RFC. 817

MODULARI TY AND EFFI Cl ENCY | N PROTOCOL | MPLEMENTATI ON
David D. dark
M T Laboratory for Conputer Science

Conput er Systens and Conmuni cati ons G oup
July, 1982

1. I nt roducti on

Many protocol inplenmenters have nmade the unpl easant di scovery that
their packages do not run quite as fast as they had hoped. The bl ane
for this wdely observed problemhas been attributed to a variety of
causes, ranging fromdetails in the design of the protocol to the
underlying structure of the host operating system This RFC wil |
di scuss sonme of the comonly encountered reasons why pr ot oco

i mpl enentations seemto run slowy.

Experi ence suggests that one of +the nost inmportant factors in
determ ning the performance of an inplenentation is the manner in which
t hat i mpl ementation is nodularized and integrated into the host
operating system For this reason, it is useful to discuss the question
of how an inplenentation is structured at the sane tine that we consider
how it will perform |In fact, this RFCwill argue that nodularity is
one of the chief villains in attenpting to obtain good performance, so
that the designer is faced with a delicate and inevitable tradeoff
bet ween good structure and good performance. Further, the single factor
whi ch nmost strongly determines how well this conflict can be resolved is

not the protocol but the operating system

2. FEfficiency Considerations

There are many aspects to efficiency. One aspect is sending data
at mnimumtransm ssion cost, which is a critical aspect of comon
carrier conmunications, if not in local area network conmunications.
Anot her aspect is sending data at a high rate, which may not be possible
at all if the net is very slow, but which nmay be the one central design
constrai nt when taking advantage of a local net with high raw bandwi dth
The final consideration is doing the above with m ni mum expenditure of
conputer resources. This last may be necessary to achieve high speed,
but in the case of the slow net nay be inportant only in that the
resources used up, for exanple cpu cycles, are costly or otherw se
needed. It is worth pointing out that these different goals often
conflict; for exanple it is often possible to trade off efficient use of
the conputer against efficient use of the network. Thus, there my be

no such thing as a successful general purpose protocol inplenentation

The sinpl est neasure of performance is throughput, mnmeasured in bits
per second. It is worth doing a few sinple conputations in order to get
a feeling for the magnitude of the problens involved. Assune that data
is being sent fromone nachine to another in packets of 576 bytes, the
maxi mum generally acceptable internet packet size. Allow ng for header
overhead, this packet size pernmits 4288 bits in each packet. If a
useful throughput of 10,000 bits per second is desired, then a data
beari ng packet nust | eave the sendi ng host about every 430 nmilliseconds,
alittle over two per second. This is clearly not difficult to achieve.

However, if one wi shes to achieve 100 kil obits per second throughput,

t he packet nust | eave the host every 43 nilliseconds, and to achi eve one
nmegabit per second, which is not at all unreasonable on a hi gh-speed

| ocal net, the packets nust be spaced no nore than 4.3 mlliseconds.

These latter nunbers are a slightly nore alarming goal for which to

set one’s sights. Many operating systens take a substantial fraction of

a mllisecond just to service an interrupt. |If the protocol has been
structured as a process, it 1is necessary to go through a process
schedul i ng before the protocol code can even begin to run. |f any piece

of a protocol package or its data nust be fetched fromdisk, real tine
delays of between 30 to 100 nilliseconds can be expected. |If the
protocol must conpete for cpu resources wth other processes of the
system it nmay be necessary to wait a scheduling quantum before the
protocol can run. Many systens have a scheduling quantum of 100
mlliseconds or nore. Consi dering these sorts of numbers, it becones
i mediately clear that the protocol nust be fitted into the operating
system in a thorough and effective manner iif any |like reasonable

t hroughput is to be achieved.

There is one obvious conclusion i mediately suggested by even this
simpl e anal ysis. Except in very special circunmstances, when nany
packets are being processed at once, the cost of processing a packet is
dom nated by factors, such as cpu scheduling, which are i ndependent of
the packet size. This suggests two general rul es whi ch any
i npl ementation ought to obey. First, send data in |arge packets.
Qobviously, if processing tine per packet is a constant, then throughput

will be directly proportional to the packet size. Second, never send an

unneeded packet. Unneeded packets use up just as many resources as a
packet full of data, but performno useful function. RFC 813, "W ndow
and Acknow edgenent Strategy in TCP', discusses one aspect of reducing
t he nunber of packets sent per useful data byte. This docurment will

nmention other attacks on the sane probl em

The above analysis suggests that there are two main parts to the
probl em of achi eving good protocol performance. The first has to do
with how the protocol inplenentation is integrated into the host
operating system The second has to do with how the protocol package
itself is organized internally. Thi s docunent will consider each of

these topics in turn

3. The Protocol vs. the Operating System

There are normally three reasonable ways in which to add a protoco
to an operating system The protocol <can be in a process that is
provi ded by the operating system or it can be part of the kernel of the
operating system itself, or it can be put in a separate communi cations
processor or front end nachine. This decision is strongly influenced by
details of hardware architecture and operating system design; each of

these three approaches has its own advantages and di sadvant ages.

The "process" is the abstraction which nost operating systens use
to provide the execution environment for user programs. A very sinple
path for inplementing a protocol is to obtain a process fromthe
operating system and inplenent t he pr ot ocol to run in it.

Superficially, this approach has a nunber of advantages. Si nce

nodi fications to the kernel are not required, the job can be done by
sonmeone who is not an expert in the kernel structure. Since it is often
i npossible to find somebody who is experienced both in the structure of
the operating systemand the structure of the protocol, this path, from
a managenment point of view, is often extrenely appealing. Unfortunately,
putting a protocol in a process has a nunber of disadvantages, related
to both structure and perfornance. First, as was di scussed above,
process scheduling can be a significant source of real-tine delay.
There is not only the actual cost of going through the schedul er, but
the problemthat the operating systemmy not have the right sort of
priority tools to bring the process into execution quickly whenever

there is work to be done.

Structurally, the difficulty with putting a protocol in a process
is that the protocol may be providing services, for exanple support of
data streans, which are normally obtained by going to special kerne
entry points. Dependi ng on the generality of the operating system it
may be inpossible to take a program which is accustomed to reading
through a kernel entry point, and redirect it so it is reading the data

froma process. The nost extrenme exanple of this problem occurs when

i npl ementing server telnet. 1In alnost all systems, the device handl er
for the locally attached teletypes is located inside the kernel, and
programs read and wite fromtheir teletype by nmaking kernel calls. |If

server telnet is inplenented in a process, it is then necessary to take
the data streans provided by server telnet and sonehow get them back
down inside the kernel so that they minic the interface provided by

| ocal tel etypes. It is wusually the case that special kerne

nodi fication is necessary to achieve this structure, which somewhat
defeats the benefit of having renmoved the protocol from the kernel in

the first place

Clearly, then, there are advantages to putting the protocol package
in the kernel. Structurally, it is reasonable to viewthe network as a
device, and device drivers are traditionally contained in the kernel
Presumably, the problens associated wth process scheduling can be
sidesteped, at least to a certain extent, by placing the code inside the
kernel. And it is obviously easier to nake the server telnet channels
mmc the local teletype channels if they are both realized in the sane

|l evel in the kernel

However, inplenentation of protocols in the kernel has its own set
of pitfalls. First, network protocols have a characteristic which is
shared by al nbst no other device: they require rather conplex actions
to be performed as a result of a tinmeout. The problemwth this
requi renent is that the kernel often has no facility by which a program
can be brought into execution as a result of the timer event. Wat is
really needed, of course, is a special sort of process inside the
ker nel . Most systems lack this mechanism Failing that, the only

execution mechanismavailable is to run at interrupt tine.

There are substantial drawbacks to inplenenting a protocol to run
at interrupt tinme. First, the actions performed may be sonmewhat conpl ex
and time consuming, conpared to the nmaxi mum anmount of tine that the
operating systemis prepared to spend servicing an interrupt. Pr obl ens

can arise if interrupts are nasked for too long. This is particularly

bad when running as a result of a clock interrupt, which can inply that
the clock interrupt is masked. Second, the environment provided by an
interrupt handler is wusually extrenely primtive conpared to the
envi ronnent of a process. There are wusually a variety of system
facilities which are unavailable while running in an interrupt handl er.
The npst inportant of these is the ability to suspend execution pending
the arrival of sone event or nessage. It is a cardinal rule of alnost
every known operating systemthat one nust not invoke the scheduler
while running in an interrupt handler. Thus, the programer who is
forced to inplenent all or part of his protocol package as an interrupt
handl er nmust be the best sort of expert in the operating system
i nvol ved, and nust be prepared for developnent sessions filled wth
obscure bugs which crash not just the protocol package but the entire

operating system

A final problemw th processing at interrupt tine is that the
system schedul er has no control over the percentage of systemtinme used
by the protocol handler. |If a large nunber of packets arrive, from a
foreign host that is either mal functioning or fast, all of the tine may

be spent in the interrupt handler, effectively killing the system

There are other problens associated with putting protocols into an
operating systemkernel. The sinplest problemoften encountered is that
the kernel address space is sinply too small to hold the piece of code
in question. This is a rather artificial sort of problem but it is a
severe problem none the Iless in many nachines. It is an appallingly

unpl easant experience to do an inplenentation with the know edge that

for every byte of new feature put in one nust find sone other byte of
old feature to throwout. It is hopeless to expect an effective and
general inplenentation under this kind of constraint. Another problem
is that the protocol package, once it is thoroughly entwined in the
operating system may need to be redone every tine the operating system
changes. If the protocol and the operating system are not naintai ned by
the sane group, this nekes nmintenance of the protocol package a

per pet ual headache.

The third option for protocol inplenentation is to take the
protocol package and nove it outside the nachine entirely, on to a
separate processor dedicated to this kind of task. Such a machine is
of ten descri bed as a conmuni cati ons processor or a front-end processor
There are several advantages to this approach. First, the operating
system on the comuni cations processor can be tailored for precisely
this kind of task. This nakes the job of inplenentation nuch easier
Second, one does not need to redo the task for every nachine to which
the protocol is to be added. It may be possible to reuse the sane
front-end nmachine on different host conputers. Since the task need not
be done as many tines, one m ght hope that nore attention could be paid
to doing it right. Gven a careful inplenentation in an environnment
which is optimzed for this kind of task, the resulting package should
turn out to be very efficient. Unfortunately, there are also problens
with this approach. There is, of course, a financial problem associated
with buying an additional conputer. In nmany cases, this is not a
problemat all since the cost is negligible conpared to what the

programmer would cost to do the job in the mainframe itself. Mre

fundanmental | y, the comruni cati ons processor approach does not conpletely
sidestep any of the problens raised above. The reason is that the
communi cati ons processor, since it is a separate machine, nust be
attached to the nmminfrane by sone nmechanism \Watever that mechani sm
code is required in the mainframe to deal with it. It can be argued
that the program to deal with the comruni cati ons processor is sinpler
than the programto inplement the entire protocol package. Even if that
is so, the conmunications processor interface package is still a
protocol in nature, with all of the sane structural problens. Thus, all
of the issues raised above nust still be faced. |In addition to those
probl ems, there are sonme other, nore subtle problens associated with an
out board i nmplenentation of a protocol. W will return to these problens

| ater.

There is a way of attaching a comrunications processor to a
mai nfrane host which sidesteps all of the mainfrane inplenentation
probl ens, which is to use sone preexisting interface on the host nachi ne
as the port by which a communications processor is attached. This
strategy is often used as a | ast stage of desperation when the software
on the host conputer is so intractable that it cannot be changed in any
way. Unfortunately, it is alnost inevitably the case that all of the
available interfaces are totally wunsuitable for this purpose, so the
result is unsatisfactory at best. The nost common way in which this
form of attachment occurs is when a network connection is being used to
mmc local teletypes. |In this case, the front-end processor can be
attached to the mainfrane by sinply providing a nunber of wres out of

the front-end processor, each corresponding to a connection, which are

10

plugged into teletype ports on the nainframe conputer. (Because of the
appearance of the physical configuration which results from this
arrangenent, M chael Padlipsky has described this as the "mlKking
machi ne" approach to conputer networking.) This strategy solves the
i mediate problem of providing renote access to a host, but it is
extremely inflexible. The channels being provided to the host are
restricted by the host software to one purpose only, renote login. It

is inpossible to use them for any other purpose, such as file transfer

or sending mail, so the host is integrated into the network environment
in an extrenely linmted and inflexible manner. |f this is the best that
can be done, then it should be tolerated. O herwi se, inplenmentors

shoul d be strongly encouraged to take a nore flexible approach

4. Protocol Layering

The previous discussion suggested that there was a decision to be
made as to where a protocol ought to be inplenented. In fact, the
decision is nuch nore conplicated than that, for the goal is not to
i npl ement a single protocol, but to inplenent a whole family of protoco
| ayers, starting with a device driver or local network driver at the
bottom then IP and TCP, and eventually reaching the application
specific protocol, such as Telnet, FTP and SMIP on the top. Cearly,
the bottommost of these layers is sonmewhere within the kernel, since the
physical device driver for the net is alnost inevitably |ocated there.
Equally clearly, the top layers of this package, which provide the user
his ability to performthe renote login function or to send mail, are

not entirely contained within the kernel. Thus, the question is not

11

whether the protocol famly shall be inside or outside the kernel, but
how it shall be sliced in two between that part inside and that part

out si de.

Since protocols cone nicely layered, an obvious proposal is that
one of the layer interfaces should be the point at which the inside and
out si de conponents are sliced apart. Mst systens have been inpl enent ed
in this way, and many have been nade to work quite effectively. One
obvious place to slice is at the upper interface of TCP. Since TCP
provides a bidirectional byte stream which is sonmewhat sinlar to the
I/Ofacility provided by nost operating systens, it is possible to nake
the interface to TCP alnpbst mimnmc the interface to other existing
devices. Except in the matter of opening a connection, and dealing with
peculiar failures, the software using TCP need not know that it is a
networ k connection, rather than a local 1/O streamthat is providing the
conmmuni cations function. This approach does put TCP inside the kernel
which raises all the problens addressed above. It also raises the
problemthat the interface to the IP layer can, if the programer is not
careful, becone excessively buried inside the kernel. It nust be
renenbered that things other than TCP are expected to run on top of |IP.
The |IP interface nmust be made accessible, even if TCP sits on top of it

i nsi de the kernel

Anot her obvious place to slice is above Telnet. The advantage of
slicing above Telnet is that it solves the problem of having renote
| ogi n channel s enul ate | ocal tel etype channels. The disadvantage of

putting Telnet into the kernel is that the anount of code which has now

12

been included there is getting remarkably |arge. In some early
i npl enent ations, the size of the network package, when one includes
protocols at the level of Telnet, rivals the size of the rest of the

supervisor. This leads to vague feelings that all is not right.

Any attenpt to slice through a | ower |ayer boundary, for exanple
between internet and TCP, reveals one fundanental problem The TCP
layer, as well as the IP layer, performs a denmultiplexing function on
i ncom ng datagrans. Until the TCP header has been examined, it is not
possi ble to know for which user the packet is ultinmately destined.
Therefore, if TCP, as a whole, 1is noved outside the kernel, it is
necessary to create one separate process called the TCP process, which
perforns the TCP nultiplexing function, and probably all of the rest of
TCP processing as well. This neans that incomng data destined for a
user process involves not just a scheduling of the user process, but

scheduling the TCP process first.

This suggests an alternative structuring strategy which slices
through the protocols, not along an established |ayer boundary, but
al ong a functional boundary having to do with denultipl exing. In this
approach, certain parts of IP and certain parts of TCP are placed in the
kernel . The amount of code placed there is sufficient so that when an
i ncom ng datagram arrives, it is possible to know for which process that
datagramis ultimately destined. The datagramis then routed directly
to the final process, where additional IP and TCP processing is
performed on it. This renoves fromthe kernel any requirenent for tinmer

based actions, since they can be done by the process provided by the

13

user. This structure has the additional advantage of reducing the
anmount of code required in the kernel, so that it is suitable for
systems where kernel space is at a premium The RFC 814, titled "Nanes,

Addresses, Ports, and Routes," discusses this rather orthogonal slicing

strategy in nore detail.

A rel ated discussion of protocol layering and nultiplexing can be

found in Cohen and Postel [1].

5. Breaking Down the Barriers

In fact, the inplementor should be sensitive to the possibility of
even nore peculiar slicing strategies in dividing up the various
protocol layers between the kernel and the one or nobre user processes.
The result of the strategy proposed above was that part of TCP should
execute in the process of the user. |In other words, instead of having
one TCP process for the system there is one TCP process per connection
G ven this architecture, it is not |onger necessary to imagine that al
of the TCPs are identical. One TCP could be optimzed for high
t hroughput applications, such as file transfer. Another TCP could be
optimzed for small |ow delay applications such as Telnet. In fact, it
woul d be possible to produce a TCP which was sonmewhat integrated wth
the Telnet or FTP on top of it. Such an integration is extrenely
inmportant, for it can lead to a kind of efficiency which nore
traditional structures are incapable of producing. Earlier, this paper
poi nted out that one of the inportant rules to achieving efficiency was
to send the ninimum nunber of packets for a given anpbunt of data. The

i dea of protocol layering interacts very strongly (and poorly) with this

14

goal, because independent |ayers have independent ideas about when
packets should be sent, and unless these |ayers can sonehow be brought
into cooperation, additional packets wll flow The best exanple of
this is the operation of server telnet in a character at a tine renote
echo node on top of TCP. Wen a packet containing a character arrives
at a server host, each layer has a different response to that packet.
TCP has an obligation to acknow edge the packet. Either server tel net
or the application | ayer above has an obligation to echo the character
received in the packet. |If the character is a Telnet control sequence,
then Tel net has additional actions which it nmust performin response to
the packet. The result of this, in nost inplenentations, is that
several packets are sent back in response to the one arriving packet.
Conmbining all of these return nessages into one packet is inportant for
several reasons. First, of course, it reduces the nunber of packets
bei ng sent over the net, which directly reduces the charges incurred for
many conmon carrier tariff structures. Second, it reduces the nunber of
scheduling actions which wll occur inside both hosts, which, as was

di scussed above, is extrenely inmportant in inproving throughput.

The way to achieve this goal of packet sharing is to break down the
barrier between the |layers of the protocols, in a very restrained and
careful manner, so that a limted anount of information can | eak across
the barrier to enable one layer to optimze its behavior with respect to
the desires of the |ayers above and belowit. For exanple, it would
represent an inprovenent if TCP, when it received a packet, could ask
the | ayer above whether or not it would be worth pausing for a few

mlliseconds before sending an acknow edgenent in order to see if the

15

upper layer would have any outgoing data to send. Dallying before
sending the acknow edgenent produces precisely the right sort of
optim zation if the client of TCP is server Telnet. However, dallying
bef ore sendi ng an acknow edgenent is absolutely unacceptable if TCP is
being used for file transfer, for in file transfer there is al nost never
data flowing in the reverse direction, and the delay in sending the
acknow edgenent probably translates directly into a delay in obtaining
the next packets. Thus, TCP nust know a little about the |ayers above

it to adjust its performance as needed.

It would be possible to inmagine a general purpose TCP which was
equipped with all sorts of special nechanisns by which it would query
the | ayer above and nodify its behavior accordingly. |In the structures
suggest ed above, in which there is not one but several TCPs, the TCP can
simply be nodified so that it produces the correct behavior as a matter
of course. This structure has the disadvantage that there wll be
several inplenentations of TCP existing on a single nachine, which can
mean nore mai ntenance headaches if a problemis found where TCP needs to
be changed. However, it is probably the case that each of the TCPs wil|
be substantially sinpler than the general purpose TCP which would
otherwi se have been built. There are sone experinental projects
currently under way which suggest that this approach may nmake desi gni ng
of a TCP, or alnbst any other |ayer, substantially easier, so that the
total effort involved in bringing up a conplete package is actually |ess
if this approach is followed. This approach is by no neans generally

accepted, but deserves sone consideration.

16

The general conclusion to be drawn fromthis sort of consideration
is that a layer boundary has both a benefit and a penalty. A visible
| ayer boundary, wth a well specified interface, provides a form of
i sol ation between two |ayers which allows one to be changed wth the
confidence that the other one wll not stop working as a result.
However, a firmlayer boundary alnost inevitably leads to inefficient
operation. This can easily be seen by analogy with other aspects of
operating systens. Consider, for exanple, file systens. A typica
operating system provides a file system which is a highly abstracted
representation of a disk. The interface is highly formalized, and
presuned to be highly stable. This nakes it very easy for naive users

to have access to disks wthout having to wite a great deal of

software. The existence of a file systemis clearly beneficial. On the
other hand, it is clear that the restricted interface to a file system
al rost inevitably leads to inefficiency. |If the interface is organized

as a sequential read and wite of bytes, then there will be people who
wi sh to do high throughput transfers who cannot achieve their goal. | f
the interface is a virtual nenory interface, then other users wll
regret the necessity of building a byte streaminterface on top of the
menory mapped file. The nost objectionable inefficiency results when a
hi ghl y sophi sticated package, such as a data base managenent package,
must be built on top of an existing operating system Al nost
inevitably, the inplementors of the database system attenpt to reject
the file system and obtain direct access to the disks. They have

sacrificed nmodularity for efficiency.

The sane conflict appears in networking, in a rather extrene form

17

The concept of a protocol is still unknown and frightening to nost naive
programers. The idea that they mi ght have to inplenent a protocol, or
even part of a protocol, as part of sone application package, is a

dreadful thought. And thus there is great pressure to hide the function
of the net behind a very hard barrier. On the other hand, the kind of
i nefficiency which results fromthis is a particularly undesirable sort
of inefficiency, for it shows up, anong other things, in increasing the
cost of the conmunications resource used up to achieve the application
goal . In cases where one mnmust pay for one’s comunications costs, they
usually turn out to be the dom nant cost within the system Thus, doing
an excessively good job of packaging up the protocols in an inflexible
manner has a direct inpact on increasing the cost of the critica
resource within the system This is a dilema which will probably only
be sol ved when programrers becone sonewhat |ess al arnmed about protocols,
so that they are willing to weave a certain amount of protocol structure
into their application program nuch as application prograns today weave
parts of database managenent systens into the structure of their

application program

An extrene exanple of putting the protocol package behind a firm
| ayer boundary occurs when the protocol package is relegated to a front-
end processor. |In this case the interface to the protocol is sone other
pr ot ocol . It is difficult to inmagine howto build close cooperation
bet ween | ayers when they are that far separated. Realistically, one of
the prices which nust be associated with an inplenentation so physically
nmodul ari zed is that the performance will suffer as a result. O course

a separate processor for protocols could be very closely integrated into

18

the mainframe architecture, with interprocessor co-ordination signals,
shared nmenory, and similar features. Such a physical nodularity mnight
work very well, but there is little docunented experience with this

closely coupled architecture for protocol support.

6. FEfficiency of Protocol Processing

To this point, this docunent has considered how a protocol package
should be broken into nodules, and how those nodules should be
di stributed between free standi ng nmachi nes, the operating system kernel
and one or nore user processes. It is nowtine to consider the other
hal f of the efficiency question, which is what can be done to speed the
execution of those prograns that actually inplenment the protocols. e
wi Il make sonme specific observations about TCP and I P, and then concl ude

with a few generalities.

IP is a sinple protocol, especially with respect to the processing
of normal packets, so it should be easy to get it to perform
efficiently. The only area of any conplexity related to actual packet
processing has to do with fragnentation and reassenbly. The reader is
referred to RFC 815, titled "IP Datagram Reassenbly Al gorithnms", for

specific consideration of this point.

Most costs in the IP layer cone fromtable look up functions, as
opposed to packet processing functions. An outgoing packet requires two
translation functions to be performed. The internet address nust be
translated to a target gateway, and a gateway address nust be transl ated

to a local network nunber (if the host is attached to nore than one

19

net wor k) . It is easy to build a sinple inplenentation of these table
l ook up functions that in fact perfornms very poorly. The progranmer
should keep in mnd that there may be as many as a thousand network
nunbers in a typical configuration. Li near searching of a thousand
entry table on every packet is extrenmely unsuitable. 1In fact, it may be
worth asking TCP to cache a hint for each connection, which can be
handed down to IP each tine a packet is sent, to try to avoid the

overhead of a table | ook up.

TCP is a nor e conplex protocol, and presents nany nore
opportunities for getting things wong. There is one area which is
generally accepted as causing noticeable and substantial overhead as
part of TCP processing. This is conputation of the checksum It would
be nice if this cost could be avoi ded somehow, but the idea of an end-
to-end checksumis absolutely central to the functioning of TCP. No
host inplenentor should think of onmitting the validation of a checksum

on inconi ng data.

Various clever tricks have been used to try to minimnize the cost of
conputing the checksum If it is possible to add additional nicrocoded
instructions to the machine, a checksuminstruction is the nost obvious
candi date. Since conputing the checksuminvol ves picking up every byte
of the segnment and examining it, it is possible to conbine the operation
of computing the checksumwi th the operation of copying the segment from
one location to another. Since a nunber of data copies are probably
already required as part of the processing structure, this kind of

sharing mght conceivably pay off if it didn't cause too nuch trouble to

20

the nodularity of the program Finally, conputation of the checksum
seenms to be one place where careful attention to the details of the
algorithm used can nmke a drastic difference in the throughput of the
program The Miltics system provides one of the best case studies of
this, since Miltics is about as poorly organized to performthis
function as any machi ne i npl ementing TCP. Miultics is a 36-bit word
machine, wth four 9-bit bytes per word. The eight-bit bytes of a TCP
segrment are laid down packed in nmenory, ignoring word boundari es. Thi s
means that when it is necessary to pick up the data as a set of 16-bit
units for the purpose of adding them to conpute checksuns, horrible
masking and shifting is required for each 16-bit value. An early
version of a programusing this strategy required 6 mlliseconds to
checksum a 576-byte segnent. Qobviously, at this point, checksum
conputati on was becoming the central bottleneck to throughput. A nore
careful recoding of this algorithmreduced the checksum processing time
to less than one mllisecond. The strategy used was extrenely dirty.
It involved adding up carefully selected words of the area in which the
data lay, knowing that for those particular words, the 16-bit values
were properly aligned inside the words. Only after the addition had
been done were the various sunms shifted, and finally added to produce
the eventual checksum This kind of highly specialized progranming is
probably not acceptable if used everywhere within an operating system
It is clearly appropriate for one highly localized function which can be

clearly identified as an extrene performance bottl eneck

Anot her area of TCP processing which nay cause perfornance probl ens

is the overhead of examining all of the possible flags and options which

21

occur in each incom ng packet. One paper, by Bunch and Day [2], asserts
that the overhead of packet header processing is actually an inportant
limting factor in throughput conputation. Not all measur enent
experinments have tended to support this result. To whatever extent it
is true, however, there is an obvious strategy which the inplenentor
ought to wuse in designing his program He should build his programto
optinmi ze the expected case. It is easy, especially when first designing
a program to pay equal attention to all of the possible outconmes of
every test. In practice, however, few of these will ever happen. A TCP
should be built on the assunption that the next packet to arrive wll

have absol utely not hing special about it, and wll be the next one
expected in the sequence space. One or two tests are sufficient to
determine that the expected set of control flags are on. (The ACK flag
shoul d be on; the Push flag may or may not be on. No other flags should
be on.) One test is sufficient to determ ne that the sequence nunber of
the incomng packet is one greater than the |ast sequence nunber
received. In alnost every case, that will be the actual result. Again,
using the Miultics systemas an exanple, failure to optim ze the case of
receiving the expected sequence nunber had a detectable effect on the
performance of the system The particular problem arose when a nunber
of packets arrived at once. TCP attenpted to process all of these
packets before awaking the user. As aresult, by the tine the |ast
packet arrived, there was a threaded |Iist of packets which had severa

items on it. Wen a new packet arrived, the list was searched to find
the location into which the packet should be inserted. GCbviously, the

list should be searched from hi ghest sequence nunber to | owest sequence

22

nunber, because one is expecting to receive a packet which cones after
those already received. By mistake, the list was searched fromfront to
back, starting with the packets with the | owest sequence nunber. The
anount of tine spent searching this |ist backwards was easily detectable

in the netering nmeasurenents.

O her data structures can be organized to optimnize the action which
is nornmally taken on them For exanple, the retransm ssion queue is
very seldomactually used for retransmssion, so it should not be
organized to optimze that action. 1In fact, it should be organized to
optim zed the discarding of things from it when the acknow edgenent
arrives. In many cases, the easiest way to do this is not to save the
packet at all, but to reconstruct it only if it needs to be
retransmtted, starting fromthe data as it was originally buffered by

t he user.

There is another generality, at least as inportant as optinzing
the comon case, which is to avoid copying data any nore tines than
necessary. One nore result fromthe Miultics TCP may prove enlightening
her e. Miul tics takes between two and three nmilliseconds within the TCP
| ayer to process an inconing packet, depending on its size. For a 576-
byte packet, the three mlliseconds is used up approximately as foll ows.
One mllisecond is used conputing the checksum Si x hundred
m croseconds i s spent copying the data. (The data is copied twce, at
.3 mlliseconds a copy.) One of those copy operations could correctly
be included as part of the checksumcost, since it is done to get the

data on a known word boundary to optinize the checksum al gorithm

23

However, the copy also perforns anot her necessary transfer at the same
time. Header processing and packet resequencing takes .7 nilliseconds.
The rest of the time is wused in mscellaneous processing, such as
renovi ng packets fromthe retransm ssi on queue which are acknow edged by
this packet. Data copying is the second nost expensive single operation
after data checksum ng. Some inplenmentations, often because of an
excessively layered nodularity, end up copying the data around a great
deal. Oher inplenmentations end up copying the data because there is no
shared nenory between processes, and the data nust be noved from process
to process via a kernel operation. Unless the anount of this activity
is kept strictly wunder control, it wll quickly becone the nmajor

performance bottl eneck.

7. Concl usi ons

Thi s docunent has addressed two aspects of obtaining performance
froma protocol inplenentation, the way in which the protocol is |ayered
and integrated into the operating system and the way in which the
detail ed handling of the packet is optimzed. It would be nice if one
or the other of these costs would conpletely dominate, so that all of
one’s attention could be concentrated there. Regrettably, this is not
So. Depending on the particular sort of traffic one is getting, for
exanpl e, whet her Tel net one-byte packets or file transfer naximum size
packets at maxi num speed, one can expect to see one or the other cost
being the major bottleneck to throughput. Mst inplenentors who have
studied their prograns in an attenpt to find out where the tinme was

goi ng have reached the unsatisfactory conclusion that it is going

24

equally to all parts of their program Wth the possible exception of
checksum processing, very few people have ever found that their
performance problens were due to a single, horrible bottleneck which
they could fix by a single stroke of inventive progranm ng. Rather, the
performance was sonet hi ng which was inproved by painstaking tuning of

the entire program

Most di scussions of protocols begin by introducing the concept of
| ayering, which tends to suggest that Ilayering is a fundanentally
wonderful idea which should be a part of every consideration of
protocols. In fact, layering is a m xed bl essing. Clearly, a |layer
interface is necessary whenever nore than one client of a particular
layer is to be allowed to use that sanme |ayer. But an interface
precisely because it is fixed, inevitably leads to a |lack of conplete
under standi ng as to what one | ayer wi shes to obtain from anot her. Thi s
has to lead to inefficiency. Furthernore, layering is a potential snare
in that one is tenpted to think that a |ayer boundary, which was an
artifact of the specification procedure, is in fact the proper boundary
to wuse in nodularizing the inplenentation. Again, in certain cases, an
architected | ayer nust correspond to an inplenented |ayer, precisely so
that several «clients can have access to that layer in a reasonably
straightforward manner. |In other cases, cunning rearrangenent of the
i mpl emented nodule boundaries to match with various functions, such as
the denul tipl exi ng of incom ng packets, or the sending of asynchronous
out goi ng packets, can lead to unexpected performance inprovenents
conpared to nore traditional inplenentation strategies. Finally, good

performance is something which is difficult to retrofit onto an existing

25

program Since perfornance is influenced, not just by the fine detail

but by the gross structure, it is sonetinmes the case that in order to
obtain a substantial perfornmance inprovenment, it 1is necessary to
completely redo the programfrom the bottom up. This is a great
di sappoi nt ment to programmers, especially those doing a protoco
i npl ementation for the first tine. Programmers who are sonewhat
i nexperienced and wunfanmiliar with protocols are sufficiently concerned
with getting their programlogically correct that they do not have the
capacity to think at the sanme tine about the performance of the
structure they are building. Only after they have achieved a logically
correct program do they discover that they have done so in a way which
has precluded real performance. Cdearly, it is nore difficult to design
a programthinking fromthe start about both 1logical correctness and
performance. Wth tinme, as inplenentors as a group learn nore about the
appropriate structures to wuse for building protocols, it wll be
possible to proceed with an inplenentation project havi ng nor e
confidence that the structure is rational, that the programw Il work,
and that the programw |l work well. Those of wus now inplenmenting
protocols have the privilege of being on the forefront of this |earning
process. It should be no surprise that our prograns sonetinmes suffer

fromthe uncertainty we bring to bear on them

26

Citations

[1] Cohen and Postel, "On Protocol Miltiplexing", Sixth Data

Conmmruni cati ons Synposi um ACM | EEE, Novenber 1979.

[2] Bunch and Day, "Control Structure Overhead in TCP', Trends and

Applications: Conputer Networking, NBS Synposium My 1980.

