
Internet Engineering Task Force (IETF) S. Weiler
Request for Comments: 8181 W3C / MIT
Category: Standards Track A. Sonalker
ISSN: 2070-1721 STEER Tech
 R. Austein
 Dragon Research Labs
 July 2017

A Publication Protocol for the Resource Public Key Infrastructure (RPKI)

Abstract

 This document defines a protocol for publishing Resource Public Key
 Infrastructure (RPKI) objects. Even though the RPKI will have many
 participants issuing certificates and creating other objects, it is
 operationally useful to consolidate the publication of those objects.
 Even in cases where a certificate issuer runs its own publication
 repository, it can be useful to run the certificate engine itself on
 a different machine from the publication repository. This document
 defines a protocol which addresses these needs.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8181.

Weiler, et al. Standards Track [Page 1]

RFC 8181 RPKI Publication Protocol July 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Historical Note . 4
 1.2. Terminology . 5
 2. Protocol Specification 5
 2.1. Common XML Message Format 6
 2.2. Publication and Withdrawal 7
 2.3. Listing the Repository 8
 2.4. Error Handling . 8
 2.5. Error Codes . 9
 2.6. XML Schema . 10
 3. Examples . 12
 3.1. <publish/> Query, No Existing Object 12
 3.2. <publish/> Query, Overwriting Existing Object 12
 3.3. <withdraw/> Query . 13
 3.4. <success/> Reply . 13
 3.5. <report_error/> with Optional Elements 13
 3.6. <report_error/> without Optional Elements 14
 3.7. Error Handling with Multi-Element Queries 14
 3.7.1. Multi-Element Query 14
 3.7.2. Successful Multi-Element Response 15
 3.7.3. Failure Multi-Element Response, First Error Only . . 15
 3.7.4. Failure Multi-Element Response, All Errors 16
 3.8. <list/> Query . 16
 3.9. <list/> Reply . 17
 4. IANA Considerations . 17
 5. Security Considerations 18
 6. References . 19
 6.1. Normative References 19
 6.2. Informative References 20
 Acknowledgements . 21
 Authors’ Addresses . 21

Weiler, et al. Standards Track [Page 2]

RFC 8181 RPKI Publication Protocol July 2017

1. Introduction

 This document assumes a working knowledge of the Resource Public Key
 Infrastructure (RPKI), which is intended to support improved routing
 security on the Internet. See [RFC6480] for an overview of the RPKI.

 In order to make participation in the RPKI easier, it is helpful to
 have a few consolidated repositories for RPKI objects, thus saving
 every participant from the cost of maintaining a new service.
 Similarly, relying parties using the RPKI objects will find it faster
 and more reliable to retrieve the necessary set from a smaller number
 of repositories.

 These consolidated RPKI object repositories will in many cases be
 outside the administrative scope of the organization issuing a given
 RPKI object. In some cases, outsourcing operation of the repository
 will be an explicit goal: some resource holders who strongly wish to
 control their own RPKI private keys may lack the resources to operate
 a 24x7 repository or may simply not wish to do so.

 The operator of an RPKI publication repository may well be an
 Internet registry which issues certificates to its customers, but it
 need not be; conceptually, operation of an RPKI publication
 repository is separate from operation of an RPKI Certification
 Authority (CA).

 Even in cases where a resource holder operates both a certificate
 engine and a publication repository, it can be useful to separate the
 two functions, as they have somewhat different operational and
 security requirements.

 This document defines an RPKI publication protocol which allows
 publication either within or across organizational boundaries and
 which makes fairly minimal demands on both the CA engine and the
 publication service.

 The authentication and message integrity architecture of the
 publication protocol is essentially identical to the architecture
 used in [RFC6492] because the participants in this protocol are the
 same CA engines as in RFC 6492; this allows reuse of the same
 "Business PKI" (BPKI) (see Section 1.2) infrastructure used to
 support RFC 6492. As in RFC 6492, authorization is a matter of
 external configuration: we assume that any given publication
 repository has some kind of policy controlling which certificate
 engines are allowed to publish, modify, or withdraw particular RPKI
 objects, most likely following the recommendation in [RFC6480],

Weiler, et al. Standards Track [Page 3]

RFC 8181 RPKI Publication Protocol July 2017

 Section 4.4; the details of this policy are a private matter between
 the operator of a certificate engine and the operator of the chosen
 publication repository.

 The following diagram attempts to convey where this publication
 protocol fits into the overall data flow between the certificate
 issuers and relying parties:

 +------+ +------+ +------+
 | CA | | CA | | CA |
 +------+ +------+ +------+
 | | | Publication protocol
 | | | business relationship
 +-------+ | +--------+ perhaps set up by
 | | | RFC 8183
 +----v---v--v-----+
 | |
 | Publication |
 | Repository |
 | |
 +-----------------+ Distribution protocols
 | rsync or RRDP
 +--------------+----------------+
 | | |
 +-------v-----+ +------v------+ +------v------+
 | Relying | | Relying | | Relying |
 | Party | | Party | | Party |
 +-------------+ +-------------+ +-------------+

 The publication protocol itself is not visible to relying parties: a
 relying party sees the public interface of the publication server,
 which is an rsync or RPKI Repository Delta Protocol (RRDP) [RFC8182]
 server.

 Operators of certificate engines and publication repositories may
 find [RFC8183] a useful tool in setting up the pairwise relationships
 between these servers, but they are not required to use it.

1.1. Historical Note

 This protocol started out as an informal collaboration between
 several of the early RPKI implementers, and while it was always the
 designers’ intention that the resulting protocol end up on the IETF
 Standards Track, it took a few years to get there because
 standardization of other pieces of the overall RPKI protocol space
 was more urgent. The Standards Track version of this publication

Weiler, et al. Standards Track [Page 4]

RFC 8181 RPKI Publication Protocol July 2017

 protocol preserves the original XML namespace and protocol version
 scheme in order to maintain backwards compatibility with running code
 implemented against older versions of the specification.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 "Publication engine" and "publication server" are used
 interchangeably to refer to the server providing the service
 described in this document.

 "Business Public Key Infrastructure" ("Business PKI" or "BPKI")
 refers to a PKI, separate from the RPKI, used to authenticate clients
 to the publication engine. We use the term "Business PKI" here
 because an Internet registry might already have a PKI for
 authenticating its clients and might wish to reuse that PKI for this
 protocol. There is, however, no requirement to reuse such a PKI.

2. Protocol Specification

 The publication protocol uses XML [XML] messages wrapped in signed
 Cryptographic Message Syntax (CMS) messages, carried over HTTP
 transport [RFC7230]. The CMS encapsulation is identical to that used
 in Section 3.1 (and subsections) of RFC 6492 [RFC6492].

 The publication protocol uses a simple request/response interaction.
 The client passes a request to the server, and the server generates a
 corresponding response.

 A message exchange commences with the client initiating an HTTP POST
 with a content type of "application/rpki-publication", with the
 message object as the body. The server’s response will similarly be
 the body of the response with a content type of "application/
 rpki-publication".

 The content of the POST and the server’s response will be a well-
 formed CMS [RFC5652] object with OID = 1.2.840.113549.1.7.2 as
 described in Section 3.1 of [RFC6492].

 The CMS signatures are used to protect the integrity of the protocol
 messages and to authenticate the client and server to each other.
 Authorization to perform particular operations is a local matter,

Weiler, et al. Standards Track [Page 5]

RFC 8181 RPKI Publication Protocol July 2017

 perhaps determined by contractual agreements between the operators of
 any particular client-server pair, but in any case is beyond the
 scope of this specification.

2.1. Common XML Message Format

 The XML schema for this protocol is below in Section 2.6. The basic
 XML message format looks like this:

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <!-- Zero or more PDUs -->
 </msg>

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <!-- Zero or more PDUs -->
 </msg>

 As noted above, the outermost XML element is encapsulated in a signed
 CMS message. Query messages are signed by the client, and reply
 messages are signed by the server.

 Common attributes:

 version: The value of this attribute is the version of this
 protocol. This document describes version 4.

 type: The possible values of this attribute are "reply" and "query".

 A query PDU may be one of three types: <publish/>, <withdraw/>, or
 <list/>.

 A reply PDU may be one of three types: <success/>, <list/>, or
 <report_error/>.

 The <publish/> and <withdraw/> PDUs include a "tag" attribute to
 facilitate bulk operation. When performing bulk operations, a CA
 engine will probably find it useful to specify a distinct tag value
 for each <publish/> or <withdraw/> PDU, to simplify matching an error
 with the PDU which triggered it. The tag attribute is mandatory, to
 simplify parsing, but a CA engine which has no particular use for
 tagging MAY use any syntactically legal value, including simply using
 the empty string for all tag fields.

Weiler, et al. Standards Track [Page 6]

RFC 8181 RPKI Publication Protocol July 2017

 This document describes version 4 of this protocol. An
 implementation which understands only this version of the protocol
 MUST reject messages with a different protocol version attribute,
 signaling the error as described in Section 2.4. Since "4" is
 currently the only value allowed for the version attribute in the
 schema (Section 2.6), an incorrect protocol version can be detected
 either by checking the version attribute directly or as a schema
 validation error. Any future update to this protocol which is either
 syntactically or semantically incompatible with the current version
 will need to increment the protocol version number.

2.2. Publication and Withdrawal

 The publication protocol uses a common message format to request
 publication of any RPKI object. This format was chosen specifically
 to allow this protocol to accommodate new types of RPKI objects
 without needing changes to this protocol.

 Both the <publish/> and <withdraw/> PDUs have a payload of a tag and
 an rsync URI [RFC3986] [RFC5781]. The <publish/> query also contains
 the DER object to be published, encoded in Base64 ([RFC4648],
 Section 4, with line breaks within the Base64 text permitted but not
 required).

 Both the <publish/> and <withdraw/> PDUs also have a "hash"
 attribute, which carries a hash of an existing object at the
 specified repository URI, encoded as a hexadecimal string. For
 <withdraw/> PDUs, the hash MUST be present, as this operation makes
 no sense if there is no existing object to withdraw. For <publish/>
 PDUs, the hash MUST be present if the publication operation is
 overwriting an existing object, and it MUST NOT be present if this
 publication operation is writing to a new URI where no prior object
 exists. Presence of an object when no "hash" attribute has been
 specified is an error, as is absence of an object or an incorrect
 hash value when a "hash" attribute has been specified. Any such
 errors MUST be reported using the <report_error/> PDU.

 The hash algorithm is SHA-256 [SHS], to simplify comparison of
 publication protocol hashes with RPKI manifest hashes.

 The intent behind the "hash" attribute is to allow the client and
 server to detect any disagreements about the effect that a <publish/>
 or <withdraw/> PDU will have on the repository.

 Note that every publish and withdraw action requires a new manifest,
 thus every publish or withdraw action will involve at least two
 objects.

Weiler, et al. Standards Track [Page 7]

RFC 8181 RPKI Publication Protocol July 2017

 Processing of a query message is handled atomically: either the
 entire query succeeds or none of it does. When a query message
 contains multiple PDUs, failure of any PDU may require the server to
 roll back actions triggered by earlier PDUs.

 When a query message containing <publish/> or <withdraw/> PDUs
 succeeds, the server returns a single <success/> reply.

 When a query fails, the server returns one or more <report_error/>
 reply PDUs. Typically, a server will only generate one
 <report_error/> corresponding to the first query PDU that failed, but
 servers MAY return multiple <report_error/> PDUs at the implementer’s
 discretion.

2.3. Listing the Repository

 The <list/> operation allows the client to ask the server for a
 complete listing of objects which the server believes the client has
 published. This is intended primarily to allow the client to recover
 upon detecting (probably via use of the "hash" attribute; see
 Section 2.2) that they have somehow lost synchronization.

 The <list/> query consists of a single PDU. A <list/> query MUST be
 the only PDU in a query -- it may not be combined with any <publish/>
 or <withdraw/> queries.

 The <list/> reply consists of zero or more PDUs, one per object
 published in this repository by this client, each PDU conveying the
 URI and hash of one published object.

2.4. Error Handling

 Errors are handled at two levels.

 Errors that make it impossible to decode a query or encode a response
 are handled at the HTTP layer. 4xx and 5xx HTTP response codes
 indicate that something bad happened.

 In all other cases, errors result in an XML <report_error/> PDU.
 Like the rest of this protocol, <report_error/> PDUs are CMS-signed
 XML messages and thus can be archived to provide an audit trail.

 <report_error/> PDUs only appear in replies, never in queries.

 The "tag" attribute of the <report_error/> PDU associated with a
 <publish/> or <withdraw/> PDU MUST be set to the same value as the
 "tag" attribute in the PDU which generated the error. A client can

Weiler, et al. Standards Track [Page 8]

RFC 8181 RPKI Publication Protocol July 2017

 use the "tag" attribute to determine which PDU caused processing of
 an update to fail.

 The error itself is conveyed in the "error_code" attribute. The
 value of this attribute is a token indicating the specific error that
 occurred.

 The body of the <report_error/> element contains two sub-elements:

 1. An optional text element <error_text/>, which, if present,
 contains a text string with debugging information intended for
 human consumption.

 2. An optional element <failed_pdu/>, which, if present, contains a
 verbatim copy of the query PDU whose failure triggered the
 <report_error/> PDU. The quoted element must be syntactically
 valid.

 See Section 3.7 for examples of a multi-element query and responses.

2.5. Error Codes

 These are the defined error codes as well as some discussion of each.
 Text similar to these descriptions may be sent in an <error_text/>
 element to help explain the error encountered.

 xml_error: Encountered an XML problem. Note that some XML errors
 may be severe enough to require error reporting at the HTTP layer,
 instead. Implementations MAY choose to report any or all XML
 errors at the HTTP layer.

 permission_failure: Client does not have permission to update this
 URI.

 bad_cms_signature: Bad CMS signature.

 object_already_present: An object is already present at this URI,
 yet a "hash" attribute was not specified. A "hash" attribute must
 be specified when overwriting or deleting an object. Perhaps
 client and server are out of sync?

 no_object_present: There is no object present at this URI, yet a
 "hash" attribute was specified. Perhaps client and server are out
 of sync?

 no_object_matching_hash: The "hash" attribute supplied does not
 match the "hash" attribute of the object at this URI. Perhaps
 client and server are out of sync?

Weiler, et al. Standards Track [Page 9]

RFC 8181 RPKI Publication Protocol July 2017

 consistency_problem: Server detected an update that looks like it
 will cause a consistency problem (e.g., an object was deleted, but
 the manifest was not updated). Note that a server is not required
 to make such checks. Indeed, it may be unwise for a server to do
 so. This error code just provides a way for the server to explain
 its (in-)action.

 other_error: A meteor fell on the server.

2.6. XML Schema

 The following is a [RELAX-NG] compact form schema describing the
 publication protocol.

 This schema is normative: in the event of a disagreement between this
 schema and the document text above, this schema is authoritative.

 # RELAX NG schema for RPKI publication protocol.

 default namespace =
 "http://www.hactrn.net/uris/rpki/publication-spec/"

 # This is version 4 of the protocol.

 version = "4"

 # Top-level PDU is either a query or a reply.

 start |= element msg {
 attribute version { version },
 attribute type { "query" },
 query_elt
 }

 start |= element msg {
 attribute version { version },
 attribute type { "reply" },
 reply_elt
 }

 # Tag attributes for bulk operations.

 tag = attribute tag { xsd:token { maxLength="1024" } }

 # Base64-encoded DER stuff.

 base64 = xsd:base64Binary

Weiler, et al. Standards Track [Page 10]

RFC 8181 RPKI Publication Protocol July 2017

 # Publication URIs.

 uri = attribute uri { xsd:anyURI { maxLength="4096" } }

 # Digest of an existing object (hexadecimal).

 hash = attribute hash { xsd:string { pattern = "[0-9a-fA-F]+" } }

 # Error codes.

 error |= "xml_error"
 error |= "permission_failure"
 error |= "bad_cms_signature"
 error |= "object_already_present"
 error |= "no_object_present"
 error |= "no_object_matching_hash"
 error |= "consistency_problem"
 error |= "other_error"

 # <publish/> and <withdraw/> query elements

 query_elt |= (
 element publish { tag, uri, hash?, base64 } |
 element withdraw { tag, uri, hash }
)*

 # <success/> reply

 reply_elt |= element success { empty }

 # <list/> query and reply

 query_elt |= element list { empty }
 reply_elt |= element list { uri, hash }*

 # <report_error/> reply

 reply_elt |= element report_error {
 tag?,
 attribute error_code { error },
 element error_text { xsd:string { maxLength="512000" }}?,
 element failed_pdu { query_elt }?
 }*

Weiler, et al. Standards Track [Page 11]

RFC 8181 RPKI Publication Protocol July 2017

3. Examples

 Following are examples of various queries and the corresponding
 replies for the RPKI publication protocol.

 Note that the authors have taken liberties with the Base64, hash, and
 URI text in these examples in the interest of making the examples fit
 nicely into RFC text format. Similarly, these examples do not show
 the CMS signature wrapper around the XML, just the XML payload.

3.1. <publish/> Query, No Existing Object

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <!-- body is base64(new-object) -->
 <publish
 tag=""
 uri="rsync://wombat.example/Alice/01a97a70ac477f06.cer">
 SGVsbG8sIG15IG5hbWUgaXMgQWxpY2U=
 </publish>
 </msg>

3.2. <publish/> Query, Overwriting Existing Object

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <!-- hash is hex(SHA-256(old-object)) -->
 <!-- body is base64(new-object) -->
 <publish
 hash="01a97a70ac477f06"
 tag="foo"
 uri="rsync://wombat.example/Alice/01a97a70ac477f06.cer">
 SGVsbG8sIG15IG5hbWUgaXMgQWxpY2U=
 </publish>
 </msg>

Weiler, et al. Standards Track [Page 12]

RFC 8181 RPKI Publication Protocol July 2017

3.3. <withdraw/> Query

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <!-- hash is hex(SHA-256(old-object)) -->
 <withdraw
 hash="01a97a70ac477f06"
 tag="foo"
 uri="rsync://wombat.example/Alice/01a97a70ac477f06.cer"/>
 </msg>

3.4. <success/> Reply

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <success/>
 </msg>

3.5. <report_error/> with Optional Elements

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <report_error
 error_code="no_object_matching_hash"
 tag="foo">
 <error_text>
 Can’t delete an object I don’t have
 </error_text>
 <failed_pdu>
 <publish
 hash="01a97a70ac477f06"
 tag="foo"
 uri="rsync://wombat.example/Alice/01a97a70ac477f06.cer">
 SGVsbG8sIG15IG5hbWUgaXMgQWxpY2U=
 </publish>
 </failed_pdu>
 </report_error>
 </msg>

Weiler, et al. Standards Track [Page 13]

RFC 8181 RPKI Publication Protocol July 2017

3.6. <report_error/> without Optional Elements

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <report_error
 error_code="object_already_present"
 tag="foo"/>
 </msg>

3.7. Error Handling with Multi-Element Queries

3.7.1. Multi-Element Query

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <publish
 tag="Alice"
 uri="rsync://wombat.example/Alice/01a97a70ac477f06.cer">
 SGVsbG8sIG15IG5hbWUgaXMgQWxpY2U=
 </publish>
 <withdraw
 hash="f46a4198efa3070e"
 tag="Bob"
 uri="rsync://wombat.example/Bob/f46a4198efa3070e.cer"/>
 <publish
 tag="Carol"
 uri="rsync://wombat.example/Carol/32e0544eeb510ec0.cer">
 SGVsbG8sIG15IG5hbWUgaXMgQ2Fyb2w=
 </publish>
 <withdraw
 hash="421ee4ac65732d72"
 tag="Dave"
 uri="rsync://wombat.example/Dave/421ee4ac65732d72.cer"/>
 <publish
 tag="Eve"
 uri="rsync://wombat.example/Eve/9dd859b01e5c2ebd.cer">
 SGVsbG8sIG15IG5hbWUgaXMgRXZl
 </publish>
 </msg>

Weiler, et al. Standards Track [Page 14]

RFC 8181 RPKI Publication Protocol July 2017

3.7.2. Successful Multi-Element Response

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <success/>
 </msg>

3.7.3. Failure Multi-Element Response, First Error Only

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <report_error
 error_code="no_object_matching_hash"
 tag="Dave">
 <failed_pdu>
 <withdraw
 hash="421ee4ac65732d72"
 tag="Dave"
 uri="rsync://wombat.example/Dave/421ee4ac65732d72.cer"/>
 </failed_pdu>
 </report_error>
 </msg>

Weiler, et al. Standards Track [Page 15]

RFC 8181 RPKI Publication Protocol July 2017

3.7.4. Failure Multi-Element Response, All Errors

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <report_error
 error_code="no_object_matching_hash"
 tag="Dave">
 <failed_pdu>
 <withdraw
 hash="421ee4ac65732d72"
 tag="Dave"
 uri="rsync://wombat.example/Dave/421ee4ac65732d72.cer"/>
 </failed_pdu>
 </report_error>
 <report_error
 error_code="object_already_present"
 tag="Eve">
 <failed_pdu>
 <publish
 tag="Eve"
 uri="rsync://wombat.example/Eve/9dd859b01e5c2ebd.cer">
 SGVsbG8sIG15IG5hbWUgaXMgRXZl
 </publish>
 </failed_pdu>
 </report_error>
 </msg>

3.8. <list/> Query

 <msg
 type="query"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <list/>
 </msg>

Weiler, et al. Standards Track [Page 16]

RFC 8181 RPKI Publication Protocol July 2017

3.9. <list/> Reply

 <msg
 type="reply"
 version="4"
 xmlns="http://www.hactrn.net/uris/rpki/publication-spec/">
 <list
 hash="eb719b72f0648cf4"
 uri="rsync://wombat.example/Fee/eb719b72f0648cf4.cer"/>
 <list
 hash="c7c50a68b7aa50bf"
 uri="rsync://wombat.example/Fie/c7c50a68b7aa50bf.cer"/>
 <list
 hash="f222481ded47445d"
 uri="rsync://wombat.example/Foe/f222481ded47445d.cer"/>
 <list
 hash="15b94e08713275bc"
 uri="rsync://wombat.example/Fum/15b94e08713275bc.cer"/>
 </msg>

4. IANA Considerations

 IANA has registered the "application/rpki-publication" media type as
 follows:

 Type name: application
 Subtype name: rpki-publication
 Required parameters: None
 Optional parameters: None
 Encoding considerations: binary
 Security considerations: Carries an RPKI publication protocol
 message, as defined in RFC 8181.
 Interoperability considerations: None
 Published specification: RFC 8181
 Applications which use this media type: HTTP
 Additional information:
 Magic number(s): None
 File extension(s): None
 Macintosh File Type Code(s): None
 Person & email address to contact for further information:
 Rob Austein <sra@hactrn.net>
 Intended usage: COMMON
 Author/Change controller: IETF

Weiler, et al. Standards Track [Page 17]

RFC 8181 RPKI Publication Protocol July 2017

5. Security Considerations

 The RPKI publication protocol and the data it publishes use entirely
 separate PKIs for authentication. The published data is
 authenticated within the RPKI, and this protocol has nothing to do
 with that authentication, nor does it require that the published
 objects be valid in the RPKI. The publication protocol uses a
 separate BPKI to authenticate its messages.

 Each RPKI publication protocol message is wrapped in a signed CMS
 message, which provides message integrity protection and an auditable
 form of message authentication. Because of these protections at the
 application layer, and because all the data being published are
 intended to be public information in any case, this protocol does
 not, strictly speaking, require the use of HTTPS or other transport
 security mechanisms. There may, however, be circumstances in which a
 particular publication operator may prefer HTTPS over HTTP anyway, as
 a matter of (BPKI) CA policy. Use of HTTP versus HTTPS here is,
 essentially, a private matter between the repository operator and its
 clients. Note, however, that even if a client/server pair uses HTTPS
 for this protocol, message authentication for this protocol is still
 based on the CMS signatures, not HTTPS.

 Although the hashes used in the <publish/> and <withdraw/> PDUs are
 cryptographically strong, the digest algorithm was selected for
 convenience in comparing these hashes with the hashes that appear in
 RPKI manifests. The hashes used in the <publish/> and <withdraw/>
 PDUs are not particularly security sensitive because these PDUs are
 protected by the CMS signatures. Because of this, the most likely
 reason for a change to this digest algorithm would be to track a
 corresponding change in the digest algorithm used in RPKI manifests.
 If and when such a change happens, it will require incrementing the
 version number of this publication protocol, but given that the most
 likely implementation of a publication server uses these hashes as
 lookup keys in a database, bumping the protocol version number would
 be a relatively minor portion of the effort of changing the
 algorithm.

 Compromise of a publication server, perhaps through mismanagement of
 BPKI private keys, could lead to a denial-of-service attack on the
 RPKI. An attacker gaining access to BPKI private keys could use this
 protocol to delete (withdraw) RPKI objects, leading to routing
 changes or failures. Accordingly, as in most PKIs, good key
 management practices are important.

Weiler, et al. Standards Track [Page 18]

RFC 8181 RPKI Publication Protocol July 2017

6. References

6.1. Normative References

 [RELAX-NG] Clark, J., "RELAX NG Compact Syntax", OASIS Committee
 Specification, November 2002,
 <https://www.oasis-open.org/committees/relax-ng/
 compact-20021121.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI
 Scheme", RFC 5781, DOI 10.17487/RFC5781, February 2010,
 <http://www.rfc-editor.org/info/rfc5781>.

 [RFC6492] Huston, G., Loomans, R., Ellacott, B., and R. Austein, "A
 Protocol for Provisioning Resource Certificates",
 RFC 6492, DOI 10.17487/RFC6492, February 2012,
 <http://www.rfc-editor.org/info/rfc6492>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <http://www.rfc-editor.org/info/rfc8174>.

Weiler, et al. Standards Track [Page 19]

RFC 8181 RPKI Publication Protocol July 2017

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4,
 DOI 10.6028/NIST.FIPS.180-4, August 2015,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.180-4.pdf>.

 [XML] Cowan, J., "Extensible Markup Language (XML) 1.1", W3C
 Consortium Recommendation REC-xml11-20060816, October
 2002, <http://www.w3.org/TR/2002/CR-xml11-20021015>.

6.2. Informative References

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <http://www.rfc-editor.org/info/rfc6480>.

 [RFC8182] Bruijnzeels, T., Muravskiy, O., Weber, B., and R. Austein,
 "The RPKI Repository Delta Protocol (RRDP)", RFC 8182,
 DOI 10.17487/RFC8182, July 2017,
 <http://www.rfc-editor.org/info/rfc8182>.

 [RFC8183] Austein, R., "An Out-of-Band Setup Protocol for Resource
 Public Key Infrastructure (RPKI) Production Services",
 RFC 8183, DOI 10.17487/RFC8183, July 2017,
 <http://www.rfc-editor.org/info/rfc8183>.

Weiler, et al. Standards Track [Page 20]

RFC 8181 RPKI Publication Protocol July 2017

Acknowledgements

 The authors would like to thank: Geoff Huston, George Michaelson,
 Oleg Muravskiy, Paul Wouters, Randy Bush, Rob Loomans, Robert
 Kisteleki, Tim Bruijnzeels, Tom Petch, and anybody else who helped
 along the way but whose name(s) the authors have temporarily
 forgotten.

Authors’ Addresses

 Samuel Weiler
 W3C / MIT

 Email: weiler@csail.mit.edu

 Anuja Sonalker
 STEER Tech

 Email: anuja@steer-tech.com

 Rob Austein
 Dragon Research Labs

 Email: sra@hactrn.net

Weiler, et al. Standards Track [Page 21]

