I nt ernet Engi neering Task Force (I ETF) T. Bray, Ed
Request for Comments: 8259 Textuality
osol etes: 7159 Decenber 2017
Cat egory: Standards Track

| SSN: 2070-1721

The JavaScript bject Notation (JSON) Data Interchange Format

Abst r act

JavaScript Object Notation (JSON) is a |lightweight, text-based,

| anguage-i ndependent data interchange format. It was derived from
the ECMAScri pt Progranmm ng Language Standard. JSON defines a snall
set of formatting rules for the portable representation of structured
dat a.

Thi s docunent renoves inconsistencies with other specifications of
JSON, repairs specification errors, and offers experience-based
i nteroperability guidance.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
https://ww.rfc-editor.org/info/rfc8259

Br ay St andards Track [Page 1]

RFC 8259 JSON Decenber 2017

Copyright Notice

Copyright (c) 2017 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Br ay St andards Track [Page 2]

RFC 8259 JSON Decenber 2017

Tabl e of Contents

1. Introduction e e e 3
1.1. Conventions Used in This Docunent 4
1.2. Specifications of JSON - 4
1.3. Introduction to This Revision . 5

2. JSON G amar 5

3. Values . 6

4. ojects . 6

5. Arrays . 7

6. Nunbers . . 7

7. Strings 8

8. String and Character |ssues . 9
8.1. Character Encoding C e e e e 9
8.2. Unicode Characters 10
8.3. String Conparison 10

9. Parsers L s s s e e e e e 10

10. Generatorso s s e e e s 10

11. I ANA Considerations 1

12. Security Considerations 12

13. Exanples L Lo 12

14. References 14
14.1. Normative References 14
14.2. Informative References 14

Appendi x A, Changes fromRFC 7159 16

Contributors .. . 16

Author's Address .. . 16

1. Introduction

JavaScript Object Notation (JSON) is a text format for the
serialization of structured data. It is derived fromthe object
literals of JavaScript, as defined in the ECMAScri pt Programi ng
Language Standard, Third Edition [ECMA-262].

JSON can represent four prinmtive types (strings, nunbers, bool eans,
and null) and two structured types (objects and arrays).

A string is a sequence of zero or nore Unicode characters [UN CODE]
Note that this citation references the |atest version of Unicode
rather than a specific release. It is not expected that future
changes in the Unicode specification will inpact the syntax of JSON

An object is an unordered collection of zero or nore name/val ue
pairs, where a nane is a string and a value is a string, nunber
bool ean, null, object, or array.

An array is an ordered sequence of zero or nore val ues.

Br ay St andards Track [Page 3]

RFC 8259 JSON Decenber 2017

The terns "object"” and "array" cone fromthe conventions of
JavaScri pt.

JSON s design goals were for it to be mininmal, portable, textual, and
a subset of JavaScript.

1.1. Conventions Used in This Docunment

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOVWMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in al
capitals, as shown here

The grammatical rules in this docunent are to be interpreted as
described in [RFC5234].

1.2. Specifications of JSON

Thi s docunent replaces [RFC7159]. [RFC7159] obsol eted [RFC4627],
which originally described JSON and regi stered the nedia type
"application/json".

JSON is al so described in [ECMA-404].

The reference to ECVMA-404 in the previous sentence is normative, not
with the usual neaning that inplenmentors need to consult it in order
to understand this docunment, but to enphasize that there are no

i nconsistencies in the definition of the term"JSON text" in any of
its specifications. Note, however, that ECVA-404 all ows severa
practices that this specification recommends avoiding in the
interests of nmaximal interoperability.

The intent is that the grammar is the sane between the two docunents,
al t hough different descriptions are used. |If there is a difference
found between them ECMA and the IETF will work together to update
bot h docunents.

If an error is found with either docunent, the other should be
exanmned to see if it has a simlar error; if it does, it should be
fixed, if possible.

If either docunment is changed in the future, ECMA and the IETF will
wor k together to ensure that the two docunents stay aligned through
t he change

Br ay St andards Track [Page 4]

RFC 8259 JSON Decenber 2017

1.3. Introduction to This Revision

In the years since the publication of RFC 4627, JSON has found very
wi de use. This experience has revealed certain patterns that, while
all owed by its specifications, have caused interoperability problens.

Al'so, a small nunber of errata have been reported regardi ng RFC 4627
(see RFC Errata I Ds 607 [Err607] and 3607 [Err3607]) and regarding
RFC 7159 (see RFC Errata | Ds 3915 [Err3915], 4264 [Err4264], 4336
[Err4336], and 4388 [Err4388]).

This docunent’s goal is to apply the errata, renove inconsistencies
with other specifications of JSON, and highlight practices that can
lead to interoperability problens.

2. JSON G ammar

A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, nunbers, and three literal nanes.

A JSON text is a serialized value. Note that certain previous
specifications of JSON constrained a JSON text to be an object or an
array. Inplenmentations that generate only objects or arrays where a
JSON text is called for will be interoperable in the sense that all

i mpl enentations will accept these as conform ng JSON texts.

JSON-text = ws val ue ws

These are the six structural characters:

begi n-array =ws W5B ws ; [left square bracket
begi n- obj ect =ws W7Bws ; { left curly bracket
end- array =ws W5D ws ;] right square bracket
end- obj ect =ws W7D ws ; } right curly bracket
nane- separator = ws %3A ws ; : colon

val ue-separator = ws %2C ws ; , comma

Br ay St andards Track [Page 5]

RFC 8259 JSON Decenber 2017

3.

I nsignificant whitespace is allowed before or after any of the six
structural characters

ws = *(
%20 / ; Space
ox09 / ; Horizontal tab
9% 0A / ; Line feed or New |ine
9% 0D) ; Carriage return
Val ues

A JSON val ue MJUST be an object, array, nunber, or string, or one of
the following three literal nanes:

fal se
nul |
true

The literal nanes MJUST be | owercase. No other literal nanes are
al | owned.

value = false / null / true / object / array / number / string
fal se = %66.61. 6¢C. 73. 65 ; false
null = %6e. 75. 6¢. 6C ;o null
true = %&74.72.75.65 ; true
hj ect s

An object structure is represented as a pair of curly brackets
surroundi ng zero or nore nane/value pairs (or nenbers). A nane is a
string. A single colon cones after each nane, separating the nane
fromthe value. A single comma separates a value froma foll ow ng
nane. The nanmes within an object SHOULD be uni que.

obj ect begi n-obj ect [nenber *(val ue-separator nenber)]

end- obj ect
menber = string nane-separator val ue

An obj ect whose nanmes are all unique is interoperable in the sense
that all software inplenmentations receiving that object will agree on
t he nanme-val ue mappings. When the nanes within an object are not

uni que, the behavior of software that receives such an object is
unpredi ctable. Many inplenmentations report the |ast nane/val ue pair
only. Oher inplenentations report an error or fail to parse the

Br ay St andards Track [Page 6]

RFC 8259 JSON Decenber 2017
obj ect, and sone inplenentations report all of the nane/val ue pairs,
i ncl udi ng dupli cates.
JSON parsing libraries have been observed to differ as to whether or
not they make the ordering of object menbers visible to calling
software. | nplenentations whose behavior does not depend on nenber
ordering will be interoperable in the sense that they will not be
af fected by these differences.

5. Arrays

An array structure is represented as square brackets surrounding zero
or nore values (or elenents). Elenents are separated by conmas.

array = begin-array [value *(val ue-separator value)] end-array

There is no requirenent that the values in an array be of the same
t ype.

6. Nunbers
The representation of nunbers is sinmlar to that used in nost
progranmm ng | anguages. A nunber is represented in base 10 using
decinmal digits. It contains an integer conponent that nay be
prefixed with an optional mnus sign, which nmay be followed by a
fraction part and/or an exponent part. Leading zeros are not
al | oned.
A fraction part is a decimal point followed by one or nore digits.
An exponent part begins with the letter E in uppercase or |owercase,
whi ch may be followed by a plus or mnus sign. The E and optiona
sign are followed by one or nore digits.

Nurmeri c val ues that cannot be represented in the grammar bel ow (such
as Infinity and NaN) are not permtted.

nunber = [minus] int [frac] [exp]
deci mal - poi nt = W2E ;

digitl-9 = %31-39 ; 1-9

e = 965 / %45 ; e E

exp = e[mnus / plus] 1*DAT

frac = decinmal-point 1*DIGAT

Br ay St andards Track [Page 7]

RFC 8259 JSON Decenber 2017

int = zero/ (digitl-9 *DIAT)
m nus = %2D ©o-
plus = %2B ;ot
zero = %30 ;0

This specification allows inplenentations to set linmts on the range
and precision of nunbers accepted. Since software that inplenents
| EEE 754 bi nary64 (doubl e precision) nunbers [| EEE754] is generally
avai |l abl e and wi dely used, good interoperability can be achi eved by
i mpl enent ati ons that expect no nore precision or range than these
provide, in the sense that inplenentations will approximte JSON
numbers within the expected precision. A JSON nunber such as 1E400
or 3.141592653589793238462643383279 may i ndi cate potenti al
interoperability problens, since it suggests that the software that
created it expects receiving software to have greater capabilities
for nuneric magnitude and precision than is w dely avail abl e.

Not e that when such software is used, nunbers that are integers and
are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
sense that inplenmentations will agree exactly on their numeric

val ues.

7. Strings

The representation of strings is simlar to conventions used in the C
famly of progranm ng | anguages. A string begins and ends with
quotation marks. All Unicode characters nmay be placed within the
quot ati on marks, except for the characters that MJST be escaped:

quot ation mark, reverse solidus, and the control characters (U+0000

t hr ough U+001F).

Any character may be escaped. |If the character is in the Basic

Mul tilingual Plane (U+0000 through U+FFFF), then it may be
represented as a six-character sequence: a reverse solidus, followed
by the | owercase letter u, followed by four hexadecinmal digits that
encode the character’s code point. The hexadecimal letters A through
F can be uppercase or |owercase. So, for exanple, a string
containing only a single reverse solidus character may be represented
as "\u005C'.

Alternatively, there are two-character sequence escape
representations of sonme popul ar characters. So, for exanple, a
string containing only a single reverse solidus character may be
represented nore conpactly as "\\".

Br ay St andards Track [Page 8]

RFC 8259 JSON Decenber 2017

To escape an extended character that is not in the Basic Miltilingua
Pl ane, the character is represented as a 12-character sequence,
encodi ng the UTF-16 surrogate pair. So, for exanple, a string
containing only the G clef character (U+1D11E) nmay be represented as
"\ uD834\ uDD1E".

string = quotation-mark *char quotation-nark

char = unescaped /

escape (
w22 |/ ;o quotation mark W+0022
w5C / P\ reverse solidus U+005C
W 2F / v sol i dus WH002F
w62 / ;b backspace U+0008
%66 / g f form feed W000C
W 6E / ;on line feed U+000A
w72 |/ por carriage return W000D
W74 | ot tab U+0009
W75 AHEXDI G) ; UuXXXX U XXXX
escape = %5C ;o\

quot ati on-mark = %22 ;o

unescaped = %20-21 / %23-5B / 95D 10FFFF
8. String and Character |ssues
8.1. Character Encoding

JSON t ext exchanged between systens that are not part of a closed
ecosystem MIST be encoded using UTF-8 [RFC3629].

Previ ous specifications of JSON have not required the use of UTF-8
when transmitting JSON text. However, the vast mgjority of JSON
based software inplenentations have chosen to use the UTF-8 encodi ng,
to the extent that it is the only encodi ng that achi eves
interoperability.

| mpl enent ati ons MUST NOT add a byte order mark (U+FEFF) to the

begi nning of a networked-transmtted JSON text. In the interests of
interoperability, inplenentations that parse JSON texts MAY ignore
the presence of a byte order nmark rather than treating it as an
error.

Br ay St andards Track [Page 9]

RFC 8259 JSON Decenber 2017

8. 2.

8. 3.

10.

Uni code Characters

Wien all the strings represented in a JSON text are conposed entirely
of Uni code characters [UNI CODE] (however escaped), then that JSON
text is interoperable in the sense that all software inplenentations
that parse it will agree on the contents of nanes and of string

val ues in objects and arrays.

However, the ABNF in this specification allows nmenber nanes and
string values to contain bit sequences that cannot encode Uni code
characters; for exanple, "\uDEAD' (a single unpaired UTF-16
surrogate). Instances of this have been observed, for exanple, when
a library truncates a UTF-16 string w t hout checki ng whether the
truncation split a surrogate pair. The behavior of software that
recei ves JSON texts containing such values is unpredictable; for
exanpl e, inplenentations night return different values for the length
of a string value or even suffer fatal runtinme exceptions.

String Conparison

Software inplenentations are typically required to test names of

obj ect nmenbers for equality. Inplenentations that transformthe
textual representation into sequences of Unicode code units and then
performthe conparison nunerically, code unit by code unit, are
interoperable in the sense that inplenentations will agree in al
cases on equality or inequality of two strings. For exanple,

i mpl enent ations that conpare strings with escaped characters
unconverted may incorrectly find that "a\\b" and "a\u005Cbhb" are not
equal .

Par sers

A JSON parser transforms a JSON text into another representation. A
JSON parser MJST accept all texts that conformto the JSON grammar.
A JSON parser MAY accept non-JSON forns or extensions.

An inplenentation may set linmits on the size of texts that it

accepts. An inplenmentation nmay set linmts on the nmaxi num depth of
nesting. An inplenentation nay set limts on the range and precision
of numbers. An inplenentation may set linmts on the |length and
character contents of strings.

Generators

A JSON generator produces JSON text. The resulting text MJST
strictly conformto the JSON gramar.

Br ay St andards Track [Page 10]

RFC 8259 JSON Decenber 2017

11. | ANA Consi der ati ons
The media type for JSON text is application/json.
Type nane: application
Subt ype name: json
Requi red paraneters: n/a
Optional paraneters: n/a
Encodi ng consi derations: binary
Security considerations: See RFC 8259, Section 12
Interoperability considerations: Described in RFC 8259
Publ i shed specification: RFC 8259
Applications that use this nedia type:
JSON has been used to exchange data between applications witten
in all of these programm ng | anguages: ActionScript, C, C#
d oj ure, Col dFusion, Common Lisp, E, Erlang, Go, Java, JavaScri pt,
Lua, Objective CAM,, Perl, PHP, Python, Rebol, Ruby, Scala, and
Schene.
Addi tional information
Magi ¢ nunber(s): n/a
File extension(s): .json
Maci ntosh file type code(s): TEXT
Person & emmil address to contact for further information:
| ESG
<iesg@etf.org>
I ntended usage: COMVON
Restrictions on usage: none
Aut hor :
Dougl as Crockford
<dougl as@r ockf ord. conp
Change controller:

| ESG
<iesg@etf.org>

Br ay St andards Track [Page 11]

RFC 8259 JSON Decenber 2017

12.

13.

Note: No "charset" paraneter is defined for this registration
Addi ng one really has no effect on conpliant recipients.

Security Considerations

Cenerally, there are security issues with scripting | anguages. JSON
is a subset of JavaScript but excludes assignnent and invocation

Since JSON s syntax is borrowed from JavaScript, it is possible to
use that |anguage’s "eval ()" function to parse npst JSON texts (but
not all; certain characters such as U+2028 LI NE SEPARATOR and U+2029
PARAGRAPH SEPARATOR are legal in JSON but not JavaScript). This
general ly constitutes an unacceptable security risk, since the text
could contain executable code along with data declarations. The same
consi deration applies to the use of eval ()-1ike functions in any

ot her progranmi ng | anguage in which JSON texts conformto that

| anguage’ s synt ax.

Exanpl es

This is a JSON object:

"I mage": {

"Wdth": 800,

"Hei ght": 600,

"Title": "View from 15th Floor",

"Thunbnail ": {
Ul "http://ww. exanpl e. com i nage/ 481989943"
"Hei ght": 125,
"Wdth": 100

}

"Ani mated" : false

"IDs": [116, 943, 234, 38793]
}

Its I mage nenber is an object whose Thunbnail nenber is an object and
whose | Ds nenber is an array of nunbers

Br ay St andards Track [Page 12]

RFC 8259 JSON Decenber 2017

This is a JSON array containing two objects:

[

{ . _
“"precision": "zip",
"Latitude": 37.7668,
"Longitude": -122.3959,

" Addr ess": "

"Cty": "SAN FRANCI SCO',
"State": "CA",

"Zip": "94107"
"Country": " Us"

b

{ o .
"precision": "zip",
"Latitude": 37.371991
"Longitude": -122.026020,
" Addr ess": "

"aty": " SUNNYVALE",
"State": "CA",
"Zip": "94085"
"Country": " uUs"
}
]
Here are three snmall JSON texts containing only val ues:
"Hello world!"
42
true

Br ay St andards Track [Page 13]

RFC 8259

JSON Decenber 2017

14. References

14.1. Normative References

[ECMA- 404]

[| EEE754]

[RFC2119]

[RFC3629]

[RFC5234]

[RFC8174]

[UNI CODE]

Ecma International, "The JSON Data I nterchange Fornmat",
St andard ECVA- 404,

<http://ww. echa-international.org/publications/

st andar ds/ Ecrma- 404. ht e,

| EEE, "I EEE Standard for Floating-Point Arithmetic",
| EEE 754.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997,

<https://wwv. rfc-editor.org/info/rfc2119>.

Yergeau, F., "UTF-8, a transfornmation format of |SO
10646", STD 63, RFC 3629, DO 10. 17487/ RFC3629, Novenber
2003, <https://ww. rfc-editor.org/info/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234,

DA 10.17487/ RFC5234, January 2008,
<https://ww.rfc-editor.org/info/rfc5234>,

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

The Uni code Consortium "The Unicode Standard”,
<htt p: //www. uni code. or g/ versi ons/| at est/ >.

14. 2. I nformati ve References

[ECMA- 262]

[Err3607]

[Err3915]

Br ay

Ecma International, "ECMAScript Language Specification",
St andard ECMA- 262, Third Edition, Decenber 1999,
<http://ww. ecnma-international.org/publications/files/
ECMA- ST- ARCH

ECMA- 262, %203r d9%20edi ti on, ¥20Decenber %201999. pdf >.

RFC Errata, Erratum | D 3607, RFC 4627,
<https://ww.rfc-editor.org/erratalei d3607>.

RFC Errata, Erratum | D 3915, RFC 7159,
<https://ww. rfc-editor.org/erratalei d3915>.

St andards Track [Page 14]

RFC 8259

[Errd264]

[Err4336]

[Err4388]

[Err607]

[RFC4627]

[RFC7159]

Br ay

JSON Decenber

RFC Errata, Erratum | D 4264, RFC 7159,
<https://www.rfc-editor.org/erratalei d4264>.

RFC Errata, Erratum | D 4336, RFC 7159,
<https://ww.rfc-editor.org/erratalei d4336>.

RFC Errata, Erratum | D 4388, RFC 7159,
<https://ww. rfc-editor.org/erratalei d4388>.

RFC Errata, Erratum | D 607, RFC 4627,
<https://ww.rfc-editor.org/erratalei d607>.

Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627,

DO 10.17487/ RFCA627, July 2006,

<https://wwv. rfc-editor.org/info/rfcd4627>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

2017

Dat a

I nterchange Format", RFC 7159, DA 10.17487/ RFC7159, March

2014, <https://ww.rfc-editor.org/info/rfc7159>.

St andards Track [Page 15]

RFC 8259 JSON Decenber 2017

Appendi x A, Changes from RFC 7159

This section lists changes between this document and the text in
RFC 7159.

0 Section 1.2 has been updated to reflect the renoval of a JSON
specification from ECVA- 262, to nake ECMA-404 a nornative
reference, and to explain the particular neaning of "normative".

0 Section 1.3 has been updated to reflect errata fil ed agai nst
RFC 7159, not RFC 4627.

0 Section 8.1 was changed to require the use of UTF-8 when
transmitted over a network.

0 Section 12 has been updated to increase the precision of the
description of the security risk that follows fromusing the
ECMAScri pt "eval ()" function.

0 Section 14.1 has been updated to include ECVA-404 as a nornative
ref erence.

0 Section 14.2 has been updated to renove ECVA-404, update the
version of ECMA-262, and refresh the errata |ist.

Contributors
RFC 4627 was witten by Douglas Crockford. This docunent was
constructed by making a relatively small nunber of changes to that
docunent; thus, the vast najority of the text here is his.

Aut hor’ s Addr ess

Tim Bray (editor)
Textuality

Enmail: tbray@extuality.com

Br ay St andards Track [Page 16]

