
Internet Engineering Task Force (IETF) T. Bray, Ed.
Request for Comments: 8259 Textuality
Obsoletes: 7159 December 2017
Category: Standards Track
ISSN: 2070-1721

 The JavaScript Object Notation (JSON) Data Interchange Format

Abstract

 JavaScript Object Notation (JSON) is a lightweight, text-based,
 language-independent data interchange format. It was derived from
 the ECMAScript Programming Language Standard. JSON defines a small
 set of formatting rules for the portable representation of structured
 data.

 This document removes inconsistencies with other specifications of
 JSON, repairs specification errors, and offers experience-based
 interoperability guidance.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8259.

Bray Standards Track [Page 1]

RFC 8259 JSON December 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Bray Standards Track [Page 2]

RFC 8259 JSON December 2017

Table of Contents

 1. Introduction . 3
 1.1. Conventions Used in This Document 4
 1.2. Specifications of JSON 4
 1.3. Introduction to This Revision 5
 2. JSON Grammar . 5
 3. Values . 6
 4. Objects . 6
 5. Arrays . 7
 6. Numbers . 7
 7. Strings . 8
 8. String and Character Issues 9
 8.1. Character Encoding 9
 8.2. Unicode Characters 10
 8.3. String Comparison . 10
 9. Parsers . 10
 10. Generators . 10
 11. IANA Considerations . 11
 12. Security Considerations 12
 13. Examples . 12
 14. References . 14
 14.1. Normative References 14
 14.2. Informative References 14
 Appendix A. Changes from RFC 7159 16
 Contributors . 16
 Author’s Address . 16

1. Introduction

 JavaScript Object Notation (JSON) is a text format for the
 serialization of structured data. It is derived from the object
 literals of JavaScript, as defined in the ECMAScript Programming
 Language Standard, Third Edition [ECMA-262].

 JSON can represent four primitive types (strings, numbers, booleans,
 and null) and two structured types (objects and arrays).

 A string is a sequence of zero or more Unicode characters [UNICODE].
 Note that this citation references the latest version of Unicode
 rather than a specific release. It is not expected that future
 changes in the Unicode specification will impact the syntax of JSON.

 An object is an unordered collection of zero or more name/value
 pairs, where a name is a string and a value is a string, number,
 boolean, null, object, or array.

 An array is an ordered sequence of zero or more values.

Bray Standards Track [Page 3]

RFC 8259 JSON December 2017

 The terms "object" and "array" come from the conventions of
 JavaScript.

 JSON’s design goals were for it to be minimal, portable, textual, and
 a subset of JavaScript.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The grammatical rules in this document are to be interpreted as
 described in [RFC5234].

1.2. Specifications of JSON

 This document replaces [RFC7159]. [RFC7159] obsoleted [RFC4627],
 which originally described JSON and registered the media type
 "application/json".

 JSON is also described in [ECMA-404].

 The reference to ECMA-404 in the previous sentence is normative, not
 with the usual meaning that implementors need to consult it in order
 to understand this document, but to emphasize that there are no
 inconsistencies in the definition of the term "JSON text" in any of
 its specifications. Note, however, that ECMA-404 allows several
 practices that this specification recommends avoiding in the
 interests of maximal interoperability.

 The intent is that the grammar is the same between the two documents,
 although different descriptions are used. If there is a difference
 found between them, ECMA and the IETF will work together to update
 both documents.

 If an error is found with either document, the other should be
 examined to see if it has a similar error; if it does, it should be
 fixed, if possible.

 If either document is changed in the future, ECMA and the IETF will
 work together to ensure that the two documents stay aligned through
 the change.

Bray Standards Track [Page 4]

RFC 8259 JSON December 2017

1.3. Introduction to This Revision

 In the years since the publication of RFC 4627, JSON has found very
 wide use. This experience has revealed certain patterns that, while
 allowed by its specifications, have caused interoperability problems.

 Also, a small number of errata have been reported regarding RFC 4627
 (see RFC Errata IDs 607 [Err607] and 3607 [Err3607]) and regarding
 RFC 7159 (see RFC Errata IDs 3915 [Err3915], 4264 [Err4264], 4336
 [Err4336], and 4388 [Err4388]).

 This document’s goal is to apply the errata, remove inconsistencies
 with other specifications of JSON, and highlight practices that can
 lead to interoperability problems.

2. JSON Grammar

 A JSON text is a sequence of tokens. The set of tokens includes six
 structural characters, strings, numbers, and three literal names.

 A JSON text is a serialized value. Note that certain previous
 specifications of JSON constrained a JSON text to be an object or an
 array. Implementations that generate only objects or arrays where a
 JSON text is called for will be interoperable in the sense that all
 implementations will accept these as conforming JSON texts.

 JSON-text = ws value ws

 These are the six structural characters:

 begin-array = ws %x5B ws ; [left square bracket

 begin-object = ws %x7B ws ; { left curly bracket

 end-array = ws %x5D ws ;] right square bracket

 end-object = ws %x7D ws ; } right curly bracket

 name-separator = ws %x3A ws ; : colon

 value-separator = ws %x2C ws ; , comma

Bray Standards Track [Page 5]

RFC 8259 JSON December 2017

 Insignificant whitespace is allowed before or after any of the six
 structural characters.

 ws = *(
 %x20 / ; Space
 %x09 / ; Horizontal tab
 %x0A / ; Line feed or New line
 %x0D) ; Carriage return

3. Values

 A JSON value MUST be an object, array, number, or string, or one of
 the following three literal names:

 false
 null
 true

 The literal names MUST be lowercase. No other literal names are
 allowed.

 value = false / null / true / object / array / number / string

 false = %x66.61.6c.73.65 ; false

 null = %x6e.75.6c.6c ; null

 true = %x74.72.75.65 ; true

4. Objects

 An object structure is represented as a pair of curly brackets
 surrounding zero or more name/value pairs (or members). A name is a
 string. A single colon comes after each name, separating the name
 from the value. A single comma separates a value from a following
 name. The names within an object SHOULD be unique.

 object = begin-object [member *(value-separator member)]
 end-object

 member = string name-separator value

 An object whose names are all unique is interoperable in the sense
 that all software implementations receiving that object will agree on
 the name-value mappings. When the names within an object are not
 unique, the behavior of software that receives such an object is
 unpredictable. Many implementations report the last name/value pair
 only. Other implementations report an error or fail to parse the

Bray Standards Track [Page 6]

RFC 8259 JSON December 2017

 object, and some implementations report all of the name/value pairs,
 including duplicates.

 JSON parsing libraries have been observed to differ as to whether or
 not they make the ordering of object members visible to calling
 software. Implementations whose behavior does not depend on member
 ordering will be interoperable in the sense that they will not be
 affected by these differences.

5. Arrays

 An array structure is represented as square brackets surrounding zero
 or more values (or elements). Elements are separated by commas.

 array = begin-array [value *(value-separator value)] end-array

 There is no requirement that the values in an array be of the same
 type.

6. Numbers

 The representation of numbers is similar to that used in most
 programming languages. A number is represented in base 10 using
 decimal digits. It contains an integer component that may be
 prefixed with an optional minus sign, which may be followed by a
 fraction part and/or an exponent part. Leading zeros are not
 allowed.

 A fraction part is a decimal point followed by one or more digits.

 An exponent part begins with the letter E in uppercase or lowercase,
 which may be followed by a plus or minus sign. The E and optional
 sign are followed by one or more digits.

 Numeric values that cannot be represented in the grammar below (such
 as Infinity and NaN) are not permitted.

 number = [minus] int [frac] [exp]

 decimal-point = %x2E ; .

 digit1-9 = %x31-39 ; 1-9

 e = %x65 / %x45 ; e E

 exp = e [minus / plus] 1*DIGIT

 frac = decimal-point 1*DIGIT

Bray Standards Track [Page 7]

RFC 8259 JSON December 2017

 int = zero / (digit1-9 *DIGIT)

 minus = %x2D ; -

 plus = %x2B ; +

 zero = %x30 ; 0

 This specification allows implementations to set limits on the range
 and precision of numbers accepted. Since software that implements
 IEEE 754 binary64 (double precision) numbers [IEEE754] is generally
 available and widely used, good interoperability can be achieved by
 implementations that expect no more precision or range than these
 provide, in the sense that implementations will approximate JSON
 numbers within the expected precision. A JSON number such as 1E400
 or 3.141592653589793238462643383279 may indicate potential
 interoperability problems, since it suggests that the software that
 created it expects receiving software to have greater capabilities
 for numeric magnitude and precision than is widely available.

 Note that when such software is used, numbers that are integers and
 are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
 sense that implementations will agree exactly on their numeric
 values.

7. Strings

 The representation of strings is similar to conventions used in the C
 family of programming languages. A string begins and ends with
 quotation marks. All Unicode characters may be placed within the
 quotation marks, except for the characters that MUST be escaped:
 quotation mark, reverse solidus, and the control characters (U+0000
 through U+001F).

 Any character may be escaped. If the character is in the Basic
 Multilingual Plane (U+0000 through U+FFFF), then it may be
 represented as a six-character sequence: a reverse solidus, followed
 by the lowercase letter u, followed by four hexadecimal digits that
 encode the character’s code point. The hexadecimal letters A through
 F can be uppercase or lowercase. So, for example, a string
 containing only a single reverse solidus character may be represented
 as "\u005C".

 Alternatively, there are two-character sequence escape
 representations of some popular characters. So, for example, a
 string containing only a single reverse solidus character may be
 represented more compactly as "\\".

Bray Standards Track [Page 8]

RFC 8259 JSON December 2017

 To escape an extended character that is not in the Basic Multilingual
 Plane, the character is represented as a 12-character sequence,
 encoding the UTF-16 surrogate pair. So, for example, a string
 containing only the G clef character (U+1D11E) may be represented as
 "\uD834\uDD1E".

 string = quotation-mark *char quotation-mark

 char = unescaped /
 escape (
 %x22 / ; " quotation mark U+0022
 %x5C / ; \ reverse solidus U+005C
 %x2F / ; / solidus U+002F
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX

 escape = %x5C ; \

 quotation-mark = %x22 ; "

 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

8. String and Character Issues

8.1. Character Encoding

 JSON text exchanged between systems that are not part of a closed
 ecosystem MUST be encoded using UTF-8 [RFC3629].

 Previous specifications of JSON have not required the use of UTF-8
 when transmitting JSON text. However, the vast majority of JSON-
 based software implementations have chosen to use the UTF-8 encoding,
 to the extent that it is the only encoding that achieves
 interoperability.

 Implementations MUST NOT add a byte order mark (U+FEFF) to the
 beginning of a networked-transmitted JSON text. In the interests of
 interoperability, implementations that parse JSON texts MAY ignore
 the presence of a byte order mark rather than treating it as an
 error.

Bray Standards Track [Page 9]

RFC 8259 JSON December 2017

8.2. Unicode Characters

 When all the strings represented in a JSON text are composed entirely
 of Unicode characters [UNICODE] (however escaped), then that JSON
 text is interoperable in the sense that all software implementations
 that parse it will agree on the contents of names and of string
 values in objects and arrays.

 However, the ABNF in this specification allows member names and
 string values to contain bit sequences that cannot encode Unicode
 characters; for example, "\uDEAD" (a single unpaired UTF-16
 surrogate). Instances of this have been observed, for example, when
 a library truncates a UTF-16 string without checking whether the
 truncation split a surrogate pair. The behavior of software that
 receives JSON texts containing such values is unpredictable; for
 example, implementations might return different values for the length
 of a string value or even suffer fatal runtime exceptions.

8.3. String Comparison

 Software implementations are typically required to test names of
 object members for equality. Implementations that transform the
 textual representation into sequences of Unicode code units and then
 perform the comparison numerically, code unit by code unit, are
 interoperable in the sense that implementations will agree in all
 cases on equality or inequality of two strings. For example,
 implementations that compare strings with escaped characters
 unconverted may incorrectly find that "a\\b" and "a\u005Cb" are not
 equal.

9. Parsers

 A JSON parser transforms a JSON text into another representation. A
 JSON parser MUST accept all texts that conform to the JSON grammar.
 A JSON parser MAY accept non-JSON forms or extensions.

 An implementation may set limits on the size of texts that it
 accepts. An implementation may set limits on the maximum depth of
 nesting. An implementation may set limits on the range and precision
 of numbers. An implementation may set limits on the length and
 character contents of strings.

10. Generators

 A JSON generator produces JSON text. The resulting text MUST
 strictly conform to the JSON grammar.

Bray Standards Track [Page 10]

RFC 8259 JSON December 2017

11. IANA Considerations

 The media type for JSON text is application/json.

 Type name: application

 Subtype name: json

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: binary

 Security considerations: See RFC 8259, Section 12

 Interoperability considerations: Described in RFC 8259

 Published specification: RFC 8259

 Applications that use this media type:
 JSON has been used to exchange data between applications written
 in all of these programming languages: ActionScript, C, C#,
 Clojure, ColdFusion, Common Lisp, E, Erlang, Go, Java, JavaScript,
 Lua, Objective CAML, Perl, PHP, Python, Rebol, Ruby, Scala, and
 Scheme.

 Additional information:
 Magic number(s): n/a
 File extension(s): .json
 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:
 IESG
 <iesg@ietf.org>

 Intended usage: COMMON

 Restrictions on usage: none

 Author:
 Douglas Crockford
 <douglas@crockford.com>

 Change controller:
 IESG
 <iesg@ietf.org>

Bray Standards Track [Page 11]

RFC 8259 JSON December 2017

 Note: No "charset" parameter is defined for this registration.
 Adding one really has no effect on compliant recipients.

12. Security Considerations

 Generally, there are security issues with scripting languages. JSON
 is a subset of JavaScript but excludes assignment and invocation.

 Since JSON’s syntax is borrowed from JavaScript, it is possible to
 use that language’s "eval()" function to parse most JSON texts (but
 not all; certain characters such as U+2028 LINE SEPARATOR and U+2029
 PARAGRAPH SEPARATOR are legal in JSON but not JavaScript). This
 generally constitutes an unacceptable security risk, since the text
 could contain executable code along with data declarations. The same
 consideration applies to the use of eval()-like functions in any
 other programming language in which JSON texts conform to that
 language’s syntax.

13. Examples

 This is a JSON object:

 {
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": 100
 },
 "Animated" : false,
 "IDs": [116, 943, 234, 38793]
 }
 }

 Its Image member is an object whose Thumbnail member is an object and
 whose IDs member is an array of numbers.

Bray Standards Track [Page 12]

RFC 8259 JSON December 2017

 This is a JSON array containing two objects:

 [
 {
 "precision": "zip",
 "Latitude": 37.7668,
 "Longitude": -122.3959,
 "Address": "",
 "City": "SAN FRANCISCO",
 "State": "CA",
 "Zip": "94107",
 "Country": "US"
 },
 {
 "precision": "zip",
 "Latitude": 37.371991,
 "Longitude": -122.026020,
 "Address": "",
 "City": "SUNNYVALE",
 "State": "CA",
 "Zip": "94085",
 "Country": "US"
 }
]

 Here are three small JSON texts containing only values:

 "Hello world!"

 42

 true

Bray Standards Track [Page 13]

RFC 8259 JSON December 2017

14. References

14.1. Normative References

 [ECMA-404] Ecma International, "The JSON Data Interchange Format",
 Standard ECMA-404,
 <http://www.ecma-international.org/publications/
 standards/Ecma-404.htm>.

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic",
 IEEE 754.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

14.2. Informative References

 [ECMA-262] Ecma International, "ECMAScript Language Specification",
 Standard ECMA-262, Third Edition, December 1999,
 <http://www.ecma-international.org/publications/files/
 ECMA-ST-ARCH/
 ECMA-262,%203rd%20edition,%20December%201999.pdf>.

 [Err3607] RFC Errata, Erratum ID 3607, RFC 4627,
 <https://www.rfc-editor.org/errata/eid3607>.

 [Err3915] RFC Errata, Erratum ID 3915, RFC 7159,
 <https://www.rfc-editor.org/errata/eid3915>.

Bray Standards Track [Page 14]

RFC 8259 JSON December 2017

 [Err4264] RFC Errata, Erratum ID 4264, RFC 7159,
 <https://www.rfc-editor.org/errata/eid4264>.

 [Err4336] RFC Errata, Erratum ID 4336, RFC 7159,
 <https://www.rfc-editor.org/errata/eid4336>.

 [Err4388] RFC Errata, Erratum ID 4388, RFC 7159,
 <https://www.rfc-editor.org/errata/eid4388>.

 [Err607] RFC Errata, Erratum ID 607, RFC 4627,
 <https://www.rfc-editor.org/errata/eid607>.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627,
 DOI 10.17487/RFC4627, July 2006,
 <https://www.rfc-editor.org/info/rfc4627>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

Bray Standards Track [Page 15]

RFC 8259 JSON December 2017

Appendix A. Changes from RFC 7159

 This section lists changes between this document and the text in
 RFC 7159.

 o Section 1.2 has been updated to reflect the removal of a JSON
 specification from ECMA-262, to make ECMA-404 a normative
 reference, and to explain the particular meaning of "normative".

 o Section 1.3 has been updated to reflect errata filed against
 RFC 7159, not RFC 4627.

 o Section 8.1 was changed to require the use of UTF-8 when
 transmitted over a network.

 o Section 12 has been updated to increase the precision of the
 description of the security risk that follows from using the
 ECMAScript "eval()" function.

 o Section 14.1 has been updated to include ECMA-404 as a normative
 reference.

 o Section 14.2 has been updated to remove ECMA-404, update the
 version of ECMA-262, and refresh the errata list.

Contributors

 RFC 4627 was written by Douglas Crockford. This document was
 constructed by making a relatively small number of changes to that
 document; thus, the vast majority of the text here is his.

Author’s Address

 Tim Bray (editor)
 Textuality

 Email: tbray@textuality.com

Bray Standards Track [Page 16]

