
Internet Engineering Task Force (IETF) T. Hoeiland-Joergensen
Request for Comments: 8290 Karlstad University
Category: Experimental P. McKenney
ISSN: 2070-1721 IBM Linux Technology Center
 D. Taht
 Teklibre
 J. Gettys

 E. Dumazet
 Google, Inc.
 January 2018

 The Flow Queue CoDel Packet Scheduler and
 Active Queue Management Algorithm

Abstract

 This memo presents the FQ-CoDel hybrid packet scheduler and Active
 Queue Management (AQM) algorithm, a powerful tool for fighting
 bufferbloat and reducing latency.

 FQ-CoDel mixes packets from multiple flows and reduces the impact of
 head-of-line blocking from bursty traffic. It provides isolation for
 low-rate traffic such as DNS, web, and videoconferencing traffic. It
 improves utilisation across the networking fabric, especially for
 bidirectional traffic, by keeping queue lengths short, and it can be
 implemented in a memory- and CPU-efficient fashion across a wide
 range of hardware.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8290.

Hoeiland-Joergensen, et al. Experimental [Page 1]

RFC 8290 FQ-CoDel January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hoeiland-Joergensen, et al. Experimental [Page 2]

RFC 8290 FQ-CoDel January 2018

Table of Contents

 1. Introduction . 4
 1.1. Conventions Used in This Document 4
 1.2. Terminology and Concepts 5
 1.3. Informal Summary of FQ-CoDel 5
 2. CoDel . 7
 3. Flow Queueing . 7
 4. The FQ-CoDel Scheduler 8
 4.1. Enqueue . 8
 4.1.1. Alternative Classification Schemes 9
 4.2. Dequeue . 10
 5. Implementation Considerations 11
 5.1. Data Structures . 11
 5.2. Parameters . 12
 5.2.1. Interval . 12
 5.2.2. Target . 12
 5.2.3. Packet Limit . 13
 5.2.4. Quantum . 13
 5.2.5. Flows . 13
 5.2.6. Explicit Congestion Notification (ECN) 14
 5.2.7. CE Threshold . 14
 5.3. Probability of Hash Collisions 14
 5.4. Memory Overhead . 15
 5.5. Per-Packet Timestamping 16
 5.6. Limiting Queueing in Lower Layers 16
 5.7. Other Forms of Fair Queueing 17
 5.8. Differences between CoDel and FQ-CoDel Behaviour 17
 6. Limitations of Flow Queueing 18
 6.1. Fairness between Things Other Than Flows 18
 6.2. Flow Bunching by Opaque Encapsulation 18
 6.3. Low-Priority Congestion Control Algorithms 19
 7. Deployment Status and Future Work 19
 8. Security Considerations 20
 9. IANA Considerations . 21
 10. References . 21
 10.1. Normative References 21
 10.2. Informative References 21
 Acknowledgements . 24
 Authors’ Addresses . 25

Hoeiland-Joergensen, et al. Experimental [Page 3]

RFC 8290 FQ-CoDel January 2018

1. Introduction

 The Flow Queue CoDel (FQ-CoDel) algorithm is a combined packet
 scheduler and Active Queue Management (AQM) [RFC3168] algorithm
 developed as part of the bufferbloat-fighting community effort
 [BLOATWEB]. It is based on a modified Deficit Round Robin (DRR)
 queue scheduler [DRR] [DRRPP] with the CoDel AQM [RFC8289] algorithm
 operating on each queue. This document describes the combined
 algorithm; reference implementations are available for the ns-2 [NS2]
 and ns-3 [NS3] network simulators, and the algorithm is included in
 the mainline Linux kernel as the fq_codel queueing discipline
 [LINUXSRC].

 FQ-CoDel is a general, efficient, nearly parameterless queue
 management approach combining flow queueing with CoDel. It is a
 powerful tool for solving bufferbloat [BLOAT] and has already been
 turned on by default in a number of Linux distributions. In this
 document, we describe the Linux implementation in sufficient detail
 for others to independently implement the algorithm for deployment
 outside the Linux ecosystem.

 Since the FQ-CoDel algorithm was originally developed in the Linux
 kernel, that implementation is still considered canonical. This
 document describes the algorithm in the abstract in Sections 1-4 and
 separates out most implementation details in subsequent sections;
 however, the Linux implementation is used as a reference for default
 behaviour in the abstract algorithm description.

 This document is structured as follows. This section gives some
 concepts and terminology used in the rest of the document and gives a
 short informal summary of the FQ-CoDel algorithm. Section 2 gives an
 overview of the CoDel algorithm. Section 3 covers the flow hashing
 and DRR portion. Section 4 then describes the working of the
 algorithm in detail, while Section 5 describes implementation details
 and considerations. Section 6 lists some of the limitations of using
 flow queueing. Section 7 outlines the current status of FQ-CoDel
 deployment and lists some possible future areas of inquiry. Finally,
 Section 8 reiterates some important security points that must be
 observed in the implementation.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Hoeiland-Joergensen, et al. Experimental [Page 4]

RFC 8290 FQ-CoDel January 2018

1.2. Terminology and Concepts

 Flow: A flow is typically identified by a 5-tuple of source IP
 address, destination IP address, source port number, destination
 port number, and protocol number. It can also be identified by a
 superset or subset of those parameters, by Media Access Control
 (MAC) address, or by other means. FQ-CoDel hashes flows into a
 configurable number of buckets to assign packets to internal
 queues.

 Queue: A queue of packets represented internally in FQ-CoDel. In
 most instances, each flow gets its own queue; however, because of
 the possibility of hash collisions, this is not always the case.
 In an attempt to avoid confusion, the word "queue" is used to
 refer to the internal data structure, and "flow" is used to refer
 to the actual stream of packets being delivered to the FQ-CoDel
 algorithm.

 Scheduler: A mechanism to select which queue a packet is dequeued
 from.

 CoDel AQM: The Active Queue Management algorithm employed by
 FQ-CoDel as described in [RFC8289].

 DRR: Deficit Round Robin scheduling [DRR].

 Quantum: The maximum amount of bytes to be dequeued from a queue at
 once.

 Interval: Characteristic time period used by the control loop of
 CoDel to detect when a persistent queue is developing (see
 Section 4.2 of [RFC8289]).

 Target: Setpoint value of the minimum sojourn time of packets in a
 queue used as the target of the control loop in CoDel (see
 Section 4.3 of [RFC8289]).

1.3. Informal Summary of FQ-CoDel

 FQ-CoDel is a hybrid of DRR [DRR] and CoDel [RFC8289], with an
 optimisation for sparse flows similar to Shortest Queue First (SQF)
 [SQF] and DRR++ [DRRPP]. We call this "flow queueing" rather than
 "fair queueing", as flows that build a queue are treated differently
 from flows that do not.

Hoeiland-Joergensen, et al. Experimental [Page 5]

RFC 8290 FQ-CoDel January 2018

 By default, FQ-CoDel stochastically classifies incoming packets into
 different queues by hashing the 5-tuple of protocol number, source
 and destination IP addresses, and source and destination port
 numbers, perturbed with a random number selected at initiation time
 (although other flow classification schemes can optionally be
 configured instead; see Section 4.1.1). Each queue is managed by the
 CoDel AQM algorithm [CODEL] [RFC8289]. Packet ordering within a
 queue is preserved, since queues have FIFO ordering.

 The FQ-CoDel algorithm consists of two logical parts: (1) the
 scheduler, which selects which queue to dequeue a packet from, and
 (2) the CoDel AQM, which works on each of the queues. The subtleties
 of FQ-CoDel are mostly in the scheduling part, whereas the
 interaction between the scheduler and the CoDel algorithm are fairly
 straightforward.

 At initialisation, each queue is set up to have a separate set of
 CoDel state variables. By default, 1024 queues are created. The
 Linux implementation at the time of writing supports anywhere from
 one to 65535 separate queues, and each queue maintains the state
 variables throughout its lifetime, and so acts the same as the non-FQ
 variant of CoDel would. This means that with only one queue,
 FQ-CoDel behaves essentially the same as CoDel by itself.

 On dequeue, FQ-CoDel selects a queue from which to dequeue by a two-
 tier, round-robin scheme, in which each queue is allowed to dequeue
 up to a configurable quantum of bytes for each iteration. Deviations
 from this quantum are maintained as byte credits for the queue, which
 serves to make the fairness scheme byte-based rather than packet-
 based. The two-tier, round-robin mechanism distinguishes between
 "new" queues (which don’t build up a standing queue) and "old" queues
 (which have queued enough data to be active for more than one
 iteration of the round-robin scheduler).

 This new/old queue distinction has a particular consequence for
 queues that don’t build up more than a quantum of bytes before being
 visited by the scheduler: such a queue will be removed from the list
 after it empties and then re-added as a new queue the next time a
 packet arrives for it. This means it will effectively get priority
 over queues that do not empty out each round (a minor caveat is
 required here to protect against starvation, see below). Exactly how
 little data a flow has to send to keep its queue in this state is
 somewhat difficult to reason about, because it depends on both the
 egress link speed and the number of concurrent flows. However, in
 practice, many things that are beneficial to have prioritised for
 typical internet use (ACKs, DNS lookups, interactive Secure Shell
 (SSH), HTTP requests, Voice over IP (VoIP)) _tend_ to fall in this
 category, which is why FQ-CoDel performs so well for many practical

Hoeiland-Joergensen, et al. Experimental [Page 6]

RFC 8290 FQ-CoDel January 2018

 applications. However, the implicitness of the prioritisation means
 that for applications that require guaranteed priority (for instance,
 multiplexing the network control plane over the network itself),
 explicit classification is still needed.

 This scheduling scheme has some subtlety to it, which is explained in
 detail in the remainder of this document.

2. CoDel

 CoDel is described in the Communications of the ACM paper [CODEL] and
 the IETF document [RFC8289]. The basic idea is to control queue
 length, maintaining sufficient queueing to keep the outgoing link
 busy but avoiding building up the queue beyond that point. This is
 done by preferentially dropping packets that remain in the queue for
 "too long". Packets are dropped by head drop, which lowers the time
 for the drop signal to propagate back to the sender by the length of
 the queue and helps trigger TCP fast retransmit sooner.

 The CoDel algorithm itself will not be described here; instead, we
 refer the reader to the CoDel document [RFC8289].

3. Flow Queueing

 The intention of FQ-CoDel’s scheduler is to give each flow its own
 queue, hence the term "flow queueing". Rather than a perfect
 realisation of this, a hashing-based scheme is used, where flows are
 hashed into a number of buckets, each of which has its own queue.
 The number of buckets is configurable and presently defaults to 1024
 in the Linux implementation. This is enough to avoid hash collisions
 on a moderate number of flows as seen, for instance, in a home
 gateway. Depending on the characteristics of the link, this can be
 tuned to trade off memory for a lower probability of hash collisions.
 See Sections 5.3 and 5.4 for a more in-depth discussion of this.

 By default, the flow hashing is performed on the 5-tuple of source
 and destination IP addresses, source and destination port numbers,
 and protocol number. While the hashing can be customised to match on
 arbitrary packet bytes, care should be taken when doing so; much of
 the benefit of the FQ-CoDel scheduler comes from this per-flow
 distinction. However, the default hashing does have some
 limitations, as discussed in Section 6.

 FQ-CoDel’s DRR scheduler is byte-based, employing a deficit round-
 robin mechanism between queues. This works by keeping track of the
 current number of "byte credits" of each queue. This number is
 initialised to the configurable quantum; each time a queue gets a
 dequeue opportunity, it gets to dequeue packets, thus decreasing the

Hoeiland-Joergensen, et al. Experimental [Page 7]

RFC 8290 FQ-CoDel January 2018

 number of credits by the packet size for each packet. This continues
 until the value of the byte credits counter becomes zero or less, at
 which point the counter is increased by one quantum, and the dequeue
 opportunity ends.

 This means that if one queue contains packets of, for instance, size
 quantum/3, and another contains quantum-sized packets, the first
 queue will dequeue three packets each time it gets a turn, whereas
 the second only dequeues one. This means that flows that send small
 packets are not penalised by the difference in packet sizes; rather,
 the DRR scheme approximates a byte-based fairness queueing scheme.
 The size of the quantum determines the scheduling granularity, with
 the trade-off from too small a quantum being scheduling overhead.
 For small bandwidths, lowering the quantum from the default MTU size
 can be advantageous.

 Unlike plain DRR, there are two sets of flows: a "new" list for flows
 that have not built a queue recently and an "old" list for queues
 that build a backlog. This distinction is an integral part of the
 FQ-CoDel scheduler and is described in more detail in Section 4.

4. The FQ-CoDel Scheduler

 To make its scheduling decisions, FQ-CoDel maintains two ordered
 lists of active queues: new and old queues. When a packet is added
 to a queue that is not currently active, that queue becomes active by
 being added to the list of new queues. Later on, it is moved to the
 list of old queues, from which it is removed when it is no longer
 active. This behaviour is the source of some subtlety in the packet
 scheduling at dequeue time, as explained below.

4.1. Enqueue

 The packet enqueue mechanism consists of three stages: classifying
 into a queue, timestamping and bookkeeping, and optionally dropping a
 packet when the total number of enqueued packets goes over the
 maximum.

 When a packet is enqueued, it is first classified into the
 appropriate queue. By default, this is done by hashing (using a
 Jenkins hash function [JENKINS]) on the 5-tuple of IP protocol,
 source and destination IP addresses, and source and destination port
 numbers (if they exist) and then taking the hash value modulo the
 number of queues. The hash is salted by modulo addition of a random
 value selected at initialisation time to prevent possible DoS attacks
 if the hash is predictable ahead of time (see Section 8). The Linux

Hoeiland-Joergensen, et al. Experimental [Page 8]

RFC 8290 FQ-CoDel January 2018

 kernel implements the Jenkins hash function by mixing three 32-bit
 values into a single 32-bit output value. Inputs larger than 96 bits
 are reduced by additional mixing steps, 96 bits at a time.

 Once the packet has been successfully classified into a queue, it is
 handed over to the CoDel algorithm for timestamping. It is then
 added to the tail of the selected queue, and the queue’s byte count
 is updated by the packet size. Then, if the queue is not currently
 active (i.e., if it is not in either the list of new queues or the
 list of old queues), it is added to the end of the list of new
 queues, and its number of credits is initiated to the configured
 quantum. Otherwise, the queue is left in its current queue list.

 Finally, to protect against overload, the total number of enqueued
 packets is compared with the configured limit. If the limit is
 exceeded (which can happen since a packet was just enqueued), the
 queue with the largest current byte count is selected and half the
 number of packets from this queue (up to a maximum of 64 packets) are
 dropped from the head of that queue. Dropping several packets at
 once helps amortise the cost of finding the longest queue,
 significantly lowering CPU usage in an overload situation.

4.1.1. Alternative Classification Schemes

 As mentioned previously, it is possible to modify the classification
 scheme to provide a different notion of a flow. The Linux
 implementation provides this option in the form of the "tc filter"
 command. While this can add capabilities (for instance, matching on
 other possible parameters such as MAC address, Diffserv code point
 values, firewall rules, flow-specific markings, IPv6 flow label,
 etc.), care should be taken to preserve the notion of flow because
 much of the benefit of the FQ-CoDel scheduler comes from keeping
 flows in separate queues.

 For protocols that do not contain a port number (such as ICMP), the
 Linux implementation simply sets the port numbers to zero and
 performs the hashing as usual. In practice, this results in such
 protocols each getting their own queue (except in the case of hash
 collisions). An implementation can perform other classifications for
 protocols that have their own notion of a flow but SHOULD fall back
 to simply hashing on source and destination IP address and protocol
 number in the absence of other information.

 The default classification scheme can additionally be improved by
 performing decapsulation of tunnelled packets prior to hashing on the
 5-tuple in the encapsulated payload. The Linux implementation does
 this for common encapsulations known to the kernel, such as 6in4
 [RFC4213], IP-in-IP [RFC2003], and Generic Routing Encapsulation

Hoeiland-Joergensen, et al. Experimental [Page 9]

RFC 8290 FQ-CoDel January 2018

 (GRE) [RFC2890]. This helps to distinguish between flows that share
 the same (outer) 5-tuple but, of course, is limited to unencrypted
 tunnels (see Section 6.2 for a discussion of encrypted tunnels).

4.2. Dequeue

 Most of FQ-CoDel’s work is done at packet dequeue time. It consists
 of three parts: selecting a queue from which to dequeue a packet,
 actually dequeueing it (employing the CoDel algorithm in the
 process), and some final bookkeeping.

 For the first part, the scheduler first looks at the list of new
 queues; for the queue at the head of that list, if that queue has a
 negative number of credits (i.e., it has already dequeued at least a
 quantum of bytes), it is given an additional quantum of credits, the
 queue is put onto _the end of_ the list of old queues, and the
 routine selects the next queue and starts again.

 Otherwise, that queue is selected for dequeue. If the list of new
 queues is empty, the scheduler proceeds down the list of old queues
 in the same fashion (checking the credits and either selecting the
 queue for dequeueing or adding credits and putting the queue back at
 the end of the list).

 After having selected a queue from which to dequeue a packet, the
 CoDel algorithm is invoked on that queue. This applies the CoDel
 control law, which is the mechanism CoDel uses to determine when to
 drop packets (see [RFC8289]). As a result of this, one or more
 packets may be discarded from the head of the selected queue before
 the packet that should be dequeued is returned (or nothing is
 returned if the queue is or becomes empty while being handled by the
 CoDel algorithm).

 Finally, if the CoDel algorithm does not return a packet, then the
 queue must be empty, and the scheduler does one of two things. If
 the queue selected for dequeue came from the list of new queues, it
 is moved to _the end of_ the list of old queues. If instead it came
 from the list of old queues, that queue is removed from the list, to
 be added back (as a new queue) the next time a packet arrives that
 hashes to that queue. Then (since no packet was available for
 dequeue), the whole dequeue process is restarted from the beginning.

 If, instead, the scheduler _did_ get a packet back from the CoDel
 algorithm, it subtracts the size of the packet from the byte credits
 for the selected queue and returns the packet as the result of the
 dequeue operation.

Hoeiland-Joergensen, et al. Experimental [Page 10]

RFC 8290 FQ-CoDel January 2018

 The step that moves an empty queue from the list of new queues to the
 end of the list of old queues before it is removed is crucial to
 prevent starvation. Otherwise, the queue could reappear (the next
 time a packet arrives for it) before the list of old queues is
 visited; this can go on indefinitely, even with a small number of
 active flows, if the flow providing packets to the queue in question
 transmits at just the right rate. This is prevented by first moving
 the queue to the end of the list of old queues, forcing the scheduler
 to service all old queues before the empty queue is removed and thus
 preventing starvation.

 The resulting migration of queues between the different states is
 summarised in the state diagram shown in Figure 1. Note that both
 the new and old queue states can additionally have arrival and
 dequeue events that do not change the state; these are omitted in the
 figure.

 +-----------------+ +------------------+
 | | Empty | |
 | Empty |<---------------+ Old +----+
 | | | | |
 +-------+---------+ +------------------+ |
 | ^ ^ |Credits
 |Arrival | | |Exhausted
 v | | |
 +-----------------+ | | |
 | | Empty or | | |
 | New +-------------------+ +-------+
 | | Credits Exhausted
 +-----------------+

 Figure 1: Partial State Diagram for Queues between Different States

5. Implementation Considerations

 This section contains implementation details for the FQ-CoDel
 algorithm. This includes the data structures and parameters used in
 the Linux implementation, as well as discussion of some required
 features of the target platform and other considerations.

5.1. Data Structures

 The main data structure of FQ-CoDel is the array of queues, which is
 instantiated with the number of queues specified by the "flows"
 parameter at instantiation time. Each queue consists simply of an
 ordered list of packets with FIFO semantics, two state variables
 tracking the queue credits and total number of bytes enqueued, and
 the set of CoDel state variables. Other state variables to track

Hoeiland-Joergensen, et al. Experimental [Page 11]

RFC 8290 FQ-CoDel January 2018

 queue statistics can also be included; for instance, the Linux
 implementation keeps a count of dropped packets.

 In addition to the queue structures themselves, FQ-CoDel maintains
 two ordered lists containing references to the subset of queues that
 are currently active. These are the lists of new and old queues, as
 explained in Section 4 above.

 In the Linux implementation, queue space is shared: there’s a global
 limit on the number of packets the queues can hold, but not a limit
 for each queue.

5.2. Parameters

 The following are the user configuration parameters exposed by the
 Linux implementation of FQ-CoDel.

5.2.1. Interval

 The "interval" parameter has the same semantics as CoDel and is used
 to ensure that the minimum sojourn time of packets in a queue used as
 an estimator by the CoDel control algorithm is a relatively up-to-
 date value. That is, CoDel only reacts to delay experienced in the
 last epoch of length interval. It SHOULD be set to be on the order
 of the worst-case RTT through the bottleneck to give end points
 sufficient time to react.

 The default interval value is 100 ms.

5.2.2. Target

 The "target" parameter has the same semantics as CoDel. It is the
 acceptable minimum standing/persistent queue delay for each FQ-CoDel
 queue. This minimum delay is identified by tracking the local
 minimum queue delay that packets experience.

 The default target value is 5 ms, but this value should be tuned to
 be at least the transmission time of a single MTU-sized packet at the
 prevalent egress link speed (which, for example, is ˜15 ms for 1 Mbps
 and MTU 1500). This prevents CoDel from being too aggressive at low
 bandwidths. It should otherwise be set to 5-10% of the configured
 interval.

Hoeiland-Joergensen, et al. Experimental [Page 12]

RFC 8290 FQ-CoDel January 2018

5.2.3. Packet Limit

 Routers do not have infinite memory, so some packet limit MUST be
 enforced.

 The "limit" parameter is the hard limit on the real queue size,
 measured in number of packets. This limit is a global limit on the
 number of packets in all queues; each individual queue does not have
 an upper limit. When the limit is reached and a new packet arrives
 for enqueue, packets are dropped from the head of the largest queue
 (measured in bytes) to make room for the new packet.

 In Linux, the default packet limit is 10240 packets, which is
 suitable for up to 10-Gigabit Ethernet speeds. In practice, the hard
 limit is rarely (if ever) hit, as drops are performed by the CoDel
 algorithm long before the limit is hit. For platforms that are
 severely memory constrained, a lower limit can be used.

5.2.4. Quantum

 The "quantum" parameter is the number of bytes each queue gets to
 dequeue on each round of the scheduling algorithm. The default is
 set to 1514 bytes, which corresponds to the Ethernet MTU plus the
 hardware header length of 14 bytes.

 In systems employing TCP Segmentation Offload (TSO), where a "packet"
 consists of an offloaded packet train, it can presently be as large
 as 64 kilobytes. In systems using Generic Receive Offload (GRO),
 they can be up to 17 times the TCP max segment size (or 25
 kilobytes). These mega-packets severely impact FQ-CoDel’s ability to
 schedule traffic, and they hurt latency needlessly. There is ongoing
 work in Linux to make smarter use of offload engines.

5.2.5. Flows

 The "flows" parameter sets the number of queues into which the
 incoming packets are classified. Due to the stochastic nature of
 hashing, multiple flows may end up being hashed into the same slot.

 This parameter can be set only at initialisation time in the current
 implementation, since memory has to be allocated for the hash table.

 The default value is 1024 in the current Linux implementation.

Hoeiland-Joergensen, et al. Experimental [Page 13]

RFC 8290 FQ-CoDel January 2018

5.2.6. Explicit Congestion Notification (ECN)

 ECN [RFC3168] is enabled by default. Rather than do anything special
 with misbehaved ECN flows, FQ-CoDel relies on the packet scheduling
 system to minimise their impact; thus, the number of unresponsive
 packets in a flow being marked with ECN can grow to the overall
 packet limit but will not otherwise affect the performance of the
 system.

 ECN can be disabled by specifying the "noecn" parameter.

5.2.7. CE Threshold

 This parameter enables DCTCP-like processing resulting in Congestion
 Encountered (CE) marking on ECN-Capable Transport (ECT) packets
 [RFC3168] starting at a lower sojourn delay setpoint than the default
 CoDel target. Details of Data Center TCP (DCTCP) can be found in
 [RFC8257].

 The "ce_threshold" parameter is disabled by default; it can be
 enabled by setting it to a number of microseconds.

5.3. Probability of Hash Collisions

 Since the Linux FQ-CoDel implementation by default uses 1024 hash
 buckets, the probability that (say) 100 flows will all hash to the
 same bucket is something like ten to the power of minus 300. Thus,
 at least one of the flows will almost certainly hash to some other
 queue.

 Expanding on this, based on analytical equations for hash collision
 probabilities, for 100 flows, the probability of no collision is
 90.78%; the probability that no more than two of the 100 flows will
 be involved in any given collision is 99.57%; and the probability
 that no more than three of the 100 flows will be involved in any
 given collision is 99.99%. These probabilities assume a hypothetical
 perfect hashing function, so in practice, they may be a bit lower.
 We have not found this difference to matter in practice.

 These probabilities can be improved upon by using set-associative
 hashing, a technique used in the Cake algorithm currently being
 developed as a further refinement of the FQ-CoDel principles [CAKE].
 For a 4-way associative hash with the same number of total queues,
 the probability of no collisions for 100 flows is 99.93%, while for
 an 8-way associative hash, it is ˜100%.

Hoeiland-Joergensen, et al. Experimental [Page 14]

RFC 8290 FQ-CoDel January 2018

5.4. Memory Overhead

 FQ-CoDel can be implemented with a low memory footprint (less than 64
 bytes per queue on 64-bit systems). These are the data structures
 used in the Linux implementation:

 <CODE BEGINS>

 struct codel_vars {
 u32 count; /* number of dropped packets */
 u32 lastcount; /* count entry to dropping state */
 bool dropping; /* currently dropping? */
 u16 rec_inv_sqrt; /* reciprocal sqrt computation */
 codel_time_t first_above_time; /* when delay above target */
 codel_time_t drop_next; /* next time to drop */
 codel_time_t ldelay; /* sojourn time of last dequeued packet */
 };

 struct fq_codel_flow {
 struct sk_buff *head;
 struct sk_buff *tail;
 struct list_head flowchain;
 int credits; /* current number of queue credits */
 u32 dropped; /* # of drops (or ECN marks) on flow */
 struct codel_vars cvars;
 };

 <CODE ENDS>

Hoeiland-Joergensen, et al. Experimental [Page 15]

RFC 8290 FQ-CoDel January 2018

 The master table managing all queues looks like this:

 <CODE BEGINS>

 struct fq_codel_sched_data {
 struct tcf_proto *filter_list; /* optional external classifier */
 struct fq_codel_flow *flows; /* Flows table [flows_cnt] */
 u32 *backlogs; /* backlog table [flows_cnt] */
 u32 flows_cnt; /* number of flows */
 u32 perturbation; /* hash perturbation */
 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
 struct codel_params cparams;
 struct codel_stats cstats;
 u32 drop_overlimit;
 u32 new_flow_count;

 struct list_head new_flows; /* list of new flows */
 struct list_head old_flows; /* list of old flows */
 };

 <CODE ENDS>

5.5. Per-Packet Timestamping

 The CoDel portion of the algorithm requires per-packet timestamps be
 stored along with the packet. While this approach works well for
 software-based routers, it may be impossible to retrofit devices that
 do most of their processing in silicon and lack the space or
 mechanism for timestamping.

 Also, while perfect resolution is not needed, timestamp resolution
 finer than the CoDel target setting is necessary. Furthermore,
 timestamping functions in the core OS need to be efficient, as they
 are called at least once on each packet enqueue and dequeue.

5.6. Limiting Queueing in Lower Layers

 When deploying a queue management algorithm such as FQ-CoDel, it is
 important to ensure that the algorithm actually runs in the right
 place to control the queue. In particular, lower layers of the
 operating system networking stack can have queues of their own, as
 can device drivers and hardware. Thus, it is desirable that the
 queue management algorithm runs as close to the hardware as possible.
 However, scheduling such complexity at interrupt time is difficult,
 so a small standing queue between the algorithm and the wire is often
 needed at higher transmit rates.

Hoeiland-Joergensen, et al. Experimental [Page 16]

RFC 8290 FQ-CoDel January 2018

 In Linux, the mechanism to ensure these different needs are balanced
 is called "Byte Queue Limits" [BQL]; it controls the device driver
 ring buffer (for physical line rates). For cases where this
 functionality is not available, the queue can be controlled by means
 of a software rate limiter such as Hierarchical Token Bucket [HTB] or
 Hierarchical Fair-Service Curve [HFSC]. The Cake algorithm [CAKE]
 integrates a software rate limiter for this purpose.

 Other issues with queues at lower layers are described in [CODEL].

5.7. Other Forms of Fair Queueing

 Much of the scheduling portion of FQ-CoDel is derived from DRR and is
 substantially similar to DRR++. Versions based on Stochastic Fair
 Queueing [SFQ] have also been produced and tested in ns2. Other
 forms of fair queueing, such as Weighted Fair Queueing [WFQ] or Quick
 Fair Queueing [QFQ], have not been thoroughly explored, but there’s
 no a priori reason why the round-robin scheduling of FQ-CoDel
 couldn’t be replaced with something else.

 For a comprehensive discussion of fairness queueing algorithms and
 their combination with AQM, see [RFC7806].

5.8. Differences between CoDel and FQ-CoDel Behaviour

 CoDel can be applied to a single queue system as a straight AQM,
 where it converges towards an "ideal" drop rate (i.e., one that
 minimises delay while keeping a high link utilisation) and then
 optimises around that control point.

 The scheduling of FQ-CoDel mixes packets of competing flows, which
 acts to pace bursty flows to better fill the pipe. Additionally, a
 new flow gets substantial leeway over other flows until CoDel finds
 an ideal drop rate for it. However, for a new flow that exceeds the
 configured quantum, more time passes before all of its data is
 delivered (as packets from it, too, are mixed across the other
 existing queue-building flows). Thus, FQ-CoDel takes longer (as
 measured in time) to converge towards an ideal drop rate for a given
 new flow but does so within fewer delivered _packets_ from that flow.

 Finally, the flow isolation provided by FQ-CoDel means that the CoDel
 drop mechanism operates on the flows actually building queues; this
 results in packets being dropped more accurately from the largest
 flows than when only CoDel is used. Additionally, flow isolation
 radically improves the transient behaviour of the network when
 traffic or link characteristics change (e.g., when new flows start up
 or the link bandwidth changes); while CoDel itself can take a while
 to respond, FQ-CoDel reacts almost immediately.

Hoeiland-Joergensen, et al. Experimental [Page 17]

RFC 8290 FQ-CoDel January 2018

6. Limitations of Flow Queueing

 While FQ-CoDel has been shown in many scenarios to offer significant
 performance gains compared to alternative queue management
 strategies, there are some scenarios where the scheduling algorithm
 in particular is not a good fit. This section documents some of the
 known cases in which either the default behaviour may require
 tweaking or alternatives to flow queueing should be considered.

6.1. Fairness between Things Other Than Flows

 In some parts of the network, enforcing flow-level fairness may not
 be desirable, or some other form of fairness may be more important.
 Some examples of this include an ISP that may be more interested in
 ensuring fairness between customers than between flows or a hosting
 or transit provider that wishes to ensure fairness between connecting
 Autonomous Systems or networks. Another issue can be that the number
 of simultaneous flows experienced at a particular link can be too
 high for flow-based fairness queueing to be effective.

 Whatever the reason, in a scenario where fairness between flows is
 not desirable, reconfiguring FQ-CoDel to match on a different
 characteristic can be a way forward. The implementation in Linux can
 leverage the packet matching mechanism of the "tc" subsystem to use
 any available packet field to partition packets into virtual queues,
 for instance, to match on address or subnet source/destination pairs,
 application-layer characteristics, etc.

 Furthermore, as commonly deployed today, FQ-CoDel is used with three
 or more tiers of service classification, based on Diffserv markings:
 priority, best effort, and background. Some products do more
 detailed classification, including deep packet inspection and
 destination-specific filters to achieve their desired result.

6.2. Flow Bunching by Opaque Encapsulation

 Where possible, FQ-CoDel will attempt to decapsulate packets before
 matching on the header fields for the flow hashing. However, for
 some encapsulation techniques, most notably encrypted VPNs, this is
 not possible. If several flows are bunched into one such
 encapsulated tunnel, they will be seen as one flow by the FQ-CoDel
 algorithm. This means that they will share a queue and drop
 behaviour, so flows inside the encapsulation will not benefit from
 the implicit prioritisation of FQ-CoDel but will continue to benefit
 from the reduced overall queue length from the CoDel algorithm
 operating on the queue. In addition, when such an encapsulated bunch

Hoeiland-Joergensen, et al. Experimental [Page 18]

RFC 8290 FQ-CoDel January 2018

 competes against other flows, it will count as one flow and not
 assigned a share of the bandwidth based on how many flows are inside
 the encapsulation.

 Depending on the application, this may or may not be desirable
 behaviour. In cases where it is not, changing FQ-CoDel’s matching to
 not be flow-based (as detailed in the previous subsection above) can
 be a mitigation. Going forward, having some mechanism for opaque
 encapsulations to express to the outer layer which flow a packet
 belongs to could be a way to mitigate this. Naturally, care needs to
 be taken when designing such a mechanism to ensure no new privacy and
 security issues are raised by exposing information from inside the
 encapsulation to the outside world. Keeping the extra information
 out of band and dropping it before it hits the network could be one
 way to achieve this.

6.3. Low-Priority Congestion Control Algorithms

 In the presence of queue management schemes that limit latency under
 load, low-priority congestion control algorithms such as Low Extra
 Delay Background Transport (LEDBAT) [RFC6817] (or, in general,
 algorithms that try to voluntarily use up less than their fair share
 of bandwidth) experience little added latency when the link is
 congested. Thus, they lack the signal to back off that added latency
 previously afforded them. This effect is seen with FQ-CoDel as well
 as with any effective AQM [GONG2014].

 As such, these delay-based algorithms tend to revert to loss-based
 congestion control and will consume the fair share of bandwidth
 afforded to them by the FQ-CoDel scheduler. However, low-priority
 congestion control mechanisms may be able to take steps to continue
 to be low priority, for instance, by taking into account the vastly
 reduced level of delay afforded by an AQM or by using a coupled
 approach to observing the behaviour of multiple flows.

7. Deployment Status and Future Work

 The FQ-CoDel algorithm as described in this document has been shipped
 as part of the Linux kernel since version 3.5 (released on the 21st
 of July, 2012), with the ce_threshold being added in version 4.2.
 The algorithm has seen widespread testing in a variety of contexts
 and is configured as the default queueing discipline in a number of
 mainline Linux distributions (as of this writing, at least OpenWRT,
 Arch Linux, and Fedora). In addition, a BSD implementation is
 available. All data resulting from these trials have shown FQ-CoDel
 to be a massive improvement over the previous default FIFO queue, and
 people are encouraged to turn it on.

Hoeiland-Joergensen, et al. Experimental [Page 19]

RFC 8290 FQ-CoDel January 2018

 Of course, there is always room for improvement, and this document
 has listed some of the known limitations of the algorithm. As such,
 we encourage further research into algorithm refinements and
 addressing of limitations. One such effort has been undertaken by
 the bufferbloat community in the form of the Cake queue management
 scheme [CAKE]. In addition to this, we believe the following
 (non-exhaustive) list of issues to be worthy of further enquiry:

 o Variations on the flow classification mechanism to fit different
 notions of flows. For instance, an ISP might want to deploy per-
 subscriber scheduling, while in other cases, several flows can
 share a 5-tuple, as exemplified by the RTCWEB QoS recommendations
 [WEBRTC-QOS].

 o Interactions between flow queueing and delay-based congestion
 control algorithms and scavenger protocols.

 o Other scheduling mechanisms to replace the DRR portion of the
 algorithm, e.g., QFQ or WFQ.

 o Sensitivity of parameters, most notably, the number of queues and
 the CoDel parameters.

8. Security Considerations

 There are no specific security exposures associated with FQ-CoDel
 that are not also present in current FIFO systems. On the contrary,
 some vulnerabilities of FIFO systems are reduced with FQ-CoDel (e.g.,
 simple minded packet floods). However, some care is needed in the
 implementation to ensure this is the case. These are included in the
 description above, but we reiterate them here:

 o To prevent packets in the new queues from starving old queues, it
 is important that when a queue on the list of new queues empties,
 it is moved to _the end of_ the list of old queues. This is
 described at the end of Section 4.2.

 o To prevent an attacker targeting a specific flow for a denial-of-
 service attack, the hash that maps packets to queues should not be
 predictable. To achieve this, FQ-CoDel salts the hash, as
 described in the beginning of Section 4.1. The size of the salt
 and the strength of the hash function is obviously a trade-off
 between performance and security. The Linux implementation uses a
 32-bit random value as the salt and a Jenkins hash function. This
 makes it possible to achieve high throughput, and we consider it
 sufficient to ward off the most obvious attacks.

Hoeiland-Joergensen, et al. Experimental [Page 20]

RFC 8290 FQ-CoDel January 2018

 o Packet fragments without a Layer 4 header can be hashed into
 different bins than the first fragment with the header intact.
 This can cause reordering and/or adversely affect the performance
 of the flow. Keeping state to match the fragments to the
 beginning of the packet or simply putting all packet fragments
 (including the first fragment of each fragmented packet) into the
 same queue are two ways to alleviate this.

9. IANA Considerations

 This document does not require any IANA actions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7806] Baker, F. and R. Pan, "On Queuing, Marking, and Dropping",
 RFC 7806, DOI 10.17487/RFC7806, April 2016,
 <https://www.rfc-editor.org/info/rfc7806>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8289] Nichols, K., Jacobson, V., McGregor, A., Ed., and J.
 Iyengar, Ed., "Controlled Delay Active Queue Management",
 RFC 8289, DOI 10.17487/RFC8289, January 2018,
 <https://www.rfc-editor.org/info/rfc8289>.

10.2. Informative References

 [BLOAT] Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in
 the Internet", Communications of the ACM, Volume 55, Issue
 1, DOI 10.1145/2063176.2063196, January 2012.

 [BLOATWEB] "Bufferbloat", <https://www.bufferbloat.net>.

 [BQL] Herbert, T., "bql: Byte Queue Limits", August 2011,
 <https://lwn.net/Articles/454378/>.

 [CAKE] "Cake - Common Applications Kept Enhanced",
 <http://www.bufferbloat.net/projects/codel/wiki/Cake>.

Hoeiland-Joergensen, et al. Experimental [Page 21]

RFC 8290 FQ-CoDel January 2018

 [CODEL] Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 ACM Queue, Volume 10, Issue 5,
 DOI 10.1145/2208917.2209336, May 2012,
 <http://queue.acm.org/detail.cfm?id=2209336>.

 [DRR] Shreedhar, M. and G. Varghese, "Efficient Fair Queueing
 Using Deficit Round Robin", IEEE/ACM Transactions on
 Networking, Volume 4, Issue 3, DOI 10.1109/90.502236, June
 1996.

 [DRRPP] MacGregor, M. and W. Shi, "Deficits for Bursty Latency-
 Critical Flows: DRR++", Proceedings of the IEEE
 International Conference on Networks 2000 (ICON 2000),
 DOI 10.1109/ICON.2000.875803, September 2000,
 <http://ieeexplore.ieee.org/xpls/
 abs_all.jsp?arnumber=875803>.

 [GONG2014] Gong, Y., Rossi, D., Testa, C., Valenti, S., and D. Taht,
 "Fighting the bufferbloat: On the coexistence of AQM and
 low priority congestion control", Elsevier Computer
 Networks, Volume 65, DOI 10.1016/j.bjp.2014.01.009, June
 2014, <https://www.sciencedirect.com/science/article/pii/
 S1389128614000188>.

 [HFSC] Stoica, I., Zhang, H., and T. Eugene Ng, "A Hierarchical
 Fair Service Curve Algorithm for Link-Sharing, Real-Time
 and Priority Services", Proceedings of ACM SIGCOMM,
 DOI 10.1145/263105.263175, September 1997,
 <http://conferences.sigcomm.org/sigcomm/1997/papers/
 p011.pdf>.

 [HTB] Wikipedia, "Token Bucket: Variations", October 2017,
 <https://en.wikipedia.org/w/
 index.php?title=Token_bucket&oldid=803574657>.

 [JENKINS] Jenkins, B., "A Hash Function for Hash Table Lookup",
 <http://www.burtleburtle.net/bob/hash/doobs.html>.

 [LINUXSRC] "Linux Kernel Source Tree", <https://git.kernel.org/cgit/l
 inux/kernel/git/torvalds/linux.git/tree/net/sched/
 sch_fq_codel.c>.

 [NS2] "ns-2", December 2014, <http://nsnam.sourceforge.net/wiki/
 index.php?title=Main_Page&oldid=8076>.

 [NS3] "ns-3", February 2016, <https://www.nsnam.org/mediawiki/
 index.php?title=Main_Page&oldid=9883>.

Hoeiland-Joergensen, et al. Experimental [Page 22]

RFC 8290 FQ-CoDel January 2018

 [QFQ] Checconi, F., Rizzo, L., and P. Valente, "QFQ: Efficient
 Packet Scheduling with Tight Guarantees", IEEE/ACM
 Transactions on Networking (TON), Volume 21, Issue 3, pp.
 802-816, DOI 10.1109/TNET.2012.2215881, June 2013,
 <http://dl.acm.org/citation.cfm?id=2525552>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
 RFC 2890, DOI 10.17487/RFC2890, September 2000,
 <https://www.rfc-editor.org/info/rfc2890>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <https://www.rfc-editor.org/info/rfc6817>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [SFQ] McKenney, P., "Stochastic Fairness Queueing", Proceedings
 of IEEE INFOCOM, DOI 10.1109/INFCOM.1990.91316, June 1990,
 <http://perso.telecom-
 paristech.fr/˜bonald/Publications_files/BMO2011.pdf>.

 [SQF] Carofiglio, G. and L. Muscariello, "On the Impact of TCP
 and Per-Flow Scheduling on Internet Performance", IEEE/ACM
 Transactions on Networking, Volume 20, Issue 2,
 DOI 10.1109/TNET.2011.2164553, August 2011.

 [WEBRTC-QOS]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 Packet Markings for WebRTC QoS", Work in Progress,
 draft-ietf-tsvwg-rtcweb-qos-18, August 2016.

Hoeiland-Joergensen, et al. Experimental [Page 23]

RFC 8290 FQ-CoDel January 2018

 [WFQ] Demers, A., Keshav, S., and S. Shenker, "Analysis and
 Simulation of a Fair Queueing Algorithm", ACM SIGCOMM
 Computer Communication Review, Volume 19, Issue 4, pp.
 1-12, DOI 10.1145/75247.75248, September 1989,
 <http://doi.acm.org/10.1145/75247.75248>.

Acknowledgements

 Our deepest thanks to Kathie Nichols, Van Jacobson, and all the
 members of the bufferbloat.net effort for all the help on developing
 and testing the algorithm. In addition, our thanks to Anil Agarwal
 for his help with getting the hash collision probabilities in this
 document right.

Hoeiland-Joergensen, et al. Experimental [Page 24]

RFC 8290 FQ-CoDel January 2018

Authors’ Addresses

 Toke Hoeiland-Joergensen
 Karlstad University
 Dept. of Computer Science
 Karlstad 65188
 Sweden
 Email: toke@toke.dk

 Paul McKenney
 IBM Linux Technology Center
 1385 NW Amberglen Parkway
 Hillsboro, OR 97006
 United States of America
 Email: paulmck@linux.vnet.ibm.com
 URI: http://www2.rdrop.com/˜paulmck/

 Dave Taht
 Teklibre
 2104 W First street
 Apt 2002
 FT Myers, FL 33901
 United States of America
 Email: dave.taht@gmail.com
 URI: http://www.teklibre.com/

 Jim Gettys
 21 Oak Knoll Road
 Carlisle, MA 993
 United States of America
 Email: jg@freedesktop.org
 URI: https://en.wikipedia.org/wiki/Jim_Gettys

 Eric Dumazet
 Google, Inc.
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 United States of America
 Email: edumazet@gmail.com

Hoeiland-Joergensen, et al. Experimental [Page 25]

