I nt ernet Engi neering Task Force (I ETF) P. van der Stok

Request for Comments: 8132 Consul t ant
Cat egory: Standards Track C. Bormann
| SSN: 2070-1721 Uni versi taet Brenen TZ
A. Sehga

NAVOM , I nc.

April 2017

PATCH and FETCH Met hods for the Constrained Application Protocol (CoAP)
Abst r act

The met hods defined in RFC 7252 for the Constrained Application
Protocol (CoAP) only allow access to a conplete resource, not to
parts of a resource. |In case of resources with larger or conplex
data, or in situations where resource continuity is required,
replacing or requesting the whole resource is undesirable. Severa
applications using CoAP need to access parts of the resources.

This specification defines the new CoAP net hods, FETCH, PATCH, and
i PATCH, which are used to access and update parts of a resource.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc8132

van der Stok, et al. St andards Track [Page 1]

RFC 8132 CoAP FETCH PATCH

Copyright Notice

April 2017

Copyright (c) 2017 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this document.

is subject to BCP 78 and the I ETF Trust’s Legal

in effect on the date of

Pl ease revi ew these docunents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1.

Nook

I nt roduction
1.1. FETCH . . .
1.2. PATCH and i PATCH
1.3. Requirenents Language .
1.4. Termnol ogy and Acronyns
FETCH Met hod Co
2.1 Response Codes
2.2. FError Handling
2.3. Option Nunbers . . .
2.3.1. The Content- For rrat Qi)tl on .
2.3.2. The ETag Option . .
2.4 Wirking with Cbserve
2.5 Wrking with Block . . .
2.6 Bui | di ng FETCH Requests .
2.7. A Sinple Exanple for FETCH
PATCH and i PATCH Methods
3.1. Sinple Exanples for PATCH and i PATCH
3.2. Response Codes G e
3.3. Option Nunbers
3.4. FError Handling . . .
The New Set of CoAP Met hods .
Security Considerations .
| ANA Consi derations .
Ref er ences

7 1. Nor mati ve Rell‘ erences
7.2. Informative References

Acknowl edgenent s
Aut hors’ Addr esses

van der Stok, et al. St andards Track

Provi sions and are provided wi thout warranty as

OO ~N~NOOOUOITOTh WW

[Page 2]

RFC 8132 CoAP FETCH PATCH April 2017

1

1

I ntroduction

Simlar to HTTP, the CGET nethod defined in [RFC7252] for the
Constrai ned Application Protocol (CoAP) only allows the specification
of a URI and request paraneters in CoAP options, not the transfer of
a request payload detailing the request. This |eads sone
applications to use POST where a cacheabl e, idenpotent, safe request
is actually desired

Again, simlar to the original specification of HITP, the PUT mnet hod
defined in [RFC7252] only allows a conplete resource to be repl aced.
This also | eads applications to use POST where a cacheabl e, possibly
i denpotent request is actually desired.

The present specification adds new CoAP net hods: FETCH, to perform
the equivalent of a GET with a request body; and the tw n nethods,
PATCH and i PATCH, to nodify parts of a CoAP resource

FETCH

The CoAP GET nethod [RFC7252] is used to obtain the representation of
a resource, where the resource is specified by a URI and additiona
request paraneters can al so shape the representation. This has been
nodel ed after the HITP GET operation and the REST nodel in general

In HTTP, a resource is often used to search for information, and

exi sting systens varyingly use the HITP GET and POST nethods to
performa search. Oten, a POST nethod is used solely so that a

| arger set of paraneters to the search can be supplied in the request
body than can confortably be transferred in the URl with a GET
request. [HTTP-SEARCH proposes a SEARCH nethod that is sinmlar to
CET in nost properties but enables sending a request body, as is done
with POST. The FETCH net hod defined in the present specification is
i nspired by [HITP- SEARCH], which updates the definition and senantics
of the HTTP SEARCH request nethod previously defined by [RFC5323].
However, there is no intention to limt FETCH to search-type
operations, and the resulting properties may not be the sane as those
of HTTP SEARCH

van der Stok, et al. St andards Track [Page 3]

RFC 8132 CoAP FETCH PATCH April 2017

A nmajor problemwith GET is that the information that controls the
request needs to be bundled up in sone unspecified way into the URl
Using the request body for this information has a nunber of

advant ages:

0 The client can specify a nedia type (and a content coding) that
enabl es the server to unanbi guously interpret the request
paraneters in the context of that nedia type. Also, the request
body is not limted by the character set limtations of URlSs,
whi ch enables a nore natural (and nore efficient) representation
of certain domain-specific parameters.

0 The request paraneters are not linmted by the nmaxi mum size of the
URI. In HTTP, that is a problem as the practical lint for this
size varies. |In CoAP, another problemis that the bl ock-w se
transfer is not available for transferring large URI options in
mul ti pl e rounds.

As an alternative to using GET, nany inplenentations nake use of the
POST nethod to perform extended requests (even if they are
semantically idenpotent, safe, and even cacheable) to be able to pass
al ong the input paraneters within the request payl oad as opposed to
using the request URI.

The FETCH net hod provides a solution that spans the gap between the
use of GET and POST. As with POST, the input to the FETCH operation
is passed along within the payl oad of the request rather than as part
of the request URI. Unlike POST, however, the semantics of the FETCH
met hod are nore specifically defined.

1.2. PATCH and i PATCH

PATCH i s al so specified for HTTP in [RFC5789]. Most of the
nmotivation for PATCH described in [RFC5789] al so applies here. i PATCH
is the idenpotent version of PATCH

The PUT nethod exists to overwite a resource with conpletely new
contents and cannot be used to performpartial changes. Wen using
PUT for partial changes, proxies and caches, and even clients and
servers, may get confused as to the result of the operation. PATCH
was not adopted in an early design stage of CoAP; however, it has
becone necessary with the arrival of applications that require
partial updates to resources (e.g., [COAP-MAWNT]). Using PATCH
avoi ds transferring all data associated with a resource in case of
nodi fi cations, thereby not burdening the constrained conmuni cation
medi um

van der Stok, et al. St andards Track [Page 4]

RFC 8132 CoAP FETCH PATCH April 2017

This docunent relies on know edge of the PATCH specification for HTTP
[RFC5789]. This docunment provides extracts from[RFC5789] to nake
i ndependent readi ng possi bl e.

1.3. Requirements Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in

[RFC2119] .

1.4. Term nology and Acronyns
Thi s docunent uses terninology defined in [RFC5789] and [RFC7252].

Specifically, it uses the ternms "safe" and "idenpotent” as defined in
Section 5.1 of [RFCr252]. (Further discussion of safe and idenpotent
met hods can now be found in Sections 4.2.1 and 4.2.2 of [RFC7231],
respectively; the inplications of idenpotence of nethods on server

i mpl ement ations are also discussed in Section 4.5 of [RFC7252].)

2. FETCH Met hod

The CoAP FETCH nethod is used to obtain a representation of a
resource, specified by a nunber of request paraneters. Unlike the
CoAP CET met hod, which requests that a server return a representation
of the resource identified by the effective request URI (as defined
by [RFC7252]), the FETCH nethod is used by a client to ask the server
to produce a representation as described by the request paraneters
(including the request options and the payl oad) based on the resource
specified by the effective request URI. The payload returned in
response to a FETCH cannot be assunmed to be a conplete representation
of the resource identified by the effective request URI, i.e., it
cannot be used by a cache as a payload to be returned by a GET
request.

Together with the request options, the body of the request (which nmay
be constructed fromnultiple payl oads using the block protoco

[RFC7959]) defines the request paraneters. Wth the FETCH net hod,

i npl enent ati ons may subnit a request body of any nedia type that is
defined with the semantics of selecting information froma resource
in such a FETCH request; it is outside the scope of this docunent how
i nformati on about nedia types adnissible for the specific resource is
obtai ned by the client (although we can hint that formrel ations

[CORE- APP] might be a preferred way). 1t is RECOWENDED that any

di scovery nmethod that allows a client to find out that the server
supports FETCH al so provides information regardi ng what FETCH payl oad
medi a types are applicable.

van der Stok, et al. St andards Track [Page 5]

RFC 8132 CoAP FETCH PATCH April 2017

FETCH requests are both safe and idenpotent with regards to the
resource identified by the request URI. That is, the performance of
a FETCH is not intended to alter the state of the targeted resource.
(However, while processing a FETCH request, a server can be expected
to allocate conputing and nenory resources or even create additiona
server resources through which the response to the search can be
retrieved.)

A successful response to a FETCH request is expected to provide sone
indication as to the final disposition of the requested operation

If a successful response includes a body payl oad, the payload is
expected to describe the results of the FETCH operation

Dependi ng on the response code as defined by [RFC7252], the response
to a FETCH request is cacheable; the request body is part of the
cache key. Specifically, 2.05 (Content) response codes (the
responses for which are cacheable) are a typical way to respond to a
FETCH request. (Note that this aspect differs nmarkedly from

[HTTP- SEARCH] and al so that caches that cannot use the request

payl oad as part of the cache key will not be able to cache responses
to FETCH requests at all.) The Max-Age option in the response has
equi val ent semantics to its use in a GET.

The senantics of the FETCH nethod change to a "conditional FETCH' if
the request nessage includes an If-Match or |f-None-NMatch option

[RFC7252]. A conditional FETCH requests that the query be perforned
only under the circunstances described by the conditional option(s).
It is inmportant to note, however, that such conditions are eval uated
against the state of the target resource itself as opposed to the
results of the FETCH operation

2.1. Response Codes

FETCH for CoAP adopts the response codes as specified in Sections 5.9
and 12.1.2 of [RFC7252] as well as the additional response codes
nmentioned in Section 2.2.

2.2. FError Handling

A FETCH request may fail under certain known conditions. Beyond the
conditions already defined in [RFC7252] for GET, noteworthy ones are:

Mal formed FETCH payl oad: |If a server deternines that the payl oad
provided with a FETCH request is not properly formatted, it can
return a 4.00 (Bad Request) CoAP error. The definition of a
mal f or med payl oad depends upon the CoAP Content-Format specified
with the request.

van der Stok, et al. St andards Track [Page 6]

RFC 8132 CoAP FETCH PATCH April 2017

Unsupported FETCH payload: |In case a client sends a payload that is
i nappropriate for the resource identified by the Request-URI, the
server can return a 4.15 (Unsupported Content-Format) CoAP error
The server can deternmine if the payload is supported by checking
the CoAP Content-Format specified with the request.

Unprocessabl e request: This situation occurs when the payload of a
FETCH request is deternmined to be valid (i.e., well-forned and
supported) but the server is unable to or is incapable of
processing the request. The server can return a 4.22
(Unprocessabl e Entity) CoAP error. In situations when the server
has insufficient conputing resources to conplete the request
successfully, it can return a 4.13 (Request Entity Too Large) CoAP

error (see also below). |If there are nore specific errors that
provi de additional insight into the problem then those should be
used.

Request too large: |f the payload of the FETCH request is |arger
than a CoAP server can process, then it can return the 4.13
(Request Entity Too Large) CoAP error

It is possible that other error situations not nentioned here are

encountered by a CoAP server while processing the FETCH request. In
these situations, other appropriate CoAP response codes can al so be
returned.

2.3. Option Nunbers

FETCH for CoAP adopts the option nunbers as specified in Sections
5.10 and 12.2 of [RFC7252].

Generally, options defined for GET act in an anal ogous way for FETCH
Two specific cases are called out in the rest of this section

2.3.1. The Content-Format Option

A FETCH request MJUST include a Content-Fornat option (see

Section 5.10.3 of [RFC7252]) to specify the nmedia type and content
codi ng of the request body. (Typically, the media type will have

been specifically designed to specify details for a selection or a
search on a resource.)

van der Stok, et al. St andards Track [Page 7]

RFC 8132 CoAP FETCH PATCH April 2017

2.3.2. The ETag Option

The ETag option on a FETCH result has the sane senmantics as defined

in Section 5.10.6 of [RFC7252]. |In particular, its use as a response
option describes the "tagged representation”, which for FETCH is the
same as the "selected representation”. The FETCH payload is input to

that sel ection process and therefore needs to be part of the cache
key. Simlarly, the use of ETag as a request option can elicit a
2.03 (Valid) response if the representati on associated with the ETag
woul d still be selected by the FETCH request (including its payl oad).

2.4. Wirking with Cbserve

The Cbserve option [RFC7641] can be used with a FETCH request as it
can be used with a GET request.

2.5. Wirking with Bl ock

The Bl ockl option [RFC7959] can be used with a FETCH request as it
woul d be used with a POST request; the Block2 option can then be used
as it would with GET or POST.

2.6. Building FETCH Requests

One property of FETCH that nmay be non-obvious is that a FETCH request
cannot be generated froma link alone; the client also needs a way to
generate the request payload. Again, formrelations [CORE- APP] nmay
be able to fill parts of this gap

2.7. A Sinple Exanple for FETCH

The FETCH net hod needs a nedia type for its payload (as expressed by
the Content-Format request option) that specifies the search query in
simlar detail as is shown for the PATCH payl oad in the PATCH exanpl e
in Section 3.1. ([HTTP-SEARCH] invents a "text/query" format based
on sone hypothetical SQ dialect for its exanples.)

The exanple below illustrates retrieval of a subset of a JSON

[RFC7159] object (the same object as used in Section 3.1). Using a
hypot heti cal nmedia type "application/exanpl e- map- keys+j son" (with a
Content-Format I D of NNN, which is not defined as this is just an
exanple), the client specifies the itens in the object that it wants:
it supplies a JSON array that gives the map keys for these itens. A
resource |located at <coap://ww. exanpl e. conf obj ect > can be
represented by a JSON docunent that we will consider as the target of
the FETCH. The client wants to learn the contents of the single map
key "foo" within this target:

van der Stok, et al. St andards Track [Page 8]

RFC 8132 CoAP FETCH PATCH April 2017

{
"x-coord": 256
"y-coord": 45
"foo": ["bar", "baz"]
}

FETCH Exanpl e: JSON Docunent Returned by GET

The exanpl e FETCH request specifies a single top-level nenber desired
by giving its map key as the sole elenent of the "exanple-map-keys"
payl oad:

FETCH CoAP: / / ww. exanpl e. cont obj ect
Content- Format: NNN (application/ exanpl e- map- keys+j son)
Accept: application/json

f oo

FETCH Exanpl e: Request
The server returns a subset docunent with just the sel ected nmenber:

2. 05 Content
Content-Format: 50 (application/json)

"fOO": [u bar ||, " bazu]

}
FETCH Exanpl e: Response with Subset JSON Docunent

By the logic of this exanple, the requester could have entered nore
than one map key into the request payload array and woul d have
received a nore conpl ete subset of the top-level JSON object that is
representing the resource.

3. PATCH and i PATCH Met hods

The PATCH and i PATCH net hods request that a set of changes descri bed
in the request payload be applied to the target resource of the
request. The set of changes is represented in a format identified by
a nedia type. |If the Request-URI does not point to an existing
resource, the server MAY create a new resource with that URI
dependi ng on the PATCH docunent type (whether it can logically nodify
a null resource) and pernissions, as well as other conditions such as
the degree of control the server gives clients in creating new

van der Stok, et al. St andards Track [Page 9]

RFC 8132 CoAP FETCH PATCH April 2017

entries inits URI space (see also Section 3.4). Creation of a new
resource would result in a 2.01 (Created) response code dependent on
t he PATCH docunent type

Restrictions to a PATCH or i PATCH request can be made by incl uding
the If-Match or |f-None-Match options in the request (see Sections
5.10.8.1 and 5.10.8.2 of [RFC7252]). |If the resource could not be
created or nodified, then an appropriate error response code SHOULD
be sent.

The difference between the PUT and PATCH requests is docunented in

[RFC5789]. When a request is intended to effect a partial update of
a given resource, clients cannot use PUT while supplying just the
update, but they mi ght be able to use PATCH or i PATCH

The PATCH nethod is "not safe"” and "not idenpotent”, as is the HITP
PATCH met hod specified in [RFC5789].

The i PATCH nethod is not safe but idenpotent, as with the CoAP PUT
nmet hod specified in Section 5.8.3 of [RFC7252].

A client can mark a request as idenpotent by using the i PATCH et hod
i nstead of the PATCH method. This is the only difference between the
two. The indication of idenpotence nmay enable the server to keep

| ess state about the interaction; sone constrained servers nmay only

i mpl ement the i PATCH variant for this reason.

PATCH and i PATCH are both atomic. The server MJST apply the entire
set of changes atomi cally and never provide a partially nodified
representation to a concurrently executed GET request. G ven the
constrai ned nature of the servers, nobst servers will only execute
CoAP requests consecutively, thus preventing a concurrent partia
over |l appi ng of request nodifications. |In other words, nodifications
MUST NOT be applied to the server state when an error occurs or when
only a partial execution is possible on the resources present in the
server.

The atomicity applies to a single server. Wen a PATCH or i PATCH
request is nmulticast to a set of servers, each server can either
execute all required nodifications or not. It is not required that
all servers execute all nodifications or none. An Atonmic Commt
protocol that provides nultiple server atomcity is out of scope.

van der Stok, et al. St andards Track [Page 10]

RFC 8132 CoAP FETCH PATCH April 2017

A PATCH or i PATCH response can invalidate a cache in a sinmilar nmanner
to the PUT response. For the successful (2.xx) response codes, PATCH
or i PATCH have the follow ng cachi ng behavi or:

0 A 2.01 (Created) response invalidates any cache entry for the
resource indicated by the Location-* options; the payload is a
representation of the action result.

0 A 2.04 (Changed) response invalidates any cache entry for the
target resource; the payload is a representation of the action
result.

There is no guarantee that a resource can be nodified with PATCH or
i PATCH. Servers MJST ensure that a received PATCH body is
appropriate for the type of resource identified by the target
resource of the request.

It is RECOWENDED that any di scovery nethod that allows a client to
find out that the server supports one of PATCH and i PATCH al so

provi de i nformation regardi ng what PATCH payl oad nedia types are
appl i cabl e and which of the two nmethods are inplenented by the server
for each of these nedia types.

Servers that do not rely on the idenpotence of i PATCH can easily
support both PATCH and i PATCH, and it is RECOMVENDED they do so.

This is inexpensive to do, as, for i PATCH, there is no requirenent on
the server to check that the client’s intention that the request be

i dempotent is fulfilled (although there is diagnostic value in that
check, so a less-constrained inplenentation may want to performit).

van der Stok, et al. St andards Track [Page 11]

RFC 8132 CoAP FETCH PATCH April 2017

3.1. Sinple Exanples for PATCH and i PATCH

The exanple is taken over from[RFC6902], which specifies a JSON
notati on for PATCH operations. A resource |ocated at
<coap:// ww. exanpl e. conf obj ect > contains a target JSON docunent.

JSON docunent original state:

"x-coord": 256,
"y-coord": 45,
Ilfooll: [II bar II, n bazll]

}

REQ i PATCH CoAP: //ww. exanpl e. com obj ect
Content-Format: 51 (application/json-patch+json)

[

]
RET: CoAP 2.04 Changed

{ "op":"replace", "path":"x-coord", "val ue":45}

JSON docunent final state:

{
"x-coord": 45,
"y-coord": 45,
"foo": ["bar", "baz"]
}
This exanple illustrates use of an idenpotent nodification to the
x-coord nenber of the existing resource "object”. The 2.04 (Changed)

response code conforns with the CoAP PUT net hod.

van der Stok, et al. St andards Track [Page 12]

RFC 8132 CoAP FETCH PATCH April 2017

The sane exanpl e using the Content-Format application/nerge-
pat ch+j son from [RFC7396] |ooks like the foll ow ng:

JSON docunent original state:

{
"x-coord": 256,
"y-coord": 45,
"foo": ["bar", "baz"]
}

REQ i PATCH CoAP: //ww. exanpl e. com obj ect
Content-Format: 52 (application/ nerge-patch+json)
{ "x-coord": 45}

RET: CoAP 2.04 Changed
JSON docunent final state:

"x-coord": 45,
"y-coord": 45,
llfooll: [ll bar n , n bazll]
}
The exanpl es show the use of the i PATCH nethod, but the use of the
PATCH net hod woul d have led to the sanme result. Below, a non-

i denpotent nodification is shown. Because the action is non-
i dempotent, i PATCH returns an error, while PATCH executes the action.

van der Stok, et al. St andards Track [Page 13]

RFC 8132 CoAP FETCH PATCH April 2017

JSON docunent original state:

{
"x-coord": 256
"y-coord": 45
"foo": ["bar", "baz"]
}

REQ i PATCH CoAP: //ww. exanpl e. com obj ect
Content-Format: 51 (application/json-patch+json)

[
{ "op":"add", "path":"foo/ 1", "val ue":"bar"}

]
RET: CoAP 4.00 Bad Request
Di agnostic payl oad: Patch format not idenpotent

JSON docunent final state is unchanged

REQ PATCH CoAP: // wwv. exanpl e. coni obj ect
Content-Format: 51 (application/json-patch+json)

[
{ " Opu " addu , " pat hu " f OO/ 1|| , " Val ueu " bar u}

]
RET: CoAP 2.04 Changed
JSON docunent final state:
"x-coord": 45
"y-coord": 45
"foo": ["bar","bar", "baz"]

}

3.2. Response Codes
PATCH and i PATCH for CoAP adopt the response codes as specified in
Sections 5.9 and 12.1.2 of [RFC7252] and add 4.09 (Conflict) and 4.22

(Unprocessable Entity) with the semantics specified in Section 3.4 of
the present specification

3.3. Option Nunbers

PATCH and i PATCH for CoAP adopt the option nunbers as specified in
Sections 5.10 and 12.2 of [RFC7252].

van der Stok, et al. St andards Track [Page 14]

RFC 8132 CoAP FETCH PATCH April 2017

3.4. FError Handling

A PATCH or i PATCH request may fail under certain known conditions.
These situations should be dealt with as expressed bel ow

Mal f ormed PATCH or i PATCH payload: |If a server deternines that the
payl oad provided with a PATCH or i PATCH request is not properly
formatted, it can return a 4.00 (Bad Request) CoAP error. The
definition of a mal forned payl oad depends upon the CoAP Content -
Format specified with the request.

Unsupported PATCH or i PATCH payload: |In case a client sends a
payl oad that is inappropriate for the resource identified by the
Request-URI, the server can return a 4.15 (Unsupported Content -
Format) CoAP error. The server can determine if the payload is
supported by checking the CoAP Content-Format specified with the
request.

Unprocessabl e request: This situation occurs when the payload of a
PATCH request is deternmined to be valid (i.e., well-forned and
supported) but the server is unable to or is incapable of
processing the request. The server can return a 4.22
(Unprocessabl e Entity) CoAP error. Mre specific scenarios m ght
i ncl ude situations such as:

* the server has insufficient conputing resources to conplete the
request successfully -- 4.13 (Request Entity Too Large) CoAP
response code (see below); or

* the resource specified in the request becones invalid by
appl ying the payload -- 4.09 (Conflict) CoAP response code (see
"Conflicting state" below)).

In case there are nore specific errors that provide additiona
insight into the problem then those should be used.

Resource not found: The 4.04 (Not Found) error should be returned if
t he payl oad of a PATCH request cannot be applied to a non-existent
resource.

Failed precondition: 1In case the client uses the conditiona
If-Match or |f-None-Match option to define a precondition for the
PATCH request, and that precondition fails, then the server can
return the 4.12 (Precondition Failed) CoAP error.

Request too large: |If the payload of the PATCH request is |arger

than a CoAP server can process, then it can return the 4.13
(Request Entity Too Large) CoAP error.

van der Stok, et al. St andards Track [Page 15]

RFC 8132 CoAP FETCH PATCH April 2017

Conflicting state: |If the nodification specified by a PATCH or
i PATCH request causes the resource to enter an inconsistent state
that the server cannot resolve, the server can return the 4.09
(Conflict) CoAP response. The server SHOULD generate a payl oad
that includes enough information for a user to recognize the
source of the conflict. The server MAY return the actual resource
state to provide the client with the neans to create a new
consi stent resource state. Such a situation m ght be encountered
when a structural nodification is applied to a configuration data
store but the structures being nodified do not exist.

Concurrent nodification: Resource-constrained devices nmight need to
process requests in the order they are received. |n case requests
are received concurrently to nodify the same resource but they
cannot be queued, the server can return a 5.03 (Service
Unavai | abl e) CoAP response code.

Conflict handling failure: |If the nodification inplies the
reservation of resources or the wait tine for conditions to becone
true leads to a too-long request execution tine, the server can
return a 5.03 (Service Unavail abl e) response code.

It is possible that other error situations not nentioned here are

encountered by a CoAP server while processing the PATCH request. In
these situations, other appropriate CoAP status codes can al so be
ret ur ned.

4. The New Set of CoAP Met hods

Addi ng three new nethods to CoAP' s existing four nay seemlike a
maj or change. However, FETCH and the two PATCH variants fit well
into the REST paradi gm and have been anticipated on the HTTP side.
Addi ng both a non-idenpotent and an idenpotent PATCH variant all ows
interoperability with HTTP s PATCH nethod to be kept and all ows the
use/indication of an idenpotent PATCH when that is possible, which
saves significant effort on the server side.

van der Stok, et al. St andards Track [Page 16]

RFC 8132 CoAP FETCH PATCH April 2017

Interestingly, the three new nethods fit into the old table of
met hods with a surprising sinilarity in the idenpotence and safety
attributes

Hom - - Fom e e e - Hom - - Fom e e e - Hom - - S +
| Code | Nane | Code | Nane | safe | idenpotent

R E R R E R R R +
0.01	CET	0.05	FETCH	yes	yes
0.02	POST	0.06	PATCH	no	no
0.03	PUT	0.07	iPATCH	no	yes
0.04	DELETE			no	yes
Hom - - Fom e oo - Hom - - Fom e oo - Hom - - B S +

5. Security Considerations

This section anal yzes the possible threats to the CoAP FETCH and
PATCH or i PATCH nethods. It is nmeant to inform protocol and
application devel opers about the security limtations of CoAP FETCH
and PATCH or i PATCH as described in this docunent.

The FETCH nethod is subject to the sane general security

consi derations as all CoAP nethods as described in Section 11 of

[RFC7252]. Specifically, the security considerations for FETCH are
cl osest to those of GET, except that the FETCH request carries a
payl oad that nmay need additional protection. The payload of a FETCH
request may reveal nore detailed information about the specific
portions of a resource of interest to the requester than a GET
request for the entire resource would; this nay nmean that
confidentiality protection of the request by Datagram Transport Layer
Security (DTLS) or other neans is needed for FETCH where it wouldn’t
be needed for GCET.

The PATCH and i PATCH net hods are subject to the sane general security
consi derations as all CoAP nethods as described in Section 11 of

[RFC7252]. The specific security considerations for PATCH or i PATCH
are nearly identical to the security considerations for PUT

[RFC7252]; the security considerations of Section 5 of [RFC5789] al so
apply to PATCH and i PATCH. Specifically, there is likely to be a
need for authorizing requests (possibly through access control and/or
aut hentication) and for ensuring that data is not corrupted through
transport errors or through accidental overwites. The nechanisns
used for PUT can be used for PATCH or i PATCH as wel | .

The new nethods defined in the present specification are secured
followi ng the CoAP recomrendations for the existing methods as
specified in Section 9 of [RFC7252]. When additional security
techni ques are standardi zed for CoAP (e.g., Object Security), these
techni ques are then al so avail able for securing the new nethods.

van der Stok, et al. St andards Track [Page 17]

RFC 8132 CoAP FETCH PATCH April 2017

6. | ANA Consi derati ons

| ANA has added the following entries to the subregistry "CoAP Met hod
Codes":

0.05	FETCH	RFC 8132
0.06	PATCH	RFC 8132
0.07	i PATCH	RFC 8132

The FETCH nethod is idenpotent and safe, and it returns the sane
response codes that GET can return, plus 4.13 (Request Entity Too
Large), 4.15 (Unsupported Content-Format), and 4.22 (Unprocessable
Entity) with the semantics specified in Section 2.2.

The PATCH nethod is neither idenpotent nor safe. It returns the same
response codes that POST can return, plus 4.09 (Conflict) and 4.22
(Unprocessable Entity) with the semantics specified in Section 3.4.

The i PATCH nethod is identical to the PATCH nmethod, except that it is
i denpot ent.

| ANA has added the following code to the subregistry "CoAP Response
Codes":

Hom - - o e e e S +
| Code | Nane | Reference
S oo oo +
| 4.09 | Conflict | RFC 8132

| 4.22 | Unprocessable Entity | RFC 8132

[o e e e e e e oo S +

e e e oaiaoo - oo oo +
| Media Type | Content Coding | ID| Reference
o e e e e e e e m e e e e S T +
| application/json-patch+json | identity | 51 | [RFC6902]
| application/nmerge-patch+json | identity | 52 | [RFC7396]
o e oo oo oo +

van der Stok, et al. St andards Track [Page 18]

RFC 8132

7. References

CoAP FETCH PATCH April 2017

7.1. Normative References

[RFC2119]

[RFC5789]

[RFC7231]

[RFC7252]

[RFC7641]

[RFC7959]

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

Dusseault, L. and J. Snell, "PATCH Method for HITP",
RFC 5789, DO 10.17487/ RFC5789, March 2010,
<http://ww.rfc-editor.org/info/rfc5789>.

Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,

DO 10.17487/ RFC7231, June 2014,

<http://www. rfc-editor.org/info/rfc7231>.

Shel by, Z., Hartke, K, and C. Bornmann, "The Constrai ned
Application Protocol (CoAP)", RFC 7252,

DA 10.17487/ RFC7252, June 2014,

<http://www. rfc-editor.org/info/rfc7252>.

Hart ke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,

DA 10. 17487/ RFC7641, Septenber 2015,

<http://ww. rfc-editor.org/info/rfc7641>.

Bormann, C. and Z. Shel by, Ed., "Bl ock-Wse Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DA 10. 17487/ RFC7959, August 2016,
<http://ww.rfc-editor.org/info/rfc7959>.

7. 2. I nformati ve References

[RFC5323]

[RFC6902]

[RFC7159]

van der Stok,

Reschke, J., Ed., Reddy, S., Davis, J., and A. Babich,
"Web Distributed Authoring and Versioning (WbDAV)
SEARCH', RFC 5323, DA 10.17487/ RFC5323, Novenber 2008,
<http://ww. rfc-editor.org/info/rfc5323>.

Bryan, P., Ed. and M Nottingham Ed., "JavaScript Object
Not ati on (JSON) Patch", RFC 6902, DO 10.17487/ RFC6902,
April 2013, <http://ww.rfc-editor.org/info/rfc6902>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March
2014, <http://ww.rfc-editor.org/info/rfc7159>.

et al. St andards Track [Page 19]

RFC 8132 CoAP FETCH PATCH April 2017

[RFC7396] Hoffnan, P. and J. Snell, "JSON Merge Patch", RFC 7396,
DA 10.17487/ RFC7396, COctober 2014,
<http://ww. rfc-editor.org/info/rfc7396>.

[COAP- MGWNT]
Stok, P., Bierman, A, Veillette, M, and A Pelov, "CoAP
Managenment Interface", Wrk in Progress,
draft-ietf-core-conmi-00, January 2017.

[CORE- APP] Hartke, K., "CoRE Application Descriptions", Wrk in
Progress, draft-hartke-core-apps-07, February 2017.

[HTTP- SEARCH]
Reschke, J., Mal hotra, A, and J. Snell, "HTTP SEARCH
Met hod", Work in Progress, draft-snell-search-nethod-00,
April 2015.

Acknowl edgenent s

Kl aus Hart ke has pointed out some essential differences between CoAP
and HTTP concerni ng PATCH and found a nunber of problens in an
earlier draft version of Section 2. W are grateful for discussions
with Christian Ansuss, Andy Bierman, Tinothy Carey, Paul Duffy,
Matt hi as Kovatsch, Mchel Veillette, Mchael Verschoor, Thonas
Watteyne, and Gengyu Wei. Christian G oves provided detail ed
comrents during the Working Group Last Call, and Christer Hol nberg’s
Gen- ART review provided sone further editorial inprovenent. Further
Last Call reviews were provided by Sheng Jiang and Phillip Hallam
Baker. As usual, the IESG had sone very good reviews, and we woul d
like to specifically call out those by Al exey Ml ni kov (responsible
AD) and Alissa Cooper.

van der Stok, et al. St andards Track [Page 20]

RFC 8132 CoAP FETCH PATCH

Aut hors’ Addr esses

Peter van der Stok
Consul t ant

Enmai | : consul t ancy@ander st ok. org

Car st en Bor mann
Uni versi taet Brenen TZI
Post fach 330440
Brenmen D-28359

Cer many
Phone: +49-421-218-63921
Emai |l : cabo@zi.org
Anuj Sehgal
NAVOM , | nc.
Emai | : anuj . sehgal @havom . com
van der Stok, et al. St andards Track

April 2017

[Page 21]

