
RFC: 815

 IP DATAGRAM REASSEMBLY ALGORITHMS

 David D. Clark
 MIT Laboratory for Computer Science
 Computer Systems and Communications Group
 July, 1982

 1. Introduction

 One of the mechanisms of IP is fragmentation and reassembly. Under

certain circumstances, a datagram originally transmitted as a single

unit will arrive at its final destination broken into several fragments.

The IP layer at the receiving host must accumulate these fragments until

enough have arrived to completely reconstitute the original datagram.

The specification document for IP gives a complete description of the

reassembly mechanism, and contains several examples. It also provides

one possible algorithm for reassembly, based on keeping track of

arriving fragments in a vector of bits. This document describes an

alternate approach which should prove more suitable in some machines.

 A superficial examination of the reassembly process may suggest

that it is rather complicated. First, it is necessary to keep track of

all the fragments, which suggests a small bookkeeping job. Second, when

a new fragment arrives, it may combine with the existing fragments in a

number of different ways. It may precisely fill the space between two

fragments, or it may overlap with existing fragments, or completely

 2

duplicate existing fragments, or partially fill a space between two

fragments without abutting either of them. Thus, it might seem that the

reassembly process might involve designing a fairly complicated

algorithm that tests for a number of different options.

 In fact, the process of reassembly is extremely simple. This

document describes a way of dealing with reassembly which reduces the

bookkeeping problem to a minimum, which requires for storage only one

buffer equal in size to the final datagram being reassembled, which can

reassemble a datagram from any number of fragments arriving in any order

with any possible pattern of overlap and duplication, and which is

appropriate for almost any sort of operating system.

 The reader should consult the IP specification document to be sure

that he is completely familiar with the general concept of reassembly,

and the particular header fields and vocabulary used to describe the

process.

 2. The Algorithm

 In order to define this reassembly algorithm, it is necessary to

define some terms. A partially reassembled datagram consists of certain

sequences of octets that have already arrived, and certain areas still

to come. We will refer to these missing areas as "holes". Each hole

can be characterized by two numbers, hole.first, the number of the first

octet in the hole, and hole.last, the number of the last octet in the

hole. This pair of numbers we will call the "hole descriptor", and we

will assume that all of the hole descriptors for a particular datagram

are gathered together in the "hole descriptor list".

 3

 The general form of the algorithm is as follows. When a new

fragment of the datagram arrives, it will possibly fill in one or more

of the existing holes. We will examine each of the entries in the hole

descriptor list to see whether the hole in question is eliminated by

this incoming fragment. If so, we will delete that entry from the list.

Eventually, a fragment will arrive which eliminates every entry from the

list. At this point, the datagram has been completely reassembled and

can be passed to higher protocol levels for further processing.

 The algorithm will be described in two phases. In the first part,

we will show the sequence of steps which are executed when a new

fragment arrives, in order to determine whether or not any of the

existing holes are filled by the new fragment. In the second part of

this description, we will show a ridiculously simple algorithm for

management of the hole descriptor list.

 3. Fragment Processing Algorithm

 An arriving fragment can fill any of the existing holes in a number

of ways. Most simply, it can completely fill a hole. Alternatively, it

may leave some remaining space at either the beginning or the end of an

existing hole. Or finally, it can lie in the middle of an existing

hole, breaking the hole in half and leaving a smaller hole at each end.

Because of these possibilities, it might seem that a number of tests

must be made when a new fragment arrives, leading to a rather

complicated algorithm. In fact, if properly expressed, the algorithm

can compare each hole to the arriving fragment in only four tests.

 4

 We start the algorithm when the earliest fragment of the datagram

arrives. We begin by creating an empty data buffer area and putting one

entry in its hole descriptor list, the entry which describes the

datagram as being completely missing. In this case, hole.first equals

zero, and hole.last equals infinity. (Infinity is presumably implemented

by a very large integer, greater than 576, of the implementor’s choice.)

The following eight steps are then used to insert each of the arriving

fragments into the buffer area where the complete datagram is being

built up. The arriving fragment is described by fragment.first, the

first octet of the fragment, and fragment.last, the last octet of the

fragment.

 1. Select the next hole descriptor from the hole descriptor
 list. If there are no more entries, go to step eight.

 2. If fragment.first is greater than hole.last, go to step one.

 3. If fragment.last is less than hole.first, go to step one.

 - (If either step two or step three is true, then the
 newly arrived fragment does not overlap with the hole in
 any way, so we need pay no further attention to this
 hole. We return to the beginning of the algorithm where
 we select the next hole for examination.)

 4. Delete the current entry from the hole descriptor list.

 - (Since neither step two nor step three was true, the
 newly arrived fragment does interact with this hole in
 some way. Therefore, the current descriptor will no
 longer be valid. We will destroy it, and in the next
 two steps we will determine whether or not it is
 necessary to create any new hole descriptors.)

 5. If fragment.first is greater than hole.first, then create a
 new hole descriptor "new_hole" with new_hole.first equal to
 hole.first, and new_hole.last equal to fragment.first minus
 one.

 5

 - (If the test in step five is true, then the first part
 of the original hole is not filled by this fragment. We
 create a new descriptor for this smaller hole.)

 6. If fragment.last is less than hole.last and fragment.more
 fragments is true, then create a new hole descriptor
 "new_hole", with new_hole.first equal to fragment.last plus
 one and new_hole.last equal to hole.last.

 - (This test is the mirror of step five with one
 additional feature. Initially, we did not know how long
 the reassembled datagram would be, and therefore we
 created a hole reaching from zero to infinity.
 Eventually, we will receive the last fragment of the
 datagram. At this point, that hole descriptor which
 reaches from the last octet of the buffer to infinity
 can be discarded. The fragment which contains the last
 fragment indicates this fact by a flag in the internet
 header called "more fragments". The test of this bit in
 this statement prevents us from creating a descriptor
 for the unneeded hole which describes the space from the
 end of the datagram to infinity.)

 7. Go to step one.

 8. If the hole descriptor list is now empty, the datagram is now
 complete. Pass it on to the higher level protocol processor
 for further handling. Otherwise, return.

 4. Part Two: Managing the Hole Descriptor List

 The main complexity in the eight step algorithm above is not

performing the arithmetical tests, but in adding and deleting entries

from the hole descriptor list. One could imagine an implementation in

which the storage management package was many times more complicated

than the rest of the algorithm, since there is no specified upper limit

on the number of hole descriptors which will exist for a datagram during

reassembly. There is a very simple way to deal with the hole

descriptors, however. Just put each hole descriptor in the first octets

 6

of the hole itself. Note that by the definition of the reassembly

algorithm, the minimum size of a hole is eight octets. To store

hole.first and hole.last will presumably require two octets each. An

additional two octets will be required to thread together the entries on

the hole descriptor list. This leaves at least two more octets to deal

with implementation idiosyncrasies.

 There is only one obvious pitfall to this storage strategy. One

must execute the eight step algorithm above before copying the data from

the fragment into the reassembly buffer. If one were to copy the data

first, it might smash one or more hole descriptors. Once the algorithm

above has been run, any hole descriptors which are about to be smashed

have already been rendered obsolete.

 5. Loose Ends

 Scattering the hole descriptors throughout the reassembly buffer

itself requires that they be threaded onto some sort of list so that

they can be found. This in turn implies that there must be a pointer to

the head of the list. In many cases, this pointer can be stored in some

sort of descriptor block which the implementation associates with each

reassembly buffer. If no such storage is available, a dirty but

effective trick is to store the head of the list in a part of the

internet header in the reassembly buffer which is no longer needed. An

obvious location is the checksum field.

 When the final fragment of the datagram arrives, the packet length

field in the internet header should be filled in.

 7

 6. Options

 The preceding description made one unacceptable simplification. It

assumed that there were no internet options associated with the datagram

being reassembled. The difficulty with options is that until one

receives the first fragment of the datagram, one cannot tell how big the

internet header will be. This is because, while certain options are

copied identically into every fragment of a datagram, other options,

such as "record route", are put in the first fragment only. (The "first

fragment" is the fragment containing octet zero of the original

datagram.)

 Until one knows how big the internet header is, one does not know

where to copy the data from each fragment into the reassembly buffer.

If the earliest fragment to arrive happens to be the first fragment,

then this is no problem. Otherwise, there are two solutions. First,

one can leave space in the reassembly buffer for the maximum possible

internet header. In fact, the maximum size is not very large, 64

octets. Alternatively, one can simply gamble that the first fragment

will contain no options. If, when the first fragment finally arrives,

there are options, one can then shift the data in the buffer a

sufficient distance for allow for them. The only peril in copying the

data is that one will trash the pointers that thread the hole

descriptors together. It is easy to see how to untrash the pointers.

 The source and record route options have the interesting feature

that, since different fragments can follow different paths, they may

arrive with different return routes recorded in different fragments.

 8

Normally, this is more information than the receiving Internet module

needs. The specified procedure is to take the return route recorded in

the first fragment and ignore the other versions.

 7. The Complete Algorithm

 In addition to the algorithm described above there are two parts to

the reassembly process. First, when a fragment arrives, it is necessary

to find the reassembly buffer associated with that fragment. This

requires some mechanism for searching all the existing reassembly

buffers. The correct reassembly buffer is identified by an equality of

the following fields: the foreign and local internet address, the

protocol ID, and the identification field.

 The final part of the algorithm is some sort of timer based

mechanism which decrements the time to live field of each partially

reassembled datagram, so that incomplete datagrams which have outlived

their usefulness can be detected and deleted. One can either create a

demon which comes alive once a second and decrements the field in each

datagram by one, or one can read the clock when each first fragment

arrives, and queue some sort of timer call, using whatever system

mechanism is appropriate, to reap the datagram when its time has come.

 An implementation of the complete algorithm comprising all these

parts was constructed in BCPL as a test. The complete algorithm took

less than one and one-half pages of listing, and generated approximately

400 nova machine instructions. That portion of the algorithm actually

involved with management of hole descriptors is about 20 lines of code.

 9

 The version of the algorithm described here is actually a

simplification of the author’s original version, thanks to an insightful

observation by Elizabeth Martin at MIT.

