
Internet Engineering Task Force (IETF) A. Bierman
Request for Comments: 8072 YumaWorks
Category: Standards Track M. Bjorklund
ISSN: 2070-1721 Tail-f Systems
 K. Watsen
 Juniper Networks
 February 2017

 YANG Patch Media Type

Abstract

 This document describes a method for applying patches to
 configuration datastores using data defined with the YANG data
 modeling language.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8072.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bierman, et al. Standards Track [Page 1]

RFC 8072 YANG Patch February 2017

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..3
 1.1.1. NETCONF ...3
 1.1.2. HTTP ..4
 1.1.3. YANG ..4
 1.1.4. RESTCONF ..4
 1.1.5. YANG Patch ..5
 1.1.6. Examples ..5
 1.1.7. Tree Diagram Notations6
 2. YANG Patch ..6
 2.1. Target Resource ..7
 2.2. yang-patch Request ...8
 2.3. yang-patch-status Response9
 2.4. Target Data Node ..10
 2.5. Edit Operations ...11
 2.6. Successful Edit Response Handling11
 2.7. Error Handling ..12
 2.8. ":yang-patch" RESTCONF Capability12
 3. YANG Module ..13
 4. IANA Considerations ..22
 4.1. Registrations for New URI and YANG Module22
 4.2. Media Types ...23
 4.2.1. Media Type "application/yang-patch+xml"23
 4.2.2. Media Type "application/yang-patch+json"24
 4.3. RESTCONF Capability URNs25
 5. Security Considerations ..25
 6. References ...26
 6.1. Normative References26
 6.2. Informative References27
 Appendix A. Example YANG Module28
 A.1. YANG Patch Examples ..29
 A.1.1. Add Resources: Error29
 A.1.2. Add Resources: Success33
 A.1.3. Insert List Entry35
 A.1.4. Move List Entry ..36
 A.1.5. Edit Datastore Resource37
 Acknowledgements ..39
 Authors’ Addresses ..39

Bierman, et al. Standards Track [Page 2]

RFC 8072 YANG Patch February 2017

1. Introduction

 There is a need for standard mechanisms to patch datastores defined
 in [RFC6241], which contain conceptual data that conforms to schema
 specified with YANG [RFC7950]. An "ordered ’edit’ list" approach is
 needed to provide RESTCONF client developers with more precise
 RESTCONF client control of the edit procedure than the "plain patch"
 mechanism found in [RFC8040].

 This document defines a media type for a YANG-based editing mechanism
 that can be used with the HTTP PATCH method [RFC5789]. YANG Patch is
 designed to support the RESTCONF protocol, defined in [RFC8040].
 This document only specifies the use of the YANG Patch media type
 with the RESTCONF protocol.

 It may be possible to use YANG Patch with other protocols besides
 RESTCONF. This is outside the scope of this document. For any
 protocol that supports the YANG Patch media type, if the entire patch
 document cannot be successfully applied, then the server MUST NOT
 apply any of the changes. It may be possible to use YANG Patch with
 datastore types other than a configuration datastore. This is
 outside the scope of this document.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241]:

 o configuration data

 o datastore

 o configuration datastore

 o protocol operation

 o running configuration datastore

 o state data

 o user

Bierman, et al. Standards Track [Page 3]

RFC 8072 YANG Patch February 2017

1.1.2. HTTP

 The following terms are defined in [RFC7230]:

 o header field

 o message-body

 o query

 o request URI

 The following terms are defined in [RFC7231]:

 o method

 o request

 o resource

1.1.3. YANG

 The following terms are defined in [RFC7950]:

 o container

 o data node

 o leaf

 o leaf-list

 o list

1.1.4. RESTCONF

 The following terms are defined in [RFC8040]:

 o application/yang-data+xml

 o application/yang-data+json

 o data resource

 o datastore resource

 o patch

Bierman, et al. Standards Track [Page 4]

RFC 8072 YANG Patch February 2017

 o RESTCONF capability

 o target resource

 o YANG data template

1.1.5. YANG Patch

 The following terms are used within this document:

 o RESTCONF client: a client that implements the RESTCONF protocol.

 o RESTCONF server: a server that implements the RESTCONF protocol.

 o YANG Patch: a conceptual edit request using the "yang-patch" YANG
 Patch template, defined in Section 3. In HTTP, refers to a PATCH
 method where a representation uses either the media type
 "application/yang-patch+xml" or "application/yang-patch+json".

 o YANG Patch Status: a conceptual edit status response using the
 YANG "yang-patch-status" YANG data template, defined in Section 3.
 In HTTP, refers to a response message for a PATCH method, where it
 has a representation with either the media type
 "application/yang-data+xml" or "application/yang-data+json".

 o YANG Patch template: similar to a YANG data template, except that
 it has a representation with the media type
 "application/yang-patch+xml" or "application/yang-patch+json".

1.1.6. Examples

 Some protocol message lines within examples throughout this document
 are split into multiple lines for display purposes only. When a line
 ends with a backslash ("\") as the last character, the line is
 wrapped for display purposes. It is to be considered to be joined to
 the next line by deleting the backslash, the following line break,
 and the leading whitespace of the next line.

Bierman, et al. Standards Track [Page 5]

RFC 8072 YANG Patch February 2017

1.1.7. Tree Diagram Notations

 A simplified graphical representation of the data model is used in
 this document. The meanings of the symbols in these diagrams are as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 data (read-write), "ro" means state data (read-only), and "x"
 means operation resource (executable).

 o Symbols after data node names: "?" means an optional node, and "*"
 denotes a "list" and "leaf-list".

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. YANG Patch

 A "YANG Patch" is an ordered list of edits that are applied to the
 target datastore by the RESTCONF server. The specific fields are
 defined in the YANG module in Section 3.

 The YANG Patch operation is invoked by the RESTCONF client by
 sending a PATCH method request with a representation using either
 the media type "application/yang-patch+xml" or
 "application/yang-patch+json". This message-body representing the
 YANG Patch input parameters MUST be present.

 YANG Patch has some features that are not possible with the
 "plain-patch" mechanism defined in RESTCONF [RFC8040]:

 o YANG Patch allows multiple sub-resources to be edited within the
 same PATCH method.

 o YANG Patch allows a more precise edit operation than the
 "plain patch" mechanism found in [RFC8040]. There are seven
 operations supported ("create", "delete", "insert", "merge",
 "move", "replace", and "remove").

 o YANG Patch uses an "edit" list with an explicit processing order.
 The edits are processed in client-specified order, and error
 processing can be precise even when multiple errors occur in the
 same YANG Patch request.

Bierman, et al. Standards Track [Page 6]

RFC 8072 YANG Patch February 2017

 The YANG Patch "patch-id" may be useful for debugging and SHOULD be
 present in any audit logging records generated by the RESTCONF server
 for a patch.

 The RESTCONF server MUST return the "Accept-Patch" header field in an
 OPTIONS response, as specified in [RFC5789], which includes the
 media type for YANG Patch. This is needed by a client to determine
 the message-encoding formats supported by the server (e.g., XML,
 JSON, or both). The following is an example of an "Accept-Patch"
 header:

 Accept-Patch: application/yang-patch+xml,application/yang-patch+json

 Note that YANG Patch can only edit data resources. The PATCH method
 cannot be used to replace the datastore resource. Although the
 "ietf-yang-patch" YANG module is written using YANG version 1.1
 [RFC7950], an implementation of YANG Patch can be used with content
 defined in YANG version 1 [RFC6020] as well.

 A YANG Patch can be encoded in XML format according to
 [W3C.REC-xml-20081126]. It can also be encoded in JSON according to
 "JSON Encoding of Data Modeled with YANG" [RFC7951]. If any metadata
 needs to be sent in a JSON message, it is encoded according to
 "Defining and Using Metadata with YANG" [RFC7952].

2.1. Target Resource

 The YANG Patch operation uses the RESTCONF target resource URI to
 identify the resource that will be patched. This can be the
 datastore resource itself, i.e., "{+restconf}/data", to edit
 top-level configuration data resources, or it can be a configuration
 data resource within the datastore resource, e.g.,
 "{+restconf}/data/ietf-interfaces:interfaces", to edit sub-resources
 within a top-level configuration data resource.

 The target resource MUST identify exactly one resource instance. If
 more than one resource instance is identified, then the request
 MUST NOT be processed and a "400 Bad Request" error response MUST be
 sent by the server. If the target resource does not identify any
 existing resource instance, then the request MUST NOT be processed
 and a "404 Not Found" error response MUST be sent by the server.

 Each edit with a YANG Patch identifies a target data node for the
 associated edit. This is described in Section 2.4.

Bierman, et al. Standards Track [Page 7]

RFC 8072 YANG Patch February 2017

2.2. yang-patch Request

 A YANG Patch is identified by a unique "patch-id", and it may have an
 optional comment. A patch is an ordered collection of edits. Each
 edit is identified by an "edit-id", and it has an edit operation
 ("create", "delete", "insert", "merge", "move", "replace", or
 "remove") that is applied to the target resource. Each edit can be
 applied to a sub-resource "target" within the target resource. If
 the operation is "insert" or "move", then the "where" parameter
 indicates how the node is inserted or moved. For values "before" and
 "after", the "point" parameter specifies the data node insertion
 point.

 The "merge", "replace", "create", "delete", and "remove" edit
 operations have exactly the same meanings as those defined for the
 "operation" attribute described in Section 7.2 of [RFC6241].

 Each edit within a YANG Patch MUST identify exactly one data resource
 instance. If an edit represents more than one resource instance,
 then the request MUST NOT be processed and a "400 Bad Request" error
 response MUST be sent by the server. If the edit does not identify
 any existing resource instance and the operation for the edit is not
 "create", then the request MUST NOT be processed and a "404 Not
 Found" error response MUST be sent by the server. A
 "yang-patch-status" response MUST be sent by the server identifying
 the edit or edits that are not valid.

 YANG Patch does not provide any access to specific datastores. How a
 server processes an edit if it is co-located with a Network
 Configuration Protocol (NETCONF) server that does provide access to
 individual datastores is left up to the implementation. A complete
 datastore cannot be replaced in the same manner as that provided by
 the <copy-config> operation defined in Section 7.3 of [RFC6241].
 Only the specified nodes in a YANG Patch are affected.

 A message-body representing the YANG Patch is sent by the RESTCONF
 client to specify the edit operation request. When used with the
 HTTP PATCH method, this data is identified by the YANG Patch
 media type.

Bierman, et al. Standards Track [Page 8]

RFC 8072 YANG Patch February 2017

 YANG tree diagram for "yang-patch" container:

 +---- yang-patch
 +---- patch-id string
 +---- comment? string
 +---- edit* [edit-id]
 +---- edit-id string
 +---- operation enumeration
 +---- target target-resource-offset
 +---- point? target-resource-offset
 +---- where? enumeration
 +---- value?

2.3. yang-patch-status Response

 A message-body representing the YANG Patch Status is returned to the
 RESTCONF client to report the detailed status of the edit operation.
 When used with the HTTP PATCH method, this data is identified by the
 YANG Patch Status media type; the syntax specification is defined in
 Section 3.

Bierman, et al. Standards Track [Page 9]

RFC 8072 YANG Patch February 2017

 YANG tree diagram for "yang-patch-status" container:

 +---- yang-patch-status
 +---- patch-id string
 +---- (global-status)?
 | +--:(global-errors)
 | | +---- errors
 | | +---- error*
 | | +---- error-type enumeration
 | | +---- error-tag string
 | | +---- error-app-tag? string
 | | +---- error-path? instance-identifier
 | | +---- error-message? string
 | | +---- error-info?
 | +--:(ok)
 | +---- ok? empty
 +---- edit-status
 +---- edit* [edit-id]
 +---- edit-id string
 +---- (edit-status-choice)?
 +--:(ok)
 | +---- ok? empty
 +--:(errors)
 +---- errors
 +---- error*
 +---- error-type enumeration
 +---- error-tag string
 +---- error-app-tag? string
 +---- error-path? instance-identifier
 +---- error-message? string
 +---- error-info?

2.4. Target Data Node

 The target data node for each edit operation is determined by the
 value of the target resource in the request and the "target" leaf
 within each "edit" entry.

 If the target resource specified in the request URI identifies a
 datastore resource, then the path string in the "target" leaf is
 treated as an absolute path expression identifying the target data
 node for the corresponding edit. The first node specified in the
 "target" leaf is a top-level data node defined within a YANG module.
 The "target" leaf MUST NOT contain a single forward slash ("/"),
 since this would identify the datastore resource, not a data
 resource.

Bierman, et al. Standards Track [Page 10]

RFC 8072 YANG Patch February 2017

 If the target resource specified in the request URI identifies a
 configuration data resource, then the path string in the "target"
 leaf is treated as a relative path expression. The first node
 specified in the "target" leaf is a child configuration data node of
 the data node associated with the target resource. If the "target"
 leaf contains a single forward slash ("/"), then the target data node
 is the target resource data node.

2.5. Edit Operations

 Each YANG Patch edit specifies one edit operation on the target data
 node. The set of operations is aligned with the NETCONF edit
 operations but also includes some new operations.

 +-----------+---+
 | Operation | Description |
 +-----------+---+
create	create a new data resource if it does not already
	exist; if it already exists, return an error
delete	delete a data resource if it already exists; if it
	does not exist, return an error
insert	insert a new user-ordered data resource
merge	merge the edit value with the target data resource;
	create if it does not already exist
move	reorder the target data resource
replace	replace the target data resource with the edit value
remove	remove a data resource if it already exists
 +-----------+---+

 YANG Patch Edit Operations

2.6. Successful Edit Response Handling

 If a YANG Patch is completed without errors, the RESTCONF server MUST
 return a "yang-patch-status" message with a "global-status" choice
 set to "ok".

 Refer to Appendix A.1.2 for an example of a successful YANG Patch
 response.

Bierman, et al. Standards Track [Page 11]

RFC 8072 YANG Patch February 2017

2.7. Error Handling

 If a well-formed, schema-valid YANG Patch message is received, then
 the RESTCONF server will process the supplied edits in ascending
 order. The following error modes apply to the processing of this
 "edit" list:

 If a YANG Patch is completed with errors, the RESTCONF server SHOULD
 return a "yang-patch-status" message. It is possible (e.g., within a
 distributed implementation) that an invalid request will be rejected
 before the YANG Patch edits are processed. In this case, the server
 MUST send the appropriate HTTP error response instead.

 Refer to Appendix A.1.1 for an example of an error YANG Patch
 response.

2.8. ":yang-patch" RESTCONF Capability

 A URI is defined to identify the YANG Patch extension to the base
 RESTCONF protocol. If the RESTCONF server supports the YANG Patch
 media type, then the ":yang-patch" RESTCONF capability defined in
 Section 4.3 MUST be present in the "capability" leaf-list in the
 "ietf-restconf-monitoring" module defined in [RFC8040].

Bierman, et al. Standards Track [Page 12]

RFC 8072 YANG Patch February 2017

3. YANG Module

 The "ietf-yang-patch" module defines conceptual definitions with the
 "yang-data" extension statements, which are not meant to be
 implemented as datastore contents by a RESTCONF server.

 The "ietf-restconf" module from [RFC8040] is used by this module for
 the "yang-data" extension definition.

 <CODE BEGINS>

 file "ietf-yang-patch@2017-02-22.yang"

 module ietf-yang-patch {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-patch";
 prefix "ypatch";

 import ietf-restconf { prefix rc; }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains conceptual YANG specifications
 for the YANG Patch and YANG Patch Status data structures.

 Note that the YANG definitions within this module do not
 represent configuration data of any kind.
 The YANG grouping statements provide a normative syntax
 for XML and JSON message-encoding purposes.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Bierman, et al. Standards Track [Page 13]

RFC 8072 YANG Patch February 2017

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8072; see
 the RFC itself for full legal notices.";

 revision 2017-02-22 {
 description
 "Initial revision.";
 reference
 "RFC 8072: YANG Patch Media Type.";
 }

 typedef target-resource-offset {
 type string;
 description
 "Contains a data resource identifier string representing
 a sub-resource within the target resource.
 The document root for this expression is the
 target resource that is specified in the
 protocol operation (e.g., the URI for the PATCH request).

 This string is encoded according to the same rules as those
 for a data resource identifier in a RESTCONF request URI.";
 reference
 "RFC 8040, Section 3.5.3.";
 }

 rc:yang-data "yang-patch" {
 uses yang-patch;
 }

 rc:yang-data "yang-patch-status" {
 uses yang-patch-status;
 }

Bierman, et al. Standards Track [Page 14]

RFC 8072 YANG Patch February 2017

 grouping yang-patch {

 description
 "A grouping that contains a YANG container representing the
 syntax and semantics of a YANG Patch edit request message.";

 container yang-patch {
 description
 "Represents a conceptual sequence of datastore edits,
 called a patch. Each patch is given a client-assigned
 patch identifier. Each edit MUST be applied
 in ascending order, and all edits MUST be applied.
 If any errors occur, then the target datastore MUST NOT
 be changed by the YANG Patch operation.

 It is possible for a datastore constraint violation to occur
 due to any node in the datastore, including nodes not
 included in the ’edit’ list. Any validation errors MUST
 be reported in the reply message.";

 reference
 "RFC 7950, Section 8.3.";

 leaf patch-id {
 type string;
 mandatory true;
 description
 "An arbitrary string provided by the client to identify
 the entire patch. Error messages returned by the server
 that pertain to this patch will be identified by this
 ’patch-id’ value. A client SHOULD attempt to generate
 unique ’patch-id’ values to distinguish between
 transactions from multiple clients in any audit logs
 maintained by the server.";
 }

 leaf comment {
 type string;
 description
 "An arbitrary string provided by the client to describe
 the entire patch. This value SHOULD be present in any
 audit logging records generated by the server for the
 patch.";
 }

Bierman, et al. Standards Track [Page 15]

RFC 8072 YANG Patch February 2017

 list edit {
 key edit-id;
 ordered-by user;

 description
 "Represents one edit within the YANG Patch request message.
 The ’edit’ list is applied in the following manner:

 - The first edit is conceptually applied to a copy
 of the existing target datastore, e.g., the
 running configuration datastore.
 - Each ascending edit is conceptually applied to
 the result of the previous edit(s).
 - After all edits have been successfully processed,
 the result is validated according to YANG constraints.
 - If successful, the server will attempt to apply
 the result to the target datastore.";

 leaf edit-id {
 type string;
 description
 "Arbitrary string index for the edit.
 Error messages returned by the server that pertain
 to a specific edit will be identified by this value.";
 }

 leaf operation {
 type enumeration {
 enum create {
 description
 "The target data node is created using the supplied
 value, only if it does not already exist. The
 ’target’ leaf identifies the data node to be
 created, not the parent data node.";
 }
 enum delete {
 description
 "Delete the target node, only if the data resource
 currently exists; otherwise, return an error.";
 }

Bierman, et al. Standards Track [Page 16]

RFC 8072 YANG Patch February 2017

 enum insert {
 description
 "Insert the supplied value into a user-ordered
 list or leaf-list entry. The target node must
 represent a new data resource. If the ’where’
 parameter is set to ’before’ or ’after’, then
 the ’point’ parameter identifies the insertion
 point for the target node.";
 }
 enum merge {
 description
 "The supplied value is merged with the target data
 node.";
 }
 enum move {
 description
 "Move the target node. Reorder a user-ordered
 list or leaf-list. The target node must represent
 an existing data resource. If the ’where’ parameter
 is set to ’before’ or ’after’, then the ’point’
 parameter identifies the insertion point to move
 the target node.";
 }
 enum replace {
 description
 "The supplied value is used to replace the target
 data node.";
 }
 enum remove {
 description
 "Delete the target node if it currently exists.";
 }
 }
 mandatory true;
 description
 "The datastore operation requested for the associated
 ’edit’ entry.";
 }

Bierman, et al. Standards Track [Page 17]

RFC 8072 YANG Patch February 2017

 leaf target {
 type target-resource-offset;
 mandatory true;
 description
 "Identifies the target data node for the edit
 operation. If the target has the value ’/’, then
 the target data node is the target resource.
 The target node MUST identify a data resource,
 not the datastore resource.";
 }

 leaf point {
 when "(../operation = ’insert’ or ../operation = ’move’)"
 + "and (../where = ’before’ or ../where = ’after’)" {
 description
 "This leaf only applies for ’insert’ or ’move’
 operations, before or after an existing entry.";
 }
 type target-resource-offset;
 description
 "The absolute URL path for the data node that is being
 used as the insertion point or move point for the
 target of this ’edit’ entry.";
 }

 leaf where {
 when "../operation = ’insert’ or ../operation = ’move’" {
 description
 "This leaf only applies for ’insert’ or ’move’
 operations.";
 }
 type enumeration {
 enum before {
 description
 "Insert or move a data node before the data resource
 identified by the ’point’ parameter.";
 }
 enum after {
 description
 "Insert or move a data node after the data resource
 identified by the ’point’ parameter.";
 }

Bierman, et al. Standards Track [Page 18]

RFC 8072 YANG Patch February 2017

 enum first {
 description
 "Insert or move a data node so it becomes ordered
 as the first entry.";
 }
 enum last {
 description
 "Insert or move a data node so it becomes ordered
 as the last entry.";
 }
 }
 default last;
 description
 "Identifies where a data resource will be inserted
 or moved. YANG only allows these operations for
 list and leaf-list data nodes that are
 ’ordered-by user’.";
 }

 anydata value {
 when "../operation = ’create’ "
 + "or ../operation = ’merge’ "
 + "or ../operation = ’replace’ "
 + "or ../operation = ’insert’" {
 description
 "The anydata ’value’ is only used for ’create’,
 ’merge’, ’replace’, and ’insert’ operations.";
 }
 description
 "Value used for this edit operation. The anydata ’value’
 contains the target resource associated with the
 ’target’ leaf.

 For example, suppose the target node is a YANG container
 named foo:

 container foo {
 leaf a { type string; }
 leaf b { type int32; }
 }

Bierman, et al. Standards Track [Page 19]

RFC 8072 YANG Patch February 2017

 The ’value’ node contains one instance of foo:

 <value>
 <foo xmlns=’example-foo-namespace’>
 <a>some value
 42
 </foo>
 </value>
 ";
 }
 }
 }

 } // grouping yang-patch

 grouping yang-patch-status {

 description
 "A grouping that contains a YANG container representing the
 syntax and semantics of a YANG Patch Status response
 message.";

 container yang-patch-status {
 description
 "A container representing the response message sent by the
 server after a YANG Patch edit request message has been
 processed.";

 leaf patch-id {
 type string;
 mandatory true;
 description
 "The ’patch-id’ value used in the request.";
 }

 choice global-status {
 description
 "Report global errors or complete success.
 If there is no case selected, then errors
 are reported in the ’edit-status’ container.";

Bierman, et al. Standards Track [Page 20]

RFC 8072 YANG Patch February 2017

 case global-errors {
 uses rc:errors;
 description
 "This container will be present if global errors that
 are unrelated to a specific edit occurred.";
 }
 leaf ok {
 type empty;
 description
 "This leaf will be present if the request succeeded
 and there are no errors reported in the ’edit-status’
 container.";
 }
 }

 container edit-status {
 description
 "This container will be present if there are
 edit-specific status responses to report.
 If all edits succeeded and the ’global-status’
 returned is ’ok’, then a server MAY omit this
 container.";

 list edit {
 key edit-id;

 description
 "Represents a list of status responses,
 corresponding to edits in the YANG Patch
 request message. If an ’edit’ entry was
 skipped or not reached by the server,
 then this list will not contain a corresponding
 entry for that edit.";

 leaf edit-id {
 type string;
 description
 "Response status is for the ’edit’ list entry
 with this ’edit-id’ value.";
 }

Bierman, et al. Standards Track [Page 21]

RFC 8072 YANG Patch February 2017

 choice edit-status-choice {
 description
 "A choice between different types of status
 responses for each ’edit’ entry.";
 leaf ok {
 type empty;
 description
 "This ’edit’ entry was invoked without any
 errors detected by the server associated
 with this edit.";
 }
 case errors {
 uses rc:errors;
 description
 "The server detected errors associated with the
 edit identified by the same ’edit-id’ value.";
 }
 }
 }
 }
 }
 } // grouping yang-patch-status

 }

 <CODE ENDS>

4. IANA Considerations

4.1. Registrations for New URI and YANG Module

 This document registers one URI as a namespace in the "IETF XML
 Registry" [RFC3688]. It follows the format in RFC 3688.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-patch
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document registers one YANG module in the "YANG Module Names"
 registry [RFC6020].

 name: ietf-yang-patch
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-patch
 prefix: ypatch
 reference: RFC 8072

Bierman, et al. Standards Track [Page 22]

RFC 8072 YANG Patch February 2017

4.2. Media Types

4.2.1. Media Type "application/yang-patch+xml"

 Type name: application

 Subtype name: yang-patch+xml

 Required parameters: None

 Optional parameters: None

 Encoding considerations: 8-bit
 The "utf-8" charset is always used for this type.
 Each conceptual YANG data node is encoded according to the
 XML Encoding Rules and Canonical Format for the specific
 YANG data node type defined in [RFC7950].
 In addition, the "yang-patch" YANG Patch template found
 in RFC 8072 defines the structure of a YANG Patch request.

 Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 5 of RFC 8072.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC 8072 specifies the format
 of conforming messages and the interpretation thereof.

 Published specification: RFC 8072

 Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize the YANG Patch data structure.

 Fragment identifier considerations: The syntax and semantics
 of fragment identifiers are the same as the syntax and semantics
 specified for the "application/xml" media type.

 Additional information:

 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): None
 Macintosh file type code(s): "TEXT"

Bierman, et al. Standards Track [Page 23]

RFC 8072 YANG Patch February 2017

 Person & email address to contact for further information: See
 the Authors’ Addresses section of RFC 8072.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors’ Addresses section of RFC 8072.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

4.2.2. Media Type "application/yang-patch+json"

 Type name: application

 Subtype name: yang-patch+json

 Required parameters: None

 Optional parameters: None

 Encoding considerations: 8-bit
 The "utf-8" charset is always used for this type.
 Each conceptual YANG data node is encoded according to
 RFC 7951. A metadata annotation is encoded according to
 RFC 7952. In addition, the "yang-patch" YANG Patch
 template found in RFC 8072 defines the structure of a
 YANG Patch request.

 Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 5 of RFC 8072.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC 8072 specifies the format
 of conforming messages and the interpretation thereof.

 Published specification: RFC 8072

 Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize the YANG Patch data structure.

Bierman, et al. Standards Track [Page 24]

RFC 8072 YANG Patch February 2017

 Fragment identifier considerations: The syntax and semantics
 of fragment identifiers are the same as the syntax and semantics
 specified for the "application/json" media type.

 Additional information:

 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): None
 Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information: See
 the Authors’ Addresses section of RFC 8072.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors’ Addresses section of RFC 8072.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

4.3. RESTCONF Capability URNs

 This document registers one capability identifier in the "RESTCONF
 Capability URNs" registry [RFC8040]. The review policy for this
 registry is "IETF Review" [RFC5226].

 Index Capability Identifier
 --
 :yang-patch urn:ietf:params:restconf:capability:yang-patch:1.0

5. Security Considerations

 The YANG Patch media type does not introduce any significant new
 security threats, beyond what is described in [RFC8040]. This
 document defines edit processing instructions for a variant of the
 PATCH method, as used within the RESTCONF protocol. Message
 integrity is provided by the RESTCONF protocol. There is no
 additional capability to validate that a patch has not been altered.

 It may be possible to use YANG Patch with other protocols besides
 RESTCONF; this topic is outside the scope of this document.

Bierman, et al. Standards Track [Page 25]

RFC 8072 YANG Patch February 2017

 For RESTCONF, both the client and server MUST be authenticated
 according to Section 2 of [RFC8040]. It is important for RESTCONF
 server implementations to carefully validate all the edit request
 parameters in some manner. If the entire YANG Patch request cannot
 be completed, then no configuration changes to the system are done.
 A PATCH request MUST be applied atomically, as specified in Section 2
 of [RFC5789].

 A RESTCONF server implementation SHOULD attempt to prevent system
 disruption due to incremental processing of the YANG Patch
 "edit" list. It may be possible to construct an attack on such a
 RESTCONF server, which relies on the edit processing order mandated
 by YANG Patch. A server SHOULD apply only the fully validated
 configuration to the underlying system. For example, an "edit" list
 that deleted an interface and then recreated it could cause system
 disruption if the "edit" list was incrementally applied.

 A RESTCONF server implementation SHOULD attempt to prevent system
 disruption due to excessive resource consumption required to fulfill
 YANG Patch edit requests. On such an implementation, it may be
 possible to construct an attack that attempts to consume all
 available memory or other resource types.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

Bierman, et al. Standards Track [Page 26]

RFC 8072 YANG Patch February 2017

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
 March 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Semantics and Content",
 RFC 7231, DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <http://www.rfc-editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", World Wide Web Consortium
 Recommendation REC-xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

6.2. Informative References

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

Bierman, et al. Standards Track [Page 27]

RFC 8072 YANG Patch February 2017

Appendix A. Example YANG Module

 The example YANG module used in this document represents a simple
 media jukebox interface. The "example-jukebox" YANG module is
 defined in [RFC8040].

 YANG tree diagram for the "example-jukebox" module:

 +--rw jukebox!
 +--rw library
 | +--rw artist* [name]
 | | +--rw name string
 | | +--rw album* [name]
 | | +--rw name string
 | | +--rw genre? identityref
 | | +--rw year? uint16
 | | +--rw admin
 | | | +--rw label? string
 | | | +--rw catalogue-number? string
 | | +--rw song* [name]
 | | +--rw name string
 | | +--rw location string
 | | +--rw format? string
 | | +--rw length? uint32
 | +--ro artist-count? uint32
 | +--ro album-count? uint32
 | +--ro song-count? uint32
 +--rw playlist* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw song* [index]
 | +--rw index uint32
 | +--rw id instance-identifier
 +--rw player
 +--rw gap? decimal64

 rpcs:

 +---x play
 +--ro input
 +--ro playlist string
 +--ro song-number uint32

Bierman, et al. Standards Track [Page 28]

RFC 8072 YANG Patch February 2017

A.1. YANG Patch Examples

 This section includes RESTCONF examples. Most examples are shown in
 JSON encoding [RFC7159], and some are shown in XML encoding
 [W3C.REC-xml-20081126].

A.1.1. Add Resources: Error

 The following example shows several songs being added to an existing
 album. Each edit contains one song. The first song already exists,
 so an error will be reported for that edit. The rest of the edits
 were not attempted, since the first edit failed. XML encoding is
 used in this example.

 Request from the RESTCONF client:

 PATCH /restconf/data/example-jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml
 Content-Type: application/yang-patch+xml

 <yang-patch xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-patch">
 <patch-id>add-songs-patch</patch-id>
 <edit>
 <edit-id>edit1</edit-id>
 <operation>create</operation>
 <target>/song=Bridge%20Burning</target>
 <value>
 <song xmlns="http://example.com/ns/example-jukebox">
 <name>Bridge Burning</name>
 <location>/media/bridge_burning.mp3</location>
 <format>MP3</format>
 <length>288</length>
 </song>
 </value>
 </edit>

Bierman, et al. Standards Track [Page 29]

RFC 8072 YANG Patch February 2017

 <edit>
 <edit-id>edit2</edit-id>
 <operation>create</operation>
 <target>/song=Rope</target>
 <value>
 <song xmlns="http://example.com/ns/example-jukebox">
 <name>Rope</name>
 <location>/media/rope.mp3</location>
 <format>MP3</format>
 <length>259</length>
 </song>
 </value>
 </edit>
 <edit>
 <edit-id>edit3</edit-id>
 <operation>create</operation>
 <target>/song=Dear%20Rosemary</target>
 <value>
 <song xmlns="http://example.com/ns/example-jukebox">
 <name>Dear Rosemary</name>
 <location>/media/dear_rosemary.mp3</location>
 <format>MP3</format>
 <length>269</length>
 </song>
 </value>
 </edit>
 </yang-patch>

Bierman, et al. Standards Track [Page 30]

RFC 8072 YANG Patch February 2017

 XML response from the RESTCONF server:

 HTTP/1.1 409 Conflict
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content-Type: application/yang-data+xml

 <yang-patch-status
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-patch">
 <patch-id>add-songs-patch</patch-id>
 <edit-status>
 <edit>
 <edit-id>edit1</edit-id>
 <errors>
 <error>
 <error-type>application</error-type>
 <error-tag>data-exists</error-tag>
 <error-path
 xmlns:jb="http://example.com/ns/example-jukebox">
 /jb:jukebox/jb:library
 /jb:artist[jb:name=’Foo Fighters’]
 /jb:album[jb:name=’Wasting Light’]
 /jb:song[jb:name=’Bridge Burning’]
 </error-path>
 <error-message>
 Data already exists; cannot be created
 </error-message>
 </error>
 </errors>
 </edit>
 </edit-status>
 </yang-patch-status>

Bierman, et al. Standards Track [Page 31]

RFC 8072 YANG Patch February 2017

 JSON response from the RESTCONF server:

 The following response is shown in JSON format to highlight the
 difference in the "error-path" object encoding. For JSON, the
 instance-identifier encoding specified in [RFC7951] is used.

 HTTP/1.1 409 Conflict
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content-Type: application/yang-data+json

 {
 "ietf-yang-patch:yang-patch-status" : {
 "patch-id" : "add-songs-patch",
 "edit-status" : {
 "edit" : [
 {
 "edit-id" : "edit1",
 "errors" : {
 "error" : [
 {
 "error-type": "application",
 "error-tag": "data-exists",
 "error-path": "/example-jukebox:jukebox/library\
 /artist[name=’Foo Fighters’]\
 /album[name=’Wasting Light’]\
 /song[name=’Bridge Burning’]",
 "error-message":
 "Data already exists; cannot be created"
 }
]
 }
 }
]
 }
 }
 }

Bierman, et al. Standards Track [Page 32]

RFC 8072 YANG Patch February 2017

A.1.2. Add Resources: Success

 The following example shows several songs being added to an existing
 album.

 o Each of two edits contains one song.

 o Both edits succeed, and new sub-resources are created.

 Request from the RESTCONF client:

 PATCH /restconf/data/example-jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light \
 HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json
 Content-Type: application/yang-patch+json

 {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "add-songs-patch-2",
 "edit" : [
 {
 "edit-id" : "edit1",
 "operation" : "create",
 "target" : "/song=Rope",
 "value" : {
 "song" : [
 {
 "name" : "Rope",
 "location" : "/media/rope.mp3",
 "format" : "MP3",
 "length" : 259
 }
]
 }
 },

Bierman, et al. Standards Track [Page 33]

RFC 8072 YANG Patch February 2017

 {
 "edit-id" : "edit2",
 "operation" : "create",
 "target" : "/song=Dear%20Rosemary",
 "value" : {
 "song" : [
 {
 "name" : "Dear Rosemary",
 "location" : "/media/dear_rosemary.mp3",
 "format" : "MP3",
 "length" : 269
 }
]
 }
 }
]
 }
 }

 Response from the RESTCONF server:

 HTTP/1.1 200 OK
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content-Type: application/yang-data+json

 {
 "ietf-yang-patch:yang-patch-status" : {
 "patch-id" : "add-songs-patch-2",
 "ok" : [null]
 }
 }

Bierman, et al. Standards Track [Page 34]

RFC 8072 YANG Patch February 2017

A.1.3. Insert List Entry

 The following example shows a song being inserted within an existing
 playlist. Song "6" in playlist "Foo-One" is being inserted after
 song "5" in the playlist. The operation succeeds, so a non-error
 reply can be provided.

 Request from the RESTCONF client:

 PATCH /restconf/data/example-jukebox:jukebox/\
 playlist=Foo-One HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json
 Content-Type: application/yang-patch+json

 {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "insert-song-patch",
 "comment" : "Insert song 6 after song 5",
 "edit" : [
 {
 "edit-id" : "edit1",
 "operation" : "insert",
 "target" : "/song=6",
 "point" : "/song=5",
 "where" : "after",
 "value" : {
 "example-jukebox:song" : [
 {
 "index" : 6,
 "id" : "/example-jukebox:jukebox/library\
 /artist[name=’Foo Fighters’]\
 /album[name=’Wasting Light’]\
 /song[name=’Bridge Burning’]"
 }
]
 }
 }
]
 }

Bierman, et al. Standards Track [Page 35]

RFC 8072 YANG Patch February 2017

 Response from the RESTCONF server:

 HTTP/1.1 200 OK
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content-Type: application/yang-data+json

 {
 "ietf-yang-patch:yang-patch-status" : {
 "patch-id" : "insert-song-patch",
 "ok" : [null]
 }
 }

A.1.4. Move List Entry

 The following example shows a song being moved within an existing
 playlist. Song "1" in playlist "Foo-One" is being moved after
 song "3" in the playlist. Note that no "value" parameter is needed
 for a "move" operation. The operation succeeds, so a non-error reply
 can be provided.

 Request from the RESTCONF client:

 PATCH /restconf/data/example-jukebox:jukebox/\
 playlist=Foo-One HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json
 Content-Type: application/yang-patch+json

 {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "move-song-patch",
 "comment" : "Move song 1 after song 3",
 "edit" : [
 {
 "edit-id" : "edit1",
 "operation" : "move",
 "target" : "/song=1",
 "point" : "/song=3",
 "where" : "after"
 }
]
 }
 }

Bierman, et al. Standards Track [Page 36]

RFC 8072 YANG Patch February 2017

 Response from the RESTCONF server:

 HTTP/1.1 200 OK
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content-Type: application/yang-data+json

 {
 "ietf-restconf:yang-patch-status" : {
 "patch-id" : "move-song-patch",
 "ok" : [null]
 }
 }

A.1.5. Edit Datastore Resource

 The following example shows how three top-level data nodes from
 different modules can be edited at the same time.

 Example module "foo" defines leaf X. Example module "bar" defines
 container Y, with child leafs A and B. Example module "baz" defines
 list Z, with key C and child leafs D and E.

 Request from the RESTCONF client:

 PATCH /restconf/data HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json
 Content-Type: application/yang-patch+json

 {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "datastore-patch-1",
 "comment" : "Edit 3 top-level data nodes at once",
 "edit" : [
 {
 "edit-id" : "edit1",
 "operation" : "create",
 "target" : "/foo:X",
 "value" : {
 "foo:X" : 42
 }
 },

Bierman, et al. Standards Track [Page 37]

RFC 8072 YANG Patch February 2017

 {
 "edit-id" : "edit2",
 "operation" : "merge",
 "target" : "/bar:Y",
 "value" : {
 "bar:Y" : {
 "A" : "test1",
 "B" : 99
 }
 }
 },
 {
 "edit-id" : "edit3",
 "operation" : "replace",
 "target" : "/baz:Z=2",
 "value" : {
 "baz:Z" : [
 {
 "C" : 2,
 "D" : 100,
 "E" : false
 }
]
 }
 }
]
 }
 }

 Response from the RESTCONF server:

 HTTP/1.1 200 OK
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:55:30 GMT
 Content-Type: application/yang-data+json

 {
 "ietf-yang-patch:yang-patch-status" : {
 "patch-id" : "datastore-patch-1",
 "ok" : [null]
 }
 }

Bierman, et al. Standards Track [Page 38]

RFC 8072 YANG Patch February 2017

Acknowledgements

 The authors would like to thank Rex Fernando for his contributions to
 this document.

 Contributions to this material by Andy Bierman are based upon work
 supported by the United States Army, Space & Terrestrial
 Communications Directorate (S&TCD) under Contract
 No. W15P7T-13-C-A616. Any opinions, findings, and conclusions or
 recommendations expressed in this material are those of the author(s)
 and do not necessarily reflect the views of the S&TCD.

Authors’ Addresses

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Kent Watsen
 Juniper Networks

 Email: kwatsen@juniper.net

Bierman, et al. Standards Track [Page 39]

