
Internet Engineering Task Force (IETF) W. Denniss
Request for Comments: 8252 Google
BCP: 212 J. Bradley
Updates: 6749 Ping Identity
Category: Best Current Practice October 2017
ISSN: 2070-1721

 OAuth 2.0 for Native Apps

Abstract

 OAuth 2.0 authorization requests from native apps should only be made
 through external user-agents, primarily the user’s browser. This
 specification details the security and usability reasons why this is
 the case and how native apps and authorization servers can implement
 this best practice.

Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8252.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Denniss & Bradley Best Current Practice [Page 1]

RFC 8252 OAuth 2.0 for Native Apps October 2017

Table of Contents

 1. Introduction . 3
 2. Notational Conventions 3
 3. Terminology . 3
 4. Overview . 4
 4.1. Authorization Flow for Native Apps Using the Browser . . 5
 5. Using Inter-App URI Communication for OAuth 6
 6. Initiating the Authorization Request from a Native App . . . 6
 7. Receiving the Authorization Response in a Native App 7
 7.1. Private-Use URI Scheme Redirection 8
 7.2. Claimed "https" Scheme URI Redirection 9
 7.3. Loopback Interface Redirection 9
 8. Security Considerations 10
 8.1. Protecting the Authorization Code 10
 8.2. OAuth Implicit Grant Authorization Flow 11
 8.3. Loopback Redirect Considerations 11
 8.4. Registration of Native App Clients 12
 8.5. Client Authentication 12
 8.6. Client Impersonation 13
 8.7. Fake External User-Agents 13
 8.8. Malicious External User-Agents 14
 8.9. Cross-App Request Forgery Protections 14
 8.10. Authorization Server Mix-Up Mitigation 14
 8.11. Non-Browser External User-Agents 15
 8.12. Embedded User-Agents 15
 9. IANA Considerations . 16
 10. References . 16
 10.1. Normative References 16
 10.2. Informative References 17
 Appendix A. Server Support Checklist 18
 Appendix B. Platform-Specific Implementation Details 18
 B.1. iOS Implementation Details 18
 B.2. Android Implementation Details 19
 B.3. Windows Implementation Details 19
 B.4. macOS Implementation Details 20
 B.5. Linux Implementation Details 21
 Acknowledgements . 21
 Authors’ Addresses . 21

Denniss & Bradley Best Current Practice [Page 2]

RFC 8252 OAuth 2.0 for Native Apps October 2017

1. Introduction

 Section 9 of the OAuth 2.0 authorization framework [RFC6749]
 documents two approaches for native apps to interact with the
 authorization endpoint: an embedded user-agent and an external user-
 agent.

 This best current practice requires that only external user-agents
 like the browser are used for OAuth by native apps. It documents how
 native apps can implement authorization flows using the browser as
 the preferred external user-agent as well as the requirements for
 authorization servers to support such usage.

 This practice is also known as the "AppAuth pattern", in reference to
 open-source libraries [AppAuth] that implement it.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "native app" An app or application that is installed by the user to
 their device, as distinct from a web app that runs in the browser
 context only. Apps implemented using web-based technology but
 distributed as a native app, so-called "hybrid apps", are
 considered equivalent to native apps for the purpose of this
 specification.

 "app" A "native app" unless further specified.

 "app store" An e-commerce store where users can download and
 purchase apps.

 "OAuth" Authorization protocol specified by the OAuth 2.0
 Authorization Framework [RFC6749].

 "external user-agent" A user-agent capable of handling the
 authorization request that is a separate entity or security domain
 to the native app making the request, such that the app cannot
 access the cookie storage, nor inspect or modify page content.

Denniss & Bradley Best Current Practice [Page 3]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 "embedded user-agent" A user-agent hosted by the native app making
 the authorization request that forms a part of the app or shares
 the same security domain such that the app can access the cookie
 storage and/or inspect or modify page content.

 "browser" The default application launched by the operating system
 to handle "http" and "https" scheme URI content.

 "in-app browser tab" A programmatic instantiation of the browser
 that is displayed inside a host app but that retains the full
 security properties and authentication state of the browser. It
 has different platform-specific product names, several of which
 are detailed in Appendix B.

 "web-view" A web browser UI (user interface) component that is
 embedded in apps to render web pages under the control of the app.

 "inter-app communication" Communication between two apps on a
 device.

 "claimed "https" scheme URI" Some platforms allow apps to claim an
 "https" scheme URI after proving ownership of the domain name.
 URIs claimed in such a way are then opened in the app instead of
 the browser.

 "private-use URI scheme" As used by this document, a URI scheme
 defined by the app (following the requirements of Section 3.8 of
 [RFC7595]) and registered with the operating system. URI requests
 to such schemes launch the app that registered it to handle the
 request.

 "reverse domain name notation" A naming convention based on the
 domain name system, but one where the domain components are
 reversed, for example, "app.example.com" becomes
 "com.example.app".

4. Overview

 For authorizing users in native apps, the best current practice is to
 perform the OAuth authorization request in an external user-agent
 (typically the browser) rather than an embedded user-agent (such as
 one implemented with web-views).

 Previously, it was common for native apps to use embedded user-agents
 (commonly implemented with web-views) for OAuth authorization
 requests. That approach has many drawbacks, including the host app
 being able to copy user credentials and cookies as well as the user
 needing to authenticate from scratch in each app. See Section 8.12

Denniss & Bradley Best Current Practice [Page 4]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 for a deeper analysis of the drawbacks of using embedded user-agents
 for OAuth.

 Native app authorization requests that use the browser are more
 secure and can take advantage of the user’s authentication state.
 Being able to use the existing authentication session in the browser
 enables single sign-on, as users don’t need to authenticate to the
 authorization server each time they use a new app (unless required by
 the authorization server policy).

 Supporting authorization flows between a native app and the browser
 is possible without changing the OAuth protocol itself, as the OAuth
 authorization request and response are already defined in terms of
 URIs. This encompasses URIs that can be used for inter-app
 communication. Some OAuth server implementations that assume all
 clients are confidential web clients will need to add an
 understanding of public native app clients and the types of redirect
 URIs they use to support this best practice.

4.1. Authorization Flow for Native Apps Using the Browser

 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+
 | User Device |
 | |
 | +--------------------------+ | (5) Authorization +---------------+
			Code	
	Client App	---------------------->	Token	
		<----------------------	Endpoint	
+--------------------------+	(6) Access Token,			
	^	Refresh Token +---------------+		
	(1)	(4)		
	Authorizat-	Authoriza-		
	ion Request	tion Code		
v				
+---------------------------+	(2) Authorization +---------------+			
			Request	
	Browser	--------------------->	Authorization	
		<---------------------	Endpoint	
+---------------------------+	(3) Authorization			
	Code +---------------+			
 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+

 Figure 1: Native App Authorization via an External User-Agent

Denniss & Bradley Best Current Practice [Page 5]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 Figure 1 illustrates the interaction between a native app and the
 browser to authorize the user.

 (1) Client app opens a browser tab with the authorization request.

 (2) Authorization endpoint receives the authorization request,
 authenticates the user, and obtains authorization.
 Authenticating the user may involve chaining to other
 authentication systems.

 (3) Authorization server issues an authorization code to the
 redirect URI.

 (4) Client receives the authorization code from the redirect URI.

 (5) Client app presents the authorization code at the token
 endpoint.

 (6) Token endpoint validates the authorization code and issues the
 tokens requested.

5. Using Inter-App URI Communication for OAuth

 Just as URIs are used for OAuth 2.0 [RFC6749] on the web to initiate
 the authorization request and return the authorization response to
 the requesting website, URIs can be used by native apps to initiate
 the authorization request in the device’s browser and return the
 response to the requesting native app.

 By adopting the same methods used on the web for OAuth, benefits seen
 in the web context like the usability of a single sign-on session and
 the security of a separate authentication context are likewise gained
 in the native app context. Reusing the same approach also reduces
 the implementation complexity and increases interoperability by
 relying on standards-based web flows that are not specific to a
 particular platform.

 To conform to this best practice, native apps MUST use an external
 user-agent to perform OAuth authorization requests. This is achieved
 by opening the authorization request in the browser (detailed in
 Section 6) and using a redirect URI that will return the
 authorization response back to the native app (defined in Section 7).

Denniss & Bradley Best Current Practice [Page 6]

RFC 8252 OAuth 2.0 for Native Apps October 2017

6. Initiating the Authorization Request from a Native App

 Native apps needing user authorization create an authorization
 request URI with the authorization code grant type per Section 4.1 of
 OAuth 2.0 [RFC6749], using a redirect URI capable of being received
 by the native app.

 The function of the redirect URI for a native app authorization
 request is similar to that of a web-based authorization request.
 Rather than returning the authorization response to the OAuth
 client’s server, the redirect URI used by a native app returns the
 response to the app. Several options for a redirect URI that will
 return the authorization response to the native app in different
 platforms are documented in Section 7. Any redirect URI that allows
 the app to receive the URI and inspect its parameters is viable.

 Public native app clients MUST implement the Proof Key for Code
 Exchange (PKCE [RFC7636]) extension to OAuth, and authorization
 servers MUST support PKCE for such clients, for the reasons detailed
 in Section 8.1.

 After constructing the authorization request URI, the app uses
 platform-specific APIs to open the URI in an external user-agent.
 Typically, the external user-agent used is the default browser, that
 is, the application configured for handling "http" and "https" scheme
 URIs on the system; however, different browser selection criteria and
 other categories of external user-agents MAY be used.

 This best practice focuses on the browser as the RECOMMENDED external
 user-agent for native apps. An external user-agent designed
 specifically for user authorization and capable of processing
 authorization requests and responses like a browser MAY also be used.
 Other external user-agents, such as a native app provided by the
 authorization server may meet the criteria set out in this best
 practice, including using the same redirection URI properties, but
 their use is out of scope for this specification.

 Some platforms support a browser feature known as "in-app browser
 tabs", where an app can present a tab of the browser within the app
 context without switching apps, but still retain key benefits of the
 browser such as a shared authentication state and security context.
 On platforms where they are supported, it is RECOMMENDED, for
 usability reasons, that apps use in-app browser tabs for the
 authorization request.

Denniss & Bradley Best Current Practice [Page 7]

RFC 8252 OAuth 2.0 for Native Apps October 2017

7. Receiving the Authorization Response in a Native App

 There are several redirect URI options available to native apps for
 receiving the authorization response from the browser, the
 availability and user experience of which varies by platform.

 To fully support this best practice, authorization servers MUST offer
 at least the three redirect URI options described in the following
 subsections to native apps. Native apps MAY use whichever redirect
 option suits their needs best, taking into account platform-specific
 implementation details.

7.1. Private-Use URI Scheme Redirection

 Many mobile and desktop computing platforms support inter-app
 communication via URIs by allowing apps to register private-use URI
 schemes (sometimes colloquially referred to as "custom URL schemes")
 like "com.example.app". When the browser or another app attempts to
 load a URI with a private-use URI scheme, the app that registered it
 is launched to handle the request.

 To perform an OAuth 2.0 authorization request with a private-use URI
 scheme redirect, the native app launches the browser with a standard
 authorization request, but one where the redirection URI utilizes a
 private-use URI scheme it registered with the operating system.

 When choosing a URI scheme to associate with the app, apps MUST use a
 URI scheme based on a domain name under their control, expressed in
 reverse order, as recommended by Section 3.8 of [RFC7595] for
 private-use URI schemes.

 For example, an app that controls the domain name "app.example.com"
 can use "com.example.app" as their scheme. Some authorization
 servers assign client identifiers based on domain names, for example,
 "client1234.usercontent.example.net", which can also be used as the
 domain name for the scheme when reversed in the same manner. A
 scheme such as "myapp", however, would not meet this requirement, as
 it is not based on a domain name.

 When there are multiple apps by the same publisher, care must be
 taken so that each scheme is unique within that group. On platforms
 that use app identifiers based on reverse-order domain names, those
 identifiers can be reused as the private-use URI scheme for the OAuth
 redirect to help avoid this problem.

Denniss & Bradley Best Current Practice [Page 8]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 Following the requirements of Section 3.2 of [RFC3986], as there is
 no naming authority for private-use URI scheme redirects, only a
 single slash ("/") appears after the scheme component. A complete
 example of a redirect URI utilizing a private-use URI scheme is:

 com.example.app:/oauth2redirect/example-provider

 When the authorization server completes the request, it redirects to
 the client’s redirection URI as it would normally. As the
 redirection URI uses a private-use URI scheme, it results in the
 operating system launching the native app, passing in the URI as a
 launch parameter. Then, the native app uses normal processing for
 the authorization response.

7.2. Claimed "https" Scheme URI Redirection

 Some operating systems allow apps to claim "https" scheme [RFC7230]
 URIs in the domains they control. When the browser encounters a
 claimed URI, instead of the page being loaded in the browser, the
 native app is launched with the URI supplied as a launch parameter.

 Such URIs can be used as redirect URIs by native apps. They are
 indistinguishable to the authorization server from a regular web-
 based client redirect URI. An example is:

 https://app.example.com/oauth2redirect/example-provider

 As the redirect URI alone is not enough to distinguish public native
 app clients from confidential web clients, it is REQUIRED in
 Section 8.4 that the client type be recorded during client
 registration to enable the server to determine the client type and
 act accordingly.

 App-claimed "https" scheme redirect URIs have some advantages
 compared to other native app redirect options in that the identity of
 the destination app is guaranteed to the authorization server by the
 operating system. For this reason, native apps SHOULD use them over
 the other options where possible.

7.3. Loopback Interface Redirection

 Native apps that are able to open a port on the loopback network
 interface without needing special permissions (typically, those on
 desktop operating systems) can use the loopback interface to receive
 the OAuth redirect.

 Loopback redirect URIs use the "http" scheme and are constructed with
 the loopback IP literal and whatever port the client is listening on.

Denniss & Bradley Best Current Practice [Page 9]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 That is, "http://127.0.0.1:{port}/{path}" for IPv4, and
 "http://[::1]:{port}/{path}" for IPv6. An example redirect using the
 IPv4 loopback interface with a randomly assigned port:

 http://127.0.0.1:51004/oauth2redirect/example-provider

 An example redirect using the IPv6 loopback interface with a randomly
 assigned port:

 http://[::1]:61023/oauth2redirect/example-provider

 The authorization server MUST allow any port to be specified at the
 time of the request for loopback IP redirect URIs, to accommodate
 clients that obtain an available ephemeral port from the operating
 system at the time of the request.

 Clients SHOULD NOT assume that the device supports a particular
 version of the Internet Protocol. It is RECOMMENDED that clients
 attempt to bind to the loopback interface using both IPv4 and IPv6
 and use whichever is available.

8. Security Considerations

8.1. Protecting the Authorization Code

 The redirect URI options documented in Section 7 share the benefit
 that only a native app on the same device or the app’s own website
 can receive the authorization code, which limits the attack surface.
 However, code interception by a different native app running on the
 same device may be possible.

 A limitation of using private-use URI schemes for redirect URIs is
 that multiple apps can typically register the same scheme, which
 makes it indeterminate as to which app will receive the authorization
 code. Section 1 of PKCE [RFC7636] details how this limitation can be
 used to execute a code interception attack.

 Loopback IP-based redirect URIs may be susceptible to interception by
 other apps accessing the same loopback interface on some operating
 systems.

 App-claimed "https" scheme redirects are less susceptible to URI
 interception due to the presence of the URI authority, but the app is
 still a public client; further, the URI is sent using the operating
 system’s URI dispatch handler with unknown security properties.

Denniss & Bradley Best Current Practice [Page 10]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 The PKCE [RFC7636] protocol was created specifically to mitigate this
 attack. It is a proof-of-possession extension to OAuth 2.0 that
 protects the authorization code from being used if it is intercepted.
 To provide protection, this extension has the client generate a
 secret verifier; it passes a hash of this verifier in the initial
 authorization request, and must present the unhashed verifier when
 redeeming the authorization code. An app that intercepted the
 authorization code would not be in possession of this secret,
 rendering the code useless.

 Section 6 requires that both clients and servers use PKCE for public
 native app clients. Authorization servers SHOULD reject
 authorization requests from native apps that don’t use PKCE by
 returning an error message, as defined in Section 4.4.1 of PKCE
 [RFC7636].

8.2. OAuth Implicit Grant Authorization Flow

 The OAuth 2.0 implicit grant authorization flow (defined in
 Section 4.2 of OAuth 2.0 [RFC6749]) generally works with the practice
 of performing the authorization request in the browser and receiving
 the authorization response via URI-based inter-app communication.
 However, as the implicit flow cannot be protected by PKCE [RFC7636]
 (which is required in Section 8.1), the use of the Implicit Flow with
 native apps is NOT RECOMMENDED.

 Access tokens granted via the implicit flow also cannot be refreshed
 without user interaction, making the authorization code grant flow --
 which can issue refresh tokens -- the more practical option for
 native app authorizations that require refreshing of access tokens.

8.3. Loopback Redirect Considerations

 Loopback interface redirect URIs use the "http" scheme (i.e., without
 Transport Layer Security (TLS)). This is acceptable for loopback
 interface redirect URIs as the HTTP request never leaves the device.

 Clients should open the network port only when starting the
 authorization request and close it once the response is returned.

 Clients should listen on the loopback network interface only, in
 order to avoid interference by other network actors.

 While redirect URIs using localhost (i.e.,
 "http://localhost:{port}/{path}") function similarly to loopback IP
 redirects described in Section 7.3, the use of localhost is NOT
 RECOMMENDED. Specifying a redirect URI with the loopback IP literal
 rather than localhost avoids inadvertently listening on network

Denniss & Bradley Best Current Practice [Page 11]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 interfaces other than the loopback interface. It is also less
 susceptible to client-side firewalls and misconfigured host name
 resolution on the user’s device.

8.4. Registration of Native App Clients

 Except when using a mechanism like Dynamic Client Registration
 [RFC7591] to provision per-instance secrets, native apps are
 classified as public clients, as defined by Section 2.1 of OAuth 2.0
 [RFC6749]; they MUST be registered with the authorization server as
 such. Authorization servers MUST record the client type in the
 client registration details in order to identify and process requests
 accordingly.

 Authorization servers MUST require clients to register their complete
 redirect URI (including the path component) and reject authorization
 requests that specify a redirect URI that doesn’t exactly match the
 one that was registered; the exception is loopback redirects, where
 an exact match is required except for the port URI component.

 For private-use URI scheme-based redirects, authorization servers
 SHOULD enforce the requirement in Section 7.1 that clients use
 schemes that are reverse domain name based. At a minimum, any
 private-use URI scheme that doesn’t contain a period character (".")
 SHOULD be rejected.

 In addition to the collision-resistant properties, requiring a URI
 scheme based on a domain name that is under the control of the app
 can help to prove ownership in the event of a dispute where two apps
 claim the same private-use URI scheme (where one app is acting
 maliciously). For example, if two apps claimed "com.example.app",
 the owner of "example.com" could petition the app store operator to
 remove the counterfeit app. Such a petition is harder to prove if a
 generic URI scheme was used.

 Authorization servers MAY request the inclusion of other platform-
 specific information, such as the app package or bundle name, or
 other information that may be useful for verifying the calling app’s
 identity on operating systems that support such functions.

8.5. Client Authentication

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
 RECOMMENDED for authorization servers to require client

Denniss & Bradley Best Current Practice [Page 12]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 authentication of public native apps clients using a shared secret,
 as this serves little value beyond client identification which is
 already provided by the "client_id" request parameter.

 Authorization servers that still require a statically included shared
 secret for native app clients MUST treat the client as a public
 client (as defined by Section 2.1 of OAuth 2.0 [RFC6749]), and not
 accept the secret as proof of the client’s identity. Without
 additional measures, such clients are subject to client impersonation
 (see Section 8.6).

8.6. Client Impersonation

 As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
 server SHOULD NOT process authorization requests automatically
 without user consent or interaction, except when the identity of the
 client can be assured. This includes the case where the user has
 previously approved an authorization request for a given client id --
 unless the identity of the client can be proven, the request SHOULD
 be processed as if no previous request had been approved.

 Measures such as claimed "https" scheme redirects MAY be accepted by
 authorization servers as identity proof. Some operating systems may
 offer alternative platform-specific identity features that MAY be
 accepted, as appropriate.

8.7. Fake External User-Agents

 The native app that is initiating the authorization request has a
 large degree of control over the user interface and can potentially
 present a fake external user-agent, that is, an embedded user-agent
 made to appear as an external user-agent.

 When all good actors are using external user-agents, the advantage is
 that it is possible for security experts to detect bad actors, as
 anyone faking an external user-agent is provably bad. On the other
 hand, if good and bad actors alike are using embedded user-agents,
 bad actors don’t need to fake anything, making them harder to detect.
 Once a malicious app is detected, it may be possible to use this
 knowledge to blacklist the app’s signature in malware scanning
 software, take removal action (in the case of apps distributed by app
 stores) and other steps to reduce the impact and spread of the
 malicious app.

 Authorization servers can also directly protect against fake external
 user-agents by requiring an authentication factor only available to
 true external user-agents.

Denniss & Bradley Best Current Practice [Page 13]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 Users who are particularly concerned about their security when using
 in-app browser tabs may also take the additional step of opening the
 request in the full browser from the in-app browser tab and complete
 the authorization there, as most implementations of the in-app
 browser tab pattern offer such functionality.

8.8. Malicious External User-Agents

 If a malicious app is able to configure itself as the default handler
 for "https" scheme URIs in the operating system, it will be able to
 intercept authorization requests that use the default browser and
 abuse this position of trust for malicious ends such as phishing the
 user.

 This attack is not confined to OAuth; a malicious app configured in
 this way would present a general and ongoing risk to the user beyond
 OAuth usage by native apps. Many operating systems mitigate this
 issue by requiring an explicit user action to change the default
 handler for "http" and "https" scheme URIs.

8.9. Cross-App Request Forgery Protections

 Section 5.3.5 of [RFC6819] recommends using the "state" parameter to
 link client requests and responses to prevent CSRF (Cross-Site
 Request Forgery) attacks.

 To mitigate CSRF-style attacks over inter-app URI communication
 channels (so called "cross-app request forgery"), it is similarly
 RECOMMENDED that native apps include a high-entropy secure random
 number in the "state" parameter of the authorization request and
 reject any incoming authorization responses without a state value
 that matches a pending outgoing authorization request.

8.10. Authorization Server Mix-Up Mitigation

 To protect against a compromised or malicious authorization server
 attacking another authorization server used by the same app, it is
 REQUIRED that a unique redirect URI is used for each authorization
 server used by the app (for example, by varying the path component),
 and that authorization responses are rejected if the redirect URI
 they were received on doesn’t match the redirect URI in an outgoing
 authorization request.

 The native app MUST store the redirect URI used in the authorization
 request with the authorization session data (i.e., along with "state"
 and other related data) and MUST verify that the URI on which the
 authorization response was received exactly matches it.

Denniss & Bradley Best Current Practice [Page 14]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 The requirement of Section 8.4, specifically that authorization
 servers reject requests with URIs that don’t match what was
 registered, is also required to prevent such attacks.

8.11. Non-Browser External User-Agents

 This best practice recommends a particular type of external user-
 agent: the user’s browser. Other external user-agent patterns may
 also be viable for secure and usable OAuth. This document makes no
 comment on those patterns.

8.12. Embedded User-Agents

 Section 9 of OAuth 2.0 [RFC6749] documents two approaches for native
 apps to interact with the authorization endpoint. This best current
 practice requires that native apps MUST NOT use embedded user-agents
 to perform authorization requests and allows that authorization
 endpoints MAY take steps to detect and block authorization requests
 in embedded user-agents. The security considerations for these
 requirements are detailed herein.

 Embedded user-agents are an alternative method for authorizing native
 apps. These embedded user-agents are unsafe for use by third parties
 to the authorization server by definition, as the app that hosts the
 embedded user-agent can access the user’s full authentication
 credential, not just the OAuth authorization grant that was intended
 for the app.

 In typical web-view-based implementations of embedded user-agents,
 the host application can record every keystroke entered in the login
 form to capture usernames and passwords, automatically submit forms
 to bypass user consent, and copy session cookies and use them to
 perform authenticated actions as the user.

 Even when used by trusted apps belonging to the same party as the
 authorization server, embedded user-agents violate the principle of
 least privilege by having access to more powerful credentials than
 they need, potentially increasing the attack surface.

 Encouraging users to enter credentials in an embedded user-agent
 without the usual address bar and visible certificate validation
 features that browsers have makes it impossible for the user to know
 if they are signing in to the legitimate site; even when they are, it
 trains them that it’s OK to enter credentials without validating the
 site first.

Denniss & Bradley Best Current Practice [Page 15]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 Aside from the security concerns, embedded user-agents do not share
 the authentication state with other apps or the browser, requiring
 the user to log in for every authorization request, which is often
 considered an inferior user experience.

9. IANA Considerations

 This document does not require any IANA actions.

 Section 7.1 specifies how private-use URI schemes are used for inter-
 app communication in OAuth protocol flows. This document requires in
 Section 7.1 that such schemes are based on domain names owned or
 assigned to the app, as recommended in Section 3.8 of [RFC7595]. Per
 Section 6 of [RFC7595], registration of domain-based URI schemes with
 IANA is not required.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

Denniss & Bradley Best Current Practice [Page 16]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [AppAuth] OpenID Connect Working Group, "AppAuth", September 2017,
 <https://openid.net/code/AppAuth>.

 [AppAuth.iOSmacOS]
 Wright, S., Denniss, W., et al., "AppAuth for iOS and
 macOS", February 2016,
 <https://openid.net/code/AppAuth-iOS>.

 [AppAuth.Android]
 McGinniss, I., Denniss, W., et al., "AppAuth for Android",
 February 2016, <https://openid.net/code/AppAuth-Android>.

 [SamplesForWindows]
 Denniss, W., "OAuth for Apps: Samples for Windows", July
 2016,
 <https://openid.net/code/sample-oauth-apps-for-windows>.

Denniss & Bradley Best Current Practice [Page 17]

RFC 8252 OAuth 2.0 for Native Apps October 2017

Appendix A. Server Support Checklist

 OAuth servers that support native apps must:

 1. Support private-use URI scheme redirect URIs. This is required
 to support mobile operating systems. See Section 7.1.

 2. Support "https" scheme redirect URIs for use with public native
 app clients. This is used by apps on advanced mobile operating
 systems that allow app-claimed "https" scheme URIs. See
 Section 7.2.

 3. Support loopback IP redirect URIs. This is required to support
 desktop operating systems. See Section 7.3.

 4. Not assume that native app clients can keep a secret. If secrets
 are distributed to multiple installs of the same native app, they
 should not be treated as confidential. See Section 8.5.

 5. Support PKCE [RFC7636]. Required to protect authorization code
 grants sent to public clients over inter-app communication
 channels. See Section 8.1

Appendix B. Platform-Specific Implementation Details

 This document primarily defines best practices in a generic manner,
 referencing techniques commonly available in a variety of
 environments. This non-normative section documents implementation
 details of the best practice for various operating systems.

 The implementation details herein are considered accurate at the time
 of publishing but will likely change over time. It is hoped that
 such a change won’t invalidate the generic principles in the rest of
 the document and that those principles should take precedence in the
 event of a conflict.

B.1. iOS Implementation Details

 Apps can initiate an authorization request in the browser, without
 the user leaving the app, through the "SFSafariViewController" class
 or its successor "SFAuthenticationSession", which implement the in-
 app browser tab pattern. Safari can be used to handle requests on
 old versions of iOS without in-app browser tab functionality.

 To receive the authorization response, both private-use URI scheme
 (referred to as "custom URL scheme") redirects and claimed "https"
 scheme URIs (known as "Universal Links") are viable choices. Apps
 can claim private-use URI schemes with the "CFBundleURLTypes" key in

Denniss & Bradley Best Current Practice [Page 18]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 the application’s property list file, "Info.plist", and "https"
 scheme URIs using the Universal Links feature with an entitlement
 file in the app and an association file hosted on the domain.

 Claimed "https" scheme URIs are the preferred redirect choice on iOS
 9 and above due to the ownership proof that is provided by the
 operating system.

 A complete open-source sample is included in the AppAuth for iOS and
 macOS [AppAuth.iOSmacOS] library.

B.2. Android Implementation Details

 Apps can initiate an authorization request in the browser, without
 the user leaving the app, through the Android Custom Tab feature,
 which implements the in-app browser tab pattern. The user’s default
 browser can be used to handle requests when no browser supports
 Custom Tabs.

 Android browser vendors should support the Custom Tabs protocol (by
 providing an implementation of the "CustomTabsService" class), to
 provide the in-app browser tab user-experience optimization to their
 users. Chrome is one such browser that implements Custom Tabs.

 To receive the authorization response, private-use URI schemes are
 broadly supported through Android Implicit Intents. Claimed "https"
 scheme redirect URIs through Android App Links are available on
 Android 6.0 and above. Both types of redirect URIs are registered in
 the application’s manifest.

 A complete open-source sample is included in the AppAuth for Android
 [AppAuth.Android] library.

B.3. Windows Implementation Details

 Both traditional and Universal Windows Platform (UWP) apps can
 perform authorization requests in the user’s browser. Traditional
 apps typically use a loopback redirect to receive the authorization
 response, and listening on the loopback interface is allowed by
 default firewall rules. When creating the loopback network socket,
 apps SHOULD set the "SO_EXCLUSIVEADDRUSE" socket option to prevent
 other apps binding to the same socket.

 UWP apps can use private-use URI scheme redirects to receive the
 authorization response from the browser, which will bring the app to
 the foreground. Known on the platform as "URI Activation", the URI

Denniss & Bradley Best Current Practice [Page 19]

RFC 8252 OAuth 2.0 for Native Apps October 2017

 scheme is limited to 39 characters in length, and it may include the
 "." character, making short reverse domain name based schemes (as
 required in Section 7.1) possible.

 UWP apps can alternatively use the Web Authentication Broker API in
 Single Sign-on (SSO) mode, which is an external user-agent designed
 for authorization flows. Cookies are shared between invocations of
 the broker but not the user’s preferred browser, meaning the user
 will need to log in again, even if they have an active session in
 their browser; but the session created in the broker will be
 available to subsequent apps that use the broker. Personalizations
 the user has made to their browser, such as configuring a password
 manager, may not be available in the broker. To qualify as an
 external user-agent, the broker MUST be used in SSO mode.

 To use the Web Authentication Broker in SSO mode, the redirect URI
 must be of the form "msapp://{appSID}" where "{appSID}" is the app’s
 security identifier (SID), which can be found in the app’s
 registration information or by calling the
 "GetCurrentApplicationCallbackUri" method. While Windows enforces
 the URI authority on such redirects, ensuring that only the app with
 the matching SID can receive the response on Windows, the URI scheme
 could be claimed by apps on other platforms without the same
 authority present; thus, this redirect type should be treated
 similarly to private-use URI scheme redirects for security purposes.

 An open-source sample demonstrating these patterns is available
 [SamplesForWindows].

B.4. macOS Implementation Details

 Apps can initiate an authorization request in the user’s default
 browser using platform APIs for opening URIs in the browser.

 To receive the authorization response, private-use URI schemes are a
 good redirect URI choice on macOS, as the user is returned right back
 to the app they launched the request from. These are registered in
 the application’s bundle information property list using the
 "CFBundleURLSchemes" key. Loopback IP redirects are another viable
 option, and listening on the loopback interface is allowed by default
 firewall rules.

 A complete open-source sample is included in the AppAuth for iOS and
 macOS [AppAuth.iOSmacOS] library.

Denniss & Bradley Best Current Practice [Page 20]

RFC 8252 OAuth 2.0 for Native Apps October 2017

B.5. Linux Implementation Details

 Opening the authorization request in the user’s default browser
 requires a distro-specific command: "xdg-open" is one such tool.

 The loopback redirect is the recommended redirect choice for desktop
 apps on Linux to receive the authorization response. Apps SHOULD NOT
 set the "SO_REUSEPORT" or "SO_REUSEADDR" socket options in order to
 prevent other apps binding to the same socket.

Acknowledgements

 The authors would like to acknowledge the work of Marius Scurtescu
 and Ben Wiley Sittler, whose design for using private-use URI schemes
 in native app OAuth 2.0 clients at Google formed the basis of
 Section 7.1.

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Andy Zmolek, Steven E. Wright, Brian Campbell, Nat Sakimura, Eric
 Sachs, Paul Madsen, Iain McGinniss, Rahul Ravikumar, Breno de
 Medeiros, Hannes Tschofenig, Ashish Jain, Erik Wahlstrom, Bill
 Fisher, Sudhi Umarji, Michael B. Jones, Vittorio Bertocci, Dick
 Hardt, David Waite, Ignacio Fiorentino, Kathleen Moriarty, and Elwyn
 Davies.

Authors’ Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 United States of America

 Email: rfc8252@wdenniss.com
 URI: http://wdenniss.com/appauth

 John Bradley
 Ping Identity

 Phone: +1 202-630-5272
 Email: rfc8252@ve7jtb.com
 URI: http://www.thread-safe.com/p/appauth.html

Denniss & Bradley Best Current Practice [Page 21]

