
Internet Engineering Task Force (IETF) Y. Oiwa
Request for Comments: 8053 H. Watanabe
Category: Experimental H. Takagi
ISSN: 2070-1721 ITRI, AIST
 K. Maeda
 T. Hayashi
 Lepidum
 Y. Ioku
 Individual Contributor
 January 2017

 HTTP Authentication Extensions for Interactive Clients

Abstract

 This document specifies extensions for the HTTP authentication
 framework for interactive clients. Currently, fundamental features
 of HTTP-level authentication are insufficient for complex
 requirements of various Web-based applications. This forces these
 applications to implement their own authentication frameworks by
 means such as HTML forms, which becomes one of the hurdles against
 introducing secure authentication mechanisms handled jointly by
 servers and user agents. The extended framework fills gaps between
 Web application requirements and HTTP authentication provisions to
 solve the above problems, while maintaining compatibility with
 existing Web and non-Web uses of HTTP authentication.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8053.

Oiwa, et al. Experimental [Page 1]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Oiwa, et al. Experimental [Page 2]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 4
 2. Definitions . 5
 2.1. Terms for Describing Authentication Protocol Flow 5
 2.2. Syntax Notation . 8
 3. Optional Authentication 8
 3.1. Note on Optional-WWW-Authenticate and Use of
 WWW-Authenticate Header with Non-401 Status 10
 4. Authentication-Control Header 11
 4.1. Non-ASCII Extended Header Parameters 13
 4.2. Auth-Style Parameter 13
 4.3. Location-When-Unauthenticated Parameter 14
 4.4. No-Auth Parameter . 15
 4.5. Location-When-Logout Parameter 16
 4.6. Logout-Timeout Parameter 17
 4.7. Username Parameter 17
 5. Usage Examples . 18
 5.1. Example 1: A Portal Site 19
 5.1.1. Case 1: A Simple Application 19
 5.1.2. Case 2: Specific Action Required on Logout 20
 5.1.3. Case 3: Specific Page Displayed before Login 20
 5.2. Example 2: Authenticated User-Only Sites 20
 5.3. When to Use Cookies 21
 5.4. Parallel Deployment with Form/Cookie Authentication . . . 22
 6. Methods to Extend This Protocol 23
 7. IANA Considerations . 23
 8. Security Considerations 24
 8.1. Security Implication of the Username Parameter 24
 9. References . 25
 9.1. Normative References 25
 9.2. Informative References 26
 Appendix A. (Informative) Applicability of Features for Each
 Message . 27
 Authors’ Addresses . 27

Oiwa, et al. Experimental [Page 3]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

1. Introduction

 This document defines several extensions to the current HTTP
 authentication framework, to provide functionality comparable with
 current, widely used, form-based Web authentication. A majority of
 the recent websites on the Internet use custom application-layer
 authentication implementations using Web forms. The reasons for
 these may vary, but many people believe that the current HTTP Basic
 and Digest authentication methods do not have enough functionality
 (including good user interfaces) to support most realistic Web-based
 applications. However, such use of form-based Web authentication has
 several weaknesses against attacks like phishing, because all
 behavior of the authentication is controlled from the server-side
 application. This makes it really hard to implement any
 cryptographically strong authentication mechanisms into Web systems.
 To overcome this problem, we need to "modernize" the HTTP
 authentication framework so that better client-controlled secure
 methods can be used with Web applications. The extensions proposed
 in this document include:

 o optional authentication on HTTP (Section 3),

 o log out from both the server and client side (Section 4), and

 o finer control for redirection depending on the authentication
 status (Section 4)

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document distinguishes the terms "client" and "user" in the
 following way: a "client" is an entity understanding and talking HTTP
 and the specified authentication protocol, usually computer software;
 a "user" is a (usually natural) person who wants to access data
 resources using "a client".

Oiwa, et al. Experimental [Page 4]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

2. Definitions

2.1. Terms for Describing Authentication Protocol Flow

 HTTP Authentication defined in [RFC7235] can involve several pairs of
 HTTP requests/responses. Throughout this document, the following
 terms are used to categorize those messages.

 For requests:

 1) A non-authenticating request is a request not attempting any
 authentication: a request without any Authorization header field.

 2) An authenticating request is the opposite: a request with an
 Authorization header field.

 For responses:

 1) A non-authenticated response is a response that does not involve
 any HTTP authentication. It does not contain any WWW-Authenticate
 ([RFC7235]) or Authentication-Info header field ([RFC7615]).

 Servers send this response when the requested resource is not
 protected by an HTTP authentication mechanism. In the context of
 this specification, non-authentication-related negative responses
 (e.g., 403 and 404) are also considered non-authenticated
 responses.

 (See the note on successfully authenticated responses below for
 some ambiguous cases.)

 2) An authentication-initializing response is a response that
 requires or allows clients to start authentication attempts.
 Servers send this response when the requested resource is
 protected by an HTTP authentication mechanism, and the request
 meets one of the following cases:

 * The request is a non-authenticating request, or

 * The request contained an authentication trial directed to a
 protection space (realm) other than the one that the server
 expected.

 The server will specify the protection space for authentication in
 this response.

Oiwa, et al. Experimental [Page 5]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Upon receiving this response, the client’s behavior is further
 divided to two possible cases:

 * If the client has no prior knowledge on authentication
 credentials (e.g., a username and a password) related to the
 requested protection space, the protocol flow terminates and
 the client will ask the user to provide authentication
 credentials.

 * On the other hand, if the client already has enough
 authentication credentials to the requested protection space,
 the client will automatically send an authenticating request.
 Such cases often occur when the client does not know beforehand
 that the current request-URL requires authentication.

 3) A successfully authenticated response is a response for an
 authenticating request meaning that the authentication attempt was
 granted. (Note: if the authentication scheme used does not use an
 Authentication-Info header field, it can’t be distinguished from a
 non-authenticated response.)

 4) An intermediate authenticating response is a response for an
 authenticating request that requires more reaction by the client
 software without involving users. Such a response is required
 when an authentication scheme requires two or more round-trip
 messages to perform authentication, or when an authentication
 scheme uses some speculative short-cut method (such as uses of
 cached shared secrets) and it fails.

 5) A negatively authenticated response is a response for an
 authenticating request, which means that the authentication
 attempt was declined and cannot continue without a different set
 of authentication credentials. Clients typically erase the memory
 of the active credentials and ask the user for other ones.

 Usually the format of these responses is the same as the one for
 authentication-initializing responses. Clients can distinguish
 negatively authenticated responses from authentication-
 initializing responses by comparing the protection spaces
 contained in the request and in the response.

 Figure 1 shows a state diagram of generic HTTP authentication with
 the above message categorization. Note that many authentication
 schemes use only a subset of the transitions described in the
 diagram. Labels in the figure show the abbreviated names of response
 types.

Oiwa, et al. Experimental [Page 6]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 =========== -----------------
 NEW REQUEST (UNAUTHENTICATED)
 =========== -----------------
 | ^ non-auth.
 v | response
 +----------------------+ NO +-------------+
 | The requested URI |--------------------------->| send normal |
 | known to be auth’ed? | ---------------->| request |
 +----------------------+ / +-------------+
 YES | / initializing|
 v / |
 +------------------+ NO / |
 | Can auth-req.(*1)|--------- |
 | be constructed? | |
 +------------------+ |
 YES | initializing |
 | ---------------------------------------. |
 | / v v
 | | ---------------- NO +-----------+
 | | (AUTH-REQUESTED)<------| passwords |
 | | ---------------- |etc. known?|
 v | +-----------+
 +-----------+ negative ------------- negative |YES
 | send |---------->(AUTH-FAILED)<---------, |
 /| auth-req | ------------- | |
 / +-----------+\ | v
 | \ \ intermediate +-----------+
 | \ -------------------------------->| send |
 | \ | auth-req |
 | non-auth. \successful successful +-----------+
 | response (*2) \ / | ^
 v \ / | |
 ----------------- \ -------------- / ‘----’
 (UNAUTHENTICATED) ----->(AUTH-SUCCEED)<---- intermediate
 ----------------- --------------

 Figure 1: Generic State Diagram for HTTP Authentication

 Notes:
 (*1) For example, the "Digest" scheme requires a server-provided
 nonce to construct client-side challenges.
 (*2) In "Basic" and some others, this cannot be distinguished from a
 successfully authenticated response.

Oiwa, et al. Experimental [Page 7]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

2.2. Syntax Notation

 This specification uses an extended ABNF syntax defined in [RFC7230]
 and [RFC5234]. The following syntax definitions are quoted from
 [RFC7230] and [RFC7235]: auth-scheme, quoted-string, auth-param, SP,
 BWS, header-field, and challenge. It also uses the convention of
 using header field names for specifying the syntax of values for the
 header field.

 Additionally, this specification uses the following syntax
 definitions as a refinement for token and the right-hand-side of
 auth-param in [RFC7235].

 bare-token = bare-token-lead-char *bare-token-char
 bare-token-lead-char = %x30-39 / %x41-5A / %x61-7A
 bare-token-char = %x30-39 / %x41-5A / %x61-7A / "-" / "_"
 extension-token = "-" bare-token 1*("." bare-token)
 extensive-token = bare-token / extension-token
 integer = "0" / (%x31-39 *%x30-39) ; no leading zeros

 Figure 2: The BNF Syntax for Common Notations

 Extensive-tokens are used in this protocol where the set of
 acceptable tokens includes private extensions. Any extensions of
 this protocol MAY use either bare-tokens allocated by IANA (under the
 procedure described in Section 7), or extension-tokens with the
 format "-<token>.<domain-name>", where <domain-name> is a valid
 (sub-)domain name on the Internet owned by the party who defines the
 extension.

3. Optional Authentication

 The Optional-WWW-Authenticate header enables a non-mandatory
 authentication, which is not possible under the current HTTP
 authentication mechanism.

 In several Web applications, users can access the same contents as
 both a guest user and an authenticated user. In most Web
 applications, this functionality is implemented using HTTP cookies
 [RFC6265] and custom form-based authentication. The new
 authentication method using this message will provide a replacement
 for these authentication systems.

Oiwa, et al. Experimental [Page 8]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Servers MAY send HTTP non-interim responses containing the
 Optional-WWW-Authenticate header as a replacement for a 401 response
 when it is authentication-initializing. The
 Optional-WWW-Authenticate header MUST NOT be sent on 401 responses
 (i.e., a usual WWW-Authenticate header MUST be used on 401
 responses).

 Optional-WWW-Authenticate = 1#challenge

 Figure 3: BNF Syntax for Optional-WWW-Authenticate Header

 Example:
 HTTP/1.1 200 OK
 Optional-WWW-Authenticate: Basic realm="xxxx"

 The challenges contained in the Optional-WWW-Authenticate header are
 the same as those for a 401 response corresponding to the same
 request. For authentication-related matters, an optional
 authentication request will have the same meaning as a 401 message
 with a corresponding WWW-Authenticate header (as an authentication-
 initializing response). (The behavior for other matters MAY be
 different between the optional authentication and 401 messages. For
 example, clients MAY choose to cache the 200 messages with the
 Optional-WWW-Authenticate header field but not the 401 messages by
 default.)

 A response with an Optional-WWW-Authenticate header SHOULD be
 returned from the server only when the request is either non-
 authenticated or authenticating to a wrong (not the server’s
 expected) protection space. If a response is either an intermediate
 or a negative response to a client’s authentication attempt, the
 server MUST respond with a 401 status response with a
 WWW-Authenticate header instead. Failure to comply with this rule
 will render clients unable to distinguish between authentication
 successes and failures.

 The server is NOT RECOMMENDED to include an Optional-WWW-Authenticate
 header in a positive response when a client’s authentication attempt
 succeeds.

 Whenever an authentication scheme supports servers sending some
 parameter that gives a hint about the URL space for the corresponding
 protection space for the same realm (e.g., "path" or "domain"),
 servers requesting non-mandatory authentication SHOULD send such a
 parameter with the response. Clients supporting non-mandatory
 authentication MUST recognize the parameter and MUST send a request
 with an appropriate authentication credential in an Authorization
 header for any URI inside the specified paths.

Oiwa, et al. Experimental [Page 9]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Implementations are not required to support this header for all of
 their supported authentication schemes (i.e., they may choose to
 implement it only for a subset of their supported schemes). New
 authentication schemes can require support of the optional
 authentication as a prerequisite, though.

3.1. Note on Optional-WWW-Authenticate and Use of WWW-Authenticate
 Header with Non-401 Status

 In the current specification of HTTP/1.1, it is clarified that the
 WWW-Authenticate header can be used with messages with status codes
 other than 401 (Authentication Required). In particular, the use of
 the WWW-Authenticate header with the 200 status messages implies a
 very similar meaning to the above-defined Optional-WWW-Authenticate
 header.

 The design of Optional-WWW-Authenticate header expects that the use
 of a new header guarantees that clients that are unaware of this
 extension will ignore the header, and that Web developers can rely on
 that behavior to implement a secondary fallback method of
 authentication. Several behavioral requirements written in the above
 section also assume this property and define a necessary
 functionality to implement an optional authentication reliably and
 consistently.

 On the other hand, some experiments and discussions on the IETF
 mailing list revealed that most of (but not necessarily all of) the
 existing HTTP clients, at the time of writing, just ignore the WWW-
 Authenticate headers in non-401 messages, giving similar behavior
 with the Optional-WWW-Authenticate. However, every corner case of
 behavior was not fully tested or well-defined in the existing
 specifications.

 Considering these situations, the authors of this document chose to
 use a new header for a new feature "experiment". This is to avoid
 defining every corner-case behavior for the existing standard WWW-
 Authentication header in this experimental document, which could be
 considered by some implementers as an incompatible changes to
 existing specification.

 Experimentally, the authors propose that implementers of the standard
 HTTP/1.1 specification (especially implementers of this extension)
 implement undefined (implementation-dependent) detailed handling of
 the WWW-Authenticate header with non-401 status messages similar as
 those defined above for the Optional-WWW-Authenticate header. For
 example, we propose that servers return the 401 status for failed
 authentication attempts, even when the unauthenticated request to the
 same resource will result in the 200 status. This can determine how

Oiwa, et al. Experimental [Page 10]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 (whether) non-mandatory authentication using the standard header
 fields and status codes can be implemented. If this experiment is
 successful, a future revision of this experimental document may
 "bless" and recommend the use of a standard WWW-Authenticate header,
 with some stricter requirements on some corner-case behavior.

4. Authentication-Control Header

 Authentication-Control = 1#auth-control-entry
 auth-control-entry = auth-scheme 1*SP 1#auth-control-param
 auth-control-param = extensive-token BWS "=" BWS token
 / extensive-token "*" BWS "=" BWS ext-value
 ext-value = <see RFC 5987, Section 3.2>

 Figure 4: The BNF Syntax for the Authentication-Control Header

 The Authentication-Control header provides more precise control of
 the client behavior for Web applications using an HTTP authentication
 protocol. This header is supposed to be generated in the application
 layer, as opposed to the WWW-Authenticate headers, which will usually
 be generated by the Web servers.

 Clients MAY freely choose any subset of these parameters to be
 supported. Also, these may choose to support any of the parameters
 for only a subset of their supported authentication schemes.
 However, authentication schemes can require/recommend support for
 some of these parameters as a prerequisite.

 The Authentication-Control header contains one or more
 "authentication control entries", each of which corresponds to a
 single realm for a specific authentication scheme. If the
 auth-scheme specified for an entry supports the HTTP "realm" feature,
 that entry MUST contain the "realm" parameter. If not, the entry
 MUST NOT contain the "realm" parameter.

 Among the multiple entries in the header, the relevant entries in the
 header are those corresponding to an auth-scheme and a realm (if any)
 for which "the authentication process is being performed or going to
 be performed". In more detail:

 (1) If the response is either an authentication-initializing
 response or a negatively authenticated response, there can be
 multiple challenges in the WWW-Authenticate header (or the
 Optional-WWW-Authenticate header defined in this extension),
 each of which corresponds to a different scheme and realm. In
 this case, the client has a choice about the scheme and realm
 they will use to authenticate. Only the entry in the

Oiwa, et al. Experimental [Page 11]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Authentication-Control header corresponding to that scheme and
 realm are relevant.

 (2) If the response is either an intermediate authenticating
 response or a successfully authenticated response, the scheme
 and realm given in the Authorization header of the HTTP request
 will determine the currently ongoing authentication process.
 Only the entry corresponding to that scheme and realm are
 relevant.

 The server MAY send an Authentication-Control header containing non-
 relevant entries. The client MUST ignore all non-relevant entries it
 received.

 Every entry contains one or more parameters, each of which is a name-
 value pair. The name of each parameter MUST be an extensive-token.
 Clients MUST ignore any unknown parameters contained in this header.
 The entries for the same auth-scheme and the realm MUST NOT contain
 duplicated parameters for the same name. Clients MAY either take any
 one of those duplicated entries or ignore all of them.

 The type of parameter value depends on the parameter name as defined
 in the following subsections. Regardless of the type, however, the
 recipients MUST accept both quoted and unquoted representations of
 values as defined in HTTP. If the parameter is defined to have a
 string value, implementations MUST send any value outside of the
 "token" ABNF syntax in either a quoted form or an ext-value form (see
 Section 4.1). If the parameter is defined as a token (or similar) or
 an integer, the value SHOULD follow the corresponding ABNF syntax
 after possible unquoting of the quoted-string value (as defined in
 HTTP) and MUST be sent in a plain (not an ext-value) form. (Note:
 the rest of this document will show all string-value parameters in
 quoted forms, and it will show others in unquoted forms.)

 Any parameters contained in this header MAY be ignored by clients.
 Also, even when a client accepts this header, users are able to
 circumvent the semantics of this header. Therefore, if this header
 is used for security purposes, its use MUST be limited to providing
 some non-fundamental additional security measures valuable for end-
 users (such as client-side logout for protection against console
 takeover). Server-side applications MUST NOT rely on the use of this
 header for protecting server-side resources.

 Note: The header syntax allows servers to specify Authentication-
 Control for multiple authentication schemes, either as multiple
 occurrences of this header or as a combined single header (see
 Section 3.2.2 of [RFC7230] for rationale). The same care as for
 parsing multiple authentication challenges needs to be taken.

Oiwa, et al. Experimental [Page 12]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

4.1. Non-ASCII Extended Header Parameters

 Parameters contained in the Authentication-Control header MAY be
 extended to non-ASCII values using the framework described in
 [RFC5987]. All servers and clients MUST be capable of receiving and
 sending values encoded in [RFC5987] syntax.

 If a value to be sent contains only ASCII characters, the field MUST
 be sent using plain RFC 7235 syntax. The syntax as extended by
 ext-value MUST NOT be used in this case.

 If a value (except the "realm" header) contains one or more non-ASCII
 characters, the parameter SHOULD be sent using the ext-value syntax
 defined in Section 3.2 of [RFC5987]. Such a parameter MUST have a
 charset value of "UTF-8", and the language value MUST always be
 omitted (have an empty value). The same parameter MUST NOT be sent
 more than once, regardless of the syntax used.

 For example, a parameter "username" with the value "Renee of France"
 SHOULD be sent as < username="Renee of France" >. If the value is
 "Ren<e acute>e of France", it SHOULD be sent as
 < username*=UTF-8’’Ren%C3%89e%20of%20France > instead.

 Interoperability note: [RFC7235], Section 2.2, defines the "realm"
 authentication parameter that cannot be replaced by the "realm*"
 extend parameter. This means that the use of non-ASCII values for an
 authentication realm is not the defined behavior in HTTP.
 Unfortunately, some people currently use a non-ASCII realm parameter
 in reality, but even its encoding scheme is not well defined.
 Given this background, this document does not specify how to handle a
 non-ASCII "realm" parameter in the extended header fields. If
 needed, the authors propose using a non-extended "realm" parameter
 form, with a wish for maximum interoperability.

4.2. Auth-Style Parameter

 Example:
 Authentication-Control: Digest realm="protected space",
 auth-style=modal

 The parameter "auth-style" specifies the server’s preference for user
 interface behavior for user authentication. This parameter can be
 included in any kind of response; however, it is only meaningful for
 either authentication-initializing or negatively authenticated
 responses. The value of this parameter MUST be one of the bare-
 tokens, "modal" or "non-modal". When the Optional-WWW-Authenticate
 header is used, the value of this parameter MUST be disregarded and
 the value "non-modal" is implied.

Oiwa, et al. Experimental [Page 13]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 The value "modal" means that the server thinks the content of the
 response (body and other content-related headers) is valuable only
 for users refusing the authentication request. The clients are
 expected to ask the user for a password before processing the
 content. This behavior is common for most of the current
 implementations of Basic and Digest authentication schemes.

 The value "non-modal" means that the server thinks that the content
 of the response (body and other content-related headers) is valuable
 for users before processing an authentication request. The clients
 are expected to first process the content and then provide users with
 the opportunity to perform authentication.

 The default behavior for clients is implementation dependent, and it
 may also depend on authentication schemes. The proposed default
 behavior is "modal" for all authentication schemes unless otherwise
 specified.

 The above two different methods of authentication possibly introduce
 an observable difference of semantics when the response contains
 state-changing side effects; for example, it can affect how Cookie
 headers [RFC6265] in 401 responses are processed. However, the
 server applications SHOULD NOT depend on the existence of such side
 effects.

4.3. Location-When-Unauthenticated Parameter

 Example:
 Authentication-Control: Mutual realm="auth-space-1",
 location-when-unauthenticated="http://www.example.com/login.html"

 The parameter "location-when-unauthenticated" specifies a location to
 which any unauthenticated clients should be redirected. This header
 can be used, for example, when there is a central login page for the
 entire Web application. The value of this parameter is a string that
 contains a URL location. If a received URL is not absolute, the
 clients SHOULD consider it a relative URL from the current location.

 This parameter MAY be used with a 401 response for an authentication-
 initializing response. It can also be contained, although this is
 NOT RECOMMENDED, in a positive response with an
 Optional-WWW-Authenticate header. The clients MUST ignore this
 parameter when a response is either successfully authenticated or
 intermediately authenticated.

Oiwa, et al. Experimental [Page 14]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 When a client receives an authentication-initiating response with
 this parameter, and if the client has to ask users for authentication
 credentials, the client will treat the entire response as if it were
 a 303 "See Other" response with a Location header that contains the
 value of this parameter (i.e., the client will be redirected to the
 specified location with a GET request). Unlike a normal 303
 response, if the client can process authentication without the user’s
 interaction, this parameter MUST be ignored.

4.4. No-Auth Parameter

 Example:
 Authentication-Control: Basic realm="entrance", no-auth=true

 The parameter "no-auth" is a variant of the
 location-when-unauthenticated parameter; it specifies that new
 authentication attempts are not to be performed on this location in
 order to improve the user experience, without specifying the
 redirection on the HTTP level. This header can be used, for example,
 when there is a central login page for the entire Web application and
 when an explicit user interaction with the Web content is desired
 before authentication. The value of this parameter MUST be a token
 "true". If the value is incorrect, the client MAY ignore this
 parameter.

 This parameter MAY be used with authentication-initiating responses.
 It can also be contained, although this is NOT RECOMMENDED, in a
 positive response with an Optional-WWW-Authenticate header. The
 clients MUST ignore this parameter when a response is either
 successfully authenticated or intermediately authenticated.

 When a client receives an authentication-initiating response with
 this parameter, if the client has to ask users for authentication
 credentials, the client will ignore the WWW-Authenticate header
 contained in the response and treat the whole response as a normal
 negative 4xx-class response instead of giving the user an opportunity
 to start authentication. If the client can process authentication
 without the user’s interaction, this parameter MUST be ignored.

 Using this parameter along with the location-when-unauthenticated
 parameter is meaningless. If both were supplied, clients SHOULD
 ignore the location-when-unauthenticated parameter.

 This parameter SHOULD NOT be used as a security measure to prevent
 authentication attempts, as it is easily circumvented by users. This
 parameter SHOULD be used solely for improving the user experience of
 Web applications.

Oiwa, et al. Experimental [Page 15]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

4.5. Location-When-Logout Parameter

 Example:
 Authentication-Control: Digest realm="protected space",
 location-when-logout="http://www.example.com/byebye.html"

 The parameter "location-when-logout" specifies a location where the
 client is to be redirected when the user explicitly requests a
 logout. The value of this parameter MUST be a string that contains a
 URL location. If a given URL is not absolute, the clients MUST
 consider it a relative URL from the current location.

 This parameter MAY be used with successfully authenticated responses.
 If this parameter is contained in other kinds of responses, the
 clients MUST ignore this parameter.

 When the user tells the client to terminate the current
 authentication period, if the client currently displays a page
 supplied by a response with this parameter, the client will
 automatically change the current location to the location specified
 in this parameter using a new GET request, as if it has received a
 303 response. Any operations related to logout (e.g., erasing
 memories of username, authentication credential, and all related one-
 time credentials such as nonce or keys) SHOULD occur before
 processing a page transition.

 When the user requests the client for the termination of an
 authentication period, if the client supports this parameter but the
 server response does not contain this parameter, the client’s
 RECOMMENDED behavior is as follows: if the request corresponding to
 the current content was the GET method, reload the page without the
 authentication credential. Otherwise, keep the current content as-is
 and simply forget the authentication status. The client SHOULD NOT
 replay a non-idempotent request without the user’s explicit approval.

 Web applications are encouraged to send this parameter with an
 appropriate value for any responses (except those with redirection
 (3XX) statuses) for non-GET requests.

 See Section 5 for some examples for possible deployment of this
 parameter.

Oiwa, et al. Experimental [Page 16]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

4.6. Logout-Timeout Parameter

 Example:
 Authentication-Control: Basic realm="entrance", logout-timeout=300

 The parameter "logout-timeout", when contained in a successfully
 authenticated response, means that any authentication credentials and
 state related to the current protection space are to be discarded if
 the time specified in this header (in seconds) has passed since the
 time this header was received. The value MUST be an integer. As a
 special case, the value 0 means that the server is logging the client
 out immediately from the current authentication space and that the
 client is now returned to the unauthenticated state. This does not,
 however, mean that the long-term memories for the passwords and
 passwords-related details (such as password reminders and auto fill-
 ins) should be removed. If a new timeout value is received for the
 same authentication space, it cancels the previous timeout and sets a
 new timeout.

4.7. Username Parameter

 Example:
 Authentication-Control: Basic realm="configuration", username="admin"

 The parameter "username" tells us that the only "username" to be
 accepted by the server is the value given in this parameter.

 This parameter is particularly useful, for example, for routers and
 other network appliances with a Web configuration interface. Many of
 those use an HTTP Basic authentication with one predefined username,
 with many varieties such as "admin", "root", "user", etc. In the
 current situation, users have almost no hint about the valid username
 upon the authentication request. Some show the valid value in a
 "realm" string, some in the 401-status response page, shown _after_
 the user gave up the authentication and canceled the authentication
 dialog. If this parameter is given, the client Web browser can auto-
 fill the username field in the authentication dialog before the users
 attempt to authenticate themselves.

 This parameter MAY be used with authentication-initiating responses
 or negatively authenticated responses requiring another attempt at
 authentication. The clients MUST ignore this parameter when a
 response is either successfully authenticated or intermediately
 authenticated.

Oiwa, et al. Experimental [Page 17]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 If the authentication scheme to be used has a syntax limitation on
 the allowed usernames (e.g., Basic and Digest do not allow colons in
 usernames); the specified value MUST follow that limitation. Clients
 SHOULD ignore any values that do not conform to such limitations.

 Also, if the used authentication scheme requires a specific style of
 text preparation for the username (e.g., PRECIS [RFC7564] string
 preparation or Unicode normalization), the server SHOULD send the
 values satisfying such requirements (so that clients can use the
 given username as is).

 Clients MAY still send any authentication requests with other
 usernames, possibly in vain. Clients are not required (also not
 forbidden) to give users opportunities for supplying a username
 different from the server-specified one. Servers are also not
 strictly required to reject usernames other than specified, but doing
 so will usually result in bad user experiences and may confuse users
 and clients.

 Although this parameter is useful in a specific class of use cases,
 using it in a general use case has many security implications and
 possible pitfalls. Please consult Section 8.1 before deciding to use
 this parameter.

5. Usage Examples

 This section shows some examples for applying this extension to
 typical websites that use forms and cookies for managing
 authentication and authorization. The content of this section is not
 normative and is for illustrative purposes only.

 In these examples, we assume that there are two kinds of clients (Web
 browsers). One kind of these implements all features described in
 the previous sections. We also assume that browsers will have a user
 interface that allows users to deactivate (log out from) current
 authentication sessions. The other kind are the "existing"
 implementations that do not support any of these features.

 When not explicitly specified, all settings described below are to be
 applied with Authentication-Control headers, and these can be sent to
 clients regardless of the authentication status (these will be
 silently ignored whenever not effective).

Oiwa, et al. Experimental [Page 18]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

5.1. Example 1: A Portal Site

 This subsection provides an example application for a site whose
 structure is somewhat similar to conventional portal sites. In
 particular, most Web pages are available for guest (unauthenticated)
 users, and, if authentication is performed, the content of these
 pages is customized for each user. We assume that the site has the
 following kinds of pages currently:

 o Content pages

 o Pages/mechanism for performing authentication:

 * There is one page that asks for a username and a password using
 a HTML POST form.

 * After the authentication attempt, the user will be redirected
 to either the page that was previously displayed before the
 authentication or some specific page.

 o A de-authentication (logout) page.

5.1.1. Case 1: A Simple Application

 When such a site does not require specific actions upon login and
 logout, the following simple settings can be used:

 o Set up an optional authentication to all pages available to
 guests. Set up an Authentication-Control header with the "auth-
 style=non-modal" setting.

 o If there are pages only available to authenticated users, set up a
 mandatory authentication with the "auth-style=non-modal" setting.

 o No specific pages for authentication are needed. It will be
 performed automatically, directed by the above setting.

 o A de-authentication page is also not needed. If the site has one,
 put "logout-timeout=0" there.

 o For all pages for POST requests, it is advisable to have a
 "location-when-logout=<some page>".

Oiwa, et al. Experimental [Page 19]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

5.1.2. Case 2: Specific Action Required on Logout

 If the site requires specific actions upon logout, the following
 settings can be used:

 o All settings in Case 1 are applied.

 o For all pages, set up the Authentication-Control header "location-
 when-logout=<de-authentication page>".

 o In the de-authentication page, no specific setup is needed. If
 there are any direct links to the de-authentication page, put
 "logout-timeout=0".

5.1.3. Case 3: Specific Page Displayed before Login

 If the site needs to display a specific page before login actions
 (some announcements, user notices, or even advertisements), the
 following settings can be applied:

 o Set up an optional authentication to all pages available to
 guests. Set up an Authentication-Control header with
 "no-auth=true". Put a link to a specific login page in contents.

 o If there are pages only available to authenticated users, set up a
 mandatory authentication with the
 "location-when-unauthenticated=<the login page>".

 o For the specific login page, set up a mandatory authentication.

 o For all pages for POST requests, it is advisable to have
 "location-when-logout=<some page>", too.

 o De-authentication pages are not needed. If the site has one, put
 "logout-timeout=0".

5.2. Example 2: Authenticated User-Only Sites

 If almost all pages in the target site require authentication (e.g.,
 an Internet banking site), or if there is no need to support both
 unauthenticated and authenticated users on the same resource, the
 settings will become simpler. The following are examples for such a
 site:

 o Set up a mandatory authentication to all pages available to
 authenticated users. Set up an Authentication-Control header with
 the "auth-style=non-modal" setting.

Oiwa, et al. Experimental [Page 20]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 o Set up a handler for the 401-status that requests users to
 authenticate.

 o For all pages for POST requests, it is advisable to have a
 "location-when-logout=<some page>", too.

 o De-authentication pages are not needed. If the site will have
 one, put "logout-timeout=0" there.

5.3. When to Use Cookies

 In current websites using form-based authentication, Cookies
 [RFC6265] are used for managing both authorization and application
 sessions. Using the extensions in this document, the former features
 will be provided by using (extended) HTTP authentication/
 authorization mechanisms. In some cases, there will be ambiguity on
 whether some functions are for authorization management or for
 session management. The following hints will be helpful for deciding
 which features to use.

 o If there is a need to serve multiple sessions for a single user
 using multiple browsers concurrently, use a Cookie for
 distinguishing between sessions for the same user. (C.f. if there
 is a need to distinguish between sessions in the same browser,
 HTML5 Web Storage [W3C.REC-webstorage-20130730] features can be
 used instead of Cookies.)

 o If a website is currently deploying a session time-out feature,
 consider who benefits from the feature. In most cases, the main
 requirement for such a feature is to protect users from having
 their consoles and browsers hijacked (i.e., benefits are on the
 users’ side). In such cases, the time-out features provided in
 this extension can be used. On the other hand, the requirement is
 to protect the server’s privilege (e.g., when some regulations
 require limiting the time difference between a user’s two-factor
 authentication and financial transaction commitment; the
 requirement is strictly on the servers’ side), that should be
 managed on the server side using Cookies or other session-
 management mechanisms.

Oiwa, et al. Experimental [Page 21]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

5.4. Parallel Deployment with Form/Cookie Authentication

 In some transition periods, sites may need to support both HTTP-layer
 and form-based authentication. The following example shows one way
 to achieve that.

 o If Cookies are used even for HTTP-authenticated users, each
 session determined by Cookies SHOULD identify which authentication
 has been used for the session.

 o First, set up any of the above settings for enabling HTTP-layer
 authentication.

 o For unauthenticated users, add the following things to the Web
 pages, unless the client supports this extension and HTTP-level
 authentication:

 * For non-mandatory authenticated pages, add a link to the form-
 based authenticated pages.

 * For mandatory authenticated pages, either put a link to form-
 based authenticated pages or put an HTML-level redirection
 (using <META http-equiv="refresh" ...> element) to such pages.

 o In the form-based authenticated pages, if users are not
 authenticated, the page can provide a redirection for HTTP-level
 authentication by the "location-when-unauthenticated" setting.

 o Users are identified for authorization and content customization
 by the following logic:

 * First, check the result of the HTTP-level authentication. If
 there is a Cookie session tied to a specific user, both should
 match.

 * If the user is not authenticated on the HTTP-level, use the
 conventional form-based method to determine the user.

 * If there is a Cookie tied to HTTP authentication but there is
 no corresponding HTTP authentication result, that session will
 be discarded (because it means that authentication is
 deactivated by the corresponding user).

Oiwa, et al. Experimental [Page 22]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

6. Methods to Extend This Protocol

 If a private extension to this protocol is implemented, it MUST use
 the extension-param to avoid conflicts with this protocol and any
 other extensions. (Standardized extensions or extensions that are
 being standardized MAY use either bare-tokens or extension-tokens.)

 When bare-tokens are used in this protocol, these MUST be allocated
 by IANA. Any tokens used for non-private, non-experimental
 parameters are RECOMMENDED to be registered with IANA, regardless of
 the kind of tokens used.

 Extension-tokens MAY be freely used for any non-standard, private,
 and/or experimental uses. An extension-token MUST use the format
 "-<bare-token>.<domain-name>", where <domain-name> is a validly
 registered (sub-)domain name on the Internet owned by the party that
 defines the extensions. Any unknown parameter name is to be ignored
 regardless of whether it is an extension-token or a bare-token.

7. IANA Considerations

 This document defines two new entries for the "Permanent Message
 Header Field Names" registry.

 +-------------+---------------------------+-------------------------+
 | | Entry 1: | Entry 2: |
 +-------------+---------------------------+-------------------------+
Header	Optional-WWW-Authenticate	Authentication-Control
Field Name		
Protocol	http	http
Status	experimental	experimental
Change	IETF	IETF
Control		
Spec.	Section 3 of this	Section 4 of this
Document	document	document
 +-------------+---------------------------+-------------------------+

 This document also establishes the "HTTP Authentication Control
 Parameters" registry. The registry manages case-insensitive ASCII
 strings. The string MUST follow the extensive-token syntax defined
 in Section 2.2.

 To acquire registered tokens, a specification for the use of such
 tokens MUST be available as a publicly accessible document (see
 "Specification Required" in [RFC5226]).

Oiwa, et al. Experimental [Page 23]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Registrations for authentication control parameters are required to
 include a description of the control extension. New registrations
 are advised to provide the following information:

 o Token: A token used in HTTP headers for identifying the algorithm.

 o Specification: A reference for the specification defining the
 algorithm.

 The initial content of this registry is as follows:

 +-------------------------------+------------------------------+
 | Token | Specification |
 +-------------------------------+------------------------------+
 | auth-style | Section 4.2 of this document |
 | location-when-unauthenticated | Section 4.3 of this document |
 | no-auth | Section 4.4 of this document |
 | location-when-logout | Section 4.5 of this document |
 | logout-timeout | Section 4.6 of this document |
 | username | Section 4.7 of this document |
 +-------------------------------+------------------------------+

8. Security Considerations

 The purpose of the logout timeout feature in the Authentication-
 control header is to protect users of clients from impersonation
 caused by an attacker having access to the same console. The server
 application implementers SHOULD be aware that the directive may
 always be ignored by either malicious clients or clients not
 supporting this extension. If the purpose of introducing a timeout
 for an authentication period is to protect server-side resources,
 this protection MUST be implemented by other means such as HTTP
 Cookies [RFC6265].

 All parameters in the Authentication-Control header SHOULD NOT be
 used for any security-enforcement purposes. Server-side applications
 MUST NOT assume that the header will be honored by clients and users.

8.1. Security Implication of the Username Parameter

 The "username" parameter sometimes reveals sensitive information
 about the HTTP server and its configurations that are useful for
 security attacks. In general, common security practice suggests that
 any kind of information on the existence/non-existence of a specific
 username shall not be disclosed before successful authentication.
 Obviously, the "username" parameter contradicts this practice.

Oiwa, et al. Experimental [Page 24]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Given this background, the use of the "username" parameter SHOULD be
 strictly limited to cases where all of the following conditions are
 met:

 (1) the valid username is pre-configured and not modifiable (such as
 root, admin, or similar ones);

 (2) the valid username for such an appliance is publicly known (for
 example, written in a manual document); and

 (3) either the valid username for the server is easily guessable by
 other means (for example, from the model number shown in an
 unauthenticated page), or the server is accessible only from
 limited networks.

 Most importantly, the "username" parameter SHOULD NOT be used in any
 case when the valid usernames can be changed/configured by users or
 administrators.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5987] Reschke, J., "Character Set and Language Encoding for
 Hypertext Transfer Protocol (HTTP) Header Field
 Parameters", RFC 5987, DOI 10.17487/RFC5987, August 2010,
 <http://www.rfc-editor.org/info/rfc5987>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Oiwa, et al. Experimental [Page 25]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

9.2. Informative References

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <http://www.rfc-editor.org/info/rfc7564>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <http://www.rfc-editor.org/info/rfc7615>.

 [W3C.REC-webstorage-20130730]
 Hickson, I., "Web Storage", World Wide Web Consortium
 Recommendation REC-webstorage-20130730, July 2013,
 <http://www.w3.org/TR/2013/REC-webstorage-20130730>.

Oiwa, et al. Experimental [Page 26]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

Appendix A. (Informative) Applicability of Features for Each Message

 This section provides a cross-reference table showing the
 applicability of the features provided in this specification to each
 kind of response described in Section 2.1. The table provided in
 this section is for informative purposes only.

 +-------------------+-------+----------+-----------+------+
 | | init. | success. | intermed. | neg. |
 +-------------------+-------+----------+-----------+------+
 | Optional auth. | O | n | N | N |
 | auth-style | O | - | - | O |
 | loc.-when-unauth. | O | I | I | i |
 | no-auth | O | I | I | i |
 | loc.-when-logout | - | O | - | - |
 | logout-timeout | - | O | - | - |
 | username | O | - | - | O |
 +-------------------+-------+----------+-----------+------+

 Legends:
 O = MAY contain; n = SHOULD NOT contain; N = MUST NOT contain
 i = SHOULD be ignored; I = MUST be ignored;
 - = meaningless (to be ignored)

Authors’ Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 Japan

 Email: y.oiwa@aist.go.jp

 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 Japan

 Email: h-watanabe@aist.go.jp

Oiwa, et al. Experimental [Page 27]

RFC 8053 HTTP Auth. Ext. for Interactive Clients January 2017

 Hiromitsu Takagi
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 Japan

 Email: takagi.hiromitsu@aist.go.jp

 Kaoru Maeda
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 Japan

 Email: maeda@lepidum.co.jp

 Tatsuya Hayashi
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 Japan

 Email: hayashi@lepidum.co.jp

 Yuichi Ioku
 Individual Contributor

 Email: mutual-work@ioku.org

Oiwa, et al. Experimental [Page 28]

