
Internet Engineering Task Force (IETF) M. Thomson
Request for Comments: 8291 Mozilla
Category: Standards Track November 2017
ISSN: 2070-1721

 Message Encryption for Web Push

Abstract

 This document describes a message encryption scheme for the Web Push
 protocol. This scheme provides confidentiality and integrity for
 messages sent from an application server to a user agent.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8291.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Standards Track [Page 1]

RFC 8291 Web Push Encryption November 2017

Table of Contents

 1. Introduction ..2
 1.1. Notational Conventions3
 2. Push Message Encryption Overview3
 2.1. Key and Secret Distribution4
 3. Push Message Encryption ...4
 3.1. Diffie-Hellman Key Agreement5
 3.2. Push Message Authentication5
 3.3. Combining Shared and Authentication Secrets5
 3.4. Encryption Summary ...6
 4. Restrictions on Use of "aes128gcm" Content Coding7
 5. Push Message Encryption Example8
 6. IANA Considerations ...8
 7. Security Considerations ...8
 8. References ...10
 8.1. Normative References10
 8.2. Informative References11
 Appendix A. Intermediate Values for Encryption12
 Author’s Address ..13

1. Introduction

 The Web Push protocol [RFC8030] is an intermediated protocol by
 necessity. Messages from an application server are delivered to a
 user agent (UA) via a push service, as shown in Figure 1.

 +-------+ +--------------+ +-------------+
 | UA | | Push Service | | Application |
 +-------+ +--------------+ +-------------+
 | | |
 | Setup | |
 |<====================>| |
 | Provide Subscription |
 |-->|
 | | |
 : : :
 | | Push Message |
 | Push Message |<---------------------|
 |<---------------------| |
 | | |

 Figure 1

 This document describes how messages sent using this protocol can be
 secured against inspection, modification, and forgery by a push
 service.

Thomson Standards Track [Page 2]

RFC 8291 Web Push Encryption November 2017

 Web Push messages are the payload of an HTTP message [RFC7230].
 These messages are encrypted using an encrypted content encoding
 [RFC8188]. This document describes how this content encoding is
 applied and describes a recommended key management scheme.

 Multiple users of Web Push at the same user agent often share a
 central agent that aggregates push functionality. This agent can
 enforce the use of this encryption scheme by applications that use
 push messaging. An agent that only delivers messages that are
 properly encrypted strongly encourages the end-to-end protection of
 messages.

 A web browser that implements the Push API [API] can enforce the use
 of encryption by forwarding only those messages that were properly
 encrypted.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology from [RFC8030], primarily "user
 agent", "push service", and "application server".

2. Push Message Encryption Overview

 Encrypting a push message uses Elliptic Curve Diffie-Hellman (ECDH)
 [ECDH] on the P-256 curve [FIPS186] to establish a shared secret (see
 Section 3.1) and a symmetric secret for authentication (see
 Section 3.2).

 A user agent generates an ECDH key pair and authentication secret
 that it associates with each subscription it creates. The ECDH
 public key and the authentication secret are sent to the application
 server with other details of the push subscription.

 When sending a message, an application server generates an ECDH key
 pair and a random salt. The ECDH public key is encoded into the
 "keyid" parameter of the encrypted content coding header, and the
 salt is encoded into the "salt" parameter of that same header (see
 Section 2.1 of [RFC8188]). The ECDH key pair can be discarded after
 encrypting the message.

Thomson Standards Track [Page 3]

RFC 8291 Web Push Encryption November 2017

 The content of the push message is encrypted or decrypted using a
 content encryption key and nonce. These values are derived by taking
 the "keyid" and "salt" as input to the process described in
 Section 3.

2.1. Key and Secret Distribution

 The application using the subscription distributes the subscription
 public key and authentication secret to an authorized application
 server. This could be sent along with other subscription information
 that is provided by the user agent, such as the push subscription
 URI.

 An application MUST use an authenticated, confidentiality-protected
 communications medium for this purpose. In addition to the reasons
 described in [RFC8030], this use ensures that the authentication
 secret is not revealed to unauthorized entities, which would allow
 those entities to generate push messages that will be accepted by the
 user agent.

 Most applications that use push messaging have a preexisting
 relationship with an application server that can be used for
 distribution of subscription data. An authenticated communication
 mechanism that provides adequate confidentiality and integrity
 protection, such as HTTPS [RFC2818], is sufficient.

3. Push Message Encryption

 Push message encryption happens in four phases:

 o A shared secret is derived using ECDH [ECDH] (see Section 3.1 of
 this document).

 o The shared secret is then combined with the authentication secret
 to produce the input keying material (IKM) used in [RFC8188] (see
 Section 3.3 of this document).

 o A content encryption key and nonce are derived using the process
 in [RFC8188].

 o Encryption or decryption follows according to [RFC8188].

 The key derivation process is summarized in Section 3.4.
 Restrictions on the use of the encrypted content coding are described
 in Section 4.

Thomson Standards Track [Page 4]

RFC 8291 Web Push Encryption November 2017

3.1. Diffie-Hellman Key Agreement

 For each new subscription that the user agent generates for an
 application, it also generates a P-256 [FIPS186] key pair for use in
 ECDH [ECDH].

 When sending a push message, the application server also generates a
 new ECDH key pair on the same P-256 curve.

 The ECDH public key for the application server is included as the
 "keyid" parameter in the encrypted content coding header (see
 Section 2.1 of [RFC8188]).

 An application server combines its ECDH private key with the public
 key provided by the user agent using the process described in [ECDH];
 on receipt of the push message, a user agent combines its private key
 with the public key provided by the application server in the "keyid"
 parameter in the same way. These operations produce the same value
 for the ECDH shared secret.

3.2. Push Message Authentication

 To ensure that push messages are correctly authenticated, a symmetric
 authentication secret is added to the information generated by a user
 agent. The authentication secret is mixed into the key derivation
 process described in Section 3.3.

 A user agent MUST generate and provide a hard-to-guess sequence of 16
 octets that is used for authentication of push messages. This SHOULD
 be generated by a cryptographically strong random number generator
 [RFC4086].

3.3. Combining Shared and Authentication Secrets

 The shared secret produced by ECDH is combined with the
 authentication secret using the HMAC-based key derivation function
 (HKDF) [RFC5869]. This produces the input keying material used by
 [RFC8188].

 The HKDF function uses the SHA-256 hash algorithm [FIPS180-4] with
 the following inputs:

 salt: the authentication secret

 IKM: the shared secret derived using ECDH

Thomson Standards Track [Page 5]

RFC 8291 Web Push Encryption November 2017

 info: the concatenation of the ASCII-encoded string "WebPush: info"
 (this string is not NUL-terminated), a zero octet, the user
 agent ECDH public key, and the application server ECDH public
 key, (both ECDH public keys are in the uncompressed point form
 defined in [X9.62]. That is:

 key_info = "WebPush: info" || 0x00 || ua_public || as_public

 L: 32 octets (i.e., the output is the length of the underlying
 SHA-256 HMAC function output)

3.4. Encryption Summary

 This results in a final content encryption key and nonce generation
 using the following sequence, which is shown here in pseudocode with
 HKDF expanded into separate discrete steps using HMAC with SHA-256:

 -- For a user agent:
 ecdh_secret = ECDH(ua_private, as_public)
 auth_secret = random(16)
 salt = <from content coding header>

 -- For an application server:
 ecdh_secret = ECDH(as_private, ua_public)
 auth_secret = <from user agent>
 salt = random(16)

 -- For both:

 ## Use HKDF to combine the ECDH and authentication secrets
 # HKDF-Extract(salt=auth_secret, IKM=ecdh_secret)
 PRK_key = HMAC-SHA-256(auth_secret, ecdh_secret)
 # HKDF-Expand(PRK_key, key_info, L_key=32)
 key_info = "WebPush: info" || 0x00 || ua_public || as_public
 IKM = HMAC-SHA-256(PRK_key, key_info || 0x01)

 ## HKDF calculations from RFC 8188
 # HKDF-Extract(salt, IKM)
 PRK = HMAC-SHA-256(salt, IKM)
 # HKDF-Expand(PRK, cek_info, L_cek=16)
 cek_info = "Content-Encoding: aes128gcm" || 0x00
 CEK = HMAC-SHA-256(PRK, cek_info || 0x01)[0..15]
 # HKDF-Expand(PRK, nonce_info, L_nonce=12)
 nonce_info = "Content-Encoding: nonce" || 0x00
 NONCE = HMAC-SHA-256(PRK, nonce_info || 0x01)[0..11]

Thomson Standards Track [Page 6]

RFC 8291 Web Push Encryption November 2017

 Note that this omits the exclusive-OR of the final nonce with the
 record sequence number, since push messages contain only a single
 record (see Section 4) and the sequence number of the first record is
 zero.

4. Restrictions on Use of "aes128gcm" Content Coding

 An application server MUST encrypt a push message with a single
 record. This allows for a minimal receiver implementation that
 handles a single record. An application server MUST set the "rs"
 parameter in the "aes128gcm" content coding header to a size that is
 greater than the sum of the lengths of the plaintext, the padding
 delimiter (1 octet), any padding, and the authentication tag (16
 octets).

 A push message MUST include the application server ECDH public key in
 the "keyid" parameter of the encrypted content coding header. The
 uncompressed point form defined in [X9.62] (that is, a 65-octet
 sequence that starts with a 0x04 octet) forms the entirety of the
 "keyid". Note that this means that the "keyid" parameter will not be
 valid UTF-8 as recommended in [RFC8188].

 A push service is not required to support more than 4096 octets of
 payload body (see Section 7.2 of [RFC8030]). Absent header (86
 octets), padding (minimum 1 octet), and expansion for
 AEAD_AES_128_GCM (16 octets), this equates to, at most, 3993 octets
 of plaintext.

 An application server MUST NOT use other content encodings for push
 messages. In particular, content encodings that compress could
 result in leaking of push message contents. The Content-Encoding
 header field therefore has exactly one value, which is "aes128gcm".
 Multiple "aes128gcm" values are not permitted.

 A user agent is not required to support multiple records. A user
 agent MAY ignore the "rs" parameter. If a record size is unchecked,
 decryption will fail with high probability for all valid cases. The
 padding delimiter octet MUST be checked; values other than 0x02 MUST
 cause the message to be discarded.

Thomson Standards Track [Page 7]

RFC 8291 Web Push Encryption November 2017

5. Push Message Encryption Example

 The following example shows a push message being sent to a push
 service.

 POST /push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 TTL: 10
 Content-Length: 145
 Content-Encoding: aes128gcm

 DGv6ra1nlYgDCS1FRnbzlwAAEABBBP4z9KsN6nGRTbVYI_c7VJSPQTBtkgcy27ml
 mlMoZIIgDll6e3vCYLocInmYWAmS6TlzAC8wEqKK6PBru3jl7A_yl95bQpu6cVPT
 pK4Mqgkf1CXztLVBSt2Ks3oZwbuwXPXLWyouBWLVWGNWQexSgSxsj_Qulcy4a-fN

 This example shows the ASCII-encoded string, "When I grow up, I want
 to be a watermelon". The content body is shown here with line
 wrapping and URL-safe base64url [RFC4648] encoding to meet
 presentation constraints.

 The keys used are shown below using the uncompressed form [X9.62]
 encoded using base64url.

 Authentication Secret: BTBZMqHH6r4Tts7J_aSIgg
 Receiver:
 private key: q1dXpw3UpT5VOmu_cf_v6ih07Aems3njxI-JWgLcM94
 public key: BCVxsr7N_eNgVRqvHtD0zTZsEc6-VV-JvLexhqUzORcx
 aOzi6-AYWXvTBHm4bjyPjs7Vd8pZGH6SRpkNtoIAiw4
 Sender:
 private key: yfWPiYE-n46HLnH0KqZOF1fJJU3MYrct3AELtAQ-oRw
 public key: BP4z9KsN6nGRTbVYI_c7VJSPQTBtkgcy27mlmlMoZIIg
 Dll6e3vCYLocInmYWAmS6TlzAC8wEqKK6PBru3jl7A8

 Intermediate values for this example are included in Appendix A.

6. IANA Considerations

 This document does not require any IANA actions.

7. Security Considerations

 The privacy and security considerations of [RFC8030] all apply to the
 use of this mechanism.

 The Security Considerations section of [RFC8188] describes the
 limitations of the content encoding. In particular, no HTTP header
 fields are protected by the content encoding scheme. A user agent
 MUST consider HTTP header fields to have come from the push service.

Thomson Standards Track [Page 8]

RFC 8291 Web Push Encryption November 2017

 Though header fields might be necessary for processing an HTTP
 response correctly, they are not needed for correct operation of the
 protocol. An application on the user agent that uses information
 from header fields to alter their processing of a push message is
 exposed to a risk of attack by the push service.

 The timing and length of communication cannot be hidden from the push
 service. While an outside observer might see individual messages
 intermixed with each other, the push service will see which
 application server is talking to which user agent and the
 subscription that is used. Additionally, the length of messages
 could be revealed unless the padding provided by the content encoding
 scheme is used to obscure length.

 The user agent and application MUST verify that the public key they
 receive is on the P-256 curve. Failure to validate a public key can
 allow an attacker to extract a private key. The appropriate
 validation procedures are defined in Section 4.3.7 of [X9.62] and,
 alternatively, in Section 5.6.2.3 of [KEYAGREEMENT]. This process
 consists of three steps:

 1. Verify that Y is not the point at infinity (O),

 2. Verify that for Y = (x, y), both integers are in the correct
 interval,

 3. Ensure that (x, y) is a correct solution to the elliptic curve
 equation.

 For these curves, implementers do not need to verify membership in
 the correct subgroup.

 In the event that this encryption scheme would need to be replaced, a
 new content coding scheme could be defined. In order to manage
 progressive deployment of the new scheme, the user agent can expose
 information on the content coding schemes that it supports. The
 "supportedContentEncodings" parameter of the Push API [API] is an
 example of how this might be done.

Thomson Standards Track [Page 9]

RFC 8291 Web Push Encryption November 2017

8. References

8.1. Normative References

 [ECDH] SECG, "SEC 1: Elliptic Curve Cryptography", Version 2.0,
 May 2009, <http://www.secg.org/>.

 [FIPS180-4]
 National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-4,
 DOI 10.6028/NIST.FIPS.180-4, August 2015.

 [FIPS186] National Institute of Standards and Technology (NIST),
 "Digital Signature Standard (DSS)", FIPS PUB 186-4,
 DOI 10.6028/NIST.FIPS.186-4, July 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC8030] Thomson, M., Damaggio, E., and B. Raymor, Ed., "Generic
 Event Delivery Using HTTP Push", RFC 8030,
 DOI 10.17487/RFC8030, December 2016,
 <https://www.rfc-editor.org/info/rfc8030>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8188] Thomson, M., "Encrypted Content-Encoding for HTTP",
 RFC 8188, DOI 10.17487/RFC8188, June 2017,
 <https://www.rfc-editor.org/info/rfc8188>.

 [X9.62] ANSI, "Public Key Cryptography for the Financial Services
 Industry: the Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 2005.

Thomson Standards Track [Page 10]

RFC 8291 Web Push Encryption November 2017

8.2. Informative References

 [API] Beverloo, P., Thomson, M., van Ouwerkerk, M., Sullivan,
 B., and E. Fullea, "Push API", October 2017,
 <https://www.w3.org/TR/push-api/>.

 [KEYAGREEMENT]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A, Revision 2,
 DOI 10.6028/NIST.SP.800-56Ar2, May 2013.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

Thomson Standards Track [Page 11]

RFC 8291 Web Push Encryption November 2017

Appendix A. Intermediate Values for Encryption

 The intermediate values calculated for the example in Section 5 are
 shown here. The base64url values in these examples include
 whitespace that can be removed.

 The following are inputs to the calculation:

 Plaintext: V2hlbiBJIGdyb3cgdXAsIEkgd2FudCB0byBiZSBhIHdhdGVybWVsb24

 Application server public key (as_public):
 BP4z9KsN6nGRTbVYI_c7VJSPQTBtkgcy27mlmlMoZIIg
 Dll6e3vCYLocInmYWAmS6TlzAC8wEqKK6PBru3jl7A8

 Application server private key (as_private):
 yfWPiYE-n46HLnH0KqZOF1fJJU3MYrct3AELtAQ-oRw

 User agent public key (ua_public): BCVxsr7N_eNgVRqvHtD0zTZsEc6-VV-
 JvLexhqUzORcx aOzi6-AYWXvTBHm4bjyPjs7Vd8pZGH6SRpkNtoIAiw4

 User agent private key (ua_private):
 q1dXpw3UpT5VOmu_cf_v6ih07Aems3njxI-JWgLcM94

 Salt: DGv6ra1nlYgDCS1FRnbzlw

 Authentication secret (auth_secret): BTBZMqHH6r4Tts7J_aSIgg

 Note that knowledge of just one of the private keys is necessary.
 The application server randomly generates the salt value, whereas
 salt is input to the receiver.

 This produces the following intermediate values:

 Shared ECDH secret (ecdh_secret):
 kyrL1jIIOHEzg3sM2ZWRHDRB62YACZhhSlknJ672kSs

 Pseudorandom key (PRK) for key combining (PRK_key):
 Snr3JMxaHVDXHWJn5wdC52WjpCtd2EIEGBykDcZW32k

 Info for key combining (key_info): V2ViUHVzaDogaW5mbwAEJXGyvs3942BVG
 q8e0PTNNmwR zr5VX4m8t7GGpTM5FzFo7OLr4BhZe9MEebhuPI-OztV3
 ylkYfpJGmQ22ggCLDgT-M_SrDepxkU21WCP3O1SUj0Ew
 bZIHMtu5pZpTKGSCIA5Zent7wmC6HCJ5mFgJkuk5cwAv MBKiiujwa7t45ewP

 Input keying material for content encryption key derivation (IKM):
 S4lYMb_L0FxCeq0WhDx813KgSYqU26kOyzWUdsXYyrg

Thomson Standards Track [Page 12]

RFC 8291 Web Push Encryption November 2017

 PRK for content encryption (PRK):
 09_eUZGrsvxChDCGRCdkLiDXrReGOEVeSCdCcPBSJSc

 Info for content encryption key derivation (cek_info):
 Q29udGVudC1FbmNvZGluZzogYWVzMTI4Z2NtAA

 Content encryption key (CEK): oIhVW04MRdy2XN9CiKLxTg

 Info for content encryption nonce derivation (nonce_info):
 Q29udGVudC1FbmNvZGluZzogbm9uY2UA

 Nonce (NONCE): 4h_95klXJ5E_qnoN

 The salt, record size of 4096, and application server public key
 produce an 86-octet header of:

 DGv6ra1nlYgDCS1FRnbzlwAAEABBBP4z 9KsN6nGRTbVYI_c7VJSPQTBtkgcy27ml
 mlMoZIIgDll6e3vCYLocInmYWAmS6Tlz AC8wEqKK6PBru3jl7A8

 The push message plaintext has the padding delimiter octet (0x02)
 appended to produce:

 V2hlbiBJIGdyb3cgdXAsIEkgd2FudCB0 byBiZSBhIHdhdGVybWVsb24C

 The plaintext is then encrypted with AES-GCM, which emits ciphertext
 of:

 8pfeW0KbunFT06SuDKoJH9Ql87S1QUrd irN6GcG7sFz1y1sqLgVi1VhjVkHsUoEs
 bI_0LpXMuGvnzQ

 The header and ciphertext are concatenated and produce the result
 shown in Section 5.

Author’s Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Standards Track [Page 13]

