RFC. 814

NAME, ADDRESSES, PORTS, AND ROUTES
David D. dark
M T Laboratory for Conputer Science

Conput er Systens and Conmuni cati ons G oup
July, 1982

1. I nt roducti on

It has been said that the principal function of an operating system
is to define a nunber of different nanmes for the sane object, so that it
can busy itself keeping track of the relationship between all of the
different nanes. Network protocols seem to have sonewhat the sane
characteristic. In TCP/IP, there are several ways of referring to
things. At the human visible interface, there are character string
"names" to identify networks, hosts, and services. Host nanes are
translated into network "addresses", 32-bit values that identify the
network to which a host is attached, and the |ocation of the host on
that net. Service nanes are translated into a "port identifier", which
in TCP is a 16-bit value. Finally, addresses are translated into
"routes", which are the sequence of steps a packet nust take to reach
the specified addresses. Routes show up explicitly in the formof the
internet routing options, and also inplicitly in the address to route

translation tables which all hosts and gateways maintain.

This RFC gives suggestions and guidance for the design of the
tabl es and al gorithns necessary to keep track of these various sorts of

identifiers inside a host inplenentation of TCP/IP

2. The Scope of the Problem

One of the first questions one can ask about a nami ng mechanismis
how many nanes one can expect to encounter. |In order to answer this, it
i s necessary to know sonet hi ng about the expected maxi num size of the
internet. Currently, the internet is fairly small. It contains no nore
than 25 active networks, and no nore than a few hundred hosts. This
makes it possible to install tables which exhaustively list all of these
el ements. However, any inplenentation undertaken now should be based on
an assunption of a nuch larger internet. The guidelines currently
recomended are an upper limt of about 1,000 networks. [|f we inagine
an average nunber of 25 hosts per net, this would suggest a maxinum
nunber of 25,000 hosts. It is quite unclear whether this host estinmate
is high or low, but even if it is off by several factors of two, the
resulting nunmber is still large enough to suggest that current table
managenent strategies are unacceptable. Sonme fresh techniques wll be

required to deal with the internet of the future

3. Nanes

As the previous section suggests, the internet will eventually have
a sufficient nunber of names that a host cannot have a static table
which provides a translation fromevery nane to its associ ated address.
There are several reasons other than sheer size why a host would not
wi sh to have such a table. First, with that many nanes, we can expect
nanes to be added and deleted at such a rate that an installer night
spend all his tinme just revising the table. Second, nost of the nanes

will refer to addresses of machines with which nothing will ever be

exchanged. 1In fact, there may be whol e networks with which a particul ar

host will never have any traffic.

To cope wth this large and sonewhat dynam c environnent, the
internet is noving fromits current position in which a single nane
table is maintained by the NC and distributed to all hosts, to a
di stributed approach in which each network (or group of networks) is
responsible for maintaining its own nanes and providing a "nanme server"
to transl ate between the nanes and the addresses in that network. Each
host is assuned to store not a conplete set of nane-address
transl ations, but only a cache of recently used nanes. Wen a nane is
provided by a wuser for translation to an address, the host will first
exanmne its local cache, and if the name is not found there, wll
comruni cate wth an appropriate name server to obtain the information,

which it may then insert into its cache for future reference.

Unfortunately, the nane server nechanismis not totally in place in
the internet yet, so for the noment, it is necessary to continue to use
the old strategy of maintaining a conplete table of all names in every
host. Inplenentors, however, should structure this table in such a way
that it is easy to convert later to a nane server approach. 1In
particul ar, a reasonable progranm ng strategy would be to make the nane
table accessible only through a subroutine interface, rather than by
scattering direct references to the table all through the code. |In this
way, it will be possible, at a |later date, to replace the subroutine

with one capable of nmaking calls on renpte nane servers

A problem which occasionally arises in the ARPANET today is that

the information in a local host table is out of date, because a host has
nmoved, and a revision of the host table has not yet been installed from
the NNC. In this case, one attenpts to connect to a particular host and

di scovers an unexpected machi ne at the address obtained from the |oca

tabl e. If a human is directly observing the connection attenpt, the
error is wusually detected immediately. However, for unat t ended
operations such as the sending of queued nail, this sort of problemcan

lead to a great deal of confusion

The naneserver schene will only nake this problemworse, if hosts
cache locally the address associated with nanes that have been | ooked
up, because the host has no way of knowi ng when the address has changed
and the cache entry should be renoved. To solve this problem plans are
currently under way to define a sinple facility by which a host can
query a foreign address to determne what name is actually associated
with it. SMIP al ready defines a verification technique based on this

appr oach.

4. Addresses

The I P layer nust know sonet hi ng about addresses. In particular
when a datagramis being sent out froma host, the IP layer nust decide
where to send it on the imediately connected network, based on the
i nternet address. Mechanically, the IP first tests the internet address
to see whether the network nunber of the recipient is the sane as the
networ k nunber of the sender. |If so, the packet can be sent directly to
the final recipient. |If not, the datagram must be sent to a gateway for

further forwarding. In this latter case, a second decision nmnust be

made, as there nay be nore than one gateway available on the i mediately

att ached net wor k.

When the internet address format was first specified, 8 bits were
reserved to identify the network. Early i mpl enent ati ons t hus
i npl emented the above algorithmby neans of a table with 256 entri es,
one for each possible net, that specified the gateway of choice for that
net, with a special case entry for those nets to which the host was
i medi ately connected. Such tables were sonetinmes statically filled in,
whi ch caused confusi on and nal functi ons when gat eways and networ ks noved

(or crashed).

The current definition of +the internet address provides three
different options for network nunbering, with the goal of allowing a
very large nunber of networks to be part of the internet. Thus, it is
no | onger possible to inmagine having an exhaustive table to select a
gateway for any foreign net. Again, current inplenentations nust use a
strategy based on a local cache of routing information for addresses

currently being used.

The recomended strategy for address to route translation is as
fol | ows. Wen the |IP layer receives an outbound datagram for
transmission, it extracts the network nunber from the destination
address, and queries its local table to determne whether it knows a
suitable gateway to which to send the datagram |If it does, the job is
done. (But see RFC 816 on Fault |Isolation and Recovery, for
reconmendations on how to deal wth the possible failure of the

gateway.) |If there is no such entry in the local table, then select any

accessi ble gateway at random insert that as an entry in the table, and
use it to send the packet. Either the guess will be right or wong. |If
it is wong, the gateway to which the packet was sent wll return an
ICVMP redirect nessage to report that there is a better gateway to reach
the net in question. The arrival of this redirect should cause an

update of the local table.

The nunber of entries in the |ocal table should be determ ned by
t he maxi mum nunber of active connections which this particular host can
support at any one tine. For a large tinme sharing system one night
i mgine a table with 100 or nore entries. For a personal conputer being
used to support a single user telnet connection, only one address to

gat eway associ ation need be nmmintai ned at once.

The above strategy actually does not conpletely solve the problem

but only pushes it down one |evel, where the problemthen arises of how

a new host, freshly arriving on the internet, finds all of its
accessi ble gateways. Intentionally, this problemis not solved wthin
the internetwork architecture. The reason is that different networks

have drastically different strategies for allowing a host to find out
about other hosts on its immediate network. Some nets pernmt a
broadcast nechanism |In this case, a host can send out a nessage and
expect an answer back from all of the attached gateways. In other
cases, where a particular network is richly provided with tools to
support the internet, there may be a special network mechani smwhich a
host can invoke to deternine where the gateways are. In other cases, it

may be necessary for an installer to manually provide the name of at

| east one accessible gateway. Once a host has di scovered the nane of
one gateway, it can build up a table of all other avail abl e gat eways, by
keepi ng track of every gateway that has been reported back to it in an

| CVMP nessage

5. Advanced Topics in Addressing and Routing

The preceding discussion describes the nmechanismrequired in a
m nimal inplenmentation, an inplenentation intended only to provide
operational service access today to the various networks that make up
the internet. For any host which will participate in future research
as contrasted wth service, sone additional features are required.
These features will also be helpful for service hosts if they wsh to
obtain access to sone of the nore exotic networks which will beconme part
of the internet over the next few years. Al inplenmentors are urged to
at least provide a structure into which these features could be Ilater

i ntegrated.

There are several features, either already a part of the
architecture or now under devel opnent, which are used to nodify or
expand the relationships between addresses and routes. The |IP source
route options allow a host to explicitly direct a datagram through a
series of gateways to its foreign host. An alternative formof the |CW
redirect packet has been proposed, which would return information
specific to a particular destination host, not a destination net.
Finally, additional |P options have been proposed to identify particul ar
routes within the internet that are unacceptable. The difficulty with

i npl enmenting these new features is that the nmechanisms do not lie

entirely within the bounds of IP. Al the nechani sns above are desi gned
to apply to a particular connection, so that their use nust be specified
at the TCP level. Thus, the interface between IP and the |ayers above
it nmust include nmechanisns to allow passing this information back and
forth, and TCP (or any other protocol at this level, such as UDP), nust
be prepared to store this information. The passing of information
between IP and TCP is made nore conplicated by the fact that some of the
information, in particular |CMP packets, nay arrive at any time. The
normal interface envisioned between TCP and I[P is one across which
packets can be sent or received. The existence of asynchronous | CWP
nmessages inplies that there nust be an additional channel between the
two, wunrelated to the actual sending and receiving of data. (In fact,
there are many other | CMP nessages which arrive asynchronously and which
nmust be passed fromIP up to higher layers. See RFC 816, Fault

I sol ati on and Recovery.)

Source routes are already in wuse in the internet, and many
i npl ementations will wish to be able to take advantage of them The
following sorts of wusages should be permitted. First, a user, when
initiating a TCP connection, should be able to hand a source route into
TCP, which in turn nmust hand the source route to P with every outgoing
datagram The user nmight initially obtain the source route by querying
a different sort of nane server, which would return a source route
i nstead of an address, or the user may have fabricated the source route
manual | y. A TCP which is Ilistening for a connection, rather than
attenpting to open one, nmust be prepared to receive a datagram which
contains a |IPreturn route, in which case it nmust renenber this return

route, and use it as a source route on all returning datagrans.

6. Ports and Service ldentifiers

The |P layer of the architecture contains the address infornmation
whi ch specifies the destination host to which the datagram is being
sent. In fact, datagrans are not intended just for particular hosts,
but for particular agents within a host, processes or other entities
that are the actual source and sink of the data. |P perforns only a
very sinple dispatching once the datagram has arrived at the target
host , it di spatches it to a particular protocol. It is the
responsibility of that protocol handler, for exanmple TCP, to finish
di spatching the datagram to the particular connection for which it is
desti ned. This next layer of dispatching is done using " port
identifiers", which are a part of the header of the higher |eve

protocol, and not the IP |layer

This two-layer dispatching architecture has caused a problem for
certain inplenentations. In particular, sonme inplenentations have
wi shed to put the IP layer within the kernel of the operating system
and the TCP layer as a wuser domain application program Strict
adherence to this partitioning can lead to grave performance problens,
for the datagram nust first be dispatched fromthe kernel to a TCP
process, which then dispatches the datagram to its final destination
process. The overhead of scheduling this dispatch process can severely

limt the achi evabl e throughput of the inplenentation

As is discussed in RFC 817, Modularity and Efficiency in Protoco
| mpl enentations, this particular separation between Kkernel and user

| eads to ot her performance problens, even ignoring the issue of port

10

| evel di spatching. However, there is an acceptable shortcut which can
be taken to nove the higher I|evel dispatching function into the IP

layer, if this nakes the inplenmentation substantially easier

In principle, every higher level protocol could have a different
di spatching algorithm The reason for this 1is discussed below
However, for the protocols involved in the service offering being
i mpl enent ed today, TCP and UDP, the dispatching algorithmis exactly the
same, and the port field is located in precisely the sanme place in the
header. Therefore, unless one is interested in participating in further
protocol research, there is only one higher |evel dispatch algorithm
This algorithmtakes into account the internet Ievel foreign address,
the protocol nunber, and the |local port and foreign port fromthe higher
| evel protocol header. This algorithmcan be inplenmented as a sort of
adjunct to the IP layer inplenmentation, as long as no other higher |evel
protocols are to be inplenented. (Actually, the above statenent is only
partially true, in that the UDP dispatch function is subset of the TCP
di spatch function. UDP dispatch depends only protocol nunber and | oca
port. However, there is an occasion within TCP when this exact sane
subset cones into play, when a process w shes to listen for a connection
from any foreign host. Thus, the range of mechani sms necessary to
support TCP di spatch are also sufficient to support precisely the UDP

requirenent.)

The decision to renove port |evel dispatching fromIP to the higher
| evel protocol has been questioned by sonme inplenmentors. |t has been

argued that if all of the address structure were part of the |IP |ayer,

11

then I P could do all of the packet dispatching function within the host,
which would lead to a sinpler nodularity. Three problems were
identified with this. First, not all protocol inplenentors could agree
on the size of the port identifier. TCP selected a fairly short port
identifier, 16 bits, to reduce header size. O her protocols being
designed, however, wanted a |larger port identifier, perhaps 32 bits, so
that the port identifier, if properly selected, could be considered
probabilistically unique. Thus, constraining the port id to one
particular 1P |level nechanismwould prevent certain fruitful Ilines of
research. Second, ports serve a special function in addition to
dat agram del i very: certain port nunbers are reserved to identify
particul ar services. Thus, TCP port 23 is the renote login service. |If
ports were inplenented at the |[|P level, then the assignment of well
known ports could not be done on a protocol basis, but would have to be
done in a centralized manner for all of the IP architecture. Third, IP
was designed with a very sinple l|ayering role: IP contained exactly
those functions that the gateways nust understand. |f the port idea had
been nade a part of the IP layer, it would have suggested that gateways

needed to know about ports, which is not the case.

There are, of course, other ways to avoid these problens. In
particular, the "well-known port" problemcan be solved by devising a
second nmechani sm distinct fromport dispatching, to nane well-known
ports. Several protocols have settled on the idea of including, in the
packet which sets up a connection to a particular service, a nore
general service descriptor, such as a character string field. These

special packets, which are requesting connection to a particular

12

service, are routed on arrival to a special server, sonetines called a
"rendezvous server", which exanmines the service request, selects a
random port which is to be used for this instance of the service, and
then passes the packet along to the service itself to commence the

i nteraction.

For the internet architecture, this strategy had the serious flaw
that it presuned all protocols would fit into the sanme service paradi gm
an initial setup phase, which mght contain a certain overhead such as
i ndirect routing through a rendezvous server, followed by the packets of
the interaction itself, which would flow directly to the process
providing the service. Unfortunately, not all high level protocols in
internet were expected to fit this nodel. The best exanple of this is
i sol at ed datagram exchange usi ng UDP. The sinpl est exchange in UDP is
one process sending a single datagramto another. Especially on a loca
net, where the net related overhead is very low, this kind of sinple
singl e datagram interchange can be extrenely efficient, wth very |ow
overhead in the hosts. However, since these individual packets would
not be part of an established connection, if [|P supported a strategy
based on a rendezvous server and service descriptors, every isolated
dat agram woul d have to be routed indirectly in the receiving host
through the rendezvous server, which would substantially increase the
over head of processing, and every datagram would have to carry the ful
service request field, which wuld increase the size of the packet

header .

In general, if a network is intended for "virtual circuit service"

13

or things sinmlar to that, then using a special high overhead nechani sm
for circuit setup makes sense. However, current directions in research
are leading away from this class of protocol, so once again the
architecture was designed not to precl ude alternative pr ot ocol
structures. The only rational position was that the particular
di spatching strategy used should be part of the higher 1evel protoco

design, not the |IP |ayer.

This sane argunent about circuit setup mechani sns al so applies to
the design of the | P address structure. Many protocols do not transnit
a full address field as part of every packet, but rather transmt a
short identifier which is created as part of a circuit setup from source
to destination. |If the full address needs to be carried in only the
first packet of a long exchange, then the overhead of carrying a very
|l ong address field can easily be justified. Under these circunstances,
one can create truly extravagant address fields, which are capabl e of
extending to address al nost any conceivable entity. However, this
strategy is wuseable only in a virtual circuit net, where the packets
being transnitted are part of a established sequence, otherwise this
| arge extravagant address nmust be transported on every packet. Since
Internet explicitly rejected this restriction on the architecture, it
was hnecessary to cone up with an address field that was conpact enough
to be sent in every datagram but general enough to correctly route the
datagram through the catanet w thout a previous setup phase. The IP
address of 32 bits is the conpromise that results. Cearly it requires
a substantial amount of shoehorning to address all of the interesting

pl aces in the universe with only 32 bits. On the other hand, had the

14

address field become nmuch bigger, |P would have been susceptible to
another criticism which is that the header had grown unworkably |[arge.
Agai n, the fundanental design decision was that the protocol be designed
in such a way that it supported research in new and different sorts of

protocol architectures.

There are sone limted restrictions inposed by the I P design on the
port mechani sm sel ected by the higher |evel process. In particular,
when a packet goes awry somewhere on the internet, the offendi ng packet
is returned, along with an error indication, as part of an |ICMP packet.
An | CWP packet returns only the IP layer, and the next 64 bits of the
original datagram Thus, any higher |evel protocol which wi shes to sort
out fromwhich port a particul ar offendi ng datagram cane nust nake sure
that the port information is contained within the first 64 bits of the
next | evel header. This also nmeans, in nost cases, that it is possible
to imagine, as part of the |IP layer, a port dispatch nechani sm which
wor ks by masking and matching on the first 64 bits of the incomng

hi gher | evel header.

