RFC. 815

| P DATAGRAM REASSEMBLY ALGORI THVS
David D. dark
M T Laboratory for Conputer Science

Comput er Systens and Conmuni cati ons G oup
July, 1982

1. Introduction

One of the nmechanisns of IP is fragnentation and reassenbly. Under
certain circunstances, a datagram originally transnitted as a single
unit will arrive at its final destination broken into several fragments
The I P layer at the receiving host nust accunul ate these fragnents unti
enough have arrived to conpletely reconstitute the original datagram
The specification docunent for IP gives a conplete description of the
reassenbly nechani sm and contains several exanples. It also provides
one possible algorithm for reassenbly, based on keeping track of
arriving fragnments in a vector of bits. This docunment describes an

al ternat e approach which should prove nore suitable in sone nachines

A superficial exam nation of the reassenbly process nmay suggest
that it is rather conplicated. First, it is necessary to keep track of
all the fragnents, which suggests a small bookkeeping job. Second, when
a new fragnent arrives, it may conbine with the existing fragnents in a
nunber of different ways. It may precisely fill the space between two

fragments, or it nmay overlap wth existing fragments, or conpletely

duplicate existing fragnents, or partially fill a space between two
fragments without abutting either of them Thus, it nmight seemthat the
reassenbly process mght involve designing a fairly conpl i cated

algorithmthat tests for a nunmber of different options.

In fact, the process of reassenbly is extrenely sinple. This
docunent describes a way of dealing with reassenbly which reduces the
bookkeeping problem to a mininmum which requires for storage only one
buffer equal in size to the final datagram being reassenbl ed, which can
reassenbl e a datagram from any nunber of fragnents arriving in any order
with any possible pattern of overlap and duplication, and which is

appropriate for alnost any sort of operating system

The reader should consult the I P specification docunent to be sure
that he is conpletely familiar with the general concept of reassenbly,
and the particul ar header fields and vocabulary wused to describe the

process.

2. The Al gorithm

In order to define this reassenbly algorithm it is necessary to
define sone ternms. A partially reassenbl ed datagram consists of certain
sequences of octets that have already arrived, and certain areas stil
to cone. W will refer to these missing areas as "holes". Each hole
can be characterized by two nunbers, hole.first, the nunber of the first
octet in the hole, and hole.last, the nunber of the last octet in the
hol e. This pair of nunbers we will call the "hole descriptor”, and we
will assunme that all of the hole descriptors for a particular datagram

are gathered together in the "hole descriptor list".

The general form of the algorithm is as follows. Wen a new
fragment of the datagramarrives, it will possibly fill in one or nore
of the existing holes. W wll exam ne each of the entries in the hole
descriptor list to see whether the hole in question is elimnated by
this incoming fragnent. |If so, we will delete that entry fromthe |ist.
Eventual ly, a fragnent will arrive which elimnates every entry fromthe
list. At this point, the datagram has been conpletely reassenbl ed and

can be passed to higher protocol levels for further processing.

The algorithmw ||l be described in two phases. In the first part,
we wll show the sequence of steps which are executed when a new
fragment arrives, in order to determne whether or not any of the
existing holes are filled by the new fragnment. In the second part of
this description, we will show a ridiculously sinple algorithm for

managenent of the hole descriptor list.

3. Fragnment Processing Al gorithm

An arriving fragnent can fill any of the existing holes in a nunber
of ways. Most sinply, it can conpletely fill a hole. Alternatively, it
may |eave sone renaining space at either the beginning or the end of an
existing hole. O finally, it canlie in the mddle of an existing
hole, breaking the hole in half and leaving a smaller hole at each end.
Because of these possibilities, it might seemthat a nunber of tests
must be nade when a new fragnment arrives, leading to a rather
conplicated algorithm In fact, if properly expressed, the algorithm

can conpare each hole to the arriving fragnent in only four tests.

W start the algorithmwhen the earliest fragment of the datagram
arrives. W begin by creating an enpty data buffer area and putting one
entry inits hole descriptor list, the entry which describes the
datagram as being conpletely mssing. 1In this case, hole.first equals
zero, and hole.last equals infinity. (Infinity is presumably inplenmented
by a very large integer, greater than 576, of the inplenmentor’s choice.)
The followi ng eight steps are then used to insert each of the arriving
fragments into the buffer area where the conplete datagramis being
built up. The arriving fragnent is described by fragnment.first, the
first octet of the fragnent, and fragnent.last, the |last octet of the
fragment.

1. Select the next hole descriptor from the hole descriptor
list. |If there are no nore entries, go to step eight.
2. If fragnent.first is greater than hole.last, go to step one.
3. If fragment.last is less than hole.first, go to step one.
- (If either step two or step three is true, then the
newly arrived fragnent does not overlap with the hole in
any way, so we need pay no further attention to this

hole. W return to the beginning of the al gorithmwhere
we sel ect the next hole for exam nation.)

4. Delete the current entry fromthe hole descriptor list.

- (Since neither step two nor step three was true, the
newly arrived fragnent does interact with this hole in

sone way. Therefore, the current descriptor will no
longer be valid. W wll destroy it, and in the next
two steps we wll deternmine whether or not it is

necessary to create any new hol e descriptors.)

5. If fragnent.first is greater than hole.first, then create a
new hole descriptor "new hole" with new hole.first equal to
hole.first, and new hole.last equal to fragnent.first mnus
one.

- (If the test in step five is true, then the first part
of the original hole is not filled by this fragment. W
create a new descriptor for this snmaller hole.)

6. If fragnment.last is less than hole.last and fragnment.nnore
fragments is true, then create a new hole descriptor
"new_hol e", with new hole.first equal to fragnent.last plus
one and new _hol e.last equal to hole.last.

- (This test is the mrror of step five wth one
additional feature. Initially, we did not know how | ong
t he reassenbl ed datagram would be, and therefore we
created a hole reaching from zero to infinity.
Eventually, we will receive the last fragment of the
dat agram At this point, that hole descriptor which
reaches fromthe last octet of the buffer to infinity
can be discarded. The fragnment which contains the |ast
fragment indicates this fact by a flag in the internet
header called "nore fragnments". The test of this bit in
this statenent prevents us fromcreating a descriptor
for the unneeded hol e which describes the space fromthe
end of the datagramto infinity.)

7. Go to step one.
8. If the hole descriptor list is now enpty, the datagramis now

conplete. Pass it on to the higher |evel protocol processor
for further handling. Oherw se, return.

4. Part Two: Managing the Hol e Descriptor List

The main conplexity in the eight step algorithmabove is not
performng the arithnmetical tests, but in adding and deleting entries
from the hole descriptor Iist. One could inagine an inplenmentation in
whi ch t he storage managenent package was nmany tines nore conplicated
than the rest of the algorithm since there is no specified upper limt
on the nunber of hole descriptors which will exist for a datagram during
reassenbly. There is a very sinmple way to deal wth the hole

descriptors, however. Just put each hole descriptor in the first octets

of the hole itself. Note that by the definition of the reassenbly
algorithm the mininmumsize of a hole is eight octets. To store
hole.first and hole.last wll presumably require two octets each. An
additional two octets will be required to thread together the entries on
the hole descriptor list. This |eaves at |east two nore octets to dea

wi th inplenentation idiosyncrasies.

There is only one obvious pitfall to this storage strategy. One
must execute the eight step al gorithm above before copying the data from
the fragnent into the reassenbly buffer. |If one were to copy the data
first, it mght smash one or nore hol e descriptors. Once the algorithm
above has been run, any hole descriptors which are about to be smashed

have al ready been rendered obsol ete.

5. Loose Ends

Scattering the hole descriptors throughout the reassenbly buffer
itself requires that they be threaded onto some sort of list so that
they can be found. This in turn inplies that there nmust be a pointer to
the head of the list. |In many cases, this pointer can be stored in sone
sort of descriptor block which the inplenentati on associates with each
reassenbly buffer. If no such storage is available, a dirty but
effective trick is to store the head of the list in a part of the
i nternet header in the reassenbly buffer which is no | onger needed. An

obvious location is the checksum fi el d.

When the final fragnment of the datagram arrives, the packet |ength

field in the internet header should be filled in.

6. Options

The precedi ng description made one unacceptable sinplification. It
assuned that there were no internet options associated with the datagram
bei ng reassenbl ed. The difficulty with options is that until one
receives the first fragnent of the datagram one cannot tell how big the
internet header will be. This is because, while certain options are
copied identically into every fragnent of a datagram other options,

such as "record route", are put in the first fragment only. (The "first

fragment” is the fragnent containing octet zero of the origina
dat agram)
Until one knows how big the internet header is, one does not know

where to copy the data fromeach fragnent into the reassenbly buffer.
If the earliest fragnent to arrive happens to be the first fragnment,
then this is no problem OQherwi se, there are two solutions. First,

one can |eave space in the reassenbly buffer for the nmaxi num possible

internet header. 1In fact, the nmaxinum size is not very large, 64
octets. Alternatively, one can sinply ganble that the first fragnment
will contain no options. [If, when the first fragnent finally arrives

there are options, one can then shift the data in the buffer a

sufficient distance for allow for them The only peril in copying the
data is that one wll trash the pointers that thread the hole
descriptors together. It is easy to see how to untrash the pointers.

The source and record route options have the interesting feature
that, since different fragnents can follow different paths, they may

arrive with different return routes recorded in different fragnments.

Normally, this is nore information than the receiving Internet nodule
needs. The specified procedure is to take the return route recorded in

the first fragnment and ignore the other versions.

7. The Conplete A gorithm

In addition to the algorithm described above there are two parts to
the reassenbly process. First, when a fragnent arrives, it is necessary

to find the reassenbly buffer associated wth that fragnent. This

requires some nechanism for searching all the existing reassenbly
buf fers. The correct reassenbly buffer is identified by an equality of
the following fields: the foreign and local internet address, the

protocol ID, and the identification field.

The final part of the algorithm is sone sort of timer based
mechani sm whi ch decrenents the tine to live field of each partially
reassenbl ed datagram so that inconplete datagrans which have outlived
their useful ness can be detected and deleted. One can either create a
demon which cones alive once a second and decrenents the field in each
dat agram by one, or one can read the <clock when each first fragnent
arrives, and queue sonme sort of tinmer call, using whatever system

mechani smis appropriate, to reap the datagram when its time has cone.

An inmplenentation of the conplete algorithm conprising all these
parts was constructed in BCPL as a test. The conplete algorithmtook
| ess than one and one-half pages of listing, and generated approxi mately
400 nova nmachine instructions. That portion of the algorithm actually

i nvol ved wi th managenent of hole descriptors is about 20 |ines of code.

The version of the algorithm described here is actually a
simplification of the author’s original version, thanks to an insightful

observation by Elizabeth Martin at MT.

