
Internet Engineering Task Force (IETF) A. Lindem, Ed.
Request for Comments: 8177 Cisco Systems
Category: Standards Track Y. Qu
ISSN: 2070-1721 Huawei
 D. Yeung
 Arrcus, Inc
 I. Chen
 Jabil
 J. Zhang
 Juniper Networks
 June 2017

 YANG Data Model for Key Chains

Abstract

 This document describes the key chain YANG data model. Key chains
 are commonly used for routing protocol authentication and other
 applications requiring symmetric keys. A key chain is a list
 containing one or more elements containing a Key ID, key string,
 send/accept lifetimes, and the associated authentication or
 encryption algorithm. By properly overlapping the send and accept
 lifetimes of multiple key chain elements, key strings and algorithms
 may be gracefully updated. By representing them in a YANG data
 model, key distribution can be automated.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8177.

Lindem, et al. Standards Track [Page 1]

RFC 8177 YANG Key Chain June 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Notation 3
 1.2. Tree Diagrams . 3
 2. Problem Statement . 4
 2.1. Applicability . 4
 2.2. Graceful Key Rollover Using Key Chains 4
 3. Design of the Key Chain Model 5
 3.1. Key Chain Operational State 6
 3.2. Key Chain Model Features 6
 3.3. Key Chain Model Tree 7
 4. Key Chain YANG Model . 8
 5. Security Considerations 16
 6. IANA Considerations . 17
 7. References . 18
 7.1. Normative References 18
 7.2. Informative References 19
 Appendix A. Examples . 21
 A.1. Simple Key Chain with an Always Valid Single Key 21
 A.2. Key Chain with Keys Having Different Lifetimes 21
 A.3. Key Chain with Independent Send and Accept Lifetimes . . 23
 Contributors . 24
 Acknowledgments . 24
 Authors’ Addresses . 25

Lindem, et al. Standards Track [Page 2]

RFC 8177 YANG Key Chain June 2017

1. Introduction

 This document describes the key chain YANG [YANG-1.1] data model.
 Key chains are commonly used for routing protocol authentication and
 other applications requiring symmetric keys. A key chain is a list
 containing one or more elements containing a Key ID, key string,
 send/accept lifetimes, and the associated authentication or
 encryption algorithm. By properly overlapping the send and accept
 lifetimes of multiple key chain elements, key strings and algorithms
 may be gracefully updated. By representing them in a YANG data
 model, key distribution can be automated.

 In some applications, the protocols do not use the key chain element
 key directly, but rather a key derivation function is used to derive
 a short-lived key from the key chain element key (e.g., the master
 keys used in [TCP-AO]).

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [KEYWORDS] [KEYWORDS-UPD] when, and only when, they appear in
 all capitals, as shown here.

1.2. Tree Diagrams

 A simplified graphical representation of the complete data tree is
 presented in Section 3.3. The following tree notation is used.

 o Brackets "[" and "]" enclose YANG list keys. These YANG list keys
 should not be confused with the key chain keys.

 o Curly braces "{" and "}" contain names of optional features that
 make the corresponding node conditional.

 o Abbreviations before data node names: "rw" means configuration
 (read-write), "ro" means state data (read-only), "-x" means RPC
 operations, and "-n" means notifications.

 o Symbols after data node names: "?" means an optional node, "!"
 denotes a container with presence, and "*" denotes a "list" or
 "leaf-list".

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

Lindem, et al. Standards Track [Page 3]

RFC 8177 YANG Key Chain June 2017

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. Problem Statement

 This document describes a YANG [YANG-1.1] data model for key chains.
 Key chains have been implemented and deployed by a large percentage
 of network equipment vendors. Providing a standard YANG model will
 facilitate automated key distribution and non-disruptive key
 rollover. This will aid in tightening the security of the core
 routing infrastructure as recommended in [IAB-REPORT].

 A key chain is a list containing one or more elements containing a
 Key ID, key string, send/accept lifetimes, and the associated
 authentication or encryption algorithm. A key chain can be used by
 any service or application requiring authentication or encryption
 using symmetric keys. In essence, the key chain is a reusable key
 policy that can be referenced wherever it is required. The key chain
 construct has been implemented by most networking vendors and
 deployed in many networks.

 A conceptual representation of a crypto key table is described in
 [CRYPTO-KEYTABLE]. The crypto key table includes keys as well as
 their corresponding lifetimes and algorithms. Additionally, the key
 table includes key selection criteria and is designed for a
 deployment model where the details of the applications or services
 requiring authentication or encryption permeate into the key
 database. The YANG key chain model described herein doesn’t include
 key selection criteria or support this deployment model. At the same
 time, it does not preclude it. [YANG-CRYPTO-KEYTABLE] describes
 augmentations to the key chain YANG model in support of key selection
 criteria.

2.1. Applicability

 Other YANG modules may reference ietf-key-chain YANG module key-chain
 names for authentication and encryption applications. A YANG type
 has been provided to facilitate reference to the key-chain name
 without having to specify the complete YANG XML Path Language (XPath)
 expression.

2.2. Graceful Key Rollover Using Key Chains

 Key chains may be used to gracefully update the key string and/or
 algorithm used by an application for authentication or encryption.
 To achieve graceful key rollover, the receiver MAY accept all the

Lindem, et al. Standards Track [Page 4]

RFC 8177 YANG Key Chain June 2017

 keys that have a valid accept lifetime, and the sender MAY send the
 key with the most recent send lifetime. One scenario for
 facilitating key rollover is to:

 1. Distribute a key chain with a new key to all the routers or other
 network devices in the domain of that key chain. The new key’s
 accept lifetime should be such that it is accepted during the key
 rollover period. The send lifetime should be a time in the
 future when it can be assured that all the routers in the domain
 of that key are upgraded. This will have no immediate impact on
 the keys used for transmission.

 2. Assure that all the network devices have been updated with the
 updated key chain and that their system times are roughly
 synchronized. The system times of devices within an
 administrative domain are commonly synchronized (e.g., using the
 Network Time Protocol (NTP) [NTP-PROTO]). This also may be
 automated.

 3. When the send lifetime of the new key becomes valid, the network
 devices within the domain of that key chain will use the new key
 for transmissions.

 4. At some point in the future, a new key chain with the old key
 removed may be distributed to the network devices within the
 domain of the key chain. However, this may be deferred until the
 next key rollover. If this is done, the key chain will always
 include two keys: either the current and future key (during key
 rollovers) or the current and previous keys (between key
 rollovers).

 Since the most recent send lifetime is defined as the one with the
 latest start-time, specification of "always" will prevent using the
 graceful key rollover technique described above. Other key
 configuration and usage scenarios are possible, but these are beyond
 the scope of this document.

3. Design of the Key Chain Model

 The ietf-key-chain module contains a list of one or more keys indexed
 by a Key ID. For some applications (e.g., OSPFv3 [OSPFV3-AUTH]), the
 Key ID is used to identify the key chain key to be used. In addition
 to the Key ID, each key chain key includes a key string and a
 cryptographic algorithm. Optionally, the key chain keys include
 send/accept lifetimes. If the send/accept lifetime is unspecified,
 the key is always considered valid.

Lindem, et al. Standards Track [Page 5]

RFC 8177 YANG Key Chain June 2017

 Note that different key values for transmission versus acceptance may
 be supported with multiple key chain elements. The key used for
 transmission will have a valid send-lifetime and invalid accept-
 lifetime (e.g., has an end-time equal to the start-time). The key
 used for acceptance will have a valid accept-lifetime and invalid
 send-lifetime.

 Due to the differences in key chain implementations across various
 vendors, some of the data elements are optional. Finally, the crypto
 algorithm identities are provided for reuse when configuring legacy
 authentication and encryption not using key chains.

 A key chain is identified by a unique name within the scope of the
 network device. The "key-chain-ref" typedef SHOULD be used by other
 YANG modules when they need to reference a configured key chain.

3.1. Key Chain Operational State

 The key chain operational state is included in the same tree as key
 chain configuration consistent with Network Management Datastore
 Architecture [NMDA]. The timestamp of the last key chain
 modification is also maintained in the operational state.
 Additionally, the operational state includes an indication of whether
 or not a key chain key is valid for transmission or acceptance.

3.2. Key Chain Model Features

 Features are used to handle differences between vendor
 implementations. For example, not all vendors support configuration
 of an acceptance tolerance or configuration of key strings in
 hexadecimal. They are also used to support security requirements
 (e.g., TCP-AO algorithms [TCP-AO-ALGORITHMS]) not yet implemented by
 vendors or implemented by only a single vendor.

 It is common for an entity with sufficient permissions to read and
 store a device’s configuration, which would include the contents of
 this model. To avoid unnecessarily seeing and storing the keys in
 cleartext, this model provides the aes-key-wrap feature. More
 details are described in the Security Considerations (Section 5).

Lindem, et al. Standards Track [Page 6]

RFC 8177 YANG Key Chain June 2017

3.3. Key Chain Model Tree

 +--rw key-chains
 +--rw key-chain* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw accept-tolerance {accept-tolerance}?
 | | +--rw duration? uint32
 | +--ro last-modified-timestamp? yang:date-and-time
 | +--rw key* [key-id]
 | +--rw key-id uint64
 | +--rw lifetime
 | | +--rw (lifetime)?
 | | +--:(send-and-accept-lifetime)
 | | | +--rw send-accept-lifetime
 | | | +--rw (lifetime)?
 | | | +--:(always)
 | | | | +--rw always? empty
 | | | +--:(start-end-time)
 | | | +--rw start-date-time?
 | | | | yang:date-and-time
 | | | +--rw (end-time)?
 | | | +--:(infinite)
 | | | | +--rw no-end-time? empty
 | | | +--:(duration)
 | | | | +--rw duration? uint32
 | | | +--:(end-date-time)
 | | | +--rw end-date-time?
 | | | yang:date-and-time
 | | +--:(independent-send-accept-lifetime)
 | | | {independent-send-accept-lifetime}?
 | | +--rw send-lifetime
 | | | +--rw (lifetime)?
 | | | +--:(always)
 | | | | +--rw always? empty
 | | | +--:(start-end-time)
 | | | +--rw start-date-time?
 | | | | yang:date-and-time
 | | | +--rw (end-time)?
 | | | +--:(infinite)
 | | | | +--rw no-end-time? empty
 | | | +--:(duration)
 | | | | +--rw duration? uint32
 | | | +--:(end-date-time)
 | | | +--rw end-date-time?
 | | | yang:date-and-time
 | | +--rw accept-lifetime
 | | +--rw (lifetime)?

Lindem, et al. Standards Track [Page 7]

RFC 8177 YANG Key Chain June 2017

 | | +--:(always)
 | | | +--rw always? empty
 | | +--:(start-end-time)
 | | +--rw start-date-time?
 | | | yang:date-and-time
 | | +--rw (end-time)?
 | | +--:(infinite)
 | | | +--rw no-end-time? empty
 | | +--:(duration)
 | | | +--rw duration? uint32
 | | +--:(end-date-time)
 | | +--rw end-date-time?
 | | yang:date-and-time
 | +--rw crypto-algorithm identityref
 | +--rw key-string
 | | +--rw (key-string-style)?
 | | +--:(keystring)
 | | | +--rw keystring? string
 | | +--:(hexadecimal) {hex-key-string}?
 | | +--rw hexadecimal-string? yang:hex-string
 | +--ro send-lifetime-active? boolean
 | +--ro accept-lifetime-active? boolean
 +--rw aes-key-wrap {aes-key-wrap}?
 +--rw enable? boolean

4. Key Chain YANG Model

 <CODE BEGINS> file "ietf-key-chain@2017-06-15.yang"
 module ietf-key-chain {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-key-chain";
 prefix key-chain;

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-netconf-acm {
 prefix nacm;
 }

 organization
 "IETF RTGWG - Routing Area Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/group/rtgwg>
 WG List: <mailto:rtgwg@ietf.org>

 Editor: Acee Lindem
 <mailto:acee@cisco.com>

Lindem, et al. Standards Track [Page 8]

RFC 8177 YANG Key Chain June 2017

 Yingzhen Qu
 <mailto:yingzhen.qu@huawei.com>
 Derek Yeung
 <mailto:derek@arrcus.com>
 Ing-Wher Chen
 <mailto:Ing-Wher_Chen@jabail.com>
 Jeffrey Zhang
 <mailto:zzhang@juniper.net>";

 description
 "This YANG module defines the generic configuration
 data for key chains. It is intended that the module
 will be extended by vendors to define vendor-specific
 key chain configuration parameters.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8177;
 see the RFC itself for full legal notices.";

 reference "RFC 8177";

 revision 2017-06-15 {
 description
 "Initial RFC Revision";
 reference "RFC 8177: YANG Data Model for Key Chains";
 }

 feature hex-key-string {
 description
 "Support hexadecimal key string.";
 }

 feature accept-tolerance {
 description
 "Support the tolerance or acceptance limit.";
 }

 feature independent-send-accept-lifetime {
 description

Lindem, et al. Standards Track [Page 9]

RFC 8177 YANG Key Chain June 2017

 "Support for independent send and accept key lifetimes.";
 }

 feature crypto-hmac-sha-1-12 {
 description
 "Support for TCP HMAC-SHA-1 12-byte digest hack.";
 }

 feature cleartext {
 description
 "Support for cleartext algorithm. Usage is
 NOT RECOMMENDED.";
 }

 feature aes-cmac-prf-128 {
 description
 "Support for AES Cipher-based Message Authentication
 Code Pseudorandom Function.";
 }

 feature aes-key-wrap {
 description
 "Support for Advanced Encryption Standard (AES) Key Wrap.";
 }

 feature replay-protection-only {
 description
 "Provide replay protection without any authentication
 as required by protocols such as Bidirectional
 Forwarding Detection (BFD).";
 }
 identity crypto-algorithm {
 description
 "Base identity of cryptographic algorithm options.";
 }

 identity hmac-sha-1-12 {
 base crypto-algorithm;
 if-feature "crypto-hmac-sha-1-12";
 description
 "The HMAC-SHA1-12 algorithm.";
 }

 identity aes-cmac-prf-128 {
 base crypto-algorithm;
 if-feature "aes-cmac-prf-128";
 description
 "The AES-CMAC-PRF-128 algorithm - required by

Lindem, et al. Standards Track [Page 10]

RFC 8177 YANG Key Chain June 2017

 RFC 5926 for TCP-AO key derivation functions.";
 }

 identity md5 {
 base crypto-algorithm;
 description
 "The MD5 algorithm.";
 }

 identity sha-1 {
 base crypto-algorithm;
 description
 "The SHA-1 algorithm.";
 }

 identity hmac-sha-1 {
 base crypto-algorithm;
 description
 "HMAC-SHA-1 authentication algorithm.";
 }

 identity hmac-sha-256 {
 base crypto-algorithm;
 description
 "HMAC-SHA-256 authentication algorithm.";
 }

 identity hmac-sha-384 {
 base crypto-algorithm;
 description
 "HMAC-SHA-384 authentication algorithm.";
 }

 identity hmac-sha-512 {
 base crypto-algorithm;
 description
 "HMAC-SHA-512 authentication algorithm.";
 }

 identity cleartext {
 base crypto-algorithm;
 if-feature "cleartext";
 description
 "cleartext.";
 }

 identity replay-protection-only {
 base crypto-algorithm;

Lindem, et al. Standards Track [Page 11]

RFC 8177 YANG Key Chain June 2017

 if-feature "replay-protection-only";
 description
 "Provide replay protection without any authentication as
 required by protocols such as Bidirectional Forwarding
 Detection (BFD).";
 }

 typedef key-chain-ref {
 type leafref {
 path
 "/key-chain:key-chains/key-chain:key-chain/key-chain:name";
 }
 description
 "This type is used by data models that need to reference
 configured key chains.";
 }

 grouping lifetime {
 description
 "Key lifetime specification.";
 choice lifetime {
 default "always";
 description
 "Options for specifying key accept or send lifetimes";
 case always {
 leaf always {
 type empty;
 description
 "Indicates key lifetime is always valid.";
 }
 }
 case start-end-time {
 leaf start-date-time {
 type yang:date-and-time;
 description
 "Start time.";
 }
 choice end-time {
 default "infinite";
 description
 "End-time setting.";
 case infinite {
 leaf no-end-time {
 type empty;
 description
 "Indicates key lifetime end-time is infinite.";
 }
 }

Lindem, et al. Standards Track [Page 12]

RFC 8177 YANG Key Chain June 2017

 case duration {
 leaf duration {
 type uint32 {
 range "1..2147483646";
 }
 units "seconds";
 description
 "Key lifetime duration, in seconds";
 }
 }
 case end-date-time {
 leaf end-date-time {
 type yang:date-and-time;
 description
 "End time.";
 }
 }
 }
 }
 }
 }

 container key-chains {
 description
 "All configured key-chains on the device.";
 list key-chain {
 key "name";
 description
 "List of key-chains.";
 leaf name {
 type string;
 description
 "Name of the key-chain.";
 }
 leaf description {
 type string;
 description
 "A description of the key-chain";
 }
 container accept-tolerance {
 if-feature "accept-tolerance";
 description
 "Tolerance for key lifetime acceptance (seconds).";
 leaf duration {
 type uint32;
 units "seconds";
 default "0";
 description

Lindem, et al. Standards Track [Page 13]

RFC 8177 YANG Key Chain June 2017

 "Tolerance range, in seconds.";
 }
 }
 leaf last-modified-timestamp {
 type yang:date-and-time;
 config false;
 description
 "Timestamp of the most recent update to the key-chain";
 }
 list key {
 key "key-id";
 description
 "Single key in key chain.";
 leaf key-id {
 type uint64;
 description
 "Numeric value uniquely identifying the key";
 }
 container lifetime {
 description
 "Specify a key’s lifetime.";
 choice lifetime {
 description
 "Options for specification of send and accept
 lifetimes.";
 case send-and-accept-lifetime {
 description
 "Send and accept key have the same lifetime.";
 container send-accept-lifetime {
 description
 "Single lifetime specification for both
 send and accept lifetimes.";
 uses lifetime;
 }
 }
 case independent-send-accept-lifetime {
 if-feature "independent-send-accept-lifetime";
 description
 "Independent send and accept key lifetimes.";
 container send-lifetime {
 description
 "Separate lifetime specification for send
 lifetime.";
 uses lifetime;
 }
 container accept-lifetime {
 description
 "Separate lifetime specification for accept

Lindem, et al. Standards Track [Page 14]

RFC 8177 YANG Key Chain June 2017

 lifetime.";
 uses lifetime;
 }
 }
 }
 }
 leaf crypto-algorithm {
 type identityref {
 base crypto-algorithm;
 }
 mandatory true;
 description
 "Cryptographic algorithm associated with key.";
 }
 container key-string {
 description
 "The key string.";
 nacm:default-deny-all;
 choice key-string-style {
 description
 "Key string styles";
 case keystring {
 leaf keystring {
 type string;
 description
 "Key string in ASCII format.";
 }
 }
 case hexadecimal {
 if-feature "hex-key-string";
 leaf hexadecimal-string {
 type yang:hex-string;
 description
 "Key in hexadecimal string format. When compared
 to ASCII, specification in hexadecimal affords
 greater key entropy with the same number of
 internal key-string octets. Additionally, it
 discourages usage of well-known words or
 numbers.";
 }
 }
 }
 }
 leaf send-lifetime-active {
 type boolean;
 config false;
 description
 "Indicates if the send lifetime of the

Lindem, et al. Standards Track [Page 15]

RFC 8177 YANG Key Chain June 2017

 key-chain key is currently active.";
 }
 leaf accept-lifetime-active {
 type boolean;
 config false;
 description
 "Indicates if the accept lifetime of the
 key-chain key is currently active.";
 }
 }
 }
 container aes-key-wrap {
 if-feature "aes-key-wrap";
 description
 "AES Key Wrap encryption for key-chain key-strings. The
 encrypted key-strings are encoded as hexadecimal key
 strings using the hex-key-string leaf.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enable AES Key Wrap encryption.";
 }
 }
 }
 }
 <CODE ENDS>

5. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via network management protocols such as NETCONF [NETCONF] or
 RESTCONF [RESTCONF]. The lowest NETCONF layer is the secure
 transport layer, and the mandatory-to-implement secure transport is
 Secure Shell (SSH) [NETCONF-SSH]. The lowest RESTCONF layer is
 HTTPS, and the mandatory-to-implement secure transport is TLS [TLS].

 The NETCONF access control model [NETCONF-ACM] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a pre-
 configured subset of all available NETCONF or RESTCONF protocol
 operations and content. The key strings are not accessible by
 default, and NETCONF access control model [NETCONF-ACM] rules are
 required to configure or retrieve them.

 When configured, the key strings can be encrypted using the AES Key
 Wrap algorithm [AES-KEY-WRAP]. The AES key-encryption key (KEK) is
 not included in the YANG model and must be set or derived independent
 of key chain configuration. When AES key encryption is used, the

Lindem, et al. Standards Track [Page 16]

RFC 8177 YANG Key Chain June 2017

 hex-key-string feature is also required since the encrypted keys will
 contain characters that are not representable in the YANG string
 built-in type [YANG-1.1]. It is RECOMMENDED that key strings be
 encrypted using AES key encryption to prevent key chains from being
 retrieved and stored with the key strings in cleartext. This
 recommendation is independent of the access protection that is
 availed from the NETCONF access control model (NACM) [NETCONF-ACM].

 The cleartext algorithm is included as a YANG feature. Usage is NOT
 RECOMMENDED except in cases where the application and device have no
 other alternative (e.g., a legacy network device that must
 authenticate packets at intervals of 10 milliseconds or less for many
 peers using Bidirectional Forwarding Detection [BFD]). Keys used
 with the cleartext algorithm are considered insecure and SHOULD NOT
 be reused with more secure algorithms.

 Similarly, the MD5 and SHA-1 algorithms have been proven to be
 insecure ([Dobb96a], [Dobb96b], and [SHA-SEC-CON]), and usage is NOT
 RECOMMENDED. Usage should be confined to deployments where it is
 required for backward compatibility.

 Implementations with keys provided via this model should store them
 using best current security practices.

6. IANA Considerations

 This document registers a URI in the "IETF XML Registry"
 [XML-REGISTRY]. It follows the format in [XML-REGISTRY].

 URI: urn:ietf:params:xml:ns:yang:ietf-key-chain
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the "YANG Module Names"
 registry [YANG-1.0].

 name: ietf-key-chain
 namespace: urn:ietf:params:xml:ns:yang:ietf-key-chain
 prefix: key-chain
 reference: RFC 8177

Lindem, et al. Standards Track [Page 17]

RFC 8177 YANG Key Chain June 2017

7. References

7.1. Normative References

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [KEYWORDS-UPD]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <http://www.rfc-editor.org/info/rfc8174>.

 [NETCONF] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [NETCONF-ACM]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [NETCONF-SSH]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RESTCONF]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [XML-REGISTRY]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

Lindem, et al. Standards Track [Page 18]

RFC 8177 YANG Key Chain June 2017

 [YANG-1.0]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [YANG-1.1]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

7.2. Informative References

 [AES-KEY-WRAP]
 Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009,
 <http://www.rfc-editor.org/info/rfc5649>.

 [BFD] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
 <http://www.rfc-editor.org/info/rfc5880>.

 [CRYPTO-KEYTABLE]
 Housley, R., Polk, T., Hartman, S., and D. Zhang,
 "Database of Long-Lived Symmetric Cryptographic Keys",
 RFC 7210, DOI 10.17487/RFC7210, April 2014,
 <http://www.rfc-editor.org/info/rfc7210>.

 [Dobb96a] Dobbertin, H., "Cryptanalysis of MD5 Compress", Technical
 Report Presented at the Rump Session of EuroCrypt ’96, May
 1996.

 [Dobb96b] Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes, Vol. 2, No. 2, Summer 1996.

 [IAB-REPORT]
 Andersson, L., Davies, E., and L. Zhang, "Report from the
 IAB workshop on Unwanted Traffic March 9-10, 2006",
 RFC 4948, DOI 10.17487/RFC4948, August 2007,
 <http://www.rfc-editor.org/info/rfc4948>.

 [NMDA] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore
 Architecture", Work in Progress, draft-ietf-netmod-
 revised-datastores-02, May 2017.

Lindem, et al. Standards Track [Page 19]

RFC 8177 YANG Key Chain June 2017

 [NTP-PROTO]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [OSPFV3-AUTH]
 Bhatia, M., Manral, V., and A. Lindem, "Supporting
 Authentication Trailer for OSPFv3", RFC 7166,
 DOI 10.17487/RFC7166, March 2014,
 <http://www.rfc-editor.org/info/rfc7166>.

 [SHA-SEC-CON]
 Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <http://www.rfc-editor.org/info/rfc6194>.

 [TCP-AO] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [TCP-AO-ALGORITHMS]
 Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
 for the TCP Authentication Option (TCP-AO)", RFC 5926,
 DOI 10.17487/RFC5926, June 2010,
 <http://www.rfc-editor.org/info/rfc5926>.

 [YANG-CRYPTO-KEYTABLE]
 Chen, I., "YANG Data Model for RFC 7210 Key Table", Work
 in Progress, draft-chen-rtg-key-table-yang-00, March 2015.

Lindem, et al. Standards Track [Page 20]

RFC 8177 YANG Key Chain June 2017

Appendix A. Examples

A.1. Simple Key Chain with an Always Valid Single Key

 <?xml version="1.0" encoding="utf-8"?>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <key-chains xmlns="urn:ietf:params:xml:ns:yang:ietf-key-chain">
 <key-chain>
 <name>keychain-no-end-time</name>
 <description>
 A key chain with a single key that is always valid for
 transmission and reception.
 </description>
 <key>
 <key-id>100</key-id>
 <lifetime>
 <send-accept-lifetime>
 <always/>
 </send-accept-lifetime>
 </lifetime>
 <crypto-algorithm>hmac-sha-256</crypto-algorithm>
 <key-string>
 <keystring>keystring_in_ascii_100</keystring>
 </key-string>
 </key>
 </key-chain>
 </key-chains>
 </data>

A.2. Key Chain with Keys Having Different Lifetimes

 <?xml version="1.0" encoding="utf-8"?>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <key-chains xmlns="urn:ietf:params:xml:ns:yang:ietf-key-chain">
 <key-chain>
 <name>keychain2</name>
 <description>
 A key chain where each key contains a different send time
 and accept time and a different algorithm illustrating
 algorithm agility.
 </description>
 <key>
 <key-id>35</key-id>
 <lifetime>
 <send-lifetime>
 <start-date-time>2017-01-01T00:00:00Z</start-date-time>
 <end-date-time>2017-02-01T00:00:00Z</end-date-time>
 </send-lifetime>

Lindem, et al. Standards Track [Page 21]

RFC 8177 YANG Key Chain June 2017

 <accept-lifetime>
 <start-date-time>2016-12-31T23:59:55Z</start-date-time>
 <end-date-time>2017-02-01T00:00:05Z</end-date-time>
 </accept-lifetime>
 </lifetime>
 <crypto-algorithm>hmac-sha-256</crypto-algorithm>
 <key-string>
 <keystring>keystring_in_ascii_35</keystring>
 </key-string>
 </key>
 <key>
 <key-id>36</key-id>
 <lifetime>
 <send-lifetime>
 <start-date-time>2017-02-01T00:00:00Z</start-date-time>
 <end-date-time>2017-03-01T00:00:00Z</end-date-time>
 </send-lifetime>
 <accept-lifetime>
 <start-date-time>2017-01-31T23:59:55Z</start-date-time>
 <end-date-time>2017-03-01T00:00:05Z</end-date-time>
 </accept-lifetime>
 </lifetime>
 <crypto-algorithm>hmac-sha-512</crypto-algorithm>
 <key-string>
 <hexadecimal-string>fe:ed:be:af:36</hexadecimal-string>
 </key-string>
 </key>
 </key-chain>
 </key-chains>
 </data>

Lindem, et al. Standards Track [Page 22]

RFC 8177 YANG Key Chain June 2017

A.3. Key Chain with Independent Send and Accept Lifetimes

 <?xml version="1.0" encoding="utf-8"?>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <key-chains xmlns="urn:ietf:params:xml:ns:yang:ietf-key-chain">
 <key-chain>
 <name>keychain2</name>
 <description>
 A key chain where each key contains different send times
 and accept times.
 </description>
 <key>
 <key-id>35</key-id>
 <lifetime>
 <send-lifetime>
 <start-date-time>2017-01-01T00:00:00Z</start-date-time>
 <end-date-time>2017-02-01T00:00:00Z</end-date-time>
 </send-lifetime>
 <accept-lifetime>
 <start-date-time>2016-12-31T23:59:55Z</start-date-time>
 <end-date-time>2017-02-01T00:00:05Z</end-date-time>
 </accept-lifetime>
 </lifetime>
 <crypto-algorithm>hmac-sha-256</crypto-algorithm>
 <key-string>
 <keystring>keystring_in_ascii_35</keystring>
 </key-string>
 </key>
 <key>
 <key-id>36</key-id>
 <lifetime>
 <send-lifetime>
 <start-date-time>2017-02-01T00:00:00Z</start-date-time>
 <end-date-time>2017-03-01T00:00:00Z</end-date-time>
 </send-lifetime>
 <accept-lifetime>
 <start-date-time>2017-01-31T23:59:55Z</start-date-time>
 <end-date-time>2017-03-01T00:00:05Z</end-date-time>
 </accept-lifetime>
 </lifetime>
 <crypto-algorithm>hmac-sha-256</crypto-algorithm>
 <key-string>
 <hexadecimal-string>fe:ed:be:af:36</hexadecimal-string>
 </key-string>
 </key>
 </key-chain>
 </key-chains>
 </data>

Lindem, et al. Standards Track [Page 23]

RFC 8177 YANG Key Chain June 2017

Contributors

 Yi Yang
 SockRate

 Email: yi.yang@sockrate.com

Acknowledgments

 Thanks to Brian Weis for fruitful discussions on security
 requirements.

 Thanks to Ines Robles for Routing Directorate QA review comments.

 Thanks to Ladislav Lhotka for YANG Doctor comments.

 Thanks to Martin Bjorklund for additional YANG Doctor comments.

 Thanks to Tom Petch for comments during IETF last call.

 Thanks to Matthew Miller for comments made during the Gen-ART review.

 Thanks to Vincent Roca for comments made during the Security
 Directorate review.

 Thanks to Warren Kumari, Ben Campbell, Adam Roach, and Benoit Claise
 for comments received during the IESG review.

Lindem, et al. Standards Track [Page 24]

RFC 8177 YANG Key Chain June 2017

Authors’ Addresses

 Acee Lindem (editor)
 Cisco Systems
 301 Midenhall Way
 Cary, NC 27513
 United States of America

 Email: acee@cisco.com

 Yingzhen Qu
 Huawei

 Email: yingzhen.qu@huawei.com

 Derek Yeung
 Arrcus, Inc

 Email: derek@arrcus.com

 Ing-Wher Chen
 Jabil

 Email: Ing-Wher_Chen@jabil.com

 Jeffrey Zhang
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 United States of America

 Email: zzhang@juniper.net

Lindem, et al. Standards Track [Page 25]

