
Internet Engineering Task Force (IETF) A. Knauf
Request for Comments: 8076 T. Schmidt, Ed.
Category: Standards Track HAW Hamburg
ISSN: 2070-1721 G. Hege
 daviko GmbH
 M. Waehlisch
 link-lab & FU Berlin
 March 2017

 A Usage for Shared Resources in RELOAD (ShaRe)

Abstract

 This document defines a REsource LOcation And Discovery (RELOAD)
 Usage for managing shared write access to RELOAD Resources. Shared
 Resources in RELOAD (ShaRe) form a basic primitive for enabling
 various coordination and notification schemes among distributed
 peers. Access in ShaRe is controlled by a hierarchical trust
 delegation scheme maintained within an access list. A new
 USER-CHAIN-ACL access policy allows authorized peers to write a
 Shared Resource without owning its corresponding certificate. This
 specification also adds mechanisms to store Resources with a variable
 name that is useful whenever peer-independent rendezvous processes
 are required.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8076.

Knauf, et al. Standards Track [Page 1]

RFC 8076 ShaRe March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Knauf, et al. Standards Track [Page 2]

RFC 8076 ShaRe March 2017

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Shared Resources in RELOAD 5
 3.1. Mechanisms for Isolating Stored Data 6
 4. Access Control List Definition 7
 4.1. Overview . 7
 4.2. Data Structure . 9
 5. Extension for Variable Resource Names 10
 5.1. Overview . 10
 5.2. Data Structure . 11
 5.3. Overlay Configuration Document Extension 12
 6. Access Control to Shared Resources 13
 6.1. Granting Write Access 13
 6.2. Revoking Write Access 14
 6.3. Validating Write Access through an ACL 14
 6.4. Operations of Storing Peers 15
 6.5. Operations of Accessing Peers 16
 6.6. USER-CHAIN-ACL Access Policy 16
 7. ACCESS-CONTROL-LIST Kind Definition 17
 8. Security Considerations 17
 8.1. Resource Exhaustion 17
 8.2. Malicious or Misbehaving Storing Peer 18
 8.3. Trust Delegation to a Malicious or Misbehaving Peer . . . 18
 8.4. Privacy Issues . 18
 9. IANA Considerations . 19
 9.1. Access Control Policy 19
 9.2. Data Kind-ID . 19
 9.3. XML Namespace Registration 19
 10. References . 20
 10.1. Normative References 20
 10.2. Informative References 20
 Acknowledgments . 21
 Authors’ Addresses . 22

Knauf, et al. Standards Track [Page 3]

RFC 8076 ShaRe March 2017

1. Introduction

 [RFC6940] defines the base protocol for REsource LOcation And
 Discovery (RELOAD), which allows for application-specific extensions
 by Usages. The present document defines such a RELOAD Usage for
 managing shared write access to RELOAD Resources and a mechanism to
 store Resources with variable names. The Usage for Shared Resources
 in RELOAD (ShaRe) enables overlay users to share their exclusive
 write access to specific Resource/Kind pairs with others. Shared
 Resources form a basic primitive for enabling various coordination
 and notification schemes among distributed peers. Write permission
 is controlled by an Access Control List (ACL) Kind that maintains a
 chain of Authorized Peers for a particular Shared Resource. A newly
 defined USER-CHAIN-ACL access control policy enables shared write
 access in RELOAD.

 The Usage for Shared Resources in RELOAD is designed for jointly
 coordinated group applications among distributed peers (e.g., third-
 party registration, see [RFC7904], or distributed conferencing). Of
 particular interest are rendezvous processes, where a single
 identifier is linked to multiple, dynamic instances of a distributed
 cooperative service. Shared write access is based on a trust
 delegation mechanism that transfers the authorization to write a
 specific Kind data by storing logical Access Control Lists. An ACL
 contains the ID of the Kind to be shared and contains trust
 delegations from one authorized to another (previously unauthorized)
 user.

 Shared write access augments the RELOAD security model, which is
 based on the restriction that peers are only allowed to write
 resources at a small set of well-defined locations (Resource-IDs) in
 the overlay. Using the standard access control rules in RELOAD,
 these locations are bound to the username or Node-ID in the peer’s
 certificate. This document extends the base policies to enable a
 controlled write access for multiple users to a common Resource-ID.

 Additionally, this specification defines an optional mechanism to
 store Resources with a variable Resource Name. It enables the
 storage of Resources whose name complies to a specific pattern.
 Definition of the pattern is arbitrary, but it must contain the
 username of the Resource creator.

Knauf, et al. Standards Track [Page 4]

RFC 8076 ShaRe March 2017

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses the terminology and definitions from the RELOAD
 base [RFC6940] and [RFC7890], in particular the RELOAD Usage,
 Resource, and Kind. Additionally, the following terms are used:

 Shared Resource: The term "Shared Resource" in this document defines
 a RELOAD Resource with its associated Kinds that can be written or
 overwritten by multiple RELOAD users following the specifications
 in this document.

 Access Control List: The term "Access Control List" in this document
 defines a logical list of RELOAD users allowed to write a specific
 RELOAD Resource/Kind pair by following the specifications in this
 document. The list items are stored as Access Control List Kinds
 that map trust delegations from user A to user B, where A is
 allowed to write a Shared Resource and the Access Control List,
 while B is a user that obtains write access to specified Kinds
 from A.

 Resource Owner: The term "Resource Owner" in this document defines a
 RELOAD peer that initially stored a Resource to be shared. The
 Resource Owner possesses the RELOAD certificate that grants write
 access to a specific Resource/Kind pair using the RELOAD
 certificate-based access control policies.

 Authorized Peer: The term "Authorized Peer" in this document defines
 a RELOAD peer that was granted write access to a Shared Resource
 by permission of the Resource Owner or another Authorized Peer.

3. Shared Resources in RELOAD

 A RELOAD user that owns a certificate for writing at a specific
 overlay location can maintain one or more RELOAD Kinds that are
 designated for a non-exclusive write access shared with other RELOAD
 users. The mechanism to share those Resource/Kind pairs with a group
 of users consists of two basic steps:

 1. Storage of the Resource/Kind pairs to be shared.

 2. Storage of an Access Control List (ACL) associated with those
 Kinds.

Knauf, et al. Standards Track [Page 5]

RFC 8076 ShaRe March 2017

 ACLs are created by the Resource Owner and contain ACL items, each
 delegating the permission of writing the shared Kind to a specific
 user called the "Authorized Peer". For each shared Kind data, its
 Resource owner stores a root item that initiates an Access Control
 List. Trust delegation to the Authorized Peer can include the right
 to further delegate the write permission, enabling a tree of trust
 delegations with the Resource Owner as trust anchor at its root.

 The Resource/Kind pair to be shared can be any RELOAD Kind that
 complies to the following specifications:

 Isolated Data Storage: To prevent concurrent writing from race
 conditions, each data item stored within a Shared Resource SHALL
 be exclusively maintained by the RELOAD user who created it.
 Hence, Usages that allow the storage of Shared Resources are
 REQUIRED to use either the array or dictionary data model and
 apply additional mechanisms for isolating data as described in
 Section 3.1.

 Access Control Policy: To ensure write access to Shared Resource by
 Authorized Peers, each Usage MUST use the USER-CHAIN-ACL access
 policy as described in Section 6.6.

 Resource Name Extension: To enable Shared Resources to be stored
 using a variable resource name, this document defines an optional
 ResourceNameExtension structure. It contains the Resource Name of
 the Kind data to be stored and allows any receiver of a shared
 data to validate whether the Resource Name hashes to the Resource-
 ID. The ResourceNameExtension is made optional by configuration.
 The ResourceNameExtension field is only present in the Kind data
 structure when configured in the corresponding kind-block of the
 overlay configuration document (for more details, see
 Section 5.3). If the configuration allows variable resource
 names, a Kind using the USER-CHAIN-ACL policy MUST use the
 ResourceNameExtension as the initial field within the Kind data
 structure definition. Otherwise, the Kind data structure does not
 contain the ResourceNameExtension structure.

3.1. Mechanisms for Isolating Stored Data

 This section defines mechanisms to avoid race conditions while
 concurrently writing an array or dictionary of a Shared Resource.

 If a dictionary is used in the Shared Resource, the dictionary key
 MUST be the Node-ID of the certificate that will be used to sign the
 stored data. Thus, data access is bound to the unique ID holder, and
 write concurrency does not occur.

Knauf, et al. Standards Track [Page 6]

RFC 8076 ShaRe March 2017

 If the data model of the Shared Resource is an array, each Authorized
 Peer that chooses to write data SHALL obtain its exclusive range of
 the array indices. The following algorithm will generate an array
 indexing scheme that avoids collisions:

 1. Obtain the Node-ID of the certificate that will be used to sign
 the stored data.

 2. Take the least significant 24 bits of that Node-ID to prefix the
 array index.

 3. Append an 8-bit individual index value to those 24 bits of the
 Node-ID.

 The resulting 32-bit long integer MUST be used as the index for
 storing an array entry in a Shared Resource. The 24 bits of the
 Node-ID serve as a collision-resistant identifier. The 8-bit
 individual index remains under the control of a single Peer and can
 be incremented individually for further array entries. In total,
 each Peer can generate 256 distinct entries for application-specific
 use.

 The mechanism to create the array index inherits collision-resistance
 from the overlay hash function in use (e.g., SHA-1). It is designed
 to work reliably for small sizes of groups as applicable to resource
 sharing. In the rare event of a collision, the Storing Peer will
 refuse to (over-)write the requested array index and protect indexing
 integrity as defined in Section 6.1. A Peer could rejoin the overlay
 with a different Node-ID in such a case.

4. Access Control List Definition

4.1. Overview

 An Access Control List (ACL) is a (self-managed) Shared Resource that
 contains a list of AccessControlListItem structures as defined in
 Section 4.2. Each entry delegates write access for a specific Kind
 data to a single RELOAD user. An ACL enables the RELOAD user who is
 authorized to write a specific Resource-ID to delegate his exclusive
 write access to a specific Kind to further users of the same RELOAD
 overlay. Therefore, each Access Control List data structure carries
 the information about who obtains write access, the Kind-ID of the
 Resource to be shared, and whether delegation includes write access
 to the ACL itself. The latter condition grants the right to delegate
 write access further for the Authorized Peer. Access Control Lists
 are stored at the same overlay location as the Shared Resource and
 use the RELOAD array data model. They are initially created by the
 Resource Owner.

Knauf, et al. Standards Track [Page 7]

RFC 8076 ShaRe March 2017

 Figure 1 shows an example of an Access Control List. We omit the
 res_name_ext field to simplify illustration. The array entry at
 index 0x123abc01 displays the initial creation of an ACL for a Shared
 Resource of Kind-ID 1234 at the same Resource-ID. It represents the
 root item of the trust delegation tree for this shared RELOAD Kind.
 The root entry MUST contain the username of the Resource owner in the
 "to_user" field and can only be written by the owner of the public
 key certificate associated with this Resource-ID. The
 allow_delegation (ad) flag for a root ACL item is set to 1 by
 default. The array index is generated by using the mechanism for
 isolating stored data as described in Section 3.1. Hence, the most
 significant 24 bits of the array index (0x123abc) are the least
 significant 24 bits of the Node-ID of the Resource Owner.

 The array item at index 0x123abc02 represents the first trust
 delegation to an Authorized Peer that is thus permitted to write to
 the Shared Resource of Kind-ID 1234. Additionally, the Authorized
 peer Alice is also granted write access to the ACL as indicated by
 the allow_delegation flag (ad) set to 1. This configuration
 authorizes Alice to store further trust delegations to the Shared
 Resource, i.e., add items to the ACL. On the contrary, index
 0x456def01 illustrates trust delegation for Kind-ID 1234, in which
 the Authorized Peer Bob is not allowed to grant access to further
 peers (ad = 0). Each Authorized Peer signs its ACL items by using
 its own signer identity along with its own private key. This allows
 other peers to validate the origin of an ACL item and makes ownership
 transparent.

 To manage Shared Resource access of multiple Kinds at a single
 location, the Resource Owner can create new ACL entries that refer to
 another Kind-ID as shown in array entry index 0x123abc03. Note that
 overwriting existing items in an Access Control List with a change in
 the Kind-ID revokes all trust delegations in the corresponding
 subtree (see Section 6.2). Authorized Peers are only enabled to
 overwrite existing ACL item they own. The Resource Owner is allowed
 to overwrite any existing ACL item, but should be aware of its
 consequences on the trust delegation chain.

Knauf, et al. Standards Track [Page 8]

RFC 8076 ShaRe March 2017

 +--+
 | Access Control List |
 +-----------+------------------------------+-----------+
 | #Index | Array Entries | signed by |
 +-----------+------------------------------+-----------+
 | 123abc01 | to_user:Owner Kind:1234 ad:1 | Owner |
 +-----------+------------------------------+-----------+
 | 123abc02 | to_user:Alice Kind:1234 ad:1 | Owner |
 +-----------+------------------------------+-----------+
 | 123abc03 | to_user:Owner Kind:4321 ad:1 | Owner |
 +-----------+------------------------------+-----------+
 | 123abc04 | to_user:Carol Kind:4321 ad:0 | Owner |
 +-----------+------------------------------+-----------+
 | ... | ... | ... |
 +-----------+------------------------------+-----------+
 | 456def01 | to_user:Bob Kind:1234 ad:0 | Alice |
 +-----------+------------------------------+-----------+
 | ... | ... | ... |
 +-----------+------------------------------+-----------+

 Figure 1: Simplified Example of an Access Control List, Including
 Entries for Two Different Kind-IDs and Varying Delegation (AD)
 Configurations

 Implementors of ShaRe should be aware that the trust delegation in an
 Access Control List need not be loop free. Self-contained circular
 trust delegation from A to B and B to A are syntactically possible,
 even though not very meaningful.

4.2. Data Structure

 The Kind data structure for the Access Control List is defined as
 follows:

 struct {
 /* res_name_ext is optional, see documentation */
 ResourceNameExtension res_name_ext;
 opaque to_user<0..2^16-1>;
 KindId kind;
 Boolean allow_delegation;
 } AccessControlListItem;

Knauf, et al. Standards Track [Page 9]

RFC 8076 ShaRe March 2017

 The AccessControlListItem structure is composed of:

 res_name_ext: This optional field contains the Resource Name of a
 ResourceNameExtension (see Section 5.2) to be used by a Shared
 Resource with a variable resource name. This name is used by the
 storing peer for validating, whether a variable resources name
 matches one of the predefined naming pattern from the
 configuration document for this Kind. The presence of this field
 is bound to a variable resource name element in the corresponding
 kind-block of the configuration document whose "enable" attribute
 is set to true (see Section 5.3). Otherwise, if the "enable"
 attribute is false, the res_name_ext field SHALL NOT be present in
 the Kind data structure.

 to_user: This field contains the username of the RELOAD peer that
 obtains write permission to the Shared Resource.

 kind: This field contains the Kind-ID of the Shared Resource.

 allow_delegation: If true, this Boolean flag indicates that the
 Authorized Peer in the ’to_user’ field is allowed to add
 additional entries to the ACL for the specified Kind-ID.

5. Extension for Variable Resource Names

5.1. Overview

 In certain use cases, such as conferencing, it is desirable to
 increase the flexibility of a peer in using Resource Names beyond
 those defined by the username or Node-ID fields in its certificate.
 For this purpose, this document presents the concept for variable
 Resources Names that enables providers of RELOAD instances to define
 relaxed naming schemes for overlay Resources.

 Each RELOAD node uses a certificate to identify itself using its
 username (or Node-ID) while storing data under a specific Resource-ID
 (see Section 7.3 in [RFC6940]). The specifications in this document
 scheme adhere to this paradigm, but enable a RELOAD peer to store
 values of Resource Names that are derived from the username in its
 certificate. This is done by using a Resource Name with a variable
 substring that still matches the username in the certificate using a
 pattern defined in the overlay configuration document. Thus, despite
 being variable, an allowable Resource Name remains tied to the
 Owner’s certificate. A sample pattern might be formed as follows:

 Example Pattern:
 .*-conf-$USER@$DOMAIN

Knauf, et al. Standards Track [Page 10]

RFC 8076 ShaRe March 2017

 When defining the pattern, care must be taken to avoid conflicts
 arising from two usernames of which one is a substring of the other.
 In such cases, the holder of the shorter name could threaten to block
 the resources of the longer-named peer by choosing the variable part
 of a Resource Name to contain the entire longer username. For
 example, a "*$USER" pattern would allow user EVE to define a resource
 with name "STEVE" and to block the resource name for user STEVE
 through this. This problem can easily be mitigated by delimiting the
 variable part of the pattern from the username part by some fixed
 string, that by convention is not part of a username (e.g., the
 "-conf-" in the above Example).

5.2. Data Structure

 This section defines the optional ResourceNameExtension structure for
 every Kind that uses the USER-CHAIN-ACL access control policy.

 enum { pattern(1), (255)} ResourceNameType;

 struct {
 ResourceNameType type;
 uint16 length;

 select(type) {
 case pattern:
 opaque resource_name<0..2^16-1>;

 /* Types can be extended */
 };
 } ResourceNameExtension;

 The content of the ResourceNameExtension consists of:

 length: This field contains the length of the remaining data
 structure. It is only used to allow for further extensions to
 this data structure.

 The content of the rest of the data structure depends of the
 ResourceNameType. Currently, the only defined type is "pattern".

 If the type is "pattern", then the following data structure contains
 an opaque <0..2^16-1> field containing the Resource Name of the Kind
 being stored. The type "pattern" further indicates that the Resource
 Name MUST match to one of the variable resource name patterns defined
 for this Kind in the configuration document.

 The ResourceNameType enum and the ResourceNameExtension structure can
 be extended by further Usages to define other naming schemes.

Knauf, et al. Standards Track [Page 11]

RFC 8076 ShaRe March 2017

5.3. Overlay Configuration Document Extension

 This section extends the overlay configuration document by defining
 new elements for patterns relating resource names to usernames. It
 is noteworthy that additional constraints on the syntax and semantic
 of names can apply according to specific Usages. For example,
 Address of Record (AOR) syntax restrictions apply when using P2PSIP
 [RFC7904], while a more general naming is feasible in plain RELOAD.

 The <variable-resource-names> element serves as a container for one
 or multiple <pattern> sub-elements. It is an additional parameter
 within the kind-block and has a boolean "enable" attribute that
 indicates, if true, that the overlay provider allows variable
 resource names for this Kind. The default value of the "enable"
 attribute is "false". In the absence of a <variable-resource-names>
 element for a Kind using the USER-CHAIN-ACL access policy (see
 Section 6.6), implementors MUST assume this default value.

 A <pattern> element MUST be present if the "enabled" attribute of its
 parent element is set to true. Each <pattern> element defines a
 pattern for constructing extended resource names for a single Kind.
 It is of type xsd:string and interpreted as a regular expression
 according to "POSIX Extended Regular Expression" (see the
 specifications in [IEEE-Posix]). In this regular expression, $USER
 and $DOMAIN are used as variables for the corresponding parts of the
 string in the certificate username field (with $USER preceding and
 $DOMAIN succeeding the ’@’). Both variables MUST be present in any
 given pattern definition. Furthermore, variable parts in <pattern>
 elements defined in the overlay configuration document MUST remain
 syntactically separated from the username part (e.g., by a dedicated
 delimiter) to prevent collisions with other names of other users. If
 no pattern is defined for a Kind, if the "enable" attribute is false,
 or if the regular expression does not meet the requirements specified
 in this section, the allowable Resource Names are restricted to the
 username of the signer for Shared Resource.

Knauf, et al. Standards Track [Page 12]

RFC 8076 ShaRe March 2017

 The RELAX NG Grammar for the Variable Resource Names Extension reads:

 # VARIABLE RESOURCE URN SUB-NAMESPACE

 namespace share = "urn:ietf:params:xml:ns:p2p:config-base:share"

 # VARIABLE RESOURCE NAMES ELEMENT

 kind-parameter &= element share:variable-resource-names {

 attribute enable { xsd:boolean },

 # PATTERN ELEMENT

 element share:pattern { xsd:string }*
 }?

 Whitespace and case processing follows the rules of [OASIS.relax_ng]
 and XML Schema Datatypes [W3C.REC-xmlschema-2-20041028].

6. Access Control to Shared Resources

6.1. Granting Write Access

 Write access to a Kind that is intended to be shared with other
 RELOAD users can be initiated solely by the Resource Owner. A
 Resource Owner can share RELOAD Kinds by using the following
 procedure:

 o The Resource Owner stores an ACL root item at the Resource-ID of
 the Shared Resource. The root item contains the
 ResourceNameExtension field (see Section 5.2), the username of the
 Resource Owner and Kind-ID of the Shared Resource. The
 allow_delegation flag is set to 1. The index of array data
 structure MUST be generated as described in Section 3.1.

 o Further ACL items for this Kind-ID stored by the Resource Owner
 MAY delegate write access to Authorized Peers. These ACL items
 contain the same resource name extension field, the username of
 the Authorized Peer, and the Kind-ID of the Shared Resource.
 Optionally, the Resource Owner sets the "ad" to 1 (the default
 equals 0) to enable the Authorized Peer to further delegate write
 access. For each succeeding ACL item, the Resource Owner
 increments its individual index value by one (see Section 3.1) so
 that items can be stored in the numerical order of the array index
 starting with the index of the root item.

Knauf, et al. Standards Track [Page 13]

RFC 8076 ShaRe March 2017

 An Authorized Peer with delegation allowance ("ad"=1) can extend the
 access to an existing Shared Resource as follows:

 o An Authorized Peer can store additional ACL items at the Resource-
 ID of the Shared Resource. These ACL items contain the resource
 name extension field, the username of the newly Authorized Peer,
 and the Kind-ID of the Shared Resource. Optionally, the "ad" flag
 is set to 1 for allowing the newly Authorized Peer to further
 delegate write access. The array index MUST be generated as
 described in Section 3.1. Each succeeding ACL item can be stored
 in the numerical order of the array index.

 A store request by an Authorized Peer that attempts to overwrite any
 ACL item signed by another Peer is unauthorized and causes an
 Error_Forbidden response from the Storing Peer. Such access
 conflicts could be caused by an array index collision. However, the
 probability of a collision of two or more identical array indices
 will be negligibly low using the mechanism for isolating stored data
 (see Section 3.1).

6.2. Revoking Write Access

 Write permissions are revoked by storing a nonexistent value (see
 [RFC6940], Section 7.2.1) at the corresponding item of the Access
 Control List. Revoking a permission automatically invalidates all
 delegations performed by that user including all subsequent
 delegations. This allows the invalidation of entire subtrees of the
 delegations tree with only a single operation. Overwriting the root
 item with a nonexistent value of an Access List invalidates the
 entire delegations tree.

 An existing ACL item MUST only be overwritten by the user who
 initially stored the corresponding entry, or by the Resource Owner
 that is allowed to overwrite all ACL items for revoking write access.

 To protect the privacy of the users, the Resource Owner SHOULD
 overwrite all subtrees that have been invalidated.

6.3. Validating Write Access through an ACL

 Access Control Lists are used to transparently validate authorization
 of peers for writing a data value at a Shared Resource. Thereby, it
 is assumed that the validating peer is in possession of the complete
 and most recent ACL for a specific Resource/Kind pair. The
 corresponding procedure consists of recursively traversing the trust
 delegation tree with strings compared as binary objects. It proceeds
 as follows:

Knauf, et al. Standards Track [Page 14]

RFC 8076 ShaRe March 2017

 1. Obtain the username of the certificate used for signing the data
 stored at the Shared Resource. This is the user who requested
 the write operation.

 2. Validate that an item of the corresponding ACL (i.e., for this
 Resource/Kind pair) contains a "to_user" field whose value equals
 the username obtained in step 1. If the Shared Resource under
 examination is an Access Control List Kind, further validate if
 the "ad" flag is set to 1.

 3. Select the username of the certificate that was used to sign the
 ACL item obtained in the previous step.

 4. Validate that an item of the corresponding ACL contains a
 "to_user" field whose value equals the username obtained in step
 3. Additionally, validate that the "ad" flag is set to 1.

 5. Repeat steps 3 and 4 until the "to_user" value is equal to the
 username of the signer of the ACL in the selected item. This
 final ACL item is expected to be the root item of this ACL, which
 MUST be further validated by verifying that the root item was
 signed by the owner of the ACL Resource.

 The trust delegation chain is valid if and only if all verification
 steps succeed. In this case, the creator of the data value of the
 Shared Resource is an Authorized Peer.

 Note that the ACL validation procedure can be omitted whenever the
 creator of data at a Shared Resource is the Resource Owner itself.
 The latter can be verified by its public key certificate as defined
 in Section 6.6.

6.4. Operations of Storing Peers

 Storing peers, at which Shared Resource and ACL are physically
 stored, are responsible for controlling storage attempts to a Shared
 Resource and its corresponding Access Control List. To assert the
 USER-CHAIN-ACL access policy (see Section 6.6), a storing peer MUST
 perform the access validation procedure described in Section 6.3 on
 any incoming store request using the most recent Access Control List
 for every Kind that uses the USER-CHAIN-ACL policy. It SHALL further
 ensure that only the Resource Owner stores new ACL root items for
 Shared Resources.

Knauf, et al. Standards Track [Page 15]

RFC 8076 ShaRe March 2017

6.5. Operations of Accessing Peers

 Accessing peers, i.e., peers that fetch a Shared Resource, can
 validate that the originator of a Shared Resource was authorized to
 store data at this Resource-ID by processing the corresponding ACL.
 To enable an accessing peer to perform the access validation
 procedure described in Section 6.3, it first needs to obtain the most
 recent Access Control List in the following way:

 1. Send a Stat request to the Resource-ID of the Shared Resource to
 obtain all array indexes of stored ACL Kinds (as per [RFC6940],
 Section 7.4.3.).

 2. Fetch all indexes of existing ACL items at this Resource-ID by
 using the array ranges retrieved in the Stat request answer.

 Peers can cache previously fetched Access Control Lists up to the
 maximum lifetime of an individual item. Since stored values could
 have been modified or invalidated prior to their expiration, an
 accessing peer SHOULD use a Stat request to check for updates prior
 to using the data cache.

6.6. USER-CHAIN-ACL Access Policy

 This document specifies an additional access control policy to the
 RELOAD base document [RFC6940]. The USER-CHAIN-ACL policy allows
 Authorized Peers to write a Shared Resource, even though they do not
 own the corresponding certificate. Additionally, the USER-CHAIN-ACL
 allows the storage of Kinds with a variable resource name that are
 following one of the specified naming patterns. Hence, on an inbound
 store request on a Kind that uses the USER-CHAIN-ACL access policy,
 the following rules MUST be applied:

 In the USER-CHAIN-ACL policy, a given value MUST NOT be written or
 overwritten, if neither one of USER-MATCH or USER-NODE-MATCH
 (mandatory if the data model is dictionary) access policies of the
 base document [RFC6940] applies.

 Additionally, the store request MUST be denied if the signer’s
 certificate does not contain a username that matches to the user and
 domain portion in one of the variable resource name patterns (cf.
 Section 5) specified in the configuration document or if the hashed
 Resource Name does not match the Resource-ID. The Resource Name of
 the Kind to be stored MUST be taken from the mandatory
 ResourceNameExtension field in the corresponding Kind data structure.

Knauf, et al. Standards Track [Page 16]

RFC 8076 ShaRe March 2017

 If the access rights cannot be verified according to the ACL
 validation procedure described in Section 6.3, the store request MUST
 also be denied.

 Otherwise, the store request can be processed further.

7. ACCESS-CONTROL-LIST Kind Definition

 This section defines the ACCESS-CONTROL-LIST Kind previously
 described in this document.

 Name: ACCESS-CONTROL-LIST

 Kind IDs: The Resource Name for ACCESS-CONTROL-LIST Kind-ID is the
 Resource Name of the Kind that will be shared by using the ACCESS-
 CONTROL-LIST Kind.

 Data Model: The data model for the ACCESS-CONTROL-LIST Kind-ID is
 array. The array indexes are formed by using the mechanism for
 isolated stored data as described in Section 3.1.

 Access Control: USER-CHAIN-ACL (see Section 6.6).

8. Security Considerations

 In this section, we discuss security issues that are relevant to the
 usage of Shared Resources in RELOAD [RFC6940].

8.1. Resource Exhaustion

 Joining a RELOAD overlay inherently poses a certain resource load on
 a peer, because it has to store and forward data for other peers. In
 common RELOAD semantics, each Resource-ID and thus position in the
 overlay, may only be written by a limited set of peers -- often even
 only a single peer, which limits this burden. In the case of Shared
 Resources, a single resource may be written by multiple peers who may
 even write an arbitrary number of entries (e.g., delegations in the
 ACL). This leads to an enhanced use of resources at individual
 overlay nodes. The problem of resource exhaustion can easily be
 mitigated for Usages based on the ShaRe-Usage by imposing
 restrictions on size, i.e., <max-size> element for a certain Kind in
 the configuration document.

Knauf, et al. Standards Track [Page 17]

RFC 8076 ShaRe March 2017

8.2. Malicious or Misbehaving Storing Peer

 The RELOAD overlay is designed to operate despite the presence of a
 small set of misbehaving peers. This is not different for Shared
 Resources since a small set of malicious peers does not disrupt the
 functionality of the overlay in general, but may have implications
 for the peers needing to store or access information at the specific
 locations in the ID space controlled by a malicious peer. A storing
 peer could withhold stored data, which results in a denial of service
 to the group using the specific resource. But it could not return
 forged data, since the validity of any stored data can be
 independently verified using the attached signatures.

8.3. Trust Delegation to a Malicious or Misbehaving Peer

 A Resource Owner that erroneously delegated write access to a Shared
 Resource for a misbehaving peer enables this malicious member of the
 overlay to interfere with the corresponding group application in
 several unwanted ways. Examples of destructive interferences range
 from exhausting shared storage to dedicated application-specific
 misuse. Additionally, a bogus peer that was granted delegation
 rights may authorize further malicious collaborators to writing the
 Shared Resource.

 It is the obligation of the Resource Owner to bind trust delegation
 to apparent trustworthiness. Additional measures to monitor proper
 behavior may be applied. In any case, the Resource Owner will be
 able to revoke the trust delegation of an entire tree in a single
 overwrite operation. It further holds the right to overwrite any
 malicious contributions to the shared resource under misuse.

8.4. Privacy Issues

 All data stored in the Shared Resource is readable by any node in the
 overlay; thus, applications requiring privacy need to encrypt the
 data. The ACL needs to be stored unencrypted; thus, the list members
 of a group using a Shared Resource will always be publicly visible.

Knauf, et al. Standards Track [Page 18]

RFC 8076 ShaRe March 2017

9. IANA Considerations

9.1. Access Control Policy

 IANA has registered the following entry in the "RELOAD Access Control
 Policies" registry (cf. [RFC6940]) to represent the USER-CHAIN-ACL
 Access Control Policy, as described in Section 6.6.

 +-------------------+----------+
 | Access Policy | RFC |
 +-------------------+----------+
 | USER-CHAIN-ACL | RFC 8076 |
 +-------------------+----------+

9.2. Data Kind-ID

 IANA has registered the following code point in the "RELOAD Data
 Kind-ID" registry (cf. [RFC6940]) to represent the ShaRe ACCESS-
 CONTROL-LIST kind, as described in Section 7.

 +----------------------+------------+----------+
 | Kind | Kind-ID | RFC |
 +----------------------+------------+----------+
 | ACCESS-CONTROL-LIST | 0x4 | RFC 8076 |
 +----------------------+------------+----------+

9.3. XML Namespace Registration

 This document registers the following URI for the config XML
 namespace in the IETF XML registry defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:p2p:config-base:share

 Registrant Contact: The IESG

 XML: N/A, the requested URI is an XML namespace

Knauf, et al. Standards Track [Page 19]

RFC 8076 ShaRe March 2017

10. References

10.1. Normative References

 [IEEE-Posix]
 "IEEE Standard for Information Technology - Portable
 Operating System Interface (POSIX) - Part 2: Shell and
 Utilities (Vol. 1)", IEEE Std 1003.2-1992, ISBN
 1-55937-255-9, DOI 10.1109/IEEESTD.1993.6880751, January
 1993, <http://ieeexplore.ieee.org/document/6880751/>.

 [OASIS.relax_ng]
 Clark, J. and M. Murata, "RELAX NG Specification",
 December 2001.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC6940] Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
 and H. Schulzrinne, "REsource LOcation And Discovery
 (RELOAD) Base Protocol", RFC 6940, DOI 10.17487/RFC6940,
 January 2014, <http://www.rfc-editor.org/info/rfc6940>.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium Recommendation
 REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

10.2. Informative References

 [RFC7890] Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer-to-Peer SIP
 (P2PSIP)", RFC 7890, DOI 10.17487/RFC7890, June 2016,
 <http://www.rfc-editor.org/info/rfc7890>.

 [RFC7904] Jennings, C., Lowekamp, B., Rescorla, E., Baset, S.,
 Schulzrinne, H., and T. Schmidt, Ed., "A SIP Usage for
 REsource LOcation And Discovery (RELOAD)", RFC 7904,
 DOI 10.17487/RFC7904, October 2016,
 <http://www.rfc-editor.org/info/rfc7904>.

Knauf, et al. Standards Track [Page 20]

RFC 8076 ShaRe March 2017

Acknowledgments

 This work was stimulated by fruitful discussions in the P2PSIP
 working group and the SAM research group. We would like to thank all
 active members for their constructive thoughts and feedback. In
 particular, the authors would like to thank (in alphabetical order)
 Emmanuel Baccelli, Ben Campbell, Alissa Cooper, Lothar Grimm, Russ
 Housley, Cullen Jennings, Matt Miller, Peter Musgrave, Joerg Ott,
 Marc Petit-Huguenin, Peter Pogrzeba, and Jan Seedorf. This work was
 partly funded by the German Federal Ministry of Education and
 Research, projects HAMcast, Mindstone, and SAFEST.

Knauf, et al. Standards Track [Page 21]

RFC 8076 ShaRe March 2017

Authors’ Addresses

 Alexander Knauf
 HAW Hamburg
 Berliner Tor 7
 Hamburg D-20099
 Germany

 Phone: +4940428758067
 Email: alexanderknauf@gmail.com

 Thomas C. Schmidt
 HAW Hamburg
 Berliner Tor 7
 Hamburg D-20099
 Germany

 Email: t.schmidt@haw-hamburg.de
 URI: http://inet.haw-hamburg.de/members/schmidt

 Gabriel Hege
 daviko GmbH
 Schillerstr. 107
 Berlin D-10625
 Germany

 Phone: +493043004344
 Email: hege@daviko.com

 Matthias Waehlisch
 link-lab & FU Berlin
 Hoenower Str. 35
 Berlin D-10318
 Germany

 Email: mw@link-lab.net
 URI: http://www.inf.fu-berlin.de/˜waehl

Knauf, et al. Standards Track [Page 22]

