
INDRA Note 1185 INDRA

Feb. 1982 Working
 Paper

RFC 809

 UCL FACSIMILE SYSTEM

 Tawei Chang

 ABSTRACT: This note describes the features of
 the computerised facsimile system
 developed in the Department of
 Computer Science at UCL. First its
 functions are considered and the
 related experimental work are
 reported. Then the disciplines for
 system design are discussed.
 Finally, the implementation of the
 system are described, while detailed
 description are given as appendices.

 Department of Computer Science

 University College, London

 NOTE: Figures 5 and 6 may be obtained by sending a request to
 Ann Westine at USC-Information Sciences Institute, 4676 Admiralty
 Way, Marina del Rey, California, 90291 (or WESTINE@ISIF) including
 your name and postal mailing address. Please mention that you are
 requesting figures 5 and 6 from RFC 809.

 OR: You can obtain these two figures online from the files

 <NETINFO>RFC809a.FAX and <NETINFO>RFC809b.FAX

 from the SRI-NIC online library. These files are in the format
 described in RFC 769.

UCL FACSIMILE SYSTEM INDRA Note 1185

 Contents

 1. INTRODUCTION...1

 2. SYSTEM FUNCTIONS.......................................2

 2.1 Communication......................................4
 2.2 Interworking with Other Equipment..................8
 2.2.1 Facsimile machines............................8
 2.2.2 Output Devices................................9
 2.3 Image Enhancement..................................11
 2.4 Image Editing......................................15
 2.5 Integration with Other Data Types..................16

 3. SYSTEM ARCHITECTURE....................................17

 3.1 System Requirements................................17
 3.2 Hierarchical Model.................................19
 3.3 Clean and Simple Interface.........................20
 3.3.1 Principles....................................21
 3.3.2 Synchronisation and Desynchronisation.........21
 3.3.3 Data Transfer.................................22
 3.4 Control and Organisation of the Tasks..............22
 3.4.1 Command Language..............................23
 3.4.2 Task Controller...............................23
 3.5 Interface Routines.................................26
 3.5.1 Sharable Control Structure....................26
 3.5.2 Buffer Management.............................27

 4. UCL FACSIMILE SYSTEM...................................28

 4.1 Multi-Task Structure...............................29
 4.2 The Devices..29
 4.3 The Networks.......................................30
 4.4 File System..31
 4.5 Data Structure.....................................32
 4.6 Data Conversion....................................34
 4.7 Image Manipulation.................................35
 4.8 Data Transmission..................................39

 5. CONCLUSION...41

 5.1 Summary..41
 5.2 Problems...42
 5.3 Future Study.......................................46

UCL FACSIMILE SYSTEM INDRA Note 1185

 Appendix I: Devices

 Appendix II: Task Controller and Task Processes

 Appendix III: Utility and Data Formats

 Reference

 1. INTRODUCTION

 The object of a facsimile system is to reproduce
 faithfully a document or image from one piece of paper
 onto another piece of paper sited remotely from the
 first one. Up to now, the main method of facsimile
 communication has been via the telephone network. Most
 facsimile machines permit neither the storage of image
 page nor their modification before transmission. With
 such machines, it is almost impossible to communicate
 between different makes of facsimile machines. In this
 respect, facsimile machines fall behind other
 electronic communication services.

 Integration of a facsimile service with computer
 communication techniques can bring great improvements
 in service. Not only is the reliability and efficiency
 improved but, more important, the system can be
 integrated with other forms of data communication.
 Moreover, the computer enables the facsimile machine to
 fit into a complete message and information processing
 environment. The storage facilities provided by the
 computer system make it possible to store large amounts
 of facsimile data and retrieve them rapidly. Data
 conversion allows facsimile machines of different types
 to communicate with each other. Furthermore, the
 facsimile image is edited and/or combined with other
 forms of data, such as text, voice and graphics, to
 construct a multi-media message, which can be widely
 distributed over computer networks.

 In the Department of Computer Science at UCL, a
 computerised facsimile system has been developed in
 order to fully apply computer technology, especially
 communication, to the facsimile field. Some work has
 been done to improve the facsimile service in several
 areas.

 (1) Adaptation of the facsimile machine for use with
 computer networks. This permits more reliable and
 accurate document transmission, as well as
 improving the normal point-to-point transfers.

 (2) Storage of facsimile pages. This permits the
 queueing of pages, so saving operator time. Also,
 standard documents can be kept permanently and
 transmitted at any time.

 (3) Interworking with other facsimile machines. This
 permits different makes of facsimile machines to

 - 1 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 exchange images.

 (4) Compression of the facsimile images. This allows
 more efficient transmission to be achieved.
 Different compression schemes are investigated.

 (5) Display of images on other devices. A colour
 display is used so that the result of image
 processing can be shown very vividly.

 (6) Improvement of the images. The ability to ’clean’
 the facsimile images not only allows for even
 higher compression ratio, but also provide a
 better result at the destination.

 (7) Editing of facsimile pages. This includes the
 ability to change pictures, alter the size of
 images and merge two or more images, all
 electronically.

 (8) Integration of the facsimile service with other
 data types. For the time being, coded character
 text can be converted into facsimile format and
 mixed pages containing pictures and text can be
 manipulated.

 This note first considers the functions of the
 facsimile system, the related experimental work being
 reported. Then the discipline for the system design is
 discussed. Finally, the implementation of the UCL
 facsimile system is described. As appendices, detailed
 description of the system are given, namely

 I. Devices
 II. Task controller and task processes
 III. Utility routines and Data format

 2. SYSTEM FUNCTIONS

 The computerised facsimile system we have developed
 is composed of an LSI-11 micro-computer running the MOS
 operating system [14] with two AED62 floppy disk drives
 [17], a Grinnell colour display [18], a DACOM facsimile
 machine [16], and a VDU as the system console. This
 LSI-11 is also attached to several networks, including
 the ARPANET/SATNET [21], [22] and the UCL Cambridge
 Ring. A schematic of the system is shown in Fig. 1.

 - 2 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 facsimile machine bit-map display
 +------+ +------+
 ! ! ! !
 +------+ +------+
 +------+ \ / VDU
 ! disk ! +----------+ +-----+
 +------+ ---- ! LSI-11 ! -- ! !
 ! disk ! +----------+ +-----+
 +------+ |
 +------+
 ! NI !
 +------+
 Network Interface

 Fig. 1 Schematic of UCL facsimile system

 In this system, a page is read on the facsimile
 machine and the image data produced is stored on the
 floppy disk. This data can be processed locally in the
 micro-computer and then sent to a file store of a
 remote computer across the computer network. At the
 remote site, the image data may be processed and
 printed on a facsimile machine.

 On the other hand, we can receive image data which is
 sent by a remote host on the network. This data can be
 manipulated in the same way, including being printed on
 the local machine.

 Section 2.1 dicusses the problems concerned with
 transmission of facsimile image data over a network,
 while the following sections deal with those of local
 manipulation of image data.

 In order to interwork with other facsimile machine,
 we have to convert the image data from one
 representation format to another. Interworking with
 other output devices requires that the image be scaled
 to fit the dimension of the destination device. These
 are described in section 2.2.

 Being able to process the image by computer opens the
 door to many possibilities. First, as considered in
 section 2.3, an image can be enhanced, so that the
 quality of the image may be improved and more efficient
 storage and transmission can be achieved. Secondly, a
 facsimile editing system can be supported whereby a
 picture can be changed and/or combined with other

 - 3 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 pictures. This is described in section 2.4.

 In our system, coded character text can be converted
 into its bit-map representation format so that it can
 be handled as a facsimile image and merged with
 pictures. This provides an environment where multi-type
 information can be dealt with. This is discussed in
 section 2.5.

 2.1 Communication

 The first goal of our computerised facsimile system
 is to use a computer network to transmit data between
 facsimile machines which are geographically separated.

 Normally, facsimile machines are used in association
 with telephone equipment, the data being sent along
 telephone lines. Placing the facsimile machines on a
 computer network presents a problem as the facsimile
 machine does not have the ability to use a computer
 network directly. To perform the network tasks a
 computer is required, and so the first phase was to
 attach the facsimile machine to a computer.

 The facsimile machine is not like a standard piece of
 computer equipment. We required a special hardware
 interface to enable communication between the facsimile
 machine and a small computer. This interface was made
 to appear exactly like the telephone system to the
 facsimile machine. Furthermore, the computer was
 programmed to act exactly as if it were another
 facsimile machine on the end of a telephone line. Thus
 the local facsimile machine could transmit data to the
 computer quite happily, believing that it was actually
 talking to a remote facsimile machine on the other end
 of a telephone wire. Because of the property of the
 DACOM 6450 used in the experiment [16], the interface
 could be identical to one developed for connecting to
 an X25 network. The binary synchronous mode of the chip
 used (SMC COM5025) was appropriate to drive the DACOM
 machine.

 At the other side of the computer network there was a
 similar computer with an identical facsimile machine.
 The problem of transmitting a facsimile picture now
 appeared simple: data was taken from the facsimile
 machine into the computer, transmitted over the network
 as if it was normal computer data, and then sent from
 the computer to the facsimile machine at the remote
 end. The data being sent over the network appears

 - 4 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 exactly as any other computer data; there is nothing
 special about it to signify that it came from a
 facsimile machine. The schematic of such facsimile
 transfer system is shown in Fig. 2.

 facsimile
 machine
 +---+ interface
 ! ! +--+ +-----+
 ! ! == ! ! == ! ! computer
 +---+ +--+ +-----+
 |
 - - - - - - computer
 / \ network

 \ / facsimile
 - - - - - - machine
 | interface +---+
 +-----+ +--+ ! !
 computer ! ! == ! ! == ! !
 +-----+ +--+ +---+

 Fig. 2 Facsimile transfer system

 The experimental system was used to perform a joint
 experiment between UCL and two groups in the United
 States. Pictures were exchanged via the ARPANET/SATNET
 [21], [22] between UCL in London, ISI in Los Angeles,
 and COMSAT in Washington D.C. (Fig. 3). This
 environment was chosen because no equivalent group was
 available in the UK.

 One problem concerned with such image data
 transmission is the quantity of data. Even with data
 compression, a single page of facsimile data can
 produce as much computer data as would normally be
 sufficient for sending over 20,000 alphabetic
 characters - or over a dozen typed pages. Thus for a
 given number of pages put into the system, an immense
 amount of computer data is produced. This means that
 the transmission will be slower than for sending text,
 and that far more storage will be required to hold the
 data.

 Another problem was encountered which became only too
 apparent when we implemented this system. The network
 we were using was often unable to keep up with the
 speed of the facsimile machine. When this happened the

 - 5 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 US UK
 satellite
 COMSAT __
 +---+ +--+ / \
 ! ! -- ! ! / \
 +---+ +--+ / \
 | \ / \
 +---+ \ / \ UCL
 !fax! \+--+/ \+--+ +---+
 +---+ ARPANET ! ! SATNET ! ! -- ! !
 /+--+ +--+ +---+
 / |
 ISI / +---+
 +---+ +--+ !fax!
 ! ! -- ! ! +---+
 +---+ +--+
 |
 +---+
 !fax!
 +---+

 Fig. 3. The three participants of the facsimile experiments

 computer tried to slow down the facsimile machine. The
 facsimile machine would detect this ’slowness’ as a
 communication problem (as a telephone line would never
 act in this manner), and would abandon the transfer
 mid-way through the page.

 This is because the the facsimile machine we were
 using was never intended for use on a computer; it was
 designed and built for use on telephone lines. Indeed,
 being unaware that it was connected to a computer, the
 facsimile machine transmitted data at a constant rate,
 which exceeded the limit that the network could accept.
 In other words, the computer network we were using was
 not designed for the transfer rate that we were trying
 to use over it.

 Both these problems are surmountable. Facsimile
 machines are coming on the market that are designed for
 direct communication with a computer. These machines do
 not mind the delays on the computer interface and are
 tolerant of the stops and re-starts. On the other hand,
 if there were a serious use of facsimile machines on a
 computer network, the network could be designed for the
 high data rate required. Our problem was aggravated by

 - 6 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 using a network that was never designed for the data
 rates required in our mode of usage.

 Despite the problems we encountered being a result of
 the experimental equipment we were working with, we
 still had to improve the situation to permit more
 extensive communications to take place. The easiest way
 to do this was to introduce a local storage area in our
 computer where the data could be held prior to
 transmission. The transfer of a page is now done in
 three stages. First, the facsimile data is read from
 the facsimile machine and stored on a local disk. This
 takes place at high speed as this is just a local
 operation. When this is complete, the data is sent
 over the network to a disk on the remote computer.
 Finally, the data from that disk is output to the
 remote facsimile machine. This improved system is
 shown in Fig. 4.

 computer network
 fax computer - - - - computer fax
 +---+ +-----+ / \ +-----+ +---+
 ! ! = ! ! = ==> = ! ! = ! !
 +---+ +-----+ \ / +-----+ +---+
 - - - + | - - - - | + - - >
 | | + - - - - - - - - - + | |
 | | | | | |
 V | | V | |
 +---+ +---+
 ! ! ! !
 ! ! ! !
 +---+ +---+
 disk disk

 Fig. 4. The improved facsimile transfer system

 The idea behind this method is to decouple the
 facsimile machine from the network communications. The
 data is read from the facsimile machine at full speed,
 without the delays caused by the computer network.
 This also has the effect of being more acceptable to
 the human operators: each page is now read in less than
 a minute. The transmission over the network then takes
 place at whatever speed the network can sustain. This
 does not affect the facsimile machines at all; they are
 not involved in the sending or receiving. Only when all
 the data has been received at the remote disk is the
 remote facsimile machine told that the data is ready.

 - 7 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 The facsimile machine is then given the data as fast as
 it will accept it.

 The disadvantage of such a system is that the person
 sending the pages does not know how long it will be
 before they are actually printed at the other side. If
 several pages are input in quick succession by the
 operator, they will be stored on disk; it may then be
 some time before the last page is actually delivered to
 the destination. This is not always a disadvantage;
 where many operators are sending data to the same
 destination, it is a definite advantage to be able to
 input the pages and have the system deliver them when
 the destination becomes free. Such a system is
 preferable to use of the current telephone system where
 the operator has to keep re-dialing the remote
 facsimile machine until the call is answered.

 2.2 Interworking with Other Equipment

 2.2.1 Facsimile machines

 As was mentioned earlier, facsimile machines produce
 a large amount of data per page due to the way in which
 the pages are encoded. To reduce the data that has to
 be transmitted, various compression techniques are
 employed. The manufacturers of facsimile machines have
 developed proprietary ways in which the data is
 compressed and encoded. Unfortunately this has meant
 that interworking of different facsimile machines has
 been impossible. In the system described in the last
 section, exchange of pictures was only possible between
 sites that had identical facsimile machines. The new
 set of CCITT recommendations will reduce the extent to
 which differences in equipment persist.

 Having the data on a computer gives us the
 opportunity to manipulate data in any way we wish. In
 particular we could convert the data from the form used
 in one facsimile machine to that required by another.
 This means that interworking between different types of
 facsimile machines can be achieved.

 The development of this system took place in two
 stages: the decompression of the facsimile data from
 the coded form used in our machine into an internal
 data form and the recompression of the data in the
 internal form into the encoded form required for the
 destination machine. Two programs were developed to
 perform these two operations.

 - 8 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 At the same time we were developing compression and
 decompression programs for machines that use other
 techniques. In particular, we developed programs to
 handle the recently approved CCITT recommendation for
 facsimile compression [15]. The CCITT came up with two
 varieties of compression, depending upon the resolution
 being used.

 Unfortunately there were no facsimile machines on the
 network that use the CCITT compression technique.
 However, the programming of the new methods achieved
 two goals: it proved that the data could be converted
 inside a small computer, so that machines of different
 types could be supported on the network, and it enabled
 us to compare the compression results. These are
 described in more detail in [13]. Essentially, these
 show that the DACOM technique used by our facsimile
 machine is comparatively poor, and that considerably
 less data need be transmitted if some other method is
 used. This brings up another possibility: we could
 change the compression of the data to reduce the volume
 for transmission and then change the data back again at
 the destination. This may save considerable
 transmission time, especially if fast computers or
 special hardware was easily available. This has not
 been tried yet in our system, as none of the other
 users on the network have the capability of changing
 the data format back into that required by their
 machines.

 There are many other more efficient compression
 schemes, e.g. block compression [7] and predictive
 compression [8], but we have not yet incorporated them
 into our system.

 2.2.2 Output Devices

 One area that we have explored is the use of devices
 other than facsimile machines for outputting the data.
 Facsimile machines are both expensive to buy and
 relatively slow to operate. We have investigated the
 use of a TV-like screen to display the data, just as
 character VDUs are commonly used to display text. This
 activity requires bit-map displays, with an address in
 memory for each postion on the screen. Full colour and
 multiple shades can be used with appropriately large
 bit-map storage. Although simple in principle, the
 implementation of the relevant techniques took
 considerable effort.

 - 9 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 The problems arise in the way that the facsimile
 image is encoded. Raw facsimile images consist of rows
 of small dots, each dot recorded as a black or white
 space. When these dots are arranged together they build
 up a picture in a similar manner to the way in which a
 newspaper picture is made up. Unfortunately the number
 of dots used in a facsimile page is not the same as the
 number used on most screens. For instance, the DACOM
 facsimile machine uses 1726 dots across each page, but
 across a screen there are usually just 512 dots. Thus
 to show the picture on the screen the 1726 dots must be
 ’squeezed’ into just 512 dots; stated another way, 1214
 dots must be thrown away without losing the picture!

 It is in reducing the number of picture elements that
 the problem arises. We could just every third dot or
 so from the facsimile page and just display those.
 Alternatively, we could take three or more at a time
 and try to convert the group of them into a single
 black or white dot. Unfortunately, in both these
 cases, data can get lost that is necessary to the
 picture. For instance, a facsimile encoding of an
 architect drawing could easily end up with a complete
 line removed, radically changing the presentation of
 the image.

 After much experimentation, we developed a method of
 reducing the number of dots without destroying the
 picture. This is a thinning technique, whereby key
 elements of the picture are thinned, but not removed.
 Occasionally, when the detail gets too fine, some
 elements are merged, but under these circumstances the
 eye would not have been able to see the detail anyway.
 The details of this technique are described in [3] and
 [4].

 It may also be required that a picture be enlarged.
 This enlargement can be done by simply duplicating each
 pixel in the picture. For a non-integral ratio, the
 picture can be expanded up to the nearest integer and
 then shrunk to the correct size. However, this method
 may degrade the image quality, e.g. the oblique contour
 may become stepped, especially when the picture is
 enlarged too much. This problem can be solved by using
 an iterative enlargement algorithm. Each time a pixel
 is replaced with a 2x2 array of pixels, whose pattern
 depends on the original pixel and the pixels
 surrounding it. This procedure is repeated until the
 requested ratio is reached. If the ration is not a
 power of 2’s, the same method as that for non-integral
 ratios is used.

 - 10 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 As a side effect of developing this technique, we
 could freely change the size and shape of an image.
 The picture can be expanded or shrunk, or it can be
 distorted. Distortion, whereby the horizontal and
 vertical dimensions of the image may be changed by
 different amounts, is often useful in image editing.

 The immediate consequence of this ability to change
 the image size meant that we could display the image on
 a screen as well as output the image on a facsimile
 machine. To a user of a computerised facsimile system
 this could be a very useful feature: images can be
 displayed on screen much faster than on a facsimile
 machine, and displays are significantly cheaper than
 the facsimile machines as well. It is possible that an
 installation could have many screen displays where the
 image could be viewed, but perhaps only one facsimile
 machine would be available for hard copy. This would be
 similar to many computer configurations today where the
 number of printers is limited due to their cost, and
 display screens are far more numerous.

 2.3 Image Enhancement

 One aspect of computer processing that we wanted to
 investigate was that of image enhancement. Enhancing
 the image is a very tricky operation; as the name
 implies it means that the image is improved in some
 sense. Under program control this is difficult to
 achieve: what the program thinks is an improvement, the
 human might judge to be distinctly worse.

 Our enhancement attempts were aimed particularly at
 printed documents and other forms of typed text. The
 experiment was double pronged: we hoped to make the
 image easier to read by humans while also making the
 image easier for the computer to handle.

 In our earlier experiments we had noticed that the
 encoding of printed matter was often very poor. This
 was especially noticeable when we enlarged an image.
 Rather than each character having smooth edges as on
 the original document, the edges were very rough,
 unexpected notches and excrescences being caused by the
 facsimile scanner. They not only degrade the image
 quality but also decrease the compression efficiency. A
 typical enlargement of several characters is shown in
 Fig. 5.

 - 11 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Fig 5. An enlargement of an typed text

 The enhancement method we adopted was first employed
 at Loughborough University [5]. This method has the
 effect of smoothing the edges of the dark areas on the
 image. The technique consists of considering each dot
 in the image in turn. The dot is either left as it is

 - 12 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 or changed to the opposite colour (white to black or
 black to white) depending upon the eight dots that
 surround it. The particular pattern of surrounding dots
 that are required to change the inner dot’s colour is
 used to control the harshness of the algorithm [6],
 [8].

 In our first set of experiments the result was
 definitely worse than the original. Although square-
 like characters such as H, L, and T came out very well,
 anything with slope (M, V, W, or S) became so bad that
 the oblique contours were stepped. The method was
 subsequently modified to produce a result that was far
 more acceptable; the image looked a lot cleaner than
 the original. Fig. 6 shows the same text as that in
 Fig. 5, but after it has been cleaned.

 - 13 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Fig. 6 A cleaned text

 The effect of these can be difficult to see clearly.
 We have used the colour on our Grinnell display to show
 the original picture and the outcome of various picture
 processing operations superposed in different colours.
 This brings out the effect of the operations very

 - 14 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 vividly.

 It was mentioned above that the enhancement was done
 not only to improve the image for reading but also for
 easier processing by the computer. As described
 earlier, the image from the facsimile machine is
 compressed in order to reduce the amount of data. The
 cleaning allows a higher compression rate so that more
 efficient transmission and/or storage can be achieved.

 We learned some important lessons from the
 enhancement exercise. Originally we thought that the
 main attraction in enhancement would be to improve the
 readability. In the end, we found that improving the
 readability was very difficult, especially because the
 facsimile image was so poor. Instead we found that the
 effect of reducing the compressed output was more
 important. By reducing the data to be transmitted by a
 quarter, significant savings could be made. But before
 such a technique could be used in a live system, the
 time it takes to produce the enhancement must be
 weighed against the time that would be saved in
 transmission.

 2.4 Image Editing

 By editing we mean that the facsimile picture can be
 changed, or combined with other pictures, while it is
 stored inside the computer. In previous sections it
 was mentioned that we could change the size and shape
 of a facsimile image. This technique was later combined
 with an overlaying method that enabled one picture to
 be combined with another [12].

 In order to perform any editing it is necessary to
 have the picture displayed for the user to see. In our
 case we displayed the picture on the bit-map screen.
 The image took up the left-hand side of the screen, the
 right side being reserved for the picture that was
 being built. The user could select an area of the
 left-hand screen and move it to a position on the
 right-hand screen. Several images could be displayed
 in succession on the left, and areas selected and moved
 to the right. Finally, the right-hand screen could be
 printed on the facsimile machine.

 The selection of an area of the picture was done by
 the use of a coloured rectangular subsection,
 controlled by a program in the computer, that could be
 moved around on the screen. The rectangular subsection

 - 15 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 was moved with instructions typed in by the operator;
 it could be moved up or down, and increased or
 decreased in size. When the appropriate area of the
 screen had been selected, the program remembered the
 coordinates and moved the coloured rectangular
 subsection to the right-hand side of the screen. The
 user then selected an area again, in a similar manner.
 When the user finished the editing, the program removed
 the part of the picture selected from the left-hand
 screen and converted it to fit the shape of the
 rectangular subsection on the right-hand screen. The
 result was then displayed for the user to see.

 When an image was being edited, the editor had to
 keep another scaled copy for display. This is due to
 the fact that the screen had a different dimension to
 that of the facsimile machine. The editing operations,
 e.g. chopping and merging, were performed on the
 original image data files with the full resolution
 available on the facsimile machine.

 2.5 Integration with Other Data Types

 The facsimile machine can be viewed in a wider
 context than merely a facsimile input/output device. It
 can work as a printer for other data representation
 types, such as coded character text and geometric
 graphics. At present, text can be converted into
 facsimile format and printed on the facsimile machine.
 Moreover, mixed pages containing pictures and text can
 be manipulated by our system. The integration of
 facsimile images with geometric graphics is a topic of
 future research.

 In order to convert a character string into its
 facsimile format, the system maintains a translation
 table whereby the patterns of the characters available
 in the system can be retrieved. The input character
 string is translated into a set of scan lines, each of
 which is created by concatenating the corresponding
 patterns of the characters in the string.

 The translation table is in fact a software font,
 which can be edited and modified. Even though only one
 font is available in our system for the time being, it
 is quite easy to introduce other character fonts.
 Furthermore, it is also possible for a font to be
 remotely loaded from a database via the communication
 network.

 - 16 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 This allows for more interesting applications of the
 facsimile machine. For example, it could serve as a
 Teletex printer, provided that the Teletex character
 font is included in our system. In this case, the text
 images may be distorted to fit the presentation format
 requested by the Teletex service. Similarly, Prestel
 viewdata pages could be displayed on the Grinnell
 screen.

 Moreover, pictures can be mixed with text by
 combining this text conversion with the editing
 described in the previous section. This should be
 regarded as a notable step towards multi-type
 processing.

 Not only does this support a local multi-type
 environment but multi-type information can be
 transmitted over a network. So far as this facsimile
 system is concerned, a mixed page containing text and
 pictures can be sent only when it has been represented
 in a bit-map format. However, much more efficient
 transmission would be achieved if one could transmit
 the text and pictures separately and reproduce the page
 at the destination site. This requires that a multi-
 type data structure be designed which is understood by
 the two communication sites.

 3. SYSTEM ARCHITECTURE

 Now let us discuss the general disciplines for design
 and implementation of a computerised facsimile system
 which carries out the functions described in the
 previous sections. Having discussed the requirements
 of the system, a hierarchical model is introduced in
 which the modules of different layers are implemented
 as separate processes. The Clean and Simple interface,
 which is adopted for inter-process communication, is
 then described. The task controller, which is
 responsible for organising the tasks involved in a
 requested job, is discussed in detail. Some efforts
 have been made in our experimental work to provide a
 more convenient user programming environment and a more
 efficient data transfer method. This is finally
 described.

 3.1 System Requirements

 In a computerised facsimile system, the images are
 represented in a digital form. To carry out this

 - 17 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 conversion, a page is scanned by the optical scanner of
 the facsimile machine, a digital number being produced
 to represent the darkness of each pixel. As high
 resolution has to be adopted to keep the detail of the
 image, the facsimile data files are usually rather
 large. In order to achieve efficient storage and
 transmission, the facsimile data must be compressed as
 much as possible.

 Currently, the facsimile machines made by different
 manufacturers h different properties, such as
 different compression methods and different resolution.
 There are also some international standards for
 facsimile data compression, which are employed for the
 facsimile data to be transferred over the public data
 network. These require that the facsimile data be
 converted from one representation form to another, so
 that users who are separated geographically and use
 different machines can communicate with each other.
 More sophisticated applications, e.g. image editing,
 request processing facilities of the system as well.

 When being processed, the facsimile image should be
 represented in a common format or internal data
 structure, which is used to pass the information
 between different processing routines. For the sake of
 convenience and efficiency, the internal data structure
 should be fairly well compressed and its format should
 be easy for the computer to manipulate. In our
 experimental work, the line vector is chosen as a
 standard unit, a simple run-length compression being
 employed [3]. Some processing routines may use other
 data formats, e.g. bit-map, but it is the
 responsibility of such routines to perform the
 conversion between those formats and the standard one.

 The system should contain several processing
 routines, each of which performs one primitive task,
 such as chopping, merging, and scale-changing. An
 immense variety of processing operations can be carried
 out as long as those task modules can be organised
 flexibly. The capability for flexible task organisation
 should be thought of as one of the most important
 requirements of the system.

 One possibility is for the processing routines
 involved to be executed separately, temporary files
 being used as communication media. Though very simple,
 this method is far too inefficient.

 - 18 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 As described above, the information unit for the
 communication between the processing routines is the
 line vector, so that the routines can be organised as
 embedded loops, where a processing routine takes the
 input line from its source routine located in the inner
 loop, and passes the output line to the destination
 routine located in the outer loop [3]. Obviously this
 method is quite efficient. But it is not realistic for
 our system, because it is very difficult to build up
 different processing loops at run-time and flexible
 task organisation is impossible.

 In a real-time operating system environment, the
 primitive tasks can be implemented as separate
 processes. This method, which is discussed in detail in
 the following sections, provides the required
 flexibility.

 3.2 Hierarchical Model

 As shown in Fig. 7, the modules in a single computer
 fall into three layers.

 +---------+
 ! ! task controller
 +---------+

 tasks
 +---+ +---+ +---+ +---+ +---+
 ! ! ! ! ! ! ! ! !
 +---+ +---+ +---+ +---+ +---+
 | | |
 +---+ +---+ +---+
 ! ! ! ! device drivers ! !
 +---+ +---+ +---+
 - - - | - - | - - - - - - - - - | - - - -
 +---+ +---+ +---+
 ! ! ! ! physical | !
 ! ! ! ! devices ! !
 +---+ +---+ +---+

 Fig. 7 The hierarchical model

 These are:

 (1) Device Drivers, which constitute the lowest layer
 in the model. The modules in this layer deal with
 I/O activities of the physical devices, such as

 - 19 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 facsimile machine, display and floppy disk. This
 layer frees the task modules of upper layer from
 the burden of I/O programming.

 (2) Tasks, which perform all processing primitives and
 handle different data structures. Above the driver
 of each physical device, there are one or more
 such device-independent modules, which work as
 information source or sink in the task chain (see
 below). A file system module allows other modules
 to store and retrieve information on the secondary
 storage device such as floppy disk. Decompression
 and recompression routines convert data structures
 of facsimile image information so that the
 facsimile machines can communicate with the rest
 of the system. Processing primitives, e.g.
 chopping, merging, scaling, are implemented as
 task modules in this layer. They are designed such
 that they can be concatenated to carry out more
 complex jobs. So far as the system is concerned,
 the protocols for data transmission over computer
 networks are also regarded as task modules in this
 layer.

 (3) Task Controller, which organises the task
 processes to perform the specified job. It
 provides the users of the application layer with a
 procedure-oriented language whereby the requested
 job can be defined as a chain of task modules.
 Literally, the chain is represented by a character
 string:

 <source_task>|{<processing_task>|}<sink_task>

 According to such a command, the task controller
 selects the relevant task modules and concatenates
 them in proper order by means of logical links.
 Then the tasks on the chain are executed under its
 control, so that the data taken from the source
 are processed and the result is put into the sink.

 3.3 Clean and Simple Interface

 It is important, in this application, to develop the
 software in a modular way. It is desirable to put
 together a set of modules to carry out the different
 image processing tasks. Another set of transport
 modules must be developed for shipping data over the

 - 20 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 different networks to which the UCL system is attached.
 In our computerised facsimile system, these task
 modules are implemented as separate processes. The
 operation of the system relies on the communication
 between these processes. The interface which is used
 for such communication has been designed to be
 universal; it is independent of these modules, and has
 been termed the Clean and Simple interface [20]. This
 interface is discussed in this section.

 3.3.1 Principles

 The Clean and Simple interface is concerned with the
 synchronisation and transfer of full-duplex data
 streams between two communicating processes. Thus the
 interface has three major components: connection
 synchronisation, data transfer and connection
 desynchronisation. These components are discussed
 below.

 The connection between two processes is initiated by
 one of them, which, generally speaking, belongs to a
 higher layer. For example, the interface between
 protocols of different layers is always initiated by
 the higher layer, though, sometimes, the connection is
 initiated passively by the primitive ’listen’. It will
 be seen in the next section that task processes can
 communicate with each other via the connections to the
 higher layer (task controller) and this makes it
 possible to achieve flexible task organisation.

 The process initiating the connection is called the
 ’master’ process, while the other is called the ’slave’
 process. The ’master’ process is also responsible for
 resource allocation for the two communicating
 processes. Here ’resource’ refers mainly to the memory
 areas for the message structure and data buffer. This
 asymmetric definition of the interface eliminates any
 possible confusion in resource allocation.

 The interface is implemented by using the signal-wait
 mechanism provided by the operating system. A data
 structure called CSB (Clean and Simple Block), which
 contains function, data buffer, and other information,
 is sent as the event message, when one process signals
 another [20].

 - 21 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 3.3.2 Synchronisation and Desynchronisation

 The procedure for connection synchronisation is
 composed of two steps. First, the two processes
 exchange their identifiers for the specific connection
 by means of a getcid primitive. Usually, the pointer
 to the task control structure of the process is used as
 the connection identifier.

 Then, the ’master’ sends an open CSB with appropriate
 parameter string passing the initialisation
 information. This information, which can also be called
 open parameter, is process dependent, or more
 accurately, task dependent. For example, the parameters
 for the file system should be the file name and the
 access mode. Provided the ’slave’ accepts the request,
 the connection is established successfully and data can
 be transferred via the interface.

 In order to desynchronise the connection, the
 ’master’ initiates a ’close’ action. On the other hand,
 an error state or EOF (end of file) state can be
 reported by the ’slave’ to request a connection
 desynchronisation.

 The listen primitive in our system is reserved for
 the processes that receive a request from the remote
 hosts on the networks.

 3.3.3 Data Transfer

 While the Clean and Simple interface is asymmetric in
 relation to connection synchronisation, data transfer
 is completely symmetric so long as the connection has
 been established. Data flows in both directions are
 permitted, though the operations are quite different.

 The interface provides two primitives for data
 transfer -- read and write. To transfer some data to
 the ’slave’, the ’master’ signals it with a CSB
 containing the write function and a buffer filled with
 the data to be transferred. Having consumed the data,
 the ’slave’ returns the CSB to report the result status
 of the transmission.

 On the other hand, in order to receive some data from
 the ’slave’, the ’master’ uses a read CSB with an empty
 buffer. Having received the CSB, the ’slave’ fills the
 buffer with the data requested and, then, returns the
 CSB.

 - 22 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 3.4 Control and Organisation of the Tasks

 Another important aspect of the multi-process
 architecture of the UCL facsimile system, is the need
 to systematise the control and organisation of the
 tasks. This activity is the function of the task
 controller, whose operations are discussed in this
 section.

 3.4.1 Command Language

 As mentioned earlier, the task controller supports a
 procedure-oriented language by means of which the user
 or the routines of the upper layers can define the jobs
 requested. A command should contain the following
 information:

 1. the names of the task processes which are involved
 in the job.
 2. the open parameters for these task processes.
 3. the order in which the tasks are to be linked.

 The last item is quite important, though, usually,
 the same order as that given in the command is used.

 A command in this language is presented as a zero-
 ended character string. In the task name strings and
 the attribute strings of the open parameters, ’|’, ’"’,
 and ’,’ must be excluded as they will be treated as
 separators. The definition is shown below, where ’|’,
 which is the separator of the command strings in the
 language, does not mean ’OR’.

 <command_string> ::= <task_string>
 <command_string> ::= <task_string>|<command_string>
 <task_string> ::= <task_name>
 <task_string> ::= <task_name>"<open_parameter>
 <open_parameter> ::= <attribute>
 <open_parameter> ::= <attribute>,<open_parameter>

 3.4.2 Task Controller

 In our experimental work, the task controller module
 is called fitter. This name which is borrowed from
 UNIX hints how the module works. According to the
 command string, it links the specified tasks into a
 chain, along which the data is processed to fulfil the

 - 23 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 job requested (Fig. 8).

 tasks
 +-----+ +-----+ +-----+
 ! a ! -> ! b ! -> ! c !
 +-----+ +-----+ +-----+

 Fig. 8 The task chain

 Since all modules, including fitter itself, are
 implemented as processes, the connections between
 modules should be via the Clean and Simple interfaces.
 Upon receiving the command string, the fitter parses
 the string to find each task process involved and opens
 a connection to it. Formally, the task processes are
 chained directly, but, logically, there is no direct
 connection between them. All of them are connected to
 the fitter (Fig. 9).

 fitter
 +-------------+
 +-- ! ! --+
 | +-------------+ |
 | | |
 V V V
 +-----+ +-----+ +-----+
 ! a ! ! b ! ! c !
 +-----+ +-----+ +-----+

 Fig. 9 The connection initiated by the fitter

 For each of the processes it connects, the fitter
 keeps a table called pipe. When the command string is
 parsed, the pipe tables are double-linked to represent
 the specified order of data flow. So far as one process
 is concerned, its pipe table contains two pointers: a
 forward one pointing to its destination and a backward
 one pointing to its sources. Besides the pointers, it
 also maintains the information to identify the task
 process and the corresponding connection.

 - 24 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Fig. 10 illustrates the chain of the pipe tables for
 the job "a|b|c". Note that the forward (output) chain
 ends at the sink, while the backward (input) chain ends
 at the source. In this sense, the task processes are
 chained in the specified order via the fitter (Fig.
 11). The data transfer along the chain is initiated and
 controlled by the fitter, each process getting the
 input from its source and putting the output to its
 destination.

 +-----+ +-----+ +-----+
 ! * -+--> ! * -+--> ! 0 !
 +-----+ +-----+ +-----+
 ! 0 ! <--+- * ! <--+- * !
 +-----+ +-----+ +-----+
 ! a ! ! b ! ! c !
 +-----+ +-----+ +-----+
 ! ! ! ! ! !
 ! ! ! ! ! !
 +-----+ +-----+ +-----+

 Fig. 10 The pipe chain

 fitter
 +-------------+
 +-> ! * -> * -> * ! --+
 | +-------------+ |
 | | A |
 | V | V
 +-----+ +-----+ +-----+
 ! a ! ! b ! ! c !
 +-----+ +-----+ +-----+

 Fig. 11 The data flow

 This strategy makes the task organisation so flexible
 that only the links have to be changed when a new task
 chain is to be built up. In such an environment, each
 task process can be implemented independently, provided
 the Clean and Simple interface is supported. This also
 makes the system extension quite easy.

 - 25 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 The fitter manipulates one job at a time. But it must
 maintain a command queue to cope with the requests,
 which come simultaneously from either the upper level
 processes or other hosts on the network.

 3.5 Interface Routines

 In a modular, multi-process system such as the UCL
 facsimile system, the structure of the interface
 routines is very important. The CSI of section 3.3 is
 fundamental to the modular interface; a common control
 structure is also essential. This section gives some
 details both about the sharable control structure and
 the buffer management.

 3.5.1 Sharable Control Structure

 Though the CSI specification is straightforward, the
 implementation of the inter-process communication
 interface may be rather tedious, especially in our
 system, where there are many task processes to be
 written. Not only does each process have to implement
 the same control structure for signal handling, but
 also the buffer management routines must be included in
 all the processes.

 For the sake of simplicity and efficiency, a package
 of standard interface routines is provided which are
 shared by the task processes in the system. These
 routines are re-entrant, so that they can be shared by
 all processes.

 The ’csinit’ primitive is called for a task process
 to check in. An information table is allocated and the
 pointer to the table is returned to the caller as the
 task identifier, which is to be used for each call of
 these interface routines.

 Then, each task process waits by invoking the
 ’csopen’ primitive which does not return until the
 calling process is scheduled. When the connection
 between the process and the fitter is established, the
 call returns the pointer to the open parameter string
 of the task, the corresponding task being started. A
 typical structure of the task process (written in c) is
 shown below. After the task program is executed, the
 process calls the ’csopen’ and waits again. It can be
 seen that the portability of the task routines is
 improved to a great extent. Only the interface routines

 - 26 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 should be changed if the system were to run in a
 different operating environment.

 static int mytid; /* task identifier */

 task()
 {
 char *op; /* open parameter */

 mytid = csinit();
 for(;;) {
 op = csopen(mytid);
 ... /* the body of the task */
 }
 }

 3.5.2 Buffer Management

 The package of the interface routines also provides a
 universal buffer management, so that the task processes
 are freed from this burden. The allocation of the data
 buffers is the responsibility of the higher level
 process, the fitter. If the task processes allocated
 their own buffers, some redundant copying would have to
 be done. Thus, the primitives for data transfer,
 ’csread’ and ’cswrite’, are designed as:

 char *csread(tid, need);
 char *cswrite(tid, need);

 where ’tid’ is the identifier of the task and ’need’ is
 the number of data bytes to be transferred. The
 primitives return the pointer to the area satisfying
 the caller’s requirement. The ’csread’ returns an area
 containing the data required by the caller. The
 ’cswrite’ returns an area into which the caller can
 copy the data to be transferred. The copied data will
 be written to its destination at a proper time without
 the caller’s interference. Obviously the unnecessary
 copy operations can be avoided. It is recommended that
 the data buffer returned by the primitives be used
 directly to attain higher performance.

 - 27 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 In order to implement this strategy, each time a
 piece of data is required, the size of the buffer
 needed is compared with that of the unused buffer area
 in the current CSB. If the latter is not less than the
 former, the current buffer pointer is returned.
 Otherwise, a temporary buffer has to be employed. The
 data is copied into the buffer until the requested size
 is reached. In this case, instead of a part of the
 current buffer, the temporary buffer will be returned.

 A ’cswrite’ call with the ’need’ field set to zero
 tells the interface routine that no more data will be
 sent. It causes a ’close’ CSB to be sent to the
 destination routine.

 If there is not enough data available, ’csread’
 returns zero to indicate the end of data.

 4. UCL FACSIMILE SYSTEM

 Now we discuss the implementation of the computerised
 facsimile system developed in the Department of
 Computer Science at UCL.

 This system has several components. Since the total
 system is a modular and multi-process one, a specific
 system must be built up for a specific application. The
 way that this is done is discussed in section 4.1. The
 specific devices and their drivers are described in
 section 4.2. The system can be attached to a number of
 networks. In the UCL configuration, the network
 interface can be direct to SATNET [22], SERC NET [23],
 PSS [24], and the Cambridge Ring. The form of network
 connection is discussed further in section 4.3. The
 system must transfer data between the facsimile devices
 and the disks, and between the networks and the disks.
 For this a filing system is required which is discussed
 in section 4.4.

 A key aspect of the UCL system is flexibility of
 devices, networks, and data formats. The flexibility of
 device is achieved by the modular nature of the device
 drivers (section 4.2). The flexibility of network is
 discussed in section 4.8. The additional flexibility of
 data structure is described in section 4.5. The
 flexibility can be utilised by incorporating conversion
 routines as in section 4.6. An important aspect of the
 UCL system is the ability to provide local manipulation
 facilities for the graphics files. The facilities
 implemented for the local manipulation are discussed in

 - 28 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 section 4.7. In order to transfer files over the
 different networks of section 4.3. a high level data
 transmission protocol must be defined. The procedures
 used in the UCL system are discussed in section 4.8.

 4.1 Multi-Task Structure

 The task controller and processing tasks are
 implemented as MOS processes. A number of utility
 routines are provided for users to build new task
 processes and modules at application level.

 In the environment of MOS, a process is included in a
 system by specifying a Process Control Table when the
 system is built up. The macro ’setpcte’ is used for
 this purpose, the meaning of its parameters being
 defined in [14].

 #define setpcte(name,entry,pridev,prodev,stklen,
 relpid,relopc)
 {0,name,entry,pridev,prodev,stklen,relpid,relopc}

 A Device Control Table (DCT) has to be specified for
 each device when the system is built up. A DCT can be
 defined anywhere as devices are referenced by the DCT
 address. The macro ’setdcte’ is designed to declare
 devices, the meanings of its parameters being specified
 in [14]. This method is used in the device
 descriptions.

 #define setdcte(name,intvec,devcsr,devbuf,devinit,
 ioinit,intrpt,mate)
 {04037,intrpt,0,0,name,mate,intvec,devinit,
 devcsr,devbuf,ioinit}

 4.2 The Devices

 As mentioned in section 2, apart from the general
 purpose system console, there are three devices in the
 system to support the facsimile service. These are:

 (1) AED62 Floppy Disk, which is used as the secondary
 memory storing the facsimile image data. Above its
 driver, a file system is implemented to manage the
 data stored on the disks, so that an image data

 - 29 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 file can be accessed through the Clean and Simple
 interface. This file system is dicussed in detail
 in the next section. For some processing jobs, the
 image data has to buffered on a temporary file
 lest time-out occurs on the facsimile machine.

 (2) DACOM Facsimile Machine, which is used to input
 and output image data. It reads an image and
 creates the corresponding data stream. On other
 hand, it accepts the image data and reproduces the
 corresponding image. Above its driver, there is a
 interface task to fit the facsimile machine into
 the system, the Clean and Simple interface being
 supported. The encoding algorithm for the DACOM
 machine is described in [19].

 (3) Grinnell Colour Display, which is used as the
 monitor of the system. Above its driver, an
 interface task is implemented so that the image
 data in standard format can be accepted through
 the Clean and Simple interface.

 The detailed description of these devices can be
 found in Appendix 1. The interface task and the
 description for each device are listed in the following
 table. The interface tasks can be directly used as data
 source or sink in a task string.

 Device Interface Task Description

 AED62 Floppy Disk fs() aed62(device)
 DACOM fax Machine fax() dacom(device)
 Grinnell Display grinnell() grinnell(device)

 Note that the DCTs for the facsimile machine and
 Grinnell display have been included in the
 corresponding interface tasks, so that there is no need
 to declare them if these tasks are used.

 4.3 The Networks

 There are three relevant wide-area networks
 terminating in the Department of Computer Science at
 the end of 1981. These are:

 (1) A British Telecom X25 network (PSS, [24]).

 (2) A private X25 network (SERC NET, [23])

 - 30 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 (3) A Defence network (ARPANET/SATNET, [21], [22])

 In addition there is a Cambridge Ring as a local
 network.

 For the time being, the UCL facsimile system is
 directly attached to the various networks at the point
 NI (Network Interface) of Fig. 1.

 As mentioned earlier, pictures can be exchanged via
 the SATNET/ARPANET, between UCL in London, ISI in Los
 Angeles, and COMSAT in Washington D.C.. The Network
 Independent File Transfer Protocol (NIFTP, [9]) is used
 to transfer the image data. This protocol has been
 implemented on LSI under MOS [10]. In addition, we at
 UCL have put NIFTP on an ARPANET TOPS-20 host, which
 can act as an Internet File Forwader (IFF). In this
 case, TCP/IP ([28], [29]) is employed as the underlying
 transport service. Since TCP provides reliable
 communication channels, the provision of checkpoints
 and error-recovery procedures are not included in our
 NIFTP implementations.

 In the X25 network, the transport procedure is
 NITS/X25 ([25], [26]). Though pictures can be
 transferred to the X25 networks, no experimental work
 has been done, because:

 (1) There is at present no collaborative partner on
 these networks.

 (2) The LSI-11, on which our system is implemented,
 has no direct connection to these networks.

 Locally, image data can be transmitted to the
 PDP11-44s running the UNIX time-sharing operating
 system. At present, the SCP ring-driver software uses
 permanent virtual circuits (PVCs) to connect the
 various computers on the ring.

 4.4 File System

 A file system has been designed, based on the AED62
 double density floppy disk, for use under MOS. It is
 itself implemented as a MOS process supporting the
 Clean and Simple interface. The description of this
 task, fs(fax), can be found in Appendix 2.

 - 31 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 In a command string, the file system task can only
 serve as either data source or data sink. In other
 words, it can only appear at the first or last position
 on a command string. In the former case, the file
 specified is to be read, while the file is to be
 written in the latter case.

 Three access modes are allowed which are:

 * Read a file
 * Create a file
 * Append a file

 The file name and access mode are specified as the
 open parameters.

 Let us consider an example. If a document is to be
 read on the facsimile machine and the data stream
 created is to be stored on the file system, the command
 string required is:

 fax"r|fs"c,doc

 where: fax - interface task for facsimile machine
 r - read from facsimile machine
 fs - file system task
 c - create a new file
 doc - the name of the file to be created.

 In order to dump a file, a task process od() is
 provided which works as a data sink in a command
 string.

 4.5 Data Structure

 Facsimile image data is created using a high-
 resolution raster scanner, so that the original picture
 can be reproduced faithfully. The facsimile data
 represents binary images, in monochrome, with two
 levels of intensity, belonging to the data type of
 bit-mapped graphics.

 The simplest representation is the bit-map itself.
 The bits, each of which corresponds to a single picture
 element, are arranged in the same order as that in
 which the original picture is scanned, 1s standing for

 - 32 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 black pixels and 0s for white ones. Operations on the
 picture are easily carried out. For example, two images
 represented in the bit-map format can be merged
 together by using a simple logic OR operation. Any
 specific pixel can be retrieved by a simple
 calculation. However, its size is usually large because
 of the high resolution. This makes it almost
 unrealistic for storage or transmission.

 Facsimile image data should therefore be compressed
 to reduce its redundancy, so that the efficient storage
 and transmission can be achieved.

 Run-length encoding is a useful compression scheme.
 Instead of the pattern, the counts of consecutive black
 and white runs are used to represent the image.

 Vector representation, in which the run-lengths are
 coded as integers or bytes, is a useful internal
 representation of images. Not only is it reasonably
 compressed, but it is also quite easy for processing.
 Chopping, scaling and mask-scanning are examples of the
 processing operations which may be performed.
 Furthermore, a conversion between different compression
 schemes may have to be carried out in such a way that
 the data is first decompressed into the vector format
 and then recompressed. The difficulty in retrieval can
 be overcome by means of line index, which gives the
 pointers to each lines of the image.

 A higher compression rate leads to a more efficient
 transmission. But this is at the expense of ease of
 processing. An example of this is the use of Huffman
 Code in the CCITT 1-dimensional compression scheme.
 While the data can be compressed more efficiently, it
 is rather difficult to manipulate the data direcltly.

 Taking the correlation between adjacent lines into
 account, 2-dimensional compression can achieve an even
 higher compression rate. CCITT 2-dimensional
 compression and the DACOM facsimile machine use this
 method.

 It is desirable to integrate facsimile images with
 other data types, such as text and geometric graphics;
 the structure of these other types must then be
 incorporated in the system. At present, only text
 structure is available, while the structure for
 geometric graphics is a topic for the further study.

 - 33 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 In the facsimile system, the following data
 structures are supported. The corresponding
 descriptions, if any, are listed as well and they can
 be found in Appendix 3 (except of dacom(device)).

 type structure compression description

 bit-map bit-map - -
 vector 1D run-length vector(fax)
 dacom block 2D run-length dacom(device)
 CCITT T4 1D run-length t4(fax)
 2D run-length t4(fax)

 text text - text(fax)

 As an internal data structure, vector format is
 widely used for data transfer between task processes.
 The set of interface routines has been extended by
 introducing two subroutines, namely getl() and putl(),
 which read and write line vectors directly through the
 Clean and Simple interface. These two routines can be
 found in Appendix 3 (getl(fax) and putl(fax))

 In order to check the validity of a vector file, a
 check task process check() is provided which works as a
 data sink in a command string. It can also dump the
 vector elements of the specific lines.

 4.6 Data Conversion

 In order to convert one data structure into another,
 several conversion modules are provided in this system.
 These modules fall into two categories, task processes
 and subroutines. The task processes are MOS processes
 which can only be used in the environment described in
 this note, while the subroutines which are written in c
 and compatible under UNIX are more generally usable.

 Character strings or text can be converted into
 vector format, so that an integrated image combining
 picture and text can be formed.

 The following table lists these conversion modules,
 including their functions and descriptions (which can
 be found in Appendix 3).

 - 34 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 module type from to description

 decomp process dacom vector decomp(fax)
 recomp process vector dacom recomp(fax)

 ccitt process vector t4 ccitt(fax)
 t4 vector

 bitmap subroutine vector bitmap bit-map(fax)
 tovec subroutine bitmap vector tovec(fax)

 ts subroutine ASCII string vector ts(fax)
 string process ASCII string vector string(fax)
 tf process text vector tf(fax)

 Since each DACOM block contains a Cyclic Redundancy
 Check (CRC) field, the system supplies a subroutine
 crc() to calculate or check the CRC code. (see
 crc(fax))

 If a vector file is to be printed on the DACOM
 facsimile machine, the image data should be re-
 compressed into the DACOM-block format, the required
 command string being shown below.

 fs"e,pic|recomp|fax"w

 where fs - file system task
 e - read an existing file
 ic - file name
 recomp - re-compression task
 fax - interface task for facsimile machine
 w - print an image on facsimile machine

 4.7 Image Manipulation

 Four processing task processes are provided in the
 system. These are:

 (1) Chop, which applies a defined window to the input
 image.

 (2) Scale, which enlarges or shrinks the input image
 to the defined dimensions.

 (3) Merge, which puts the input image on the specified
 area of a background image.

 - 35 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 (4) Clean, which removes the noise on the input image.

 The Clean and Simple interfaces are supported in
 these processing tasks so that the tasks can be used in
 command strings. However, these tasks can be neither
 source nor sink in a command string. The data format
 of their input and output is vector.

 For example, a facsimile page can be cleaned and then
 printed on the facsimile machine. Note that the image
 data must be recompressed before being sent to the
 facsimile machine. If the original data is the form of
 DACOM block, it has to be decompressed as the
 processing tasks only accept line vectors. The
 required command string is shown below.

 fs"e,page|clean|recomp|fax"w

 where fs - file system task
 e - read an existing file
 page - file name
 clean - cleaning task
 recomp - re-compression task
 fax - interface task for facsimile machine
 w - print an image on facsimile machine

 The descriptions of these processing tasks can be
 found in Appendix 2 (chop(fax), scale(fax), merge(fax),
 and clean(fax)).

 In tasks ’chop’ and ’merge’, a window is set by
 giving the coordinates of its vertices. However, it is
 usually rather difficult for a human user to decide the
 exact coordinates. The system supplies a subroutine
 choice() which specifies a rectangular subsection of an
 image by interactive manipulations of a rectangular
 subsection on the screen of the Grinnell display
 displaying the image. It provides a set of interactive
 commands whereby a user can intuitively choose an area
 he is interested in. Note that this subroutine must be
 called by a MOS process and the Grinnell display must
 be included in the system.

 By means of these image processing modules, the image
 editing described in section 2.4 can be carried out.
 Let us consider an example. An image abstracted from a
 picture ’a’ is to be merged onto a specified area of
 another picture ’b’. First of all, the two pictures ’a’

 - 36 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 and ’b’ should be displayed on the left half and right
 half of the screen, respectively. Assume that the two
 pictures are standard DACOM pages whose dimensions are
 1726x1200. They have to be shrunk to fit the dimension
 of the half screen (256x512). Note that if the data
 format is not vector, conversion should be carried out
 first. the required command strings are:

 e,a|scale"1726,1200,256,512|grinnell"0,511,255,0,z,g
 fs"e,b|scale"1726,1200,256,512|grinnell"256,511,511,0,z,b

 where fs - file system task
 e - read an existing file
 a - file name
 b - file name
 scale - scale task
 1726,1200 - old dimension
 256,512 - new dimension
 grinnell - grinnell display interface task
 0,511,255,0 - presentation area (the left half)
 256,511,511,0 - presentation area (the right half)
 z - zero write mode
 g - green
 b - blue

 In an application process, the subroutine choice() is
 called in the following ways for the user to choose the
 areas on both pictures.

 - 37 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 choice(r, 1726, 1200, 1, 0, 0);
 /* choice the area on ’a’ */
 /* r - red
 1726 - width of the original picture
 1200 - height of the original picture
 1 - left half of the screen
 0 - the subsection can be of any width
 0 - the subsection can be of any height
 */
 choice(r, 1726, 1200, 2, 0, 0);
 /* choice the area on ’b’ */
 /* r - red
 1726 - width of the original picture
 1200 - height of the original picture
 2 - right half of the screen
 0 - the subsection can be of any width
 0 - the subsection can be of any height
 */

 When the user finishes editing, the coordinates of
 the chosen rectangular areas are returned. An example
 is given in the table below. The widths and heights
 listed in the table are actually calculated from the
 coordinates returned and they indicate that the source
 image has to be enlarged to fit its destination.

 (0, 0)
 +-------------------------------> x
 |
 | (x0, y0) w
 | +--------------------+
 | ! !
 | ! !
 | ! ! h
 | ! !
 | ! !
 | +--------------------+
 | (x1, y1)
 V
 y

 original x0 y0 x1 y1 w h

 a 30 40 100 120 70 80
 b 100 100 1100 1100 1000 1000

 - 38 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 At this stage, our final goal can be achieved by
 performing a job specified below. It is assumed that
 the result image is to be stored as a new file ’c’.

 fs"e,a|chop"30,40,100,120|scale"70,80,1000,1000
 |merge"b,0,100,100,1100,1100|fs"c,c

 where fs - file system task
 e - read an existing file
 a - file name
 chop - chop task
 30,40,100,120 - the area to be abstracted
 scale - scale task
 70,80 - old dimension
 1000,1000 - new dimension
 merge - merge task
 b - file name of the background image
 0 - to be overlaid
 100,100,1100,1100 - the area to be overlaid
 fs - file system task
 c - create a new file
 c - the name of the file to be
 created

 4.8 Data Transmission

 In order to transmit facsimile image data over
 computer networks, using the configuration of Fig. 1,
 the Network Independent File Transfer Protocol [9] is
 implemented as a MOS task process, the Clean and Simple
 interface of section 3.3 being supported [10]. Thus
 this module can be used in a command string directly.
 In this case, the module always works in the initiator
 mode, though the server mode is supported as well. Its
 description can be found in Appendix 2 (ftp(fax)).

 As a network-independent protocol, it employs a
 transport service to communicate across the networks.
 The Clean and Simple interface is also used for the
 communication between the module and transport service
 processes.

 Suppose that an image file stored in a remote file
 system is to be printed on the local facsimile machine.
 Assume that the data is transmitted via the ARPANET
 [21], Transport Control Protocol (TCP) [28] being used
 as the underlying transport service. As was described

 - 39 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 before, since the delay caused by the network may
 result in a time-out on the local facsimile machine,
 the job should be divided into two subjobs.

 (1) The remote file is transmitted by using NIFTP
 module. However, instead of being put on the
 facsimile machine directly, the received data is
 store in a temporary file.

 ftp"r,b,ucl,fax,pic;tcp:1234,10,3,3,42,4521|fs"c,tmp

 where ftp - NIFTP task
 t - receive
 b - binary
 ucl - remote user name
 fax - remote password
 pic - remote file name
 tcp - transport service process

 parameters for the transport service:

 1234 - local channel number
 10,3,3,42 - remote address
 4521 - channel reserved for the
 remote server

 fs - local file system task
 c - create a new file
 tmp - the name of the file to be created

 (2) The temporary file is read and the image is sent
 to the facsimile machine for printing. Here it is
 assumed the data received is in the form of DACOM
 block so that no conversion is needed.

 fs"e,tmp|fax"w

 where fs - file system task
 e - read an existing file
 tmp - file name
 fax - interface task for facsimile machine
 w - print an image on facsimile machine

 We are able to exchange image data with ISI and
 COMSAT. At present DACOM block is the only format that
 can be used as all the three participants in this
 experiment possess DACOM facsimile machines and no

 - 40 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 other data format is available in both ISI and COMSAT.
 However, it is the intention of the ARPA-Facsimile
 community to adopt the CCITT standard for future work.
 As mentioned earlier, UCL already has this facility.

 Above NIFTP, a simple protocol was used to control
 the transmission of facsimile data. In this protocol,
 the format of a facsimile data file was defined as
 follows: Each DACOM block was recorded with a 2-byte
 header at the front. This header was composed of a
 length-byte indicating the length of the block
 (including the header) and a code-byte indicating the
 type of the block. This is shown in the following
 diagram.

 |<--- header ---->|<------ 74 bytes ------->|
 +--------+--------+-------------------------+
 ! length ! code ! DACOM block !
 +--------+--------+-------------------------+

 The Length-byte is 76 (decimal) for all DACOM blocks.
 The code-byte for a setup block is 071 (octal) and 072
 for a data block. A special EOP block was used to
 indicate the end of a page. This block had only the
 header with the length-byte set to 2 and the code-byte
 undefined. A facsimile data file could contain several
 pages, which were separated by EOP blocks.

 5. CONCLUSION

 5.1 Summary

 Though techniques for facsimile transmission were
 invented in 1843, it was not until the recent years
 that integration with computer communication systems
 gave rise to "great expectation". The system described
 in this note incarnates the compatibility and
 flexibility of computerised facsimile systems.

 In this system, facsimile no longer refers simply to
 the transmission device, but rather to the function of
 transferring hard copy from one place to another. Not
 only does the system allow for more reliable and
 accurate document transmission over computer networks
 but images can also be manipulated electronically.
 Image is converted from one representation format to
 another, so that different makes of facsimile machines
 can communicate with each other. It is possible for a

 - 41 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 picture to be presented on different bit-map devices,
 e.g. TV-like screen, as it can be scaled to overcome
 the incompatibilities. Moreover, the system provides
 windowing and overlaying facilities whereby a
 sophisticated editor can be supported.

 One of the most important aspects of this system is
 that text can be converted into its bit-mapped
 representation format and integrated with pictures.
 Geometric graphics could also be included in the
 system. Thus, the facsimile machine may serve as a
 printer for multi-type documents. It is clear that
 facsimile will play an important role in future
 information processing system.

 As far as the system per se is concerned, the
 following advantages can be recognised. Though our
 discussion is concentrated on the facsimile system,
 many features developed here apply equally well to
 other information-processing systems.

 (1) Flexibility: The user jobs can be easily
 organised. The only thing to be done for this
 purpose is to make the logical links for the
 appropriate task processes.

 (2) Simplicity: The interface routines are responsible
 for the operations such as signal handling and
 buffer management. By avoiding this burden, the
 implementation of the task processes becomes very
 "clean and simple".

 (3) Portability: The interface routines also makes the
 task processes totally independent of the
 operating environment. Only these routines should
 be modified if the environment were changed.

 (4) Ease of extension: The power of the system can be
 simply and infinitely extended by adding new task
 processes.

 (5) Distributed Environment: This approach can be
 easily extended to a distributed environment,
 where limitless hardware and software resources
 can be provided.

 5.2 Problems

 As discussed earlier, the network we were using for
 the experimental work was not designed for image data

 - 42 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 transmission. The data transfer is so slow that a
 time-out may be caused on the facsimile machine. Though
 this problem was solved by means of local buffering and
 pictures were successfully exchanged over the network,
 the slowness is rather disappointing because of the
 quantity of image data. The measurement showed that the
 throughput was around 500 bits/sec. In other words, it
 took at least 5 minutes to transfer a page. This was
 caused by the network but not our system. The situation
 has been improved recently. However, It is nevertheless
 required that more efficient compression schemes be
 developed.

 At present, the system must be directly attached to
 the network to be accessed. However, the network ports
 are much demanded, so that frequent reconfiguration is
 required.

 The facsimile system can be connected only to the
 local network, the Cambridge Ring, while the foreign
 networks are connected via gateways to the ring. This
 is shown in Fig. 12. Now the X25 network is attached to
 the Ring via an X25 gateway, XG [25], while SATNET is
 connected by another gateway, SG [25]. Both network are
 at the transport level; XG and SG support the relevant
 transport procedures. In the case of XG, this is
 NITS/X25 ([26], [27]); in the case of SATNET, it is
 TCP/IP ([28], [29]).

 UCL facsimile
 system - - - - - - - -
 +--------+ / \ +------+
 ! ! ---- Cambridge Ring ---- ! PE !
 +--------+ \ / +------+
 - - - - - - - - |
 / \ |
 +------+ +------+ |
 ! XG ! ! SG ! --- SATNET
 +------+ +------+
 / \
 PSS SERC NET

 Fig. 12 Schematic of UCL network connection

 When the network software runs in the same machine as
 the application software, the Clean and Simple
 interface of section 3.5 was used as an interface
 between the modules. When the gateway software was
 removed to a separate machine, an Inter-Processor Clean

 - 43 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 and Simple [30] was required. The appropriate
 transport process is transferred to the relevant
 gateway, and appropriate facilities are implemented for
 addressing the relevant gateway. Otherwise, the
 software has to be little altered to cater for the
 distributed case.

 In our experimental work, the following problems were
 also encountered.

 (1) The primary memory of the LSI-11 is so small that
 we cannot build up a system to include all the
 modules we have developed. In order to transfer
 an edited picture using the NIFTP module, we have
 to first load an editor system to input and
 process the picture, and then an NIFTP system is
 then loaded to transmit it.

 (2) The execution of an image processing procedure
 becomes very slow. For example, it takes several
 minutes to shrink a picture to fit the screen of
 the Grinnell display. This prevents the system
 from being widely used in its present form.

 (3) As secondary storage, floppy disks are far from
 adequate to keep image data files. At present, we
 have two double-density floppy disk drives, the
 capacity of each disk being about 630K bytes.
 However, an image page contains at least 50K bytes
 and, sometimes, this number may be doubled for a
 rather complex picture. Only a limited number of
 pages can be stored.

 On the other hand, in our department, we have two
 PDP11-44s running UNIX together with large disks
 supplying abundant file storage. Their processing speed
 is much higher than that of the LSIs. The UNIX file
 system supports a very convenient information-
 management environment. This inspired the idea that the
 UNIX file system could pretend to be a file server
 responsible for storing and managing the image data, so
 that all the processing tasks may be carried out on
 UNIX. Not only does this immediately solve the problems
 listed above, but the following additional advantages
 immediately accrue.

 (1) UNIX provides a far better software-development
 environment than LSI MOS ever can or will.

 (2) The facsimile service can be enhanced to be able

 - 44 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 to support many users at a time.

 (3) The UNIX file system is so sophisticated that more
 complex data entities can be handled.

 In fact the 44s and the LSI-11, to which the
 facsimile machine and Grinnell display are attached,
 are all connected to the UCL Cambridge Ring. A
 distributed processing environment can be built up
 where a job in one computer can be initiated by another
 and then the job will be carried out by cooperation of
 both computers.

 In such a distributed system, the LSI-11 micro-
 computer, together with the facsimile machine,
 constitutes a totally passive facsimile server
 controlled by a UNIX user. A page is read on the
 facsimile machine and the image data stream produced is
 transmitted to the UNIX via the ring. The image data is
 stored as a UNIX file and may be processed if
 necessary. It can also be sent via the ring to the
 facsimile server where it will be reprinted on the
 facsimile machine.

 In order to build up such a distributed environment,
 IPCS [30] is far from adequate for this purpose, as it
 does not provide any facility for a remote job to be
 organised. In our system, the task controller can be
 modified so that the command strings can be supplied
 from a remote host on the network. Having accepted the
 request, the task controller organises the relevant
 task chain and the requested job is executed under its
 control. The execution of the distributed job may
 require synchronisation between the two computers.
 These problems are discussed in detail in [31].

 Generally speaking, a distributed system based on a
 local network, which supplies cheap, fast, and reliable
 communication, could be the ultimate solution of the
 operational problems discussed in this section. In such
 a system, different system operations are carried out
 in the most suitable places.

 For the time being, only a procedure-oriented task-
 control language is available in this system. The
 command string of the fitter can be typed from the
 system console directly, the corresponding job being
 organised and executed. Theoretically, this is quite
 enough to cope with any requirement of a user.
 However, when the job is complex, command typing
 becomes very tedious and prone to error.

 - 45 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Above the task-controller, a job-controller layer is
 required which provides a problem-oriented language
 whereby the user can easily put forward his requirement
 to the system. On receipt of such a command, the job
 controller translates it into a command string of the
 task controller and passes the string to the task
 controller so that operation request can be done.
 Sometimes, one job has to be divided into several
 subjobs, which are to be dealt with separately. The
 job controller should be also responsible for high
 level calculation and management, so that the user need
 not be concerned with system details.

 In the system supporting facsimile service under
 UNIX, a set of high-level command is provided, while
 the command strings for the facsimile station are
 arranged automatically and they are totally hidden from
 a UNIX user.

 5.3 Future Study

 At the next stage, our attention should be moved to a
 higher-level, more sophisticated system which supports
 a multi-type environment. In such a system, not only
 does the facsimile machine work as an facsimile
 input/output device, but it should also play the role
 of a printer for the multi-type document. This is
 because other data types, e.g. coded character text and
 geometric graphics can be easily converted into bit-
 mapped graphics format which the facsimile machine is
 able to accept.

 First of all, a data structure should be designed to
 represent multi-type information. In a distributed
 environment, such a structure should be understood all
 over the system, so that multi-media message can be
 exchanged.

 In a future system, different services should be
 supported, including viewdata, Teletex, facsimile,
 graphics, slow-scan TV and speech. The techniques
 developed for facsimile will be generalised for use of
 other bit-mapped image representations, such as slow-
 scan TV.

 To improve the performance of the facsimile system,
 we are investigating how we could use an auxiliary
 special purpose processor to perform some of the image
 processing operations. Such a processor will be
 essential for the higher data rate involved in slow-

 - 46 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 scan TV.

 - 47 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Reference

 [1] P. T. Kirstein, "The Role of Facsimile in Business
 Communication", INDRA Note 1047, Jan. 1981.

 [2] T. Chang, "A Proposed Configuration of the
 Facsimile station", INDRA Note 922, May, 1980.

 [3] T. Chang, "Data Structure and Procedures for
 Facsimile Signal Processing", INDRA Note 923, May,
 1980.

 [4] S. Treadwell, "On Distorting Facsimile Image",
 INDRA Note No 762, June, 1979.

 [5] M. G. B. Ismail and R. J. Clarke, "A New Pre-
 Processing Techniques for Digital Facsimile
 Transmission", Dept. of Electronic Engineering,
 University of Technology, Loughborough.

 [6] T. Chang, "Mask Scanning Algorithm and Its
 Application", INDRA Note 924, June, 1980.

 [7] M. Kunt and O. Johnsen, "Block Coding of Graphics:
 A Tutorial Review", Proceedings of the IEEE,
 special issue on digital encoding of graphics,
 Vol. 68, No 7, July, 1980.

 [8] T. Chang, "Facsimile Data Compression by
 Predictive Encoding", INDRA Note No 978, May.
 1980.

 [9] High Level Protocol Group, "A Network Independent
 File Transfer Protocol", HLP/CP(78)1, alos INWG
 Protocol Note 86, Dec. 1978.

 [10] T. Chang, "The Implementation of NIFTP on LSI-11",
 INDRA Note 1056, Mar. 1981.

 [11] T. Chang, "The Design and Implementation of a
 Computerised Facsimile System", INDRA Note No.
 1184, Apr. 1981.

 [12] T. Chang, "The Facsimile Editor", INDRA Note 1085,
 Apr. 1981.

 [13] K. Jackson, "Facsimile Compression", Project
 Report, Dept. of Computer Science, UCL, June,
 1981.

 - 48 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 [14] R. Cole and S. Treadwell, "MOS User Guide", INDRA
 Note 1042, Jan. 1981.

 [15] CCITT, "Recommendation T.4, Standardisation of
 Group 3 Facsimile Apparatus for Document
 Transmission", Geneva, 1980.

 [16] "DACOM 6450 Computerfax Transceiver Operator
 Instructions", DACOM, Mar. 1977.

 [17] "AED 6200LP Floppy Disk Storage System", Technical
 Manual, 105499-01A, Advanced Electronics Design,
 Inc. Feb. 1977.

 [18] "The User Manual for Grinnelll Colour Display".

 [19] D. R. Weber, "An Adaptive Run Length Encoding
 Algorithm", ICC-75.

 [20] R. Braden and P. L. Higginson, "Clean and Simple
 Interface under MOS", INDRA Note No. 1054, Feb.
 1981.

 [21] L. G. Roberts et al, "The ARPA Computer Network",
 Computer Communication Networks, Prentice Hall,
 Englewood, pp485-500, 1973.

 [22] I. M. Jacobs et al: "General Purpose Satellite
 Network", Proc. IEEE, Vol. 66, No. 11,
 pp1448-1467, 1978.

 [23] J. W. Burren et al, "Design fo an SRC/NERC
 Computer Network", RL 77-0371A, Rutherford
 Laboratory, 1977.

 [24] P. T. F. Kelly, "Non-Voice Network Services -
 Future Plans", Proc. Conf. Business
 Telecommunications, Online, pp62-82, 1980.

 [25] P. T. Kirstein, "UK-US Collaborative Computing",
 INDRA Note No. 972, Aug. 1980.

 [26] "A Network Independent Transport Service", PSS
 User Forum, Study Group 3, British Telecom,
 London, 1980.

 [27] CCITT, Recommendation X3, X25, X28 and X29 on
 Packet Switched Data Services", Geneva 1978.

 [28] "DoD Standard Transmission Control Protocol",
 RFC761, Information Sciences Inst., Marina del

 - 49 -

UCL FACSIMILE SYSTEM INDRA Note 1185

 Rey, 1979.

 [29] "DoD Standard Internet Protocol", RFC760,
 Information Sciences Inst., Marina del Rey, 1979.

 [30] P. L. Higginson, "The Orgainisation of the Current
 IPCS System", INDRA Note No. 1163, Oct. 1981.

 [31] T. Chang, "Distributed Processing for LSIs under
 MOS", INDRA Note No. 1199, Jan. 1982.

 - 50 -
UCL FACSIMILE SYSTEM INDRA Note 1185

 Appendix I: Devices

AED62(DEV) AED62(DEV)

NAME

 aed62 - double density floppy disk

SYNOPSIS

 DCT aed62
 setdct("aed62", 0170, 0170450, 0170450,
 aedini, aedsio, aedint, 0);

DESCRIPTION

 The Double Density disks contain 77 tracks numbered from 0
 to 76. There are 16 sectors (sometimes called blocks) per
 track, for a total of 1232 sectors on each side of the disk.
 These are numbered 0 to 1231. Each sector contains 512
 bytes, for a total of 630,784 bytes on each side of the
 floppy.

 Only one side of the floppy can be accessed at a time. There
 is only one head per drive, and it is located on the under-
 side of the disk. To access the other side, the disk must be
 manually removed and inserted the other way up.

 Each block is actually two blocks on the disk: an adddress
 ID block and the data block. The address ID block is used
 by the hardware and contains the track number, the block
 number and the size of the data block that follows. When an
 operation is to take place, the seek mechanism first locates
 the block by reading the address ID blocks and literally
 ’hunting’ for the correct one. It will hunt for up to 2
 seconds before reporting a failure.

 Both the address ID and the data blocks are followed by a
 checksum word that is maintained by the hardware and is hid-
 den from the user. On writing, the checksum is calculated
 and appended to the block. On reading it is verified (both
 on reading the ID and data blocks) and any error is reported
 as a Data Check. No checking on the data block takes place
 on a write, and the hardware has no idea if it was written
 correctly. The only way to verify it is to read it.

 Although there are two drives in the unit, they cannot be
 used simultaneously. If an operation is in progress on one,
 no access can be made to the other until the first operation
 is complete. The driver will queue requests for both drives
 however, and ensure that are performed in order.

 The MOS driver is called aed62.obj. It operates on the fol-
 lowing IORB entries:

AED62(DEV) AED62(DEV)

 irfnc

 The operation to be performed, as follows:

 0 - Read
 1 - Write
 2 - Verify
 3 - Seek

 Read and Write cause data to be transferred to and from
 disk. Verify does a hardware read without transferring
 the data to memory and is used for verifying that the
 data can be successfully read. The checksum at the end
 of the block of each sector is verified by the
 hardware. The seek command is used to move the disk
 heads to a specified track.

 irusr1

 The drive number. Only Zero or One is accepted. This is
 matched against the number dialed on the drive. If the
 number is specified on both drives, or neither, a
 hardware error will be reported.

 irusr2

 The Sector or Block Number. Must be in the range 0 to
 1231 inclusive. irusr2 specifies the block number that
 the transfer is to begin at for Read and Write, the be-
 ginning of the verified area for the Verify command,
 and the position of the head for the Seek command. In
 the latter case the head will be positioned to the
 track that contains the block.

 iruva

 This specifies the data adress, which must be even
 (word boundary). If an odd address is given, the low
 order bit is set to zero to make it even. Not required
 for the Seek or Verify commands.

 irbr

 Transfer length as a positive number of bytes. Not re-
 quired for the seek command, bit IS used by Verify com-
 mand so that the correct number of blocks may be veri-
 fied. The disk is only capable of transferring an even
 number of bytes. If an odd length is given the low ord-
 er bit is made zero to reduce the length to the lower
 even value. The length is NOT restricted to the sector
 size of 512 bytes. If the length is greater than 512,
 successive blocks are read/written until the required
 transfer

AED62(DEV) AED62(DEV)

 length has been satisfied. If the length is not an ex-
 act multiple of 512 bytes, only the specified length
 will be read/written. Note that the hardware always
 reads and writes a complete sector, so specifying a
 shorter length on a read will cause the remainder of
 the block to be skipped. On a write, the hardware will
 repeat the last specified word until the sector is
 full.

 The driver will attempt to recover from all soft errors.
 There is no automatic write/read verify as on mag tapes, so
 that data that is incorrectly written will not be detected
 as such until a read is attempted. For this reason, the ver-
 ify feature can be used (see above) to force the checking of
 written data. When an error is detected while performing a
 read, the offending block will be re-read up to 16 times and
 disk resets will be attempted during this time too. If all
 fails a hardware error indication is returned to the user.
 Other errors possible are Protection Error (attempt to write
 to a read-only disk) and User Error, which indicates that
 the parameters in the IORB were incorrect. Errors such as
 there being no disk loaded, or the drive door being open are
 NOT detectable by the program. The interface sees these as
 Seek Errors (i.e. soft errors), and thus the driver will re-
 try several times before returning a Hardware Error indica-
 tion to the user. It should be noted that error recovery can
 take a long time. As mentioned above, there is a 2 second
 delay before a seek error is reported by the hardware, for
 instance.

GRINNELL(DEV) GRINNELL(DEV)

NAME

 grinnell - colour display

SYNOPSIS

 DCT grndout
 setdct("grndout", 03000, 0172520, 0172522,
 grnoi, grnot, grnoti, &grndin);
 DCT grndin
 setdct("grndin", 03000, 0172524, 0172526,
 grnoi, grnot, grnoti, &grndout);

DESCRIPTION

 The Grinnell colour display has a screen of 512x512 pels.
 Three colours (red, green and blue) can be used, but no grey
 scale is supported. Three graphics modes are available.
 These are:

 (1) Alphanumeric: The input ASCII characters are displayed
 at the selected positions on the screen.

 (2) Graphic: Basic geometric elements, such as line and
 rectangle, are drawn by means of graphics commands.

 (3) Image: The input data is interpreted as bit patterns,
 the corresponding images being illustrated.

 The values used to construct commands are described in the
 Grinnell User Manual. They are also listed below.

 #define LDC 0100000 /* Load Display Channels */

 #define LSM 0010000 /* Load Subchannel Mask */
 #define RED 0000010 /* Read Subchannel */
 #define GREEN 0000020 /* Green subchannel */
 #define BLUE 0000040 /* Blue subchannel */

 #define WID 0000000 /* Write Image Data */
 #define WGD 0020000 /* Write Graphic Data */
 #define WAC 0022000 /* Write AlphanumCh */

 #define LWM 0024000 /* Load Write Mode */
 #define REVERSE 0200 /* Reverse Background */
 #define ADDITIVE 0100 /* Additive (not Replace) */
 #define ZEROWRITE 040 /* Dark Write */
 #define VECTOR 020 /* Select Vector Graph */
 #define DBLEHITE 010 /* Double Height write */
 #define DBLEWIDTH 004 /* Double Width write */
 #define CURSORAB 002 /* Cursor (La+Lb,Ea+Eb) */

GRINNELL(DEV) GRINNELL(DEV)

 #define CURSORON 001 /* Cursor On */

 #define LUM 0026000 /* Load Update Mode */
 #define Ec 001 /* Load Ea with Ec */
 #define Ea_Eb 002 /* Load Ea with Ea + Eb */
 #define Ea_Ec 003 /* load Ea with Ea + Ec */
 #define Lc 004 /* Load La with Lc */
 #define La_Lb 010 /* Load La with La + Lb */
 #define La_Lc 014 /* Load La with La + Lc */
 #define SRCL_HOME 020 /* Scroll dsiplay to HOME */
 #define SRCL_DOWN 040 /* Scroll down one line */
 #define SCRL_UP 060 /* Scroll up one line */

 #define ERS 0030000 /* Erase */
 #define ERL 0032000 /* Erase Line */
 #define SLU 0034000 /* Special Location Update */
 #define SCRL_ZAP 0100 /* unlimited scroll speed */

 #define EGW 0036000 /* Execute Graphic Write */
 #define LER 0040000 /* Load Ea relative */
 #define LEA 0044000 /* Load Ea */
 #define LEB 0050000 /* Load Eb */
 #define LEC 0054000 /* Load Ec */
 #define LLR 0060000 /* Load La Relative */
 #define LLA 0064000 /* Load La */
 #define LLB 0070000 /* Load Lb */
 #define LLC 0074000 /* Load Lc */
 #define LGW 02000 /* perform write */

 #define NOP 0110000 /* No-Operation */

 #define SPD 0120000 /* Select Special Device */
 #define LPA 0130000 /* Load Peripheral Address */
 #define LPR 0140000 /* Load Peripheral Register */
 #define LPD 0150000 /* Load Peripheral Data */
 #define RPD 0160000 /* ReadBack Peripheral Data */
 #define MEMRB 00400 /* SPD - Memory Read-Back */
 #define DATA 01000 /* SPD - Byte Unpacking */
 #define ALPHA 06000 /* LPR - Alphanumeric data */
 #define GRAPH 04000 /* LPR - Graphic data */
 #define IMAGE 02000 /* LPR - Image data */
 #define LTHENH 01000 /* take lo byte then hi byte */
 #define DROPBYTE 0400 /* drop last byte */
 #define INTERR 02000 /* SPD - Interrupt Enable */
 #define TEST 04000 /* SPD - Diagnostic Test */

 The MOS driver is called grin.obj. It operates on the fol-
 lowing IORB entries.

 iruva

 This is a pointer to the buffer where the data is
 stored.

GRINNELL(DEV) GRINNELL(DEV)

 This data must be ready formtatted for the Grinnell,
 since no conversion is performed by the driver.

 irbr

 This transfer length as a positive number of bytes.

 Addressing the grinnell. Rows consist of elments numbered 0
 to 511 running left to right. The lines are number from 0 to
 511 running from bottom to top. It is thus addressed as a
 conventional X-Y coordinate system. Note that this coordi-
 e system is different the one used for the image.

 X A
 |
 | (511, 511)
 511 +-------------------------------+
 | |
 | |
 | |
 | |
 | (x, y) |
 | + |
 | |
 | |
 | |
 | |
 | |
 +-------------------------------+----->
 0 511 Y

SEE ALSO

 grinnell(fax)

DACOM(DEV) DACOM(DEV)

NAME

 dacom - facsimile machine

SYNOPSIS

 DCT faxinput
 setdct("faxin", 0350, 0174750, 0174740,
 faxii, faxin, faxini, &faxoutput);
 DCT faxoutput
 setdct("faxout", 0354, 0174752, 0174742,
 faxoi, faxot, faxoti, &faxinput);

DESCRIPTION

 The DACOM facsimile machine can read a document, creating
 the corresponding image data blocks. It can also accept the
 data of relevant format, printing the correponding image.

 Each data block consists of 585 bits, and is stored in a
 block of 74 bytes starting on a byte boundary. The final 7
 bits of the last byte are not used and they are undefined.
 The 585 bits in each block need to be read as a bit stream:
 the bits in each byte run from the high orger end of the
 byte to the low order end. The last 12 bits of the 585 bits
 in each block consistute the CRC field whereby the block can
 be validated.

 There are two kinds of blocks: SETUP blocks and DATA blocks.
 The first of block of an image data file should be a single
 SETUP block. All following blocks in the file must be DATA
 blocks. Note that the second block is a DATA block that con-
 tains ZERO samples, i.e. a dummy data blocks. Form the third
 block, the DATA blocks store the reall image data.

 A standard dacom page contains about 1200 scan lines, each
 of which has 1726 pels. One can choose

UCL FACSIMILE SYSTEM INDRA Note 1185

 Appendix II: Task Controller and Task Processes

CCITT(FAX) CCITT(FAX)

NAME

 ccitt - conversion between vector and CCITT T4 format

SYNOPSIS

 ccitt() - a MOS task

 command string (task name is defined as ccitt):
 ccitt"<function>

DESCRIPTION

 This routine operates as a MOS pipe task to convert the vec-
 tors to CCITT T4 format or inversely.

 The parameter function specifies what the task is to do.

 value function

 1c one-dimensional compression
 1d one-dimensional decompression

 2c[<k>] two-dimensional compression
 2d two-dimensional decompression

 Note k is the maximun number of lines to be coded two-
 dimensionally before a one-dimensionally coded line is in-
 serted. If k is omitted, the default value 2 is adopted.

SEE ALSO

 vector(fax), t4(fax), fitter(fax)

CHECK(FAX) CHECK(FAX)

NAME

 check - check the validity of a vector file.

SYNOPSIS

 check() - a MOS task

 command string (the task name is defined as check):
 check"<function>,<width>,<height>,[<from>,<to>]

DESCRIPTION

 This routine operates as a MOS pipe task checking the vali-
 dity of the input vector file.

 The number of lines to be checked is specified by the param-
 eter height. If the height of the image is less than the
 parameter, the actual height is printed. Thus, one can set
 the parameter height to a big number in order to count the
 number of lines of the input image.

 The run lengths in each of these lines are accumulated and
 the sum is compared with the parameter width.

 These are the basic functions which are performed whenever
 the task is invoked. However, there are several options one
 can choose by setting the one-character parameter function.

 value function

 ’n’ basic function only
 ’c’ print the count of each line
 ’l’ print all lines
 ’s’ print the lines in the interval
 specified by parameter from and to

DIAGNOSTICS

 A bad line will be reported and it will cause the job abort-
 ed.

SEE ALSO

 vector(fax), getl(fax), fitter(fax)

CHOP(FAX) CHOP(FAX)

NAME

 chop - extract a designated rectangular area from an image

SYNOPSIS

 chop() - a MOS task

 command string (task name is defined as chop):
 chop"<x0>,<y0>,<x1>,<y1>

DESCRIPTION

 This routine operates as a MOS pipe task extracting a desig-
 nated rectangular area from an input image. Input and out-
 put are image data files in the form of vectors.

 The following diagram shows the coordinate system being
 used. Note that the lengths are measured in number of pels.

 (0, 0) width X
 +-------------------------+---->
 | |
 | |
 | (x0, y0) |
 | +---------+ |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | +---------+ |
 | (x1, y1) |
 | |
 | |
 | |
 | |
 height +-------------------------+
 |
 |
 Y V

 As can be seen in the diagram, the rectangular area to be
 extracted is specified by the parameters x0, x1, y0, y1,
 which are decimal strings.

BUGS

 One has to make sure that

CHOP(FAX) CHOP(FAX)

 0 < x0 < width
 0 < y0 < height
 0 < x1 < width
 0 < y1 < height

SEE ALSO

 vector(fax), getl(fax), putl(fax), fitter(fax)

CLEAN(FAX) CLEAN(FAX)

NAME

 clean - clean an image.

SYNOPSIS

 clean() - a MOS task

 command string (task name is defined as clean):
 clean"<width>,<height>

DESCRIPTION

 This routine operates as a MOS pipe task cleaning an image
 by means of mask scanning. Input and output are image data
 files in the form of vectors.

 The width and height should be given as the parameters.

SEE ALSO

 vector(fax), getl(fax), putl(fax), fitter(fax)

DECOMP(FAX) DECOMP(FAX)

NAME

 decomp - decompress DACOM blocks

SYNOPSIS

 decomp() - a MOS task

 command string (task name is defined as decomp):
 decomp

DESCRIPTION

 This task takes DACOM blocks from the Clean and Simple in-
 terface, and decompresses them into vector format. Then it
 writes the vectors to the Clean and Simple interface.

SEE ALSO

 dacom(dev), vector(fax), fitter(fax)

FAX(FAX) FAX(FAX)

NAME

 fax - interface process for DACOM facsimile machine

SYNOPSIS

 fax() - a MOS task

 command string (task name is defined as fax):
 fax"<function>

DESCRIPTION

 This task uses the Clean and Simple interface to read or
 write facsimile image data.

 The one character parameter function specifies whether the
 data is to be read or written. Character w is for writing.
 In this case, 74 byte DACOM blocks contaning correct CRC
 fields are expected. On the other hand, character r is for
 reading. In this case, a document is read on the facsimile
 machine, the DACOM blocks being created.

SEE ALSO

 dacom(dev), fitter(fax)

FITTER(FAX) FITTER(FAX)

NAME

 fitter - fit processes together to form a data pipe

SYNOPSIS

 fitter() - the MOS task controller

DESCRIPTION

 According to the command string typed on the console, fitter
 links the specified processes together to form a task chain.
 The name of the processes is the name given in the PCB. The
 processes must communicate using the C+S interface. Only one
 C+S interface is opened per process - data is pushed in with
 a cswrite and pulled out with a csread. The fitter does not
 inspect the data in any way but merely passes it from one
 process to another.

 The format of command string is:

 A | B | C.

 The fitter takes data from the process called A, write it to
 the process called B, reads data from the process B and
 write that data to the process C. Note that all middle
 processes are both read and written, while the first one in
 the list is only read from and the last in the list is only
 written to.

 A double quote is used as the separator between the task
 name and the open parameter string, e.g.

 A"500 | B"n,xyz | C,

 where the strings ’500’ and ’n,xyz’ are the open parameter
 stings for tasks A and B, respectively. The parameter
 stirng is passed to the corresponding task routine when the
 csopen call returns.

DIAGNOSTICS

 The command string containing undefined task will be reject-
 ed.

SEE ALSO

 csinit(fax), csopen(fax), csread(fax), cswrite(fax)

FS(FAX) FS(FAX)

NAME

 fs - file system for use under MOS

SYNOPSIS

 fs() - a MOS task

 command string (task name is defined as fs):
 fs"<funciton>,<file_name>

DESCRIPTION

 This is a file system, based on the Double Density floppy
 disk, for use under MOS. The fs task is used for manipulate
 the files, managed by the file system. This task can only
 appear at the first or last position on a command string. In
 the former case, the file specified is to be read, while the
 file is to be written in the latter case.

 The <function> field contains only one character indicating
 the function to be performed. The possible values are:

 e - open an existing file (for reading).
 c - open an existing file, and set the length
 to zero (for rewriting).
 a - append to an existing file.

 If the capitals A, C, and E are used, the functions are the
 same as described above but the specified file is created if
 it does not exist.

BUGS

 This task is for reading and writing only. As for the other
 facilities, e.g. seek, delete, status and sync, one has to
 use C+S interface directly.

 Note that only 15 files are permitted per disk, only drive 0
 is supported at present, and no hierarchical directory is
 allowed.

SEE ALSO

 aed62(dev), fitter(fax)

FTP(FAX) FTP(FAX)

NAME

 ftp, pftp - NIFTP task processes

SYNOPSIS

 ftp(), pftp() - MOS tasks

 command string (task name is defined as ftp):
 ftp"<function>,<code>,<user_name>,<password>,<file_name>;
 <trasport_service_process>:<transport_service_parameters>

DESCRIPTION

 These tasks are implementation of Network Independent File
 Transfer Protocol (NIFTP) for LSIs under MOS. They employ a
 transport service for communication with a remote host on
 the network, where the same protocol must be supported. They
 communicate with the user process and transport service
 processes thourgh the Clean and Simple interface, so that
 they can be used in a fitter command chain directly.

 The code is available in two versions: ftp which is a P+Q
 version supporting both server and intitiator and pftp which
 is a P version working only as an initiator. Both of them
 are capable of sending and receiving.

 This implementation of NIFTP is just a subset of the proto-
 col as its main purpose is to provided the facsimile system
 with a data transmission mechanism. For the sake of simpli-
 city, only the necessary facilities are included in the
 module, while more complex facilities, such as data compres-
 sion and error recovery are not implemented. The following
 table shows the transfer control parameters being used.

 Attribute Value Mod. Remarks

 Mode of access 0001 EQ Creating a new file
 8002 EQ Retrieving file
 Codes - - Text file, any parity
 1002 EQ Binary file
 Format effector 0000 EQ No interpretation
 Binary mapping 0008 EQ Default byte size
 Max record size 00FC EQ Default record size
 Transfer size 0400 LE Default transfer size
 Facilities 0000 EQ Minimum service

 The meanings of the parameters in the command string are
 listed below:

 function is the NIFTP function of our site. Any ASCII string
 beginning

FTP(FAX) FTP(FAX)

 beginning with ’t’ means the file is to be transmitted to
 the remote site. Otherwise, the file will be retrieved from
 the remote site.

 code specifies the type of the file to be transferred. Any
 ASCII string beginning with ’b’ means it is a binary file,
 while others mean text file.

 user_name is the login name of the server site.

 password is the password of the server site.

 file_name is the name of the file to be transmitted.

 transport_service_process is the process name of the tran-
 sport service to be used.

 transport_service_parameters are the parameter string re-
 quired by the transport service. They are network dependent
 and specified by the corresponding transport service.

SEE ALSO

 fitter(fax)

GRINNELL(FAX) GRINNELL(FAX)

NAME

 grinnell - task to convert and display fax vector data

SYNOPSIS

 grinnell() - a MOS task

 command string (task name is defined as string):
 grinnell"<x0>,<y0>,<x1>,<y1>,<mode>,<colour>

DESCRIPTION

 This task takes the vector data from a Clean and Simple in-
 terface and displays it on the Grinnell screen. The Grinnell
 screen is viewed as an X-Y plane with (0,0) being the lower
 left hand corner, (512, 0) being the lower right hand
 corner, etc.

 The parameters x0, y0, x1, y1 are decimal strings defining
 the rectangular space on the screen where the image is to be
 displayed. If the image is smaller than this area, it is ar-
 tificially expanded to the size of this area. If the image
 is larger than this area it is truncated to the size of the
 area.

 The colour field consists of any combination of the charac-
 ters r,g or b to define the colours red, green and blue
 respectively. For instance "gb" would write the image as
 yellow.

 The mode defines how the image is to be displayed. Any com-
 bination of the characters r,a and z may be used, to the
 following effect:

 r = reverse image
 a = additive image
 z = zerowrite image.

 There are three bit planes to define the three colours. Nor-
 mally the bit planes corresponding to the selected colours
 have either zero bits or one bits written to them depending
 upon whether the image or the background is being written.
 For zerowrite, all non-selected bit planes (i.e. colours)
 are always set to zero, thus erasing any unselected colours
 in the area. Additive mode means that in the selected colour
 planes the new bits are ORed in, rather than just written.
 Thus the image is added to. In reverse mode, the image writ-
 ten as one bits is written as zero bits and the bits written
 as zero bits are written as one bits, i.e. the bits are
 flipped before being used.

GRINNELL(FAX) GRINNELL(FAX)

SEE ALSO

 grinnell(dev), vector(fax), fitter(fax)

MERGE(FAX) MERGE(FAX)

NAME

 merge - merge two images together

SYNOPSIS

 merge() - a MOS task

 command string (task name is defined as merge):
 merge"<file_name>,<action>,<x0>,<y0>,<x1>,<y1>

DESCRIPTION

 This routine operates as a MOS pipe task merging two images
 together to form the result image. Input and output are im-
 age data files in the form of vectors.

 One of the two input images is called background which is to
 be copied directly. This is specified by the parameter
 file_name. The image data of the back ground is read via a
 ’tunnel’, maintained by this task. Another input image is
 taken form the Clean and Simple interface managed by the
 fitter. As shown in the following diagram, the position
 where it is to be put on the background image is specified
 by the parameters x0, y0, x1, y1, which are decimal strings.
 This implies that the dimension of the image is x1 - x0 and
 y1 -y0.

 (0, 0) width X
 +-------------------------+---->
 | |
 | (x0, y0) |
 | +---------+ |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | +---------+ |
 | (x1, y1) |
 | |
 | |
 | (back ground) |
 height +-------------------------+
 |
 |
 Y V

 The parameter action indicates how the two images are
 merged. If it set to 0, The second image is simply overlaid
 on the back ground image. On the other hand any non-zero
 value

MERGE(FAX) MERGE(FAX)

 causes the second image to replace the specified area of the
 back ground image.

BUGS

 One has to make sure that

 0 < x0 < width_of_back_ground
 0 < y0 < height_of_back_ground
 0 < x1 < width_of_back_ground
 0 < y1 < height_of_back_ground

 In addition, x0, y0, x1, y1 must be consistent with the di-
 mension of the image

SEE ALSO

 vector(fax), getl(fax), putl(fax), chop(fax), fitter(fax)

OD(FAX) OD(FAX)

NAME

 od - dump the input data

SYNOPSIS

 od() - a MOS task

 command string (task name is defined as od):
 od"<format>

DESCRIPTION

 This routine operates as a MOS pipe task dumping the input
 data in a selected format. The input data is taken from the
 Clean and Simple interface.

 The meanings of the one character parameter format are:

 value format

 ’d’ words in decimal
 ’o’ words in octal
 ’c’ bytes in ASCII
 ’b’ bytes in octal

SEE ALSO

 fitter(fax)

RECOMP(FAX) RECOMP(FAX)

NAME

 recomp - compress the vectors to form the DACOM blocks

SYNOPSIS

 recomp() - a MOS task

 command string (task name is defined as recomp):
 recomp

DESCRIPTION

 This task takes vectors from the Clean and Simple interface,
 and recompresses them into DACOM blocks. Then it writes the
 blocks to the Clean and Simple interface.

SEE ALSO

 dacom(dev), vector(fax), fitter(fax)

SCALE(FAX) SCALE(FAX)

NAME

 scale - scale an image to a specified dimension

SYNOPSIS

 scale() - a MOS task

 command string (task name is defined as scale):
 scale"<old_width>,<old_height>,<new_width>,<new_height>

DESCRIPTION

 This routine operates as a MOS pipe task scaling the input
 image to the specified dimension. Input and output are im-
 age data files in the form of vectors.

 The dimension of the input image is given by the parameters
 old_width and old_height, while the dimension of the output
 is specified by the parameters new_width and new_height.

SEE ALSO

 vector(fax), getl(fax), putl(fax), fitter(fax)

STRING(FAX) STRING(FAX)

NAME

 string - convert an ASCII string to the vector format

SYNOPSIS

 string() - a MOS task

 command string (task name is defined as string):
 string"<s>

DESCRIPTION

 This routine operates as a MOS pipe task converting the
 parameter string s to the corresponding vectors.

SEE ALSO

 vector(fax), ts(fax)

TF(FAX) TF(FAX)

NAME

 tf - convert a text to the vector format.

SYNOPSIS

 tf() - a MOS task

 command string (task name is defined as tf):
 tf"<width>,<line_sp>,<upper>,<left>

DESCRIPTION

 This routine operates as a MOS pipe task converting the in-
 put text to the corresponding vectors. The input text, taken
 from the Clean and Simple interface should be in the format
 defined in text(fax).

 +-------------------------+
 | |
 | upper |
 | |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | left XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | XXXXXXXXXXXX |
 | width |
 | |
 +-------------------------+

 As shown in the diagram, the parameters give the information
 for the formating. The parameter width is the maximum width
 of the text lines.

 Every vector will be padded to fit this width. White pels
 may be padded to the left of each vectors, and the number of
 pel to be padded is specified by the parameter left.

 Empty lines may also be inserted. They are defined by param-
 eters upper and line_sp, the number of pels being used as
 the unit.

SEE ALSO

 vector(fax), text(fax), ts(fax), fitter(fax)

UCL FACSIMILE SYSTEM INDRA Note 1185

 Appendix III: Utility Routines and Data Formats

BITMAP(FAX) BITMAP(FAX)

NAME

 bitmap - convert vector format to core bit map

SYNOPSIS

 int bitmap(ivec, cnt, buff);

 int *ivec;
 int cnt;
 char *buff;

DESCRIPTION

 Bitmap converts the fax vector format into a bit map, using
 each bit of the area pointed to by buff. The number of ele-
 ments in ivec is given by cnt, and the first element of ivec
 is taken as a white pel count, the second as a black pel
 count, etc. The resultant bit map is placed in the area
 pointed to by buff. The actual number of bits stored is re-
 turned from the function. The bits in buff are stored in
 byte order, with the highest value bit of the byte taken as
 the first bit of the byte.

BUGS

 You have to make sure that buff is big enough for all the
 bits.

SEE ALSO

 vector(fax), tovec(fax)

TOVEC(FAX) TOVEC(FAX)

NAME

 tovec - convert bitmap to vector format

SYNOPSIS

 int *tovec(buff, nbits);

 char *buff;
 int nbits;

DESCRIPTION

 The bitmap in the buffer pointed to by buff is converted to
 vector format. The length of the bitmap in bits is passed in
 nbits. As the caller would normally not know how many vec-
 tor elements are going to be needed, the tovec routine allo-
 cates this area for the user.

 Buff is assumed to be organised in byte order with the
 highest value bit of each byte being the first bit of the
 byte. The counts of white and black pels are placed into an
 integer vector, the first element of which is the length of
 the rest of the vector. The vector information proper starts
 in the second element which is the count of the number of
 leading white pels. This is followed by the count of the
 numbr of black pels, etc.

 The routine goes to great lengths to make sure only enough
 vector storage is allocated. Temporary storage is allocated
 in small chunks and then, when the length of the whole vec-
 tor is known, the chunks are contacenated into a contiguous
 vector. The pointer to this vector is returned to the user.

SEE ALSO

 vector(fax), bitmap(fax)

CHOICE(FAX) CHOICE(FAX)

NAME

 choice - specify a rectangular area on Grinnell

SYNOPSIS

 struct square {
 int x0, y0;
 int x1, y1;
 };
 struct square *choice(colour, height, width, area, fw, fh)

 char colour;
 int height, width, area, fw, fh;

DESCRIPTION

 This subroutine is called by a MOS task. to specify a rec-
 tangular area of an image by manipulating a square on the
 Grinnel display being illustrating the image. The dimension
 of the original image is defined as height and width. The
 area on which the original image is shown is specified by
 the parameter area.

 value area dimension coordinates

 0 the whole screen 512x512 0,511,511,0
 1 the left half 256x512 0,511,255,0
 2 the right half 256x512 256,511,511,0

 The square will be drwan in a colour defined by the parame-
 ter colour, which can only be:

 value colour

 ’r’ red
 ’g’ green
 ’b’ blue

 There are two modes being supported:

 (1) Fixed: The square will have a fixed dimension specified
 by the parameters fw and fh. The operator can move the
 square around as a whole within the predetermined area
 by using following commands, each of which is invoked
 by typing the corresponding characer on the keyboard of
 the system console.

CHOICE(FAX) CHOICE(FAX)

 command function

 ’u’ move the square up one step
 ’d’ move the square down one step
 ’l’ move the square one step left
 ’r’ move the square one step right
 ’f’ move fast - set the step to 8 pel
 ’o’ move slowly - set the step to 1 pel
 <CR> ok - the area has been chosen, and
 return its coordinates

 (2) Arbitrary: This mode is set up when the subroutine is
 called with the parameters fw and fh set to 0. Any
 edge of the square can be selected to be moved on its
 own by using the same commands described above. The
 following commands are required to select the relevant
 edge as well as switching the operation mode.

 command function

 ’e’ select the right (’east’) edge.
 ’w’ select the left (’west’) edge.
 ’n’ select the upper (’north’) edge.
 ’s’ select the lower (’south’) edge.
 ’a’ move the square as a whole

 As soon as the user types <CR>, the coordinates of the
 current square, which are accommodated in a square struc-
 ture, are returned. Note these are concerned with the coor-
 dinate system defined for the image but not for the grin-
 nell.

BUGS

 Currently, only three working areas can be used.

SEE ALSO

 vector(fax), grinnell(dev), grinnell(fax)

CRC(FAX) CRC(FAX)

NAME

 crc - calculate or check the DACOM CRC code

SYNOPSIS

 int crc(buff, insert);

 char *buff;
 int insert;

DESCRIPTION

 This routine will check/insert the 12-bit CRC code for a
 DACOM block, pointed to by buff. The block contains 585
 bits, the last 12 bits being the CRC code. The block is
 checked only when the parameter insert is set to 0, other-
 wise the CRC code is created and inserted into the block.
 When the block is checked, the routine returns the result: 0
 means OK and any non-zero value means the block is bad. On
 the other hand, when the CRC code is inserted, the routine
 returns the CRC code it has created.

 This routine uses a tabular approach to determine the CRC
 code, processing a whole byte at a time and resulting in a
 high throughput.

BUGS

 Do not forget to supply enough space when the 12-bit CRC
 code is to be inserted.

SEE ALSO

 dacom(dev)

CSINIT(FAX) CSINIT(FAX)

NAME

 csinit - initiate the Clean and Simple interface

SYNOPSIS

 int csinit();

DESCRIPTION

 This routine is called to initiate the Clean and Simple in-
 terface for the calling process. Its code is re-entrant, so
 that only one copy is needed for all processes in a system.

 This routine returns the task identifier, which must be used
 on all subsequent interface calls.

SEE ALSO

 csopen(fax), csread(fax), cswrite(fax), fitter(fax)

CSOPEN(FAX) CSOPEN(FAX)

NAME

 csopen - establish the Clean and Simple connection

SYNOPSIS

 char *csopen(tid);

 int tid;

DESCRIPTION

 A process calls this routine, waiting to be scheduled. Its
 code is re-entrant, so that only one copy is needed for all
 processes in a system.

 The task identifier tid is the word returned from the csinit
 call. When the fitter process has established the Clean and
 Simple connection for the process, this routine returns the
 pointer to the parameter string of the corresponding task
 command.

SEE ALSO

 csinit(fax), csread(fax), cswrite(fax), fitter(fax)

CSREAD(FAX) CSREAD(FAX)

NAME

 csread - read data from the Clean and Simple interface

SYNOPSIS

 char *csread(tid, need);

 int tid, need;

DESCRIPTION

 This routine is called to read data from the Clean and Sim-
 ple interface. Its code is re-entrant, so that only one copy
 is needed for all processes in a system.

 The task identifier tid is the word returned from the csinit
 call. The need parameter indicates the number of bytes that
 are required. This routine returns a pointer to a buffer
 with this much data in it. This is usually more efficient as
 it means that the data does not have to be reblocked.

DIAGNOSTICS

 If the returned value is 0, the end of data is reached.

BUGS

 Funnies happen at the end of data to be read. The csread()
 call has no way of saying that the final buffer is partly
 filled. Thus if you ask for more data, you hang forever.
 But if the data structures are working correctly, this
 should never happen.

SEE ALSO

 csinit(fax), cswrite(fax), fitter(fax)

CSWRITE(FAX) CSWRITE(FAX)

NAME

 cswrite - write data to the Clean and Simple interface

SYNOPSIS

 char *cswrite(tid, need);

 int tid, need;

DESCRIPTION

 This routine is call to write data to the Clean and Simple
 interface. Its code is re-entrant, so that only one copy is
 needed for all processes in a system.

 The task identifier tid is the word returned from the csinit
 call. The need parameter indicates the number of bytes that
 are to be written. This routine returns a write buffer of
 the required length, to which the user data can be copied.
 The subsequent cswrite() call automatically releases the
 previous write buffer.

 The cswrite() call with need set to 0 indicates the end of
 data, closing the current Clean and Simple connection.

BUGS

 As indicated, the write buffer must be filled up before the
 next cswrite() call.

SEE ALSO

 csinit(fax), csread(fax), fitter(fax)

GETL(FAX) GETL(FAX)

NAME

 getl - get a line vector from the Clean and Simple interface

SYNOPSIS

 int *getl(tid);

 int tid, need;

DESCRIPTION

 This routine is called to read a line vector from the Clean
 and Simple interface. Its code is re-entrant, so that only
 one copy is needed for all processes in a system.

 The task identifier tid is the word returned from the csinit
 call. The routine returns the pointer to the buffer where
 the line vector is stored.

DIAGNOSTICS

 0 will be returned when end of file is reached.

BUGS

 Any memory violation causes the whole task chain to be
 aborted.

SEE ALSO

 vector(fax), putl(fax), fitter(fax)

PUTL(FAX) PUTL(FAX)

NAME

 putl - put a line vector to the Clean and Simple Interface

SYNOPSIS

 putl(tid, buf);

 int tid, *buf;

DESCRIPTION

 This routine is called to write a line vector to the Clean
 and Simple interface. Its code is re-entrant, so that only
 one copy is needed for all processes in a system.

 The task identifier tid is the word returned from the csinit
 call. The line vector is stored in a buffer pointed by buf.

SEE ALSO

 vector(fax), getl(fax), fitter(fax)

T4(FAX) T4(FAX)

NAME

 t4 - the data format defined in CCITT recommendation T4

DESCRIPTION

 Dimension and Resolution: In vertical direction the resolu-
 tion is defined below.

 Standard resolution: 3.85 line/mm
 Optional higher resolution: 7.70 line/mm

 In horizontal direction, the standard resolution is defined
 as 1728 black and white picture elements along the standard
 line length of 215 mm. Optionally, there can be 2048 or
 2432 picture elements along a scan line length of 255 or 303
 mm, respectively. The input documents up to a minimum of ISO
 A4 size should be accepted.

 One-Dimensional Coding: The one-dimensional run length data
 compression is accomplished by the popular modified Huffman
 coding scheme. In this scheme, black and white runs are re-
 placed by a base 64 codes representation. Compression is
 achieved since the code word lengths are invertly related to
 the probability of the occurrence of a particular run. A
 special code (000000000001), known as EOL (End of Line),
 follows each line of data. This code starts the facsimile
 message phase, while the control phase is restored by a com-
 bination of six contiguous EOLs (RTC). The data format of a
 facsimile message is shown below.

 start of the facsimile data
 |
 v
 +---+------+---+------+-/
 !EOL! DATA !EOL! DATA !
 +---+------+---+------+-/

 end of the facsimile data
 |
 v
 /-+---+------+---+---+---+---+---+---+
 !EOL! DATA !EOL!EOL!EOL!EOL!EOL!EOL!
 /-+---+------+---+---+---+---+---+---+
 |<------ RTC ------->|

 Two-Dimensional Coding: The two-dimensional coding scheme is
 labeled as the Modified READ Code. It codes one line with
 reference to the line above,correlation between adja-
 cent lines allowing for more efficient compression. In order
 to limit the disturbed area in the event of transmission er-
 rors,

T4(FAX) T4(FAX)

 a one-dimensionally coded line is transmitted after one or
 more two-dimensionally coded lines. A bit, following the
 EOL, indicates whether one- or two-dimensional coding is
 used for the next line:

 EOL1: one-dimensional coding;
 EOL0: two-dimensional coding.

 start of the facsimile data
 |
 v
 +----+--------+----+--------+-/
 !EOL1!DATA(1D)!EOL0!DATA(2D)!
 +----+--------+----+--------+-/

 end of the facsimile data
 |
 v
 /-+----+--------+----+----+----+----+----+----+
 !EOL0!DATA(2D)!EOL1!EOL1!EOL1!EOL1!EOL1!EOL1!
 /-+----+--------+----+----+----+----+----+----+
 |<--------- RTC --------->|

TEXT(FAX) TEXT(FAX)

NAME

 text - the text format for use in the facsimile system

DESCRIPTION

 This is the representation structure for coded character
 text. It is used in the facsimile system.

 The text structure consists of a series of character
 strings, each of which represents a text line. However no
 control characters, e.g. <CR> and <LF>, are used in the
 structure. Each text line is proeeded by a count byte, indi-
 cating the number of characters on the line. The character
 sting follows after the the count byte. A zero count indi-
 cates the end of file.

EXAMPLES

 Here is an example text shown below:

 This is a text.
 This is a picture.

 It can be represented as:

 <017> T h i s <040> i s <040> a <040> t e x t .
 <022> T h i s <040> i s <040> a <040> p i c t u
 r e . <0>

TS(FAX) TS(FAX)

NAME

 ts - translate an ASCII string into vector format

SYNOPSIS

 ts(ar_in, left, right, tid)

 char *ar_in;
 int left, right, tid;

DESCRIPTION

 This routine will convert a zero-ended ASCII string pointed
 to by ar_in into the corresponding vecter format. As the
 character font being used is a set of 12x20 matrices, there
 will be 20 line vectors created. These vectors are written
 to the Cleans and Simple interface by calling cswrite. The
 callers task identifier tid has to be provided.

 At the two ends of the text line, blanks can be padded that
 are specified as left and right. Note that they are meas-
 ured in pels.

 Consequently, the result should be a image, whose dimension
 is:

 width = left + 12*length + right;
 height = 20;

 where length is the number of characters in the input
 string.

 As an intermediate result the bitmap is first created which
 is then converted into the vector format, by calling tovec.

BUGS

 The input string must be ended with a zero field.

SEE ALSO

 vector(fax), tovec(fax), csinit(fax), cswrite(fax),
 fitter(fax)

VECTOR(FAX) VECTOR(FAX)

NAME

 vector - the internal data structure for a facsimile image

DESCRIPTION

 This is the representation structure for binary images, a
 simple run length compression algorithm being used. Most of
 the image files are kept in vector format for ease of pro-
 cessing.

 The vector format consists of a series of integer vectors,
 one vector for each row of pels in the image. Each vector is
 proceeded by a count word which indicates the number of in-
 teger words in the vector. The next element of the vector
 after the count field is the number of white pels in the
 first run of the line. The second word then gives the
 number of pels that follow the initial white run, and so on
 t the end of the vector. Note the first run length element
 must refer to a white run. It should be set to 0 if the
 first run is black.

EXAMPLES

 A line consists of 20 pels as follows:

 00011111111011100000

 It can be represented as:

 5, 3, 8, 1, 3, 5

 The inverse of the line:

 11100000000100011111

 should be represented as:

 6, 0, 3, 8, 1, 3, 5

