
Internet Architecture Board (IAB) H. Tschofenig
Request for Comments: 8240 S. Farrell
Category: Informational September 2017
ISSN: 2070-1721

Report from the Internet of Things Software Update (IoTSU) Workshop 2016

Abstract

 This document provides a summary of the Internet of Things Software
 Update (IoTSU) Workshop that took place at Trinity College Dublin,
 Ireland on the 13th and 14th of June, 2016. The main goal of the
 workshop was to foster a discussion on requirements, challenges, and
 solutions for bringing software and firmware updates to IoT devices.
 This report summarizes the discussions and lists recommendations to
 the standards community.

 Note that this document is a report on the proceedings of the
 workshop. The views and positions documented in this report are
 those of the workshop participants and do not necessarily reflect IAB
 views and positions.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Architecture Board (IAB)
 and represents information that the IAB has deemed valuable to
 provide for permanent record. It represents the consensus of the
 Internet Architecture Board (IAB). Documents approved for
 publication by the IAB are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8240.

Tschofenig & Farrell Informational [Page 1]

RFC 8240 IoTSU Report September 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Requirements and Questions Raised 6
 4. Authorizing a Software/Firmware Update 12
 5. End-of-Support . 13
 6. Incentives . 15
 7. Measurements and Analysis 15
 8. Firmware Distribution in Mesh Networks 16
 9. Compromised Devices . 17
 10. Miscellaneous Points . 17
 11. Tentative Conclusions and Next Steps 19
 12. Security Considerations 20
 13. IANA Considerations . 20
 14. Informative References 20
 Appendix A. Program Committee 24
 Appendix B. Accepted Position Papers 24
 Appendix C. List of Participants 26
 Acknowledgements . 27
 Authors’ Addresses . 27

Tschofenig & Farrell Informational [Page 2]

RFC 8240 IoTSU Report September 2017

1. Introduction

 This document provides a summary of the Internet of Things Software
 Update (IoTSU) Workshop [IoTSU] that took place at Trinity College
 Dublin, Ireland on the 13th and 14th of June, 2016. The main goal of
 the workshop was to foster a discussion on requirements, challenges,
 and solutions for bringing software and firmware updates to IoT
 devices.

 The views and positions in this report are those of the workshop
 participants and do not necessarily reflect those of their employers/
 sponsors, the authors of this memo, nor the Internet Architecture
 Board (IAB), under whose auspices the workshop was held.

 The IAB holds occasional workshops designed to consider long-term
 issues and strategies for the Internet, and to suggest future
 directions for the Internet architecture. The topics investigated
 often require coordinated efforts of different organizations and
 industry bodies to improve an identified problem. One of the goals
 of such workshops is to assist with communication between relevant
 organizations, companies, and universities, especially when the
 topics are partly out of the scope for the Internet Engineering Task
 Force (IETF). This long-term planning function of the IAB is
 complementary to the ongoing engineering efforts performed by working
 groups of the IETF.

 In his essay "The Internet of Things Is Wildly Insecure -- And Often
 Unpatchable" [BS14], Bruce Schneier expressed concerns about the
 status of software/firmware updates for IoT devices. IoT devices,
 which have a reputation for being insecure from the time they are
 manufactured, are often expected to stay active in the field for 10
 or more years and to operate unattended with Internet connectivity.

 Incorporating a software update mechanism to fix vulnerabilities, to
 update configuration settings and, to add new functionality as well,
 is recommended by security experts. However, there are challenges
 when using software updates, as documented in the United States
 Federal Trade Commission (FTC) report titled "internet of things:
 Privacy & Security in a Connected World" [FTC] and in the Article 29
 Data Protection Working Party document "Opinion 8/2014 on the on
 [sic] Recent Developments on the Internet of Things"[WP29].

 Among the challenges in designing a basic software/firmware update
 function are:

 - Implementations of software update mechanisms may incorporate
 vulnerabilities, becoming an attractive attack target. See, for
 example, [OS14].

Tschofenig & Farrell Informational [Page 3]

RFC 8240 IoTSU Report September 2017

 - Operational challenges, such as the case of an expired certificate
 in a hub device [BB14].

 - Privacy issues if devices "call home" often to check for updates.

 - A lack of incentives to distribute software updates along the
 value chain.

 - Questions such as the following. Who should be able to update
 device software after normal support stops? When should an
 alternate source of software updates take over?

 There are various (often proprietary) software update mechanisms in
 use today, and the functionality of those varies significantly with
 the envisioned use of the IoT devices. More powerful IoT devices,
 such as those running general purpose operating systems (like Linux),
 can make use of sophisticated software update mechanisms known from
 the desktop and the mobile world. This workshop focused on more
 constrained IoT devices that often run dedicated real-time operating
 systems or potentially no operating system at all.

 There is a real risk that many IoT devices will continue to be
 shipped without a solid software/firmware update mechanism in place.
 Ideally, IoT software developers and product designers should be able
 to integrate standardized mechanisms that have experienced
 substantial review and where the documentation is available to the
 public.

 Hence, the IAB decided to organize a workshop to reach out to
 relevant stakeholders to explore the state of the art and to identify
 requirements and gaps. In particular, the call for position papers
 asked for:

 - Protocol mechanisms for distributing software updates.

 - Mechanisms for securing software updates.

 - Metadata about software/firmware packages.

 - Implications of operating system and hardware design on the
 software update mechanisms.

 - Installation of software updates (in context of software and
 hardware security of IoT devices).

 - Privacy implications of software update mechanisms.

 - Implications of device ownership and control for software update.

Tschofenig & Farrell Informational [Page 4]

RFC 8240 IoTSU Report September 2017

 The rest of the document is organized as follows: basic terminology
 is provided in Section 2, followed by a longer section discussing
 requirements. Subsequent sections explore selected topics, such as
 incentives and measurements in more detail. Most of the write-up
 does raise more questions than it answers. Nevertheless, we tried to
 synthesize possible conclusions and offer a few next steps.

2. Terminology

 As is typical with people from different backgrounds, workshop
 participants started the workshop with a discussions of terminology.
 This section is more intended to reflect those discussions than to
 present canonical definitions of terms.

 Device Classes: IoT devices come in various "sizes" (such as size of
 RAM or size of flash memory). With these configurations, devices
 are limited in what they can support in terms of operating-system
 features, cryptographic algorithms, and protocol stacks. For this
 reason, the group differentiated two types of classes, namely ARM
 Cortex A-class/Intel Atom and Cortex M-class/Intel Quark types of
 devices. A-class devices are equipped with powerful processors
 typically found in set-top boxes and home routers. The Raspberry
 Pi is an example of an A-class device that is capable of running a
 regular desktop operating system, such as Linux. There are
 differences between the Intel and the ARM-based CPUs in terms of
 architecture, microcode, and who is allowed to update a Basic
 Input/Output System (BIOS) (if available). A detailed discussion
 of these hardware architectural differences were, however, outside
 the scope of the workshop. The implication is that lower-end
 microcontrollers have constraints that put restrictions on the
 amount of software that can be put on them. While it is easy to
 require support of a wide range of features, those may not
 necessarily fit on these devices.

 Software Update and Firmware Update: Based on the device classes, it
 was observed that regular operating systems come with
 sophisticated software update mechanisms (such as Red Hat Package
 Manager (RPM) [RPM] or pacman [PACMAN]) that make use of the
 operating system to install and run each application in a
 compartmentalized fashion. Firmware updates typically do not
 provide such a fine-grained granularity for software updates and
 instead distribute the entire binary image, which consists of the
 (often minimalistic) operating system and all applications. While
 the distinction between the mechanisms that A-class and M-class
 devices will typically use may get more fuzzy over time, most
 M-class devices use firmware updates while A-class devices use a
 combination of firmware and software updates (with firmware
 updates being less frequent operations).

Tschofenig & Farrell Informational [Page 5]

RFC 8240 IoTSU Report September 2017

 Hitless Update: A hitless update implies that the user experience is
 not "hit", i.e., it is not impacted. It is possible to impact the
 user experience when applying an update even when the device does
 not reboot (to obtain or apply said update). If the update is
 applied when a user is not using a product and their service is
 not impacted, the update is "hitless".

3. Requirements and Questions Raised

 Workshop participants discussed requirements and several of these
 raised further questions. As with the previous section, we aim to
 present the discussion as it was.

 - There may be a need to be support partial (differential) updates
 that do not require the entire firmware image to be sent. This
 may mean that techniques like bsdiff [BSDIFF] and courgette
 [COURGETTE] are used but might also mean devices supporting the
 download of applications and libraries alone. The latter feature
 may require dynamic linking and position independent code. It was
 unclear whether position independent code should be recommended
 for low-end IoT devices.

 - The relative importance of dynamic linkers for low-end IoT devices
 is unclear. Some operating systems used with M-class devices,
 such as Contiki, provide support for a dynamic linker according to
 [OS-Support]. This could help to minimize the amount of data
 transmitted during updates since only the modified application or
 library needs to be transmitted.

 - How should dependencies among various software updates be handled?
 These dependencies may include information about the hardware
 platform and configuration as well as other software components
 running on a system. For firmware updates, the problem of
 dependencies are often solved by the manufacturer or Original
 Equipment Manufacturer (OEM) rather than on the device itself.

 - Support for devices with multiple microcontrollers may require an
 architecture where one microcontroller is responsible for
 interacting with the update service and then dispatching software
 images to the attached microcontrollers within its local realm.
 The alternative of letting each microcontroller interact with an
 update service appeared less practical.

 - Support may be required for devices with multiple owners/
 stakeholders where the question arises about who is authorized to
 push a firmware/software update.

Tschofenig & Farrell Informational [Page 6]

RFC 8240 IoTSU Report September 2017

 - Data origin authentication (DAO) was agreed to be required for
 software updates. Without DAO, updates simply become a perfect
 vulnerability. It is, however, nontrivial to ensure that the
 actual trust relationships that exist are modeled by the DAO
 mechanism. For some devices and deployment scenarios, any DAO
 mechanism is onerous, possibly to the point where it may be hard
 to convince a device maker to include the functionality.

 - Should digital signatures and encryption for software updates be
 recommended as a best current practice? This question
 particularly raises the question about the use of symmetric key
 cryptography since not all low-end IoT devices are currently using
 asymmetric crypto.

 - DAO is most commonly provided via digital signature mechanisms,
 but symmetric schemes could also be developed, though IETF
 discussion of such mechanisms (for purposes less sensitive than
 software update) has proved significantly controversial. The main
 problem seems to be that simple symmetric schemes only ensure that
 the sender is a member of a group, and they do not fully
 authenticate a specific sender. And with a software update, we do
 not want any (possibly compromised) device to be able to
 authenticate new software for all other similar devices.

 - What are the firmware update signing key requirements? Since
 devices have a rather long lifetime, there has to be a way to
 change the signing key during the lifetime of the device.

 - Should a firmware update mechanism support multiple signatures of
 firmware images? Multiple signatures can come in two different
 flavors, namely:

 A single firmware image may be signed by multiple different
 parties. In this case, one could imagine an environment where
 an OEM signs the software it creates, but then the software is
 again signed by the enterprise that approves the distribution
 within the company. Other examples include regulatory
 signatures where the software for a medical device may be
 signed as approved by a certification body.

 A software image may contain libraries that are each signed by
 their developers.

 Is a device expected to verify the different types of signatures
 or is this a service provided by some unconstrained device? This
 raises questions about who the IoT device should trust for what
 and whether transitive trust is acceptable for some types of
 devices.

Tschofenig & Farrell Informational [Page 7]

RFC 8240 IoTSU Report September 2017

 - Are applications from a range of sources allowed to run on a
 device or only those from the OEM? If the device is a "closed"
 device that only supports/runs software from the OEM, then a
 single signature may be sufficient. In a system that is more
 "open", third-party applications may require support of multiple
 signatures.

 - There is a need for some form of secure storage, at least for
 those IoT devices that are exposed to physical attacks. This
 includes at least the need to protect the integrity of the public
 key of the update service on the device (if signature-based DAO is
 in use). The use of symmetric key cryptography requires improved
 confidentiality protection (in addition to integrity protection).

 - Is there a need to allow the update infrastructure side to
 authenticate the IoT device before distributing an update?
 Questions about the identifier used for such an authentication
 action were raised. The idea of reusing Media Access Control
 (MAC) addresses lead to concerns about the significant privacy
 implications of such identifier reuse.

 - It is important to minimize device/service downtime due to update
 processing and to minimize user interaction (e.g., car should not
 distract the driver) (see "Hitless Update" in Section 2). While
 it may not be possible to avoid all downtime, there was agreement
 that one ought to strive for "no inappropriate" device downtime.
 This means minimal downtime impacting the user/operation of the
 device. The definition of "downtime" also depends on the use
 case, with a smart light bulb, the device could be "up" if the
 light is still on, even if some advanced services are unavailable
 for a short time. Whether an update can be done without rebooting
 the device depends on the software being installed, on the OS
 architecture, and potentially even on the hardware architecture.
 The cost/benefit ratio also plays a role.

 - It is desirable to minimize the time taken from the start of the
 update to when it is finished. In some systems with many devices
 (e.g., industrial lighting), this can be a challenge if updates
 need to be unicasted.

 - In some systems with multiple devices, it can be a challenge to
 ensure that all devices are at the same release level, especially
 if some devices are sleepy. There are some systems where ensuring
 all relevant devices are at the same release level is a hard
 requirement. In other cases, it is acceptable if devices converge
 much more slowly to the current release level.

Tschofenig & Farrell Informational [Page 8]

RFC 8240 IoTSU Report September 2017

 - It ought not be possible for a factory worker to compromise the
 update process (e.g., copy signing keys and install unauthorized
 public keys/trust anchors) during the manufacturing process.
 There are typically two factories involved: the first factory
 produces microcontrollers and other components and the second
 factory produces the complete product, such as a fridge. This
 fridge contains many of the components previously manufactured.
 Hence, the firmware of components produced in the first stage may
 be six months old when the fridge leaves the factory. One does
 not want to install a firmware update when the fridge boots the
 first time. For that time, the firmware update happens already at
 the end of the manufacturing process.

 - Should devices have a recovery procedure when the device gets
 compromised? How is the compromise detected?

 - There was a bit of discussion about the importance for IoT devices
 to know the current time for the purpose of checking certificate
 validity. For example, what does "real-time clock" (RTC) actually
 mean? And what constitutes "good enough" time? There are,
 however, cost, power, size, and environmental constraints that can
 make the addition of a real-time clock to an IoT device complex:

 o Cost: Battery- or supercap-backed RTC modules might be several
 times the cost of the rest of the bill of materials.

 o Size: The battery and other components are often several times
 larger than the rest of the material.

 o Manufacturing: Some modules require an extra assembly step,
 because the battery could be damaged or explode at high
 temperatures during the reflow process.

 o Supply chain: Devices containing fitted batteries need
 additional supply-chain management to account for storage
 temperature and to avoid shipping aged devices.

 o Environmental: Real-time-clock modules are typically not rated
 at industrial temperature ranges. Those that are have
 extremely reduced lifetime at high temperatures.

 o Lifetime: Some of these modules last only a few years at the
 top of their environmental range.

 While a good solution is needed, it is not clear whether there is
 one true solution. A recent proposal from Google called
 "Roughtime" [RT] may be worthwhile to explore.

Tschofenig & Farrell Informational [Page 9]

RFC 8240 IoTSU Report September 2017

 - How do devices learn about a firmware update? Push or Pull? What
 should be required functionality for a firmware update protocol?

 - There is a need to find out whether a software update was
 successful. In one discussed solution, the bootloader analyzes
 the performance of the running image to determine which image to
 run (rather than just verifying the integrity of the received
 image). One of the key criteria is that the updated system is
 able to make a connection to the device management/software update
 infrastructure. As long as it is able to talk to the update
 infrastructure, it can receive another update. As an alternative
 perspective, the argument was made that one needs to have a way to
 update the system without having the full system running.

 - Gateway requirements. In some deployments, gateways terminate the
 IP-based protocol communication and use non-IP mechanisms to
 communicate with other microcontrollers, for example, within a
 car. The gateway in such a system is the endpoint of the IP
 communication. The group had mixed feelings about the use of
 gateways versus the use of IP communication to every
 microcontroller. Participants argued that there is a lack of
 awareness of IPv6 header compression (with the IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) standards) and of the
 possible benefits of IPv6 in those environments in terms of
 lowering the complexity of the overall system.

 - The amount of energy consumed due to software update needs to be
 minimized. For example, awakening a sleepy device regularly only
 to check for new software would seem wasteful if the device cannot
 feasibly be exploited while asleep. However, the trade-off is
 that once the device awakens with old software, there may be a
 window of vulnerability if some relevant exploit has been
 discovered.

 - The amount of storage required for update ought to be minimized
 and can sometimes be significant. However, there are also
 benefits to schemes that store two or three different software
 images for robustness, e.g., if one has space for separate current
 last-known-good and being-updated images, then devices can better
 survive the buggy occasional updates that are also inevitable.

 Which of the features discussed in the list above are nice to have?
 Which are required? Not all of these are required to achieve
 improvement. Which are most important?

 Among the participants, there was consensus that supporting
 signatures (for integrity and authentication) of the firmware image
 itself and the need for partial updates were seen as important.

Tschofenig & Farrell Informational [Page 10]

RFC 8240 IoTSU Report September 2017

 However, there were also concerns regarding the performance
 implications, since certain device categories may not utilize public
 key cryptography at all; hence, only a symmetric key approach seems
 viable, unless some other scheme such as a hash-based signature
 became practical (they currently aren’t, due to signature size).
 This aspect raised concerns and triggered a discussion around the use
 of device management infrastructure, similar to Kerberos, that
 manages keys and distributes them to the appropriate parties. As
 such, in this setup, there could be a unique key shared with the key
 distribution center; but for use with specific services (such as a
 software update service), a fresh and unique secret would be
 distributed.

 In addition to the requirements for the end devices, there are also
 infrastructure-related requirements. The infrastructure may consist
 of servers in the local network and/or various servers deployed on
 the Internet. It may also consist of some application-layer
 gateways. The potential benefits of having such a local server might
 include:

 - The local server acting for neighboring nodes. For example, in a
 vehicle one microcontroller can process all firmware updates and
 redistribute the relevant parts of those to interconnected
 microcontrollers.

 - Local infrastructure could perform some digital signature checks
 on behalf of the devices, e.g., certificate-revocation checking.

 - Local multicast can enable transmission of the same update to many
 devices.

 - Local servers can hide complexity associated with Network Address
 Translation (NAT) and firewalls from the device.

 Another point related to local infrastructure is that since many IoT
 devices will not be (directly) connected to the Internet, but only
 through a gateway, there may in any case be a need to develop a
 software/firmware update mechanism that works in environments where
 no end-to-end Internet connectivity exists.

 Some current firmware update schemes need to identify devices.
 Different design approaches are possible.

 - In an extreme form in one case, the decision about updating a
 device is made by the infrastructure based on the unique device
 identification. The operator of the firmware update
 infrastructure knows about the hardware and software requirements
 for the IoT devices, knows about the policy for updating the

Tschofenig & Farrell Informational [Page 11]

RFC 8240 IoTSU Report September 2017

 device, etc. The device itself is provisioned with credentials so
 that it can verify a firmware update coming from an authorized
 device.

 - In another extreme, the device has knowledge about the software
 and hardware configuration and possible dependencies. It consults
 software repositories to obtain those software packages that are
 most appropriate. Verifying the authenticity of the software
 packages/firmware images will still be required.

 Hence, in some deployed software update mechanisms there is no desire
 for the device to be identified beyond the need to exchange
 information about the most recent software versions. For other
 devices, it is seen as important to identify the device itself in
 order to provide the appropriate firmware image/software packages.

 Related to device identification, various privacy concerns arise,
 such as the need to determine what information is provided to whom
 and the uses to which this information is put. For IoT devices where
 there is a close relationship to an individual (see [RFC6973]),
 privacy concerns are likely higher than for devices where such a
 relationship does not exist (e.g., a sensor measuring concrete). The
 software/firmware update mechanism should, however, not make the
 privacy situation of IoT devices worse. The proposal from the group
 was to introduce a minimal requirement of not sending any new
 identifiers over an unencrypted channel as part of an update
 protocol.

 However, software updates will provide yet another venue in which the
 tension between those advocating better privacy and those seeking to
 monetize information will play out. It is in the nature of software
 update that it requires devices to sometimes "call home" and such
 interactions provide fertile ground for monetization.

4. Authorizing a Software/Firmware Update

 There were quite a few points revolving around authorization:

 - Who can accept or reject an update? Is it the owner of the
 device, the user, or both? The user may not necessarily be the
 owner.

 - With products that fall under a regulatory structure, such as
 healthcare, you don’t want firmware other than what has been
 accredited.

Tschofenig & Farrell Informational [Page 12]

RFC 8240 IoTSU Report September 2017

 - In some cases, it will be very difficult for a firmware update
 system to communicate to users that an update is available. Doing
 so may require tracking the device and its status with regard to
 the installed firmware/software, with all the privacy downsides if
 such tracking is badly done.

 - Not all updates are the same. Security updates are often treated
 differently compared to feature updates, and the authorization for
 these may differ.

 - Some people may choose to decline updates, often on the basis that
 their system is currently stable, but also possibly due to
 concerns about unwanted changes, such as the HP printer firmware
 update pushed in March 2016 [HP-Firmware] that turned off features
 that end users liked.

5. End-of-Support

 There was quite a bit of discussion about end-of-support for
 products/devices and how to handle that.

 - How should end-of-support or end-of-features be treated? Devices
 are often deployed for 10+ years (or even longer in some
 verticals). Device makers may not want or be able to support
 software and services for such an extended period of time. Will
 these devices stop working after a certain, previously unannounced
 period of time, such as Eye-Fi cards [EYEFI]?

 - There will be a broad range of device makers involved in IoT, who
 may differ substantially in terms of how well they can handle the
 full device life cycle. Some will be large commercial enterprises
 that are used to dealing with long device lifetimes, whereas
 others may be very small commercial entities where the device
 lifetime may be longer than the company lifetime. Yet other
 devices may be the result of open-source activities that prosper
 or flounder. The problem of end-of-support arises in all these
 cases, though feasible solutions for software update may
 substantially differ. In some cases, device makers may not be
 willing to continue to update devices, for example, due to a
 change in business strategies caused by a merger. In yet other
 cases, a company may have gone bankrupt.

 - While there are many legal, ethical, and business-related
 questions, can we technically enable transfer of device service to
 another provider? Could there even be business models for
 entities that take over device updates for original device makers
 that no longer wish to handle software update?

Tschofenig & Farrell Informational [Page 13]

RFC 8240 IoTSU Report September 2017

 - The release of code, as it was done with the Little Printer
 manufactured and developed by a company called "Berg"
 [LittlePrinter], could provide a useful example. While the
 community took over the support in that case, this can hardly be
 assumed in all cases. Just releasing the source code for a device
 will not necessarily motivate others to work on the code, to fix
 bugs, or to maintain a service. Nevertheless, escrowing code so
 that the community can take it over if a company fails is one
 possible option.

 - The situation gets more complex when the device has security
 mechanisms to ensure that only selected parties are allowed to
 update the device (which is really a basic requirement for any
 secure software update). In this case, private signing keys (or
 similar) may need to be made available as well, which could
 introduce security problems for already-deployed software. In the
 best case, it changes assumptions made about the trust model and
 about who can submit updates.

 - How should deployed devices behave when they are end-of-support
 and support ends? Many of them may still function normally, but
 others may fail due to the absence of cloud infrastructure
 services. Some products are probably expected to fail safely,
 similarly to a smoke alarm that makes a loud noise when the
 battery becomes empty. Cell phones without a contract can, in
 some countries, still be used for emergency services (although at
 the expense of society due to untraceable hoax calls), as
 discussed in RFC 7406 [RFC7406].

 The recommendation that can be provided to device makers and users is
 to think about the end-of-support and end-of-support scenarios ahead
 of time and plan for those. While device makers rarely want to
 consider what happens if their business fails, it is definitely
 legitimate to consider scenarios where they are hugely successful and
 want to evolve a product line instead of supporting previously sold
 products forever. Maybe there is also value in subscription-based
 models where product and device support is only provided as long as
 the subscription is paid. Without a subscription, the product is
 deactivated and cannot pose a threat to the Internet at large.

Tschofenig & Farrell Informational [Page 14]

RFC 8240 IoTSU Report September 2017

6. Incentives

 Workshop participants also discussed how to create incentives for
 companies to ship software updates, which is particularly important
 for products that will be deployed in the market for a long time. It
 is also further complicated by complex value chains.

 - Companies shipping software updates benefit from improved
 security. Their devices are less likely to be abused as a vector
 to launch other attacks, whether on their own networks or (as part
 of a botnet) on other Internet hosts. This clearly creates an
 incentive to support and use software updates.

 - On the other hand, updates can also break things. The negative
 customer experience can be due to service interruptions during or
 after the update process but can also result from bad experience
 from deliberate changes introduced as part of an update -- such as
 a feature that is not available anymore, or a "bug" that another
 service has relied upon being fixed.

 - For most classes of device, there does not seem to be a regulatory
 requirement to report or fix vulnerabilities, similar to data-
 breach-notification laws.

 - Subscription models for device management were suggested so that
 companies providing the service have an economic interest in
 keeping devices online (and updated for that).

7. Measurements and Analysis

 From a security point of view, it is important to know what devices
 are out there and what version of software they run. One workshop
 paper [PLONKA] reported measurements that were initially done on
 buggy devices first distributed in 2003, and that were still
 detectable in significant numbers just before the workshop 13 years
 later. As such, in addition to the firmware update mechanism,
 companies have been offering device management solutions that allow
 OEMs to keep track of their devices. Tracking these devices and
 their status is still challenging since some devices are only
 connected irregularly or are only turned on when needed (such as a
 hockey alarm that is only turned on before a match).

Tschofenig & Farrell Informational [Page 15]

RFC 8240 IoTSU Report September 2017

 Various stakeholders have a justified interest in knowing something
 about deployed devices. For example:

 - Manufacturers and other players in the supply chain are interested
 to know what devices are out there, how many have been sold, and
 what devices are out there but have not been sold. This could
 help to understand which firmware versions to support and for how
 long.

 - Device users, owners, and customers like these may want to know
 what devices are installed over a longer period of time, what
 software/firmware version is the device running, what is the
 uptime of each of these devices, what types of faults have
 occurred, etc. Forgotten devices may pose problems, particularly
 if they (have the potential to) behave badly.

 - To an extent, network operators offering services to device owners
 and other actors may also need similar information, for example,
 to control botnets.

 - Researchers doing analysis on the state of the Internet ecosystem
 (such as what protocols are being used, how much data IoT devices
 generate, etc.,) need measurements for their work.

 There can easily be some invasiveness in approaches to acquiring such
 measurements. The challenge was put forward to find ways to create
 measurement infrastructures that are privacy preserving. Arnar
 Birgisson noted that there are privacy-preserving statistical
 techniques, such as RAPPOR [RAPPOR], and Ned Smith added that
 techniques like Intel’s Enhanced Privacy ID (EPID) may play a role in
 maintaining some level of anonymity for the IoT device (owners) while
 also enabling measurement. It seemed clear that naive approaches to
 measurement (e.g., where devices are willing to expose a unique
 identifier to anyone on request) are unlikely to prove sufficient.

8. Firmware Distribution in Mesh Networks

 There was some discussion of the requirements for mesh-based
 networks, mainly relating to industrial lighting. In these networks,
 software update can impose unacceptable performance burdens,
 especially if there are many devices, some of which may be sleepy.

 The workshop discussed whether some forms of multicast (perhaps not
 IP multicast) would be needed to provide acceptable solutions for
 software update in such cases. It was not clear at which layer a
 multicast solution might be effective in such cases, though there did
 not seem to be any clearly applicable standards-based approach that
 was available at the time of the workshop.

Tschofenig & Farrell Informational [Page 16]

RFC 8240 IoTSU Report September 2017

9. Compromised Devices

 There was recognition that there are, and perhaps always will be,
 large numbers of devices that can be, or have been, compromised.
 While updating these can mitigate problems, there will always be new
 devices added to networks that cannot be updated (for various
 reasons); so the question of what, if anything, to do about
 compromised devices was discussed.

 - There may be value if it were possible to single out a device that
 shows faulty behavior or has been compromised, and to shut it down
 in some sense.

 - Prior work in the IETF on Network Endpoint Assessment (NEA) [NEA]
 allowed assessing the "posture" of devices. Posture refers to the
 hardware or software configuration of a device and may include
 knowledge that the software installed is up to date. The obtained
 information can then be used by some network infrastructure to
 create a quarantined region network around the device.

 - RFC 6561 [RFC6561] describes one scheme for an ISP to send
 "signals" to customers about hosts (usually those that are part of
 a botnet or generating spam) in their home network.

 - Neither RFC 6561 nor NEA has found widespread deployment. Whether
 such mechanisms can be more successful in the IoT environment has
 yet to be studied.

 The conclusion of the discussion at the workshop itself was that
 there is some interest in identifying and stopping misbehaving
 devices, but the actual solution mechanisms are unclear.

10. Miscellaneous Points

 There were a number of points discussed at the workshop that don’t
 neatly fit under the above headings but that are worth recording.
 Those include:

 - Complex questions can arise when considering the impact of the
 lack of updates on other devices, other persons, or the public in
 general. If I don’t update my device, and it is used to attack a
 random host on the Internet, but at no apparent cost to me, then
 what incentive do I have to do updates that would have protected
 that random host? What incentive has my device’s vendor to have
 provided those updates in advance? An example of such a case can
 be found in DDoS attacks from IoT devices, such as printers
 [SNMP-DDOS] and cameras [DDOS-KREBS].

Tschofenig & Farrell Informational [Page 17]

RFC 8240 IoTSU Report September 2017

 - With some IoT devices, there are many stakeholders contributing to
 the end product (e.g., contributing different subsystems).
 Ensuring that vulnerabilities are fixed and software/firmware
 updates are communicated through the value chain is known to be
 difficult, as demonstrated in [OS14].

 - What about forgotten devices? There are many such, and there will
 be more. Even though they are forgotten, such devices may be
 useless consumers of electricity, or they may be part of some
 critical system.

 - Can we determine whether an update impacts other devices in the
 Internet? Updates to one device can have unintended impact on
 other devices that depend on it. This can have cascading effects
 if we are not careful. Changing the format of the output of a
 sensor could have cascading impacts, e.g., if some actuator reacts
 to the presence/absence of that sensor’s data.

 - How should a device behave when it is running out-of-date
 software? The example of a smoke alarm was mentioned. We don’t
 want 100 devices in a living room to start beeping when their
 batteries run low or when they cannot communicate with the cloud.
 But are devices supposed to simply stop working?

 - The IETF has published a specification that uses the Cryptographic
 Message Syntax (CMS) to protect firmware packages, as described in
 RFC 4108 [RFC4108], which also contains metadata to describe the
 firmware image itself. During the workshop, the question was
 raised whether a solution will, in the future, be needed that is
 post-quantum secure. A post-quantum cryptosystem is a system that
 is secure against quantum computers that have more than a trivial
 number of quantum bits. It is open to conjecture whether it is
 feasible to build such a machine, but current signature algorithms
 are known not to be post-quantum secure. This would require
 introducing technologies like the Hash-based Merkle Tree Signature
 (MTS) [HOUSLEY], which was presented and discussed at the
 workshop. The downsides of such solutions are their novelty and,
 for these use cases, the fairly large signature or key sizes
 involved; e.g., depending on the parameters, a signature could
 easily have a size of 5-10 KiB [HASHSIG] [XMSS]. While it is
 likely that post-quantum secure signature algorithms will be
 needed for software updates at some point in time, it may be the
 case that such algorithms will be needed sooner for services
 requiring long-term confidentiality, (e.g., using Transport Layer
 Security (TLS)), so it was not clear that this application would
 be a first-mover in terms of post-quantum security.

Tschofenig & Farrell Informational [Page 18]

RFC 8240 IoTSU Report September 2017

 - Many devices that use certificates do not check the revocation
 status of certificates, even though extensions like Online
 Certificate Status Protocol (OCSP) stapling exists [RFC6961] and
 is increasingly deployed with Web browsers. The workshop
 participants did not reach a conclusion regarding the
 recommendations of certificate revocation checking, although the
 importance has been recognized. The reluctance regarding
 deploying certificate revocation deserves further investigation.

11. Tentative Conclusions and Next Steps

 The workshop participants discussed some tentative conclusions and
 possible next steps:

 - There was strong agreement that having some standardized secure
 (authorized and authenticated) software update would be an
 improvement over having none.

 - It would be valuable to find agreement on the right scope for a
 standardized software/firmware update mechanism. It is not clear
 that an entire update system can or should be standardized, but
 there may be some aspects of such solutions where standards would
 be beneficial, e.g., (meta-)data formats and/or protocols for
 distributing firmware updates. More discussion is needed to
 identify which parts of the problem space could benefit from
 standardization.

 - It will be useful to investigate solutions to install updates with
 no operational interruption as well as ways to distribute software
 updates without disrupting network operations (specifically, in
 low-power wireless networks), including the development of a
 multicast transfer mechanism (with appropriate security).

 - There will almost certainly be a need for a way to transfer
 authority/responsibility for updates, particularly considering
 end-of-support cases. This is very close to calling for a
 standard way to "root" devices as a feature of all devices.

 - We would benefit from documentation of proofs-of-concept of
 software/firmware updates for constrained devices on different
 operating system architectures. The IETF Light-Weight
 Implementation Guidance (lwig) Working Group may be a good venue
 for such documents.

Tschofenig & Farrell Informational [Page 19]

RFC 8240 IoTSU Report September 2017

12. Security Considerations

 This document summarizes an IAB workshop on software/firmware updates
 and the entire content is, therefore, security related.
 Standardizing and deploying a software/firmware update mechanism for
 use with IoT devices could help fix security vulnerabilities faster
 and, in some cases, be the only via to get vulnerability patched at
 all.

13. IANA Considerations

 This document does not require any IANA actions.

14. Informative References

 [BB14] Barrett, B., "Winks Outage Shows Us How Frustrating Smart
 Homes Could Be", April 2014,
 <http://www.wired.com/2015/04/smart-home-headaches/>.

 [BS14] Schneier, B., "The Internet of Things Is Wildly Insecure
 -- And Often Unpatchable", January 2014,
 <https://www.schneier.com/essays/archives/2014/01/
 the_internet_of_thin.html>.

 [BSDIFF] Percival, C., "Matching with Mismatches and Assorted
 Applications", September 2016,
 <https://ora.ox.ac.uk/objects/
 uuid:4f0d53cc-fb9f-4246-a835-3c8734eba735/datastreams/
 THESIS01>.

 [COURGETTE]
 Google, "Software Updates: Courgette", September 2016,
 <https://www.chromium.org/developers/design-documents/
 software-updates-courgette>.

 [DDOS-KREBS]
 Goodin, D., "Record-breaking DDoS reportedly delivered by
 >145k hacked cameras", September 2016,
 <http://arstechnica.com/security/2016/09/botnet-of-145k-
 cameras-reportedly-deliver-internets-biggest-ddos-ever/>.

 [EYEFI] Aldred, J., "Eye-Fi to Drop Suport for Some Cards. They
 Will ’Magically’ Stop Working on September 16, 2016", June
 2016, <http://www.diyphotography.net/eyefi-drop-support-
 cards-will-magically-stop-working-september-16-2016/>.

Tschofenig & Farrell Informational [Page 20]

RFC 8240 IoTSU Report September 2017

 [FTC] Federal Trade Commission, "FTC Report on Internet of
 Things Urges Companies to Adopt Best Practices to Address
 Consumer Privacy and Security Risks", January 2015,
 <https://www.ftc.gov/system/files/documents/reports/
 federal-trade-commission-staff-report-november-2013-
 workshop-entitled-internet-things-
 privacy/150127iotrpt.pdf>.

 [HASHSIG] Langley, A., "Hash based signatures", July 2013,
 <https://www.imperialviolet.org/2013/07/18/hashsig.html>.

 [HOUSLEY] Housley, R., "Use of the Hash-based Merkle Tree Signature
 (MTS) Algorithm in the Cryptographic Message Syntax
 (CMS)", Work in Progress, draft-housley-cms-mts-hash-
 sig-07, June 2017.

 [HP-Firmware]
 BoingBoing, "HP detonates its timebomb: printers stop
 accepting third party ink en masse", September 2016,
 <http://boingboing.net/2016/09/19/
 hp-detonates-its-timebomb-pri.html>.

 [IoTSU] IAB, "Internet of Things Software Update Workshop (IoTSU)
 2016", June 2016,
 <https://www.iab.org/activities/workshops/iotsu/>.

 [LittlePrinter]
 Berg, "The future of Little Printer", September 2014,
 <http://littleprinterblog.tumblr.com/post/97047976103/
 the-future-of-little-printer>.

 [NEA] IETF, "Network Endpoint Assessment (nea) Concluded WG",
 October 2016,
 <https://datatracker.ietf.org/wg/nea/charter/>.

 [OS-Support]
 Dong, W., Chen, C., Liu, X., and J. Bu, "Providing OS
 Support for Wireless Sensor Networks: Challenges and
 Approaches", DOI 10.1109/SURV.2010.032610.00045, May 2010,
 <http://ieeexplore.ieee.org/stamp/
 stamp.jsp?arnumber=5462978>.

 [OS14] Oppenheim, L. and S. Tal, "Too Many Cooks: Exploiting the
 Internet of TR-069 Things", December 2014,
 <http://mis.fortunecook.ie/
 too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf>.

Tschofenig & Farrell Informational [Page 21]

RFC 8240 IoTSU Report September 2017

 [PACMAN] "pacman", 2016, <https://www.archlinux.org/pacman/>.

 [PLONKA] Plonka, D. and E. Boschi, "The Internet of Things Old and
 Unmanaged", June 2016,
 <https://down.dsg.cs.tcd.ie/iotsu/subs/
 IoTSU_2016_paper_25.pdf>.

 [RAPPOR] Erlingsson, U., Pihur, V., and A. Korolova, "RAPPOR",
 DOI 10.1145/2660267.2660348, July 2014,
 <http://dl.acm.org/citation.cfm?doid=2660267.2660348>.

 [RFC4108] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108,
 DOI 10.17487/RFC4108, August 2005,
 <https://www.rfc-editor.org/info/rfc4108>.

 [RFC6561] Livingood, J., Mody, N., and M. O’Reirdan,
 "Recommendations for the Remediation of Bots in ISP
 Networks", RFC 6561, DOI 10.17487/RFC6561, March 2012,
 <https://www.rfc-editor.org/info/rfc6561>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/info/rfc6961>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7406] Schulzrinne, H., McCann, S., Bajko, G., Tschofenig, H.,
 and D. Kroeselberg, "Extensions to the Emergency Services
 Architecture for Dealing With Unauthenticated and
 Unauthorized Devices", RFC 7406, DOI 10.17487/RFC7406,
 December 2014, <https://www.rfc-editor.org/info/rfc7406>.

 [RPM] "Red Hat Package Manager (RPM)", 2016, <http://rpm.org/>.

 [RT] Google, "Roughtime", September 2016,
 <https://roughtime.googlesource.com/roughtime>.

 [SNMP-DDOS]
 BITAG, "SNMP Reflected Amplification DDoS Attack
 Mitigation", August 2012,
 <https://www.bitag.org/documents/
 SNMP-Reflected-Amplification-DDoS-Attack-Mitigation.pdf>.

Tschofenig & Farrell Informational [Page 22]

RFC 8240 IoTSU Report September 2017

 [WP29] Article 29 Data Protection Working Party, "Opinion 8/2014
 on the on Recent Developments on the Internet of Things",
 14/EN, WP 223, September 2014,
 <http://ec.europa.eu/justice/data-protection/article-
 29/documentation/opinion-recommendation/files/2014/
 wp223_en.pdf>.

 [XMSS] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
 Mohaisen, "XMSS: Extended Hash-Based Signatures", Work in
 Progress, draft-irtf-cfrg-xmss-hash-based-signatures-10,
 July 2017.

Tschofenig & Farrell Informational [Page 23]

RFC 8240 IoTSU Report September 2017

Appendix A. Program Committee

 The following individuals helped to organize the workshop: Jari
 Arkko, Arnar Birgisson, Carsten Bormann, Stephen Farrell, Russ
 Housley, Ned Smith, Robert Sparks, and Hannes Tschofenig.

Appendix B. Accepted Position Papers

 The list of accepted position papers is below. Links to these, and
 to the workshop agenda and raw minutes are accessible at:
 <https://down.dsg.cs.tcd.ie/iotsu/>.

 - R. Housley, "Position Paper for Internet of Things Software Update
 Workshop (IoTSU)"

 - D. Thomas and A. Beresford, "Incentivising software updates"

 - L. Zappaterra and E. Dijk, "Software Updates for Wireless
 Connected Lighting Systems: requirements, challenges and
 recommendations"

 - M. Orehek and A. Zugenmaier, "Updates in IoT are more than just
 one iota"

 - D. Plonka and E. Boschi, "The Internet of Things Old and
 Unmanaged"

 - D. Bosschaert, "Using OSGi for an extensible, updatable and future
 proof IoT"

 - A. Padilla, E. Baccelli, T. Eichinger, and K. Schleiser, "The
 Future of IoT Software Must be Updated"

 - T. Hardie, "Software Update in a multi-system Internet of Things"

 - R. Sparks and B. Campbell, "Avoiding the Obsolete-Thing Event
 Horizon"

 - J. Karkov, "SW update for Long lived products"

 - S. Farrell, "Some Software Update Requirements"

 - S. Chakrabarti, "Internet Of Things Software Update Challenges:
 Ownership, Software Security & Services"

 - M. Kovatsch, A. Scholz, and J. Hund, "Why Software Updates Are
 More Than a Security Issue: Challenges for IETF CoRE and the W3C
 Web of Things"

Tschofenig & Farrell Informational [Page 24]

RFC 8240 IoTSU Report September 2017

 - A. Grau, "Secure Software Updates for IoT Devices"

 - Birr-Pixton, "Electric Imp’s experiences of upgrading half a
 million embedded devices"

 - Y. Zhang, J. Yin, C. Groves, and M. Patel, "oneM2M device
 management and software/firmware update"

 - E. Smith, M. Stitt, R. Ensink, and K. Jager, "User Experience (UX)
 Centric IoT Software Update"

 - J.-P. Fassino, E.A. Moktad, and J.-M. Brun, "Secure Firmware
 Update in Schneider Electric IOT-enabled offers"

 - M. Orehek, "Summary of existing firmware update strategies for
 deeply embedded systems"

 - N. Smith, "Toward A Common Modeling Standard for Software Update
 and IoT Objects"

 - S. Schmidt, M. Tausig, M. Hudler, and G. Simhandl, "Secure
 Firmware Update Over the Air in the Internet of Things Focusing on
 Flexibility and Feasibility"

 - A. Adomnicai, J. Fournier, L. Masson, and A. Tria, "How careful
 should we be when implementing cryptography for software update
 mechanisms in the IoT?"

 - V. Prevelakis and H. Hamad, "Controlling Change via Policy
 Contracts"

 - H. Birkholz, N. Cam-Winget, and C. Bormann, "IoT Software Updates
 need Security Automation"

 - R. Bisewski, "Comparative Analysis of Distributed Repository
 Update Methodology and How CoAP-like Update Methods Could
 Alleviate Internet Strain for Devices that Constitute the Internet
 of Things"

 - J. Arrko, "Architectural Considerations with Smart Objects and
 Software Updates"

 - J. Jimenez and M. Ocak, "Software Update Experiences for IoT"

 - H. Tschofenig, "Software and Firmware Updates with the OMA LWM2M
 Protocol"

Tschofenig & Farrell Informational [Page 25]

RFC 8240 IoTSU Report September 2017

Appendix C. List of Participants

 - Arnar Birgisson, Google

 - Alan Grau, IconLabs

 - Alexandre Adomnicai, Trusted Objects

 - Alf Zugenmaier, Munich University of Applied Science

 - Ben Campbell, Oracle

 - Carsten Bormann, TZI University Bremen

 - Daniel Thomas, University of Cambridge

 - David Bosschaert, Adobe

 - David Malone, Maynooth University

 - David Plonka, Akamai

 - Doug Leith, Trinity College Dublin

 - Emmanuel Baccelli, Inria

 - Eric Smith, SpinDance

 - Jean-Philippe Fassino, Schneider Electric

 - Joergen Karkov, Grundfos

 - Jonathon Dukes, Trinity College Dublin

 - Joseph Birr-Pixton, Electric Imp

 - Kaspar Schleiser, Freie Universitaet Berlin

 - Luca Zappaterra, Philips Lighting Research

 - Martin Orehek, Munich University of Applied Science

 - Mathias Tausig, FH Campus Wien

 - Matthias Kovatsch, Siemens

 - Milan Patel, Huawei

Tschofenig & Farrell Informational [Page 26]

RFC 8240 IoTSU Report September 2017

 - Ned Smith, Intel

 - Robert Ensink, SpinDance

 - Robert Sparks, Oracle

 - Russ Housley, Vigil Security

 - Samita Chakrabarti, Ericsson

 - Stephen Farrell, Trinity College Dublin

 - Vassilis Prevelakis, TU Braunschweig

 - Hannes Tschofenig, ARM Ltd.

Acknowledgements

 We would like to thank all paper authors and participants for their
 contributions. The IoTSU workshop is co-sponsored by the Internet
 Architecture Board and the Science Foundation Ireland funded CONNECT
 Centre for future networks and communications. The program committee
 would like to express their thanks to Comcast for sponsoring the
 social event.

Authors’ Addresses

 Hannes Tschofenig
 ARM Limited

 Email: hannes.tschofenig@gmx.net

 Stephen Farrell
 Trinity College Dublin
 Dublin 2
 Ireland

 Phone: +353-1-896-2354
 Email: stephen.farrell@cs.tcd.ie

Tschofenig & Farrell Informational [Page 27]

