expiration 21
 7.3.1. Subscription Set Expiration 21
 7.4. Implications for Application Reliability 22
 7.5. Subscription Sets and Concurrent HTTP/2 Streams 22
 8. Security Considerations 22
 8.1. Confidentiality from Push Service Access 23
 8.2. Privacy Considerations 23
 8.3. Authorization . 24
 8.4. Denial-of-Service Considerations 25
 8.5. Logging Risks . 25
 9. IANA Considerations . 26
 9.1. Header Field Registrations 26
 9.2. Link Relation URNs 26
 9.3. Service Name and Port Number Registration 28
 10. References . 28
 10.1. Normative References 28
 10.2. Informative References 30
 Acknowledgements . 31
 Authors’ Addresses . 31

Thomson, et al. Standards Track [Page 2]

RFC 8030 HTTP Web Push December 2016

1. Introduction

 Many applications on mobile and embedded devices require continuous
 access to network communications so that real-time events -- such as
 incoming calls or messages -- can be delivered (or "pushed") in a
 timely fashion. These devices typically have limited power reserves,
 so finding more efficient ways to serve application requirements
 greatly benefits the application ecosystem.

 One significant contributor to power usage is the radio. Radio
 communications consume a significant portion of the energy budget on
 a wireless device.

 Uncoordinated use of persistent connections or sessions from multiple
 applications can contribute to unnecessary use of the device radio,
 since each independent session can incur its own overhead. In
 particular, keep-alive traffic used to ensure that middleboxes do not
 prematurely time out sessions can result in significant waste.
 Maintenance traffic tends to dominate over the long term, since
 events are relatively rare.

 Consolidating all real-time events into a single session ensures more
 efficient use of network and radio resources. A single service
 consolidates all events, distributing those events to applications as
 they arrive. This requires just one session, avoiding duplicated
 overhead costs.

 The W3C Push API [API] describes an API that enables the use of a
 consolidated push service from web applications. This document
 expands on that work by describing a protocol that can be used to:

 o request the delivery of a push message to a user agent,

 o create new push message delivery subscriptions, and

 o monitor for new push messages.

 A standardized method of event delivery is particularly important for
 the W3C Push API, where application servers might need to use
 multiple push services. The subscription, management, and monitoring
 functions are currently fulfilled by proprietary protocols; these are
 adequate, but do not offer any of the advantages that standardization
 affords.

 This document intentionally does not describe how a push service is
 discovered. Discovery of push services is left for future efforts,
 if it turns out to be necessary at all. User agents are expected to
 be configured with a URL for a push service.

Thomson, et al. Standards Track [Page 3]

RFC 8030 HTTP Web Push December 2016

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document defines the following terms:

 application: Both the sender and the ultimate consumer of push
 messages. Many applications have components that are run on a
 user agent and other components that run on servers.

 application server: The component of an application that usually
 runs on a server and requests the delivery of a push message.

 push message subscription: A message delivery context that is
 established between the user agent and the push service, and
 shared with the application server. All push messages are
 associated with a push message subscription.

 push message subscription set: A message delivery context that is
 established between the user agent and the push service that
 collects multiple push message subscriptions into a set.

 push message: A message sent from an application server to a user
 agent via a push service.

 push message receipt: A message delivery confirmation sent from the
 push service to the application server.

 push service: A service that delivers push messages to user agents.

 user agent: A device and software that is the recipient of push
 messages.

 Examples in this document use the HTTP/1.1 message format [RFC7230].
 Many of the exchanges can be completed using HTTP/1.1:

 o Subscribing for Push Messages (Section 4)

 o Requesting Push Message Delivery (Section 5)

 o Replacing Push Messages (Section 5.4)

 o Acknowledging Push Messages (Section 6.2)

Thomson, et al. Standards Track [Page 4]

RFC 8030 HTTP Web Push December 2016

 When an example depends on HTTP/2 server push, the more verbose frame
 format from [RFC7540] is used:

 o Receiving Push Messages for a Subscription (Section 6)

 o Receiving Push Messages for a Subscription Set (Section 6.1)

 o Receiving Push Message Receipts (Section 6.3)

 All examples use HTTPS over the default port (443) rather than the
 registered port (1001). A push service deployment might prefer this
 configuration to maximize chances for user agents to reach the
 service. A push service might use HTTP alternative services to
 redirect a user agent to the registered port (1001) to gain the
 benefits of the standardized HTTPS port without sacrificing
 reachability (see Section 3). This would only be apparent in the
 examples through the inclusion of the Alt-Used header field [RFC7838]
 in requests from the user agent to the push service.

 Examples do not include specific methods for push message encryption
 or application server authentication because the protocol does not
 define a mandatory system. The examples in Voluntary Application
 Server Identification [VAPID] and Message Encryption for WebPush
 [ENCRYPT] demonstrate the approach adopted by the W3C Push API [API]
 for its requirements.

Thomson, et al. Standards Track [Page 5]

RFC 8030 HTTP Web Push December 2016

2. Overview

 A general model for push services includes three basic actors: a user
 agent, a push service, and an application (server).

 +-------+ +--------------+ +-------------+
 | UA | | Push Service | | Application |
 +-------+ +--------------+ | Server |
 | | +-------------+
 | Subscribe | |
 |--------------------->| |
 | Monitor | |
 |<====================>| |
 | | |
 | Distribute Push Resource |
 |-->|
 | | |
 : : :
 | | Push Message |
 | Push Message |<---------------------|
 |<---------------------| |
 | | |

 Figure 1: WebPush Architecture

 At the very beginning of the process, a new message subscription is
 created by the user agent and then distributed to its application
 server. This subscription is the basis of all future interactions
 between the actors. A subscription is used by the application server
 to send messages to the push service for delivery to the user agent.
 The user agent uses the subscription to monitor the push service for
 any incoming message.

 To offer more control for authorization, a message subscription is
 modeled as two resources with different capabilities:

 o A subscription resource is used to receive messages from a
 subscription and to delete a subscription. It is private to the
 user agent.

 o A push resource is used to send messages to a subscription. It is
 public and shared by the user agent with its application server.

 It is expected that a unique subscription will be distributed to each
 application; however, there are no inherent cardinality constraints
 in the protocol. Multiple subscriptions might be created for the

Thomson, et al. Standards Track [Page 6]

RFC 8030 HTTP Web Push December 2016

 same application, or multiple applications could use the same
 subscription. Note, however, that sharing subscriptions has security
 and privacy implications.

 Subscriptions have a limited lifetime. They can also be terminated
 by either the push service or the user agent at any time. User
 agents and application servers must be prepared to manage changes in
 the subscription state.

2.1. HTTP Resources

 This protocol uses HTTP resources [RFC7230] and link relations
 [RFC5988]. The following resources are defined:

 push service: This resource is used to create push message
 subscriptions (Section 4). A URL for the push service is
 configured into user agents.

 push message subscription: This resource provides read and delete
 access for a message subscription. A user agent receives push
 messages (Section 6) using a push message subscription. Every
 push message subscription has exactly one push resource associated
 with it.

 push message subscription set: This resource provides read and
 delete access for a collection of push message subscriptions. A
 user agent receives push messages (Section 6.1) for all the push
 message subscriptions in the set. A link relation of type
 "urn:ietf:params:push:set" identifies a push message subscription
 set.

 push: An application server requests the delivery (Section 5) of a
 push message using a push resource. A link relation of type
 "urn:ietf:params:push" identifies a push resource.

 push message: The push service creates a push message resource to
 identify push messages that have been accepted for delivery
 (Section 5). The push message resource is also deleted by the
 user agent to acknowledge receipt (Section 6.2) of a push message.

 receipt subscription: An application server receives delivery
 confirmations (Section 5.1) for push messages using a receipt
 subscription. A link relation of type
 "urn:ietf:params:push:receipt" identifies a receipt subscription.

Thomson, et al. Standards Track [Page 7]

RFC 8030 HTTP Web Push December 2016

3. Connecting to the Push Service

 The push service MUST use HTTP over Transport Layer Security (TLS)
 [RFC2818] following the recommendations in [RFC7525]. The push
 service shares the same default port number (443/TCP) with HTTPS, but
 MAY also advertise the IANA-allocated TCP System Port (1001) using
 HTTP alternative services [RFC7838].

 While the default port (443) offers broad reachability
 characteristics, it is most often used for web-browsing scenarios
 with a lower idle timeout than other ports configured in middleboxes.
 For WebPush scenarios, this would contribute to unnecessary radio
 communications to maintain the connection on battery-powered devices.

 Advertising the alternate port (1001) allows middleboxes to optimize
 idle timeouts for connections specific to push scenarios with the
 expectation that data exchange will be infrequent.

 Middleboxes SHOULD comply with REQ-5 in [RFC5382], which states that
 "the value of the ’established connection idle-timeout’ MUST NOT be
 less than 2 hours 4 minutes".

4. Subscribing for Push Messages

 A user agent sends a POST request to its configured push service
 resource to create a new subscription.

 POST /subscribe HTTP/1.1
 Host: push.example.net

 A 201 (Created) response indicates that the push subscription was
 created. A URI for the push message subscription resource that was
 created in response to the request MUST be returned in the Location
 header field.

 The push service MUST provide a URI for the push resource
 corresponding to the push message subscription in a link relation of
 type "urn:ietf:params:push".

 An application-specific method is used to distribute the push URI to
 the application server. Confidentiality protection and application
 server authentication MUST be used to ensure that this URI is not
 disclosed to unauthorized recipients (Section 8.3).

Thomson, et al. Standards Track [Page 8]

RFC 8030 HTTP Web Push December 2016

 HTTP/1.1 201 Created
 Date: Thu, 11 Dec 2014 23:56:52 GMT
 Link: </push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV>;
 rel="urn:ietf:params:push"
 Link: </subscription-set/4UXwi2Rd7jGS7gp5cuutF8ZldnEuvbOy>;
 rel="urn:ietf:params:push:set"
 Location: https://push.example.net/subscription/LBhhw0OohO-Wl4Oi971UG

4.1. Collecting Subscriptions into Sets

 Collecting multiple push message subscriptions into a subscription
 set can represent a significant efficiency improvement for push
 services and user agents. The push service MAY provide a URI for a
 subscription set resource in a link relation of type
 "urn:ietf:params:push:set".

 When a subscription set is returned in a push message subscription
 response, the user agent SHOULD include this subscription set in a
 link relation of type "urn:ietf:params:push:set" in subsequent
 requests to create new push message subscriptions.

 A user agent MAY omit the subscription set if it is unable to receive
 push messages in an aggregated way for the lifetime of the
 subscription. This might be necessary if the user agent is
 monitoring subscriptions on behalf of other push message receivers.

 POST /subscribe HTTP/1.1
 Host: push.example.net
 Link: </subscription-set/4UXwi2Rd7jGS7gp5cuutF8ZldnEuvbOy>;
 rel="urn:ietf:params:push:set"

 The push service SHOULD return the same subscription set in its
 response, although it MAY return a new subscription set if it is
 unable to reuse the one provided by the user agent.

 HTTP/1.1 201 Created
 Date: Thu, 11 Dec 2014 23:56:52 GMT
 Link: </push/YBJNBIMwwA_Ag8EtD47J4A>;
 rel="urn:ietf:params:push"
 Link: </subscription-set/4UXwi2Rd7jGS7gp5cuutF8ZldnEuvbOy>;
 rel="urn:ietf:params:push:set"
 Location: https://push.example.net/subscription/i-nQ3A9Zm4kgSWg8_ZijV

 A push service MUST return a 400 (Bad Request) status code for
 requests that contain an invalid subscription set. A push service
 MAY return a 429 (Too Many Requests) status code [RFC6585] to reject
 requests that omit a subscription set.

Thomson, et al. Standards Track [Page 9]

RFC 8030 HTTP Web Push December 2016

 How a push service detects that requests originate from the same user
 agent is implementation-specific but could take ambient information
 into consideration, such as the TLS connection, source IP address,
 and port. Implementers are reminded that some heuristics can produce
 false positives and hence, cause requests to be rejected incorrectly.

5. Requesting Push Message Delivery

 An application server requests the delivery of a push message by
 sending an HTTP POST request to a push resource distributed to the
 application server by a user agent. The content of the push message
 is included in the body of the request.

 POST /push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 TTL: 15
 Content-Type: text/plain;charset=utf8
 Content-Length: 36

 iChYuI3jMzt3ir20P8r_jgRR-dSuN182x7iB

 A 201 (Created) response indicates that the push message was
 accepted. A URI for the push message resource that was created in
 response to the request MUST be returned in the Location header
 field. This does not indicate that the message was delivered to the
 user agent.

 HTTP/1.1 201 Created
 Date: Thu, 11 Dec 2014 23:56:55 GMT
 Location: https://push.example.net/message/qDIYHNcfAIPP_5ITvURr-d6BGt

5.1. Requesting Push Message Receipts

 An application server can include the Prefer header field [RFC7240]
 with the "respond-async" preference to request confirmation from the
 push service when a push message is delivered and then acknowledged
 by the user agent. The push service MUST support delivery
 confirmations.

 POST /push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 Prefer: respond-async
 TTL: 15
 Content-Type: text/plain;charset=utf8
 Content-Length: 36

 iChYuI3jMzt3ir20P8r_jgRR-dSuN182x7iB

Thomson, et al. Standards Track [Page 10]

RFC 8030 HTTP Web Push December 2016

 When the push service accepts the message for delivery with
 confirmation, it MUST return a 202 (Accepted) response. A URI for
 the push message resource that was created in response to the request
 MUST be returned in the Location header field. The push service MUST
 also provide a URI for the receipt subscription resource in a link
 relation of type "urn:ietf:params:push:receipt".

 HTTP/1.1 202 Accepted
 Date: Thu, 11 Dec 2014 23:56:55 GMT
 Link: </receipt-subscription/3ZtI4YVNBnUUZhuoChl6omUvG4ZM>;
 rel="urn:ietf:params:push:receipt"
 Location: https://push.example.net/message/qDIYHNcfAIPP_5ITvURr-d6BGt

 For subsequent receipt requests to the same origin [RFC6454], the
 application server SHOULD include the returned receipt subscription
 in a link relation of type "urn:ietf:params:push:receipt". This
 gives the push service the option to aggregate the receipts. The
 push service SHOULD return the same receipt subscription in its
 response, although it MAY return a new receipt subscription if it is
 unable to reuse the one provided by the application server.

 An application server MAY omit the receipt subscription if it is
 unable to receive receipts in an aggregated way for the lifetime of
 the receipt subscription. This might be necessary if the application
 server is monitoring receipt subscriptions on behalf of the other
 push message senders.

 A push service MUST return a 400 (Bad Request) status code for
 requests that contain an invalid receipt subscription. If a push
 service wishes to limit the number of receipt subscriptions that it
 maintains, it MAY return a 429 (Too Many Requests) status code
 [RFC6585] to reject receipt requests that omit a receipt
 subscription.

5.2. Push Message Time-To-Live

 A push service can improve the reliability of push message delivery
 considerably by storing push messages for a period. User agents are
 often only intermittently connected, and so benefit from having
 short-term message storage at the push service.

 Delaying delivery might also be used to batch communication with the
 user agent, thereby conserving radio resources.

 Some push messages are not useful once a certain period of time
 elapses. Delivery of messages after they have ceased to be relevant
 is wasteful. For example, if the push message contains a call
 notification, receiving a message after the caller has abandoned the

Thomson, et al. Standards Track [Page 11]

RFC 8030 HTTP Web Push December 2016

 call is of no value; the application at the user agent is forced to
 suppress the message so that it does not generate a useless alert.

 An application server MUST include the TTL (Time-To-Live) header
 field in its request for push message delivery. The TTL header field
 contains a value in seconds that suggests how long a push message is
 retained by the push service.

 The TTL rule specifies a non-negative integer, representing time in
 seconds. A recipient parsing and converting a TTL value to binary
 form SHOULD use an arithmetic type of at least 31 bits of non-
 negative integer range. If a recipient receives a TTL value greater
 than the greatest integer it can represent, or if any of its
 subsequent calculations overflows, it MUST consider the value to be
 2147483648 (2^31).

 TTL = 1*DIGIT

 A push service MUST return a 400 (Bad Request) status code in
 response to requests that omit the TTL header field.

 A push service MAY retain a push message for a shorter duration than
 requested. It indicates this by returning a TTL header field in its
 response with the actual TTL. This TTL value MUST be less than or
 equal to the value provided by the application server.

 Once the TTL period elapses, the push service MUST NOT attempt to
 deliver the push message to the user agent. A push service might
 adjust the TTL value to account for time accounting errors in
 processing. For instance, distributing a push message within a
 server cluster might accrue errors due to clock skew or propagation
 delays.

 A push service is not obligated to account for time spent by the
 application server in sending a push message to the push service, or
 delays incurred while sending a push message to the user agent. An
 application server needs to account for transit delays in selecting a
 TTL header field value.

 A Push message with a zero TTL is immediately delivered if the user
 agent is available to receive the message. After delivery, the push
 service is permitted to immediately remove a push message with a zero
 TTL. This might occur before the user agent acknowledges receipt of
 the message by performing an HTTP DELETE on the push message
 resource. Consequently, an application server cannot rely on
 receiving acknowledgement receipts for zero TTL push messages.

Thomson, et al. Standards Track [Page 12]

RFC 8030 HTTP Web Push December 2016

 If the user agent is unavailable, a push message with a zero TTL
 expires and is never delivered.

5.3. Push Message Urgency

 For a device that is battery-powered, it is often critical that it
 remains dormant for extended periods. Radio communication in
 particular consumes significant power and limits the length of time
 that the device can operate.

 To avoid consuming resources to receive trivial messages, it is
 helpful if an application server can communicate the urgency of a
 message and if the user agent can request that the push server only
 forwards messages of a specific urgency.

 An application server MAY include an Urgency header field in its
 request for push message delivery. This header field indicates the
 message urgency. The push service MUST NOT forward the Urgency
 header field to the user agent. A push message without the Urgency
 header field defaults to a value of "normal".

 A user agent MAY include the Urgency header field when monitoring for
 push messages to indicate the lowest urgency of push messages that it
 is willing to receive. A push service MUST NOT deliver push messages
 with lower urgency than the value indicated by the user agent in its
 monitoring request. Push messages of any urgency are delivered to a
 user agent that does not include an Urgency header field when
 monitoring for messages.

 The grammar for the Urgency header field is as follows:

 Urgency = urgency-option
 urgency-option = ("very-low" / "low" / "normal" / "high")

 In order of increasing urgency:

 +----------+-----------------------------+--------------------------+
 | Urgency | Device State | Example Application |
 | | | Scenario |
 +----------+-----------------------------+--------------------------+
very-low	On power and Wi-Fi	Advertisements
low	On either power or Wi-Fi	Topic updates
normal	On neither power nor Wi-Fi	Chat or Calendar Message
high	Low battery	Incoming phone call or
		time-sensitive alert
 +----------+-----------------------------+--------------------------+

 Table 1: Illustrative Urgency Values

Thomson, et al. Standards Track [Page 13]

RFC 8030 HTTP Web Push December 2016

 Multiple values for the Urgency header field MUST NOT be included in
 requests; otherwise, the push service MUST return a 400 (Bad Request)
 status code.

5.4. Replacing Push Messages

 A push message that has been stored by the push service can be
 replaced with new content. If the user agent is offline during the
 time that the push messages are sent, updating a push message avoids
 the situation where outdated or redundant messages are sent to the
 user agent.

 Only push messages that have been assigned a topic can be replaced.
 A push message with a topic replaces any outstanding push message
 with an identical topic.

 A push message topic is a string carried in a Topic header field. A
 topic is used to correlate push messages sent to the same
 subscription and does not convey any other semantics.

 The grammar for the Topic header field uses the "token" rule defined
 in [RFC7230].

 Topic = token

 For use with this protocol, the Topic header field MUST be restricted
 to no more than 32 characters from the URL and a filename-safe Base
 64 alphabet [RFC4648]. A push service that receives a request with a
 Topic header field that does not meet these constraints MUST return a
 400 (Bad Request) status code to the application server.

 A push message replacement request creates a new push message
 resource and simultaneously deletes any existing message resource
 that has a matching topic. If an attempt was made to deliver the
 deleted push message, an acknowledgment could arrive at the push
 service after the push message has been replaced. Delivery receipts
 for such deleted messages SHOULD be suppressed.

 The replacement request also replaces the stored TTL, Urgency, and
 any receipt subscription associated with the previous message in the
 matching topic.

 A push message with a topic that is not shared by an outstanding
 message to the same subscription is stored or delivered as normal.

Thomson, et al. Standards Track [Page 14]

RFC 8030 HTTP Web Push December 2016

 For example, the following message could cause an existing message to
 be replaced:

 POST /push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 TTL: 600
 Topic: upd
 Content-Type: text/plain;charset=utf8
 Content-Length: 36

 ZuHSZPKa2b1jtOKLGpWrcrn8cNqt0iVQyroF

 If the push service identifies an outstanding push message with a
 topic of "upd", then that message resource is deleted. A 201
 (Created) response indicates that the push message replacement was
 accepted. A URI for the new push message resource that was created
 in response to the request is included in the Location header field.

 HTTP/1.1 201 Created
 Date: Thu, 11 Dec 2014 23:57:02 GMT
 Location: https://push.example.net/message/qDIYHNcfAIPP_5ITvURr-d6BGt

 The value of the Topic header field MUST NOT be forwarded to user
 agents. Its value is neither encrypted nor authenticated.

6. Receiving Push Messages for a Subscription

 A user agent requests the delivery of new push messages by making a
 GET request to a push message subscription resource. The push
 service does not respond to this request; instead, it uses HTTP/2
 server push [RFC7540] to send the contents of push messages as they
 are sent by application servers.

 A user agent MAY include an Urgency header field in its request. The
 push service MUST NOT deliver messages with lower urgency than the
 value of the header field as defined in Table 1 (Illustrative Urgency
 Values).

 Each push message is pushed as the response to a synthesized GET
 request sent in a PUSH_PROMISE. This GET request is made to the push
 message resource that was created by the push service when the
 application server requested message delivery. The response headers
 SHOULD provide a URI for the push resource corresponding to the push
 message subscription in a link relation of type
 "urn:ietf:params:push". The response body is the entity body from
 the most recent request sent to the push resource by the application
 server.

Thomson, et al. Standards Track [Page 15]

RFC 8030 HTTP Web Push December 2016

 The following example request is made over HTTP/2:

 HEADERS [stream 7] +END_STREAM +END_HEADERS
 :method = GET
 :path = /subscription/LBhhw0OohO-Wl4Oi971UG
 :authority = push.example.net

 The push service permits the request to remain outstanding. When a
 push message is sent by an application server, a server push is
 generated in association with the initial request. The response for
 the server push includes the push message.

 PUSH_PROMISE [stream 7; promised stream 4] +END_HEADERS
 :method = GET
 :path = /message/qDIYHNcfAIPP_5ITvURr-d6BGt
 :authority = push.example.net

 HEADERS [stream 4] +END_HEADERS
 :status = 200
 date = Thu, 11 Dec 2014 23:56:56 GMT
 last-modified = Thu, 11 Dec 2014 23:56:55 GMT
 cache-control = private
 link = </push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV>;
 rel="urn:ietf:params:push"
 content-type = text/plain;charset=utf8
 content-length = 36

 DATA [stream 4] +END_STREAM
 iChYuI3jMzt3ir20P8r_jgRR-dSuN182x7iB

 HEADERS [stream 7] +END_STREAM +END_HEADERS
 :status = 200

 A user agent can also request the contents of the push message
 subscription resource immediately by including a Prefer header field
 [RFC7240] with a "wait" preference set to "0". In response to this
 request, the push service MUST generate a server push for all push
 messages that have not yet been delivered.

 A 204 (No Content) status code with no associated server pushes
 indicates that no messages are presently available. This could be
 because push messages have expired.

Thomson, et al. Standards Track [Page 16]

RFC 8030 HTTP Web Push December 2016

6.1. Receiving Push Messages for a Subscription Set

 There are minor differences between receiving push messages for a
 subscription and a subscription set. If a subscription set is
 available, the user agent SHOULD use the subscription set to monitor
 for push messages rather than individual push message subscriptions.

 A user agent requests the delivery of new push messages for a
 collection of push message subscriptions by making a GET request to a
 push message subscription set resource. The push service does not
 respond to this request; instead, it uses HTTP/2 server push
 [RFC7540] to send the contents of push messages as they are sent by
 application servers.

 A user agent MAY include an Urgency header field in its request. The
 push service MUST NOT deliver messages with lower urgency than the
 value of the header field as defined in Table 1 (Illustrative Urgency
 Values).

 Each push message is pushed as the response to a synthesized GET
 request sent in a PUSH_PROMISE. This GET request is made to the push
 message resource that was created by the push service when the
 application server requested message delivery. The synthetic request
 MUST provide a URI for the push resource corresponding to the push
 message subscription in a link relation of type
 "urn:ietf:params:push". This enables the user agent to differentiate
 the source of the message. The response body is the entity body from
 the most recent request sent to the push resource by an application
 server.

 The following example request is made over HTTP/2.

 HEADERS [stream 7] +END_STREAM +END_HEADERS
 :method = GET
 :path = /subscription-set/4UXwi2Rd7jGS7gp5cuutF8ZldnEuvbOy
 :authority = push.example.net

 The push service permits the request to remain outstanding. When a
 push message is sent by an application server, a server push is
 generated in association with the initial request. The server push’s
 response includes the push message.

 PUSH_PROMISE [stream 7; promised stream 4] +END_HEADERS
 :method = GET
 :path = /message/qDIYHNcfAIPP_5ITvURr-d6BGt
 :authority = push.example.net

Thomson, et al. Standards Track [Page 17]

RFC 8030 HTTP Web Push December 2016

 HEADERS [stream 4] +END_HEADERS
 :status = 200
 date = Thu, 11 Dec 2014 23:56:56 GMT
 last-modified = Thu, 11 Dec 2014 23:56:55 GMT
 link = </push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV>;
 rel="urn:ietf:params:push"
 cache-control = private
 content-type = text/plain;charset=utf8
 content-length = 36

 DATA [stream 4] +END_STREAM
 iChYuI3jMzt3ir20P8r_jgRR-dSuN182x7iB

 HEADERS [stream 7] +END_STREAM +END_HEADERS
 :status = 200

 A user agent can request the contents of the push message
 subscription set resource immediately by including a Prefer header
 field [RFC7240] with a "wait" preference set to "0". In response to
 this request, the push service MUST generate a server push for all
 push messages that have not yet been delivered.

 A 204 (No Content) status code with no associated server pushes
 indicates that no messages are presently available. This could be
 because push messages have expired.

6.2. Acknowledging Push Messages

 To ensure that a push message is properly delivered to the user agent
 at least once, the user agent MUST acknowledge receipt of the message
 by performing an HTTP DELETE on the push message resource.

 DELETE /message/qDIYHNcfAIPP_5ITvURr-d6BGt HTTP/1.1
 Host: push.example.net

 If the push service receives the acknowledgement and the application
 has requested a delivery receipt, the push service MUST return a 204
 (No Content) response to the application server monitoring the
 receipt subscription.

 If the push service does not receive the acknowledgement within a
 reasonable amount of time, then the message is considered to be not
 yet delivered. The push service SHOULD continue to retry delivery of
 the message until its advertised expiration.

 The push service MAY cease to retry delivery of the message prior to
 its advertised expiration due to scenarios such as an unresponsive
 user agent or operational constraints. If the application has

Thomson, et al. Standards Track [Page 18]

RFC 8030 HTTP Web Push December 2016

 requested a delivery receipt, then the push service MUST return a 410
 (Gone) response to the application server monitoring the receipt
 subscription.

6.3. Receiving Push Message Receipts

 The application server requests the delivery of receipts from the
 push service by making an HTTP GET request to the receipt
 subscription resource. The push service does not respond to this
 request; instead, it uses HTTP/2 server push [RFC7540] to send push
 receipts when messages are acknowledged (Section 6.2) by the user
 agent.

 Each receipt is pushed as the response to a synthesized GET request
 sent in a PUSH_PROMISE. This GET request is made to the same push
 message resource that was created by the push service when the
 application server requested message delivery. The response includes
 a status code indicating the result of the message delivery and
 carries no data.

 The following example request is made over HTTP/2.

 HEADERS [stream 13] +END_STREAM +END_HEADERS
 :method = GET
 :path = /receipt-subscription/3ZtI4YVNBnUUZhuoChl6omUvG4ZM
 :authority = push.example.net

 The push service permits the request to remain outstanding. When the
 user agent acknowledges the message, the push service pushes a
 delivery receipt to the application server. A 204 (No Content)
 status code confirms that the message was delivered and acknowledged.

 PUSH_PROMISE [stream 13; promised stream 82] +END_HEADERS
 :method = GET
 :path = /message/qDIYHNcfAIPP_5ITvURr-d6BGt
 :authority = push.example.net

 HEADERS [stream 82] +END_STREAM
 +END_HEADERS
 :status = 204
 date = Thu, 11 Dec 2014 23:56:56 GMT

 If the user agent fails to acknowledge the receipt of the push
 message and the push service ceases to retry delivery of the message
 prior to its advertised expiration, then the push service MUST push a
 failure response with a status code of 410 (Gone).

Thomson, et al. Standards Track [Page 19]

RFC 8030 HTTP Web Push December 2016

7. Operational Considerations

7.1. Load Management

 A push service is likely to have to maintain a very large number of
 open TCP connections. Effective management of those connections can
 depend on being able to move connections between server instances.

 A user agent MUST support the 307 (Temporary Redirect) status code
 [RFC7231], which can be used by a push service to redistribute load
 at the time that a new subscription is requested.

 A server that wishes to redistribute load can do so using HTTP
 alternative services [RFC7838]. HTTP alternative services allows for
 redistribution of load while maintaining the same URIs for various
 resources. A user agent can ensure a graceful transition by using
 the GOAWAY frame once it has established a replacement connection.

7.2. Push Message Expiration

 Storage of push messages based on the TTL header field comprises a
 potentially significant amount of storage for a push service. A push
 service is not obligated to store messages indefinitely. A push
 service is able to indicate how long it intends to retain a message
 to an application server using the TTL header field (Section 5.2).

 A user agent that does not actively monitor for push messages will
 not receive messages that expire during that interval.

 Push messages that are stored and have not been delivered to a user
 agent are delivered when the user agent recommences monitoring.
 Stored push messages SHOULD include a Last-Modified header field
 (Section 2.2 of [RFC7232]) indicating when delivery was requested by
 an application server.

 A GET request to a push message subscription resource with only
 expired messages results in a response as though no push message was
 ever sent.

 Push services might need to limit the size and number of stored push
 messages to avoid overloading. To limit the size of messages, the
 push service MAY return a 413 (Payload Too Large) status code
 [RFC7231] in response to requests that include an entity body that is
 too large. Push services MUST NOT return a 413 status code in
 responses to an entity body that is 4096 bytes or less in size.

Thomson, et al. Standards Track [Page 20]

RFC 8030 HTTP Web Push December 2016

 To limit the number of stored push messages, the push service MAY
 respond with a shorter Time-To-Live than proposed by the application
 server in its request for push message delivery (Section 5.2). Once
 a message has been accepted, the push service MAY later expire the
 message prior to its advertised Time-To-Live. If the application
 server requested a delivery receipt, the push service MUST return a
 failure response (Section 6.2).

7.3. Subscription Expiration

 In some cases, it may be necessary to terminate subscriptions so that
 they can be refreshed. This applies to both push message
 subscriptions and receipt subscriptions.

 A push service MAY expire a subscription at any time. If there are
 outstanding requests to an expired push message subscription resource
 (Section 6) from a user agent or to an expired receipt subscription
 resource (Section 6.3) from an application server, this MUST be
 signaled by returning a 404 (Not Found) status code.

 A push service MUST return a 404 (Not Found) status code if an
 application server attempts to send a push message to an expired push
 message subscription.

 A user agent can remove its push message subscription by sending a
 DELETE request to the corresponding URI. An application server can
 remove its receipt subscription by sending a DELETE request to the
 corresponding URI.

7.3.1. Subscription Set Expiration

 A push service MAY expire a subscription set at any time and MUST
 also expire all push message subscriptions in the set. If a user
 agent has an outstanding request to a push subscription set
 (Section 6.1), this MUST be signaled by returning a 404 (Not Found)
 status code.

 A user agent can request that a subscription set be removed by
 sending a DELETE request to the subscription set URI. This MUST also
 remove all push message subscriptions in the set.

 If a specific push message subscription that is a member of a
 subscription set is expired or removed, then it MUST also be removed
 from its subscription set.

Thomson, et al. Standards Track [Page 21]

RFC 8030 HTTP Web Push December 2016

7.4. Implications for Application Reliability

 A push service that does not support reliable delivery over
 intermittent network connections or failing applications on devices,
 forces the device to acknowledge receipt directly to the application
 server, incurring additional power drain in order to establish and
 maintain (usually secure) connections to the individual application
 servers.

 Push message reliability can be important if messages contain
 information critical to the state of an application. Repairing the
 state can be expensive, particularly for devices with limited
 communications capacity. Knowing that a push message has been
 correctly received avoids retransmissions, polling, and state
 resynchronization.

 The availability of push message delivery receipts ensures that the
 application developer is not tempted to create alternative mechanisms
 for message delivery in case the push service fails to deliver a
 critical message. Setting up a polling mechanism or a backup
 messaging channel in order to compensate for these shortcomings
 negates almost all of the advantages a push service provides.

 However, reliability might not be necessary for messages that are
 transient (e.g., an incoming call) or messages that are quickly
 superseded (e.g., the current number of unread emails).

7.5. Subscription Sets and Concurrent HTTP/2 Streams

 If the push service requires that the user agent use push message
 subscription sets, then it MAY limit the number of concurrently
 active streams with the SETTINGS_MAX_CONCURRENT_STREAMS parameter
 within an HTTP/2 SETTINGS frame [RFC7540]. The user agent MAY be
 limited to one concurrent stream to manage push message subscriptions
 and one concurrent stream for each subscription set returned by the
 push service. This could force the user agent to serialize
 subscription requests to the push service.

8. Security Considerations

 This protocol MUST use HTTP over TLS [RFC2818] following the
 recommendations in [RFC7525]. This includes any communications
 between the user agent and the push service, plus communications
 between the application server and the push service. All URIs
 therefore use the "https" scheme. This provides confidentiality and
 integrity protection for subscriptions and push messages from
 external parties.

Thomson, et al. Standards Track [Page 22]

RFC 8030 HTTP Web Push December 2016

8.1. Confidentiality from Push Service Access

 The protection afforded by TLS does not protect content from the push
 service. Without additional safeguards, a push service can inspect
 and modify the message content.

 Applications using this protocol MUST use mechanisms that provide
 end-to-end confidentiality, integrity, and data origin
 authentication. The application server sending the push message and
 the application on the user agent that receives it are frequently
 just different instances of the same application, so no standardized
 protocol is needed to establish a proper security context. The
 distribution of subscription information from the user agent to its
 application server also offers a convenient medium for key agreement.

 For this requirement, the W3C Push API [API] has adopted Message
 Encryption for WebPush [ENCRYPT] to secure the content of messages
 from the push service. Other scenarios can be addressed by similar
 policies.

 The Topic header field exposes information that allows more granular
 correlation of push messages on the same subject. This might be used
 to aid traffic analysis of push messages by the push service.

8.2. Privacy Considerations

 Push message confidentiality does not ensure that the identity of who
 is communicating and when they are communicating is protected.
 However, the amount of information that is exposed can be limited.

 The URIs provided for push resources MUST NOT provide any basis to
 correlate communications for a given user agent. It MUST NOT be
 possible to correlate any two push resource URIs based solely on
 their contents. This allows a user agent to control correlation
 across different applications or over time. Of course, this does not
 prevent correlation using other information that a user agent might
 expose.

 Similarly, the URIs provided by the push service to identify a push
 message MUST NOT provide any information that allows for correlation
 across subscriptions. Push message URIs for the same subscription
 MAY contain information that would allow correlation with the
 associated subscription or other push messages for that subscription.

 User and device information MUST NOT be exposed through a push or
 push message URI.

Thomson, et al. Standards Track [Page 23]

RFC 8030 HTTP Web Push December 2016

 In addition, push URIs established by the same user agent or push
 message URIs for the same subscription MUST NOT include any
 information that allows them to be correlated with the user agent.

 Note: This need not be perfect as long as the resulting anonymity
 set ([RFC6973], Section 6.1.1) is sufficiently large. A push URI
 necessarily identifies a push service or a single server instance.
 It is also possible that traffic analysis could be used to
 correlate subscriptions.

 A user agent MUST be able to create new subscriptions with new
 identifiers at any time.

8.3. Authorization

 This protocol does not define how a push service establishes whether
 a user agent is permitted to create a subscription, or whether push
 messages can be delivered to the user agent. A push service MAY
 choose to authorize requests based on any HTTP-compatible
 authorization method available, of which there are multiple options
 (including experimental options) with varying levels of security.
 The authorization process and any associated credentials are expected
 to be configured in the user agent along with the URI for the push
 service.

 Authorization is managed using capability URLs for the push message
 subscription, push, and receipt subscription resources ([CAP-URI]).
 A capability URL grants access to a resource based solely on
 knowledge of the URL.

 Capability URLs are used for their "easy onward sharing" and "easy
 client API" properties. These properties make it possible to avoid
 relying on prearranged relationships or additional protocols between
 push services and application servers.

 Capability URLs act as bearer tokens. Knowledge of a push message
 subscription URI implies authorization to either receive push
 messages or delete the subscription. Knowledge of a push URI implies
 authorization to send push messages. Knowledge of a push message URI
 allows for reading and acknowledging that specific message.
 Knowledge of a receipt subscription URI implies authorization to
 receive push receipts.

 Encoding a large amount of random entropy (at least 120 bits) in the
 path component ensures that it is difficult to successfully guess a
 valid capability URL.

Thomson, et al. Standards Track [Page 24]

RFC 8030 HTTP Web Push December 2016

8.4. Denial-of-Service Considerations

 A user agent can control where valid push messages originate by
 limiting the distribution of push URIs to authorized application
 servers. Ensuring that push URIs are hard to guess ensures that only
 application servers that have received a push URI can use it.

 Push messages that are not successfully authenticated by the user
 agent will not be delivered, but this can present a denial-of-service
 risk. Even a relatively small volume of push messages can cause
 battery-powered devices to exhaust power reserves.

 To address this case, the W3C Push API [API] has adopted Voluntary
 Application Server Identification [VAPID], which allows a user agent
 to restrict a subscription to a specific application server. The
 push service can then identify and reject unwanted messages without
 contacting the user agent.

 A malicious application with a valid push URI could use the greater
 resources of a push service to mount a denial-of-service attack on a
 user agent. Push services SHOULD limit the rate at which push
 messages are sent to individual user agents.

 A push service MAY return a 429 (Too Many Requests) status code
 [RFC6585] when an application server has exceeded its rate limit for
 push message delivery to a push resource. The push service SHOULD
 also include a Retry-After header [RFC7231] to indicate how long the
 application server is requested to wait before it makes another
 request to the push resource.

 A push service or user agent MAY also terminate subscriptions
 (Section 7.3) that receive too many push messages.

 A push service is also able to deny service to user agents.
 Intentional failure to deliver messages is difficult to distinguish
 from faults, which might occur due to transient network errors,
 interruptions in user agent availability, or genuine service outages.

8.5. Logging Risks

 Server request logs can reveal subscription-related URIs or
 relationships between subscription-related URIs for the same user
 agent. Limitations on log retention and strong access control
 mechanisms can ensure that URIs are not revealed to unauthorized
 entities.

Thomson, et al. Standards Track [Page 25]

RFC 8030 HTTP Web Push December 2016

9. IANA Considerations

 This protocol defines new HTTP header fields in Section 9.1. New
 link relation types are identified using the URNs defined in
 Section 9.2. Port registration is defined in Section 9.3

9.1. Header Field Registrations

 HTTP header fields are registered within the "Message Headers"
 registry maintained at <https://www.iana.org/assignments/message-
 headers/>.

 This document defines the following HTTP header fields, and the
 following entries have been added to the "Permanent Message Header
 Field Names" registry ([RFC3864]):

 +-------------------+----------+----------+--------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+----------+--------------+
TTL	http	standard	Section 5.2
Urgency	http	standard	Section 5.3
Topic	http	standard	Section 5.4
 +-------------------+----------+----------+--------------+

 The change controller is: "IETF (iesg@ietf.org) - Internet
 Engineering Task Force".

9.2. Link Relation URNs

 This document registers URNs for use in identifying link relation
 types. These have been added to a new "Web Push Identifiers"
 registry according to the procedures in Section 4 of [RFC3553]; the
 corresponding "push" sub-namespace has been entered in the "IETF URN
 Sub-namespace for Registered Protocol Parameter Identifiers"
 registry.

 The "Web Push Identifiers" registry operates under the IETF Review
 policy [RFC5226].

 Registry name: Web Push Identifiers

 URN Prefix: urn:ietf:params:push

 Specification: RFC 8030 (this document)

 Repository: http://www.iana.org/assignments/webpush-parameters/

Thomson, et al. Standards Track [Page 26]

RFC 8030 HTTP Web Push December 2016

 Index Value: Values in this registry are URNs or URN prefixes that
 start with the prefix "urn:ietf:params:push". Each is registered
 independently.

 Registrations in the "Web Push Identifiers" registry include the
 following information:

 URN: A complete URN or URN prefix.

 Description: A summary description.

 Contact: Email for the person or group making the registration.

 Index Value: As described in [RFC3553]

 Reference: A reference to a specification describing the semantics
 of the URN or URN prefix.

 URN prefixes that are registered include a description of how the
 URN is constructed. This is not applicable for specific URNs.

 These values are entered as the initial content of the "Web Push
 Identifiers" registry.

 URN: urn:ietf:params:push

 Description: This link relation type is used to identify a resource
 for sending push messages.

 Contact: The WEBPUSH WG of the IETF (webpush@ietf.org)

 Reference: RFC 8030 (this document)

 URN: urn:ietf:params:push:set

 Description: This link relation type is used to identify a
 collection of push message subscriptions.

 Contact: The WEBPUSH WG of the IETF (webpush@ietf.org)

 Reference: RFC 8030 (this document)

 URN: urn:ietf:params:push:receipt

 Description: This link relation type is used to identify a resource
 for receiving delivery confirmations for push messages.

 Contact: The WEBPUSH WG of the IETF (webpush@ietf.org)

Thomson, et al. Standards Track [Page 27]

RFC 8030 HTTP Web Push December 2016

 Reference: RFC 8030 (this document)

9.3. Service Name and Port Number Registration

 Service names and port numbers are registered within the "Service
 Name and Transport Protocol Port Number Registry" maintained at
 <https://www.iana.org/assignments/service-names-port-numbers/>.

 In accordance with [RFC6335], IANA has assigned the System Port
 number 1001 and the service name "webpush".

 Service Name:
 webpush

 Port Number:
 1001

 Transport Protocol:
 tcp

 Description:
 HTTP Web Push

 Assignee:
 The IESG (iesg@ietf.org)

 Contact:
 The IETF Chair (chair@ietf.org)

 Reference:
 RFC 8030 (this document)

10. References

10.1. Normative References

 [CAP-URI] Tennison, J., "Good Practices for Capability URLs", W3C
 First Public Working Draft capability-urls, February 2014,
 <http://www.w3.org/TR/capability-urls/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

Thomson, et al. Standards Track [Page 28]

RFC 8030 HTTP Web Push December 2016

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <http://www.rfc-editor.org/info/rfc3553>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <http://www.rfc-editor.org/info/rfc3864>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <http://www.rfc-editor.org/info/rfc5382>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <http://www.rfc-editor.org/info/rfc6585>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Thomson, et al. Standards Track [Page 29]

RFC 8030 HTTP Web Push December 2016

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240,
 DOI 10.17487/RFC7240, June 2014,
 <http://www.rfc-editor.org/info/rfc7240>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <http://www.rfc-editor.org/info/rfc7838>.

10.2. Informative References

 [API] Beverloo, P., Thomson, M., van Ouwerkerk, M., Sullivan,
 B., and E. Fullea, "Push API", W3C Editor’s Draft push-
 api, November 2016, <https://w3c.github.io/push-api/>.

 [ENCRYPT] Thomson, M., "Message Encryption for Web Push", Work in
 Progress, draft-ietf-webpush-encryption-06, October 2016.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <http://www.rfc-editor.org/info/rfc6973>.

 [VAPID] Thomson, M. and P. Beverloo, "Voluntary Application Server
 Identification for Web Push", Work in Progress,
 draft-ietf-webpush-vapid-01, June 2016.

Thomson, et al. Standards Track [Page 30]

RFC 8030 HTTP Web Push December 2016

Acknowledgements

 Significant technical input to this document has been provided by Ben
 Bangert, Peter Beverloo, Kit Cambridge, JR Conlin, Lucas Jenss,
 Matthew Kaufman, Costin Manolache, Mark Nottingham, Idel Pivnitskiy,
 Robert Sparks, Darshak Thakore, and many others.

Authors’ Addresses

 Martin Thomson
 Mozilla
 331 E Evelyn Street
 Mountain View, CA 94041
 United States of America

 Email: martin.thomson@gmail.com

 Elio Damaggio
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 United States of America

 Email: elioda@microsoft.com

 Brian Raymor (editor)
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 United States of America

 Email: brian.raymor@microsoft.com

Thomson, et al. Standards Track [Page 31]

