
RFC: 814

 NAME, ADDRESSES, PORTS, AND ROUTES

 David D. Clark
 MIT Laboratory for Computer Science
 Computer Systems and Communications Group
 July, 1982

 1. Introduction

 It has been said that the principal function of an operating system

is to define a number of different names for the same object, so that it

can busy itself keeping track of the relationship between all of the

different names. Network protocols seem to have somewhat the same

characteristic. In TCP/IP, there are several ways of referring to

things. At the human visible interface, there are character string

"names" to identify networks, hosts, and services. Host names are

translated into network "addresses", 32-bit values that identify the

network to which a host is attached, and the location of the host on

that net. Service names are translated into a "port identifier", which

in TCP is a 16-bit value. Finally, addresses are translated into

"routes", which are the sequence of steps a packet must take to reach

the specified addresses. Routes show up explicitly in the form of the

internet routing options, and also implicitly in the address to route

translation tables which all hosts and gateways maintain.

 This RFC gives suggestions and guidance for the design of the

tables and algorithms necessary to keep track of these various sorts of

identifiers inside a host implementation of TCP/IP.

 2

 2. The Scope of the Problem

 One of the first questions one can ask about a naming mechanism is

how many names one can expect to encounter. In order to answer this, it

is necessary to know something about the expected maximum size of the

internet. Currently, the internet is fairly small. It contains no more

than 25 active networks, and no more than a few hundred hosts. This

makes it possible to install tables which exhaustively list all of these

elements. However, any implementation undertaken now should be based on

an assumption of a much larger internet. The guidelines currently

recommended are an upper limit of about 1,000 networks. If we imagine

an average number of 25 hosts per net, this would suggest a maximum

number of 25,000 hosts. It is quite unclear whether this host estimate

is high or low, but even if it is off by several factors of two, the

resulting number is still large enough to suggest that current table

management strategies are unacceptable. Some fresh techniques will be

required to deal with the internet of the future.

 3. Names

 As the previous section suggests, the internet will eventually have

a sufficient number of names that a host cannot have a static table

which provides a translation from every name to its associated address.

There are several reasons other than sheer size why a host would not

wish to have such a table. First, with that many names, we can expect

names to be added and deleted at such a rate that an installer might

spend all his time just revising the table. Second, most of the names

will refer to addresses of machines with which nothing will ever be

 3

exchanged. In fact, there may be whole networks with which a particular

host will never have any traffic.

 To cope with this large and somewhat dynamic environment, the

internet is moving from its current position in which a single name

table is maintained by the NIC and distributed to all hosts, to a

distributed approach in which each network (or group of networks) is

responsible for maintaining its own names and providing a "name server"

to translate between the names and the addresses in that network. Each

host is assumed to store not a complete set of name-address

translations, but only a cache of recently used names. When a name is

provided by a user for translation to an address, the host will first

examine its local cache, and if the name is not found there, will

communicate with an appropriate name server to obtain the information,

which it may then insert into its cache for future reference.

 Unfortunately, the name server mechanism is not totally in place in

the internet yet, so for the moment, it is necessary to continue to use

the old strategy of maintaining a complete table of all names in every

host. Implementors, however, should structure this table in such a way

that it is easy to convert later to a name server approach. In

particular, a reasonable programming strategy would be to make the name

table accessible only through a subroutine interface, rather than by

scattering direct references to the table all through the code. In this

way, it will be possible, at a later date, to replace the subroutine

with one capable of making calls on remote name servers.

 A problem which occasionally arises in the ARPANET today is that

 4

the information in a local host table is out of date, because a host has

moved, and a revision of the host table has not yet been installed from

the NIC. In this case, one attempts to connect to a particular host and

discovers an unexpected machine at the address obtained from the local

table. If a human is directly observing the connection attempt, the

error is usually detected immediately. However, for unattended

operations such as the sending of queued mail, this sort of problem can

lead to a great deal of confusion.

 The nameserver scheme will only make this problem worse, if hosts

cache locally the address associated with names that have been looked

up, because the host has no way of knowing when the address has changed

and the cache entry should be removed. To solve this problem, plans are

currently under way to define a simple facility by which a host can

query a foreign address to determine what name is actually associated

with it. SMTP already defines a verification technique based on this

approach.

 4. Addresses

 The IP layer must know something about addresses. In particular,

when a datagram is being sent out from a host, the IP layer must decide

where to send it on the immediately connected network, based on the

internet address. Mechanically, the IP first tests the internet address

to see whether the network number of the recipient is the same as the

network number of the sender. If so, the packet can be sent directly to

the final recipient. If not, the datagram must be sent to a gateway for

further forwarding. In this latter case, a second decision must be

 5

made, as there may be more than one gateway available on the immediately

attached network.

 When the internet address format was first specified, 8 bits were

reserved to identify the network. Early implementations thus

implemented the above algorithm by means of a table with 256 entries,

one for each possible net, that specified the gateway of choice for that

net, with a special case entry for those nets to which the host was

immediately connected. Such tables were sometimes statically filled in,

which caused confusion and malfunctions when gateways and networks moved

(or crashed).

 The current definition of the internet address provides three

different options for network numbering, with the goal of allowing a

very large number of networks to be part of the internet. Thus, it is

no longer possible to imagine having an exhaustive table to select a

gateway for any foreign net. Again, current implementations must use a

strategy based on a local cache of routing information for addresses

currently being used.

 The recommended strategy for address to route translation is as

follows. When the IP layer receives an outbound datagram for

transmission, it extracts the network number from the destination

address, and queries its local table to determine whether it knows a

suitable gateway to which to send the datagram. If it does, the job is

done. (But see RFC 816 on Fault Isolation and Recovery, for

recommendations on how to deal with the possible failure of the

gateway.) If there is no such entry in the local table, then select any

 6

accessible gateway at random, insert that as an entry in the table, and

use it to send the packet. Either the guess will be right or wrong. If

it is wrong, the gateway to which the packet was sent will return an

ICMP redirect message to report that there is a better gateway to reach

the net in question. The arrival of this redirect should cause an

update of the local table.

 The number of entries in the local table should be determined by

the maximum number of active connections which this particular host can

support at any one time. For a large time sharing system, one might

imagine a table with 100 or more entries. For a personal computer being

used to support a single user telnet connection, only one address to

gateway association need be maintained at once.

 The above strategy actually does not completely solve the problem,

but only pushes it down one level, where the problem then arises of how

a new host, freshly arriving on the internet, finds all of its

accessible gateways. Intentionally, this problem is not solved within

the internetwork architecture. The reason is that different networks

have drastically different strategies for allowing a host to find out

about other hosts on its immediate network. Some nets permit a

broadcast mechanism. In this case, a host can send out a message and

expect an answer back from all of the attached gateways. In other

cases, where a particular network is richly provided with tools to

support the internet, there may be a special network mechanism which a

host can invoke to determine where the gateways are. In other cases, it

may be necessary for an installer to manually provide the name of at

 7

least one accessible gateway. Once a host has discovered the name of

one gateway, it can build up a table of all other available gateways, by

keeping track of every gateway that has been reported back to it in an

ICMP message.

 5. Advanced Topics in Addressing and Routing

 The preceding discussion describes the mechanism required in a

minimal implementation, an implementation intended only to provide

operational service access today to the various networks that make up

the internet. For any host which will participate in future research,

as contrasted with service, some additional features are required.

These features will also be helpful for service hosts if they wish to

obtain access to some of the more exotic networks which will become part

of the internet over the next few years. All implementors are urged to

at least provide a structure into which these features could be later

integrated.

 There are several features, either already a part of the

architecture or now under development, which are used to modify or

expand the relationships between addresses and routes. The IP source

route options allow a host to explicitly direct a datagram through a

series of gateways to its foreign host. An alternative form of the ICMP

redirect packet has been proposed, which would return information

specific to a particular destination host, not a destination net.

Finally, additional IP options have been proposed to identify particular

routes within the internet that are unacceptable. The difficulty with

implementing these new features is that the mechanisms do not lie

 8

entirely within the bounds of IP. All the mechanisms above are designed

to apply to a particular connection, so that their use must be specified

at the TCP level. Thus, the interface between IP and the layers above

it must include mechanisms to allow passing this information back and

forth, and TCP (or any other protocol at this level, such as UDP), must

be prepared to store this information. The passing of information

between IP and TCP is made more complicated by the fact that some of the

information, in particular ICMP packets, may arrive at any time. The

normal interface envisioned between TCP and IP is one across which

packets can be sent or received. The existence of asynchronous ICMP

messages implies that there must be an additional channel between the

two, unrelated to the actual sending and receiving of data. (In fact,

there are many other ICMP messages which arrive asynchronously and which

must be passed from IP up to higher layers. See RFC 816, Fault

Isolation and Recovery.)

 Source routes are already in use in the internet, and many

implementations will wish to be able to take advantage of them. The

following sorts of usages should be permitted. First, a user, when

initiating a TCP connection, should be able to hand a source route into

TCP, which in turn must hand the source route to IP with every outgoing

datagram. The user might initially obtain the source route by querying

a different sort of name server, which would return a source route

instead of an address, or the user may have fabricated the source route

manually. A TCP which is listening for a connection, rather than

attempting to open one, must be prepared to receive a datagram which

contains a IP return route, in which case it must remember this return

route, and use it as a source route on all returning datagrams.

 9

 6. Ports and Service Identifiers

 The IP layer of the architecture contains the address information

which specifies the destination host to which the datagram is being

sent. In fact, datagrams are not intended just for particular hosts,

but for particular agents within a host, processes or other entities

that are the actual source and sink of the data. IP performs only a

very simple dispatching once the datagram has arrived at the target

host, it dispatches it to a particular protocol. It is the

responsibility of that protocol handler, for example TCP, to finish

dispatching the datagram to the particular connection for which it is

destined. This next layer of dispatching is done using "port

identifiers", which are a part of the header of the higher level

protocol, and not the IP layer.

 This two-layer dispatching architecture has caused a problem for

certain implementations. In particular, some implementations have

wished to put the IP layer within the kernel of the operating system,

and the TCP layer as a user domain application program. Strict

adherence to this partitioning can lead to grave performance problems,

for the datagram must first be dispatched from the kernel to a TCP

process, which then dispatches the datagram to its final destination

process. The overhead of scheduling this dispatch process can severely

limit the achievable throughput of the implementation.

 As is discussed in RFC 817, Modularity and Efficiency in Protocol

Implementations, this particular separation between kernel and user

leads to other performance problems, even ignoring the issue of port

 10

level dispatching. However, there is an acceptable shortcut which can

be taken to move the higher level dispatching function into the IP

layer, if this makes the implementation substantially easier.

 In principle, every higher level protocol could have a different

dispatching algorithm. The reason for this is discussed below.

However, for the protocols involved in the service offering being

implemented today, TCP and UDP, the dispatching algorithm is exactly the

same, and the port field is located in precisely the same place in the

header. Therefore, unless one is interested in participating in further

protocol research, there is only one higher level dispatch algorithm.

This algorithm takes into account the internet level foreign address,

the protocol number, and the local port and foreign port from the higher

level protocol header. This algorithm can be implemented as a sort of

adjunct to the IP layer implementation, as long as no other higher level

protocols are to be implemented. (Actually, the above statement is only

partially true, in that the UDP dispatch function is subset of the TCP

dispatch function. UDP dispatch depends only protocol number and local

port. However, there is an occasion within TCP when this exact same

subset comes into play, when a process wishes to listen for a connection

from any foreign host. Thus, the range of mechanisms necessary to

support TCP dispatch are also sufficient to support precisely the UDP

requirement.)

 The decision to remove port level dispatching from IP to the higher

level protocol has been questioned by some implementors. It has been

argued that if all of the address structure were part of the IP layer,

 11

then IP could do all of the packet dispatching function within the host,

which would lead to a simpler modularity. Three problems were

identified with this. First, not all protocol implementors could agree

on the size of the port identifier. TCP selected a fairly short port

identifier, 16 bits, to reduce header size. Other protocols being

designed, however, wanted a larger port identifier, perhaps 32 bits, so

that the port identifier, if properly selected, could be considered

probabilistically unique. Thus, constraining the port id to one

particular IP level mechanism would prevent certain fruitful lines of

research. Second, ports serve a special function in addition to

datagram delivery: certain port numbers are reserved to identify

particular services. Thus, TCP port 23 is the remote login service. If

ports were implemented at the IP level, then the assignment of well

known ports could not be done on a protocol basis, but would have to be

done in a centralized manner for all of the IP architecture. Third, IP

was designed with a very simple layering role: IP contained exactly

those functions that the gateways must understand. If the port idea had

been made a part of the IP layer, it would have suggested that gateways

needed to know about ports, which is not the case.

 There are, of course, other ways to avoid these problems. In

particular, the "well-known port" problem can be solved by devising a

second mechanism, distinct from port dispatching, to name well-known

ports. Several protocols have settled on the idea of including, in the

packet which sets up a connection to a particular service, a more

general service descriptor, such as a character string field. These

special packets, which are requesting connection to a particular

 12

service, are routed on arrival to a special server, sometimes called a

"rendezvous server", which examines the service request, selects a

random port which is to be used for this instance of the service, and

then passes the packet along to the service itself to commence the

interaction.

 For the internet architecture, this strategy had the serious flaw

that it presumed all protocols would fit into the same service paradigm:

an initial setup phase, which might contain a certain overhead such as

indirect routing through a rendezvous server, followed by the packets of

the interaction itself, which would flow directly to the process

providing the service. Unfortunately, not all high level protocols in

internet were expected to fit this model. The best example of this is

isolated datagram exchange using UDP. The simplest exchange in UDP is

one process sending a single datagram to another. Especially on a local

net, where the net related overhead is very low, this kind of simple

single datagram interchange can be extremely efficient, with very low

overhead in the hosts. However, since these individual packets would

not be part of an established connection, if IP supported a strategy

based on a rendezvous server and service descriptors, every isolated

datagram would have to be routed indirectly in the receiving host

through the rendezvous server, which would substantially increase the

overhead of processing, and every datagram would have to carry the full

service request field, which would increase the size of the packet

header.

 In general, if a network is intended for "virtual circuit service",

 13

or things similar to that, then using a special high overhead mechanism

for circuit setup makes sense. However, current directions in research

are leading away from this class of protocol, so once again the

architecture was designed not to preclude alternative protocol

structures. The only rational position was that the particular

dispatching strategy used should be part of the higher level protocol

design, not the IP layer.

 This same argument about circuit setup mechanisms also applies to

the design of the IP address structure. Many protocols do not transmit

a full address field as part of every packet, but rather transmit a

short identifier which is created as part of a circuit setup from source

to destination. If the full address needs to be carried in only the

first packet of a long exchange, then the overhead of carrying a very

long address field can easily be justified. Under these circumstances,

one can create truly extravagant address fields, which are capable of

extending to address almost any conceivable entity. However, this

strategy is useable only in a virtual circuit net, where the packets

being transmitted are part of a established sequence, otherwise this

large extravagant address must be transported on every packet. Since

Internet explicitly rejected this restriction on the architecture, it

was necessary to come up with an address field that was compact enough

to be sent in every datagram, but general enough to correctly route the

datagram through the catanet without a previous setup phase. The IP

address of 32 bits is the compromise that results. Clearly it requires

a substantial amount of shoehorning to address all of the interesting

places in the universe with only 32 bits. On the other hand, had the

 14

address field become much bigger, IP would have been susceptible to

another criticism, which is that the header had grown unworkably large.

Again, the fundamental design decision was that the protocol be designed

in such a way that it supported research in new and different sorts of

protocol architectures.

 There are some limited restrictions imposed by the IP design on the

port mechanism selected by the higher level process. In particular,

when a packet goes awry somewhere on the internet, the offending packet

is returned, along with an error indication, as part of an ICMP packet.

An ICMP packet returns only the IP layer, and the next 64 bits of the

original datagram. Thus, any higher level protocol which wishes to sort

out from which port a particular offending datagram came must make sure

that the port information is contained within the first 64 bits of the

next level header. This also means, in most cases, that it is possible

to imagine, as part of the IP layer, a port dispatch mechanism which

works by masking and matching on the first 64 bits of the incoming

higher level header.

