Net wor k Wor ki ng Group R Ander son

Request for Comments: 83 A. Harsl em
NI C. 5621 J. Heaf ner
RAND

18 Decenber 1970

LANGUAGE- MACHI NE FOR DATA RECONFI GURATI ON

I ntroducti on

In NWE RFC #80 we mentioned the needs for data reconfiguration al ong
with a conplier/executor version of a Form Machine to performthose
mani pul ati ons.

This note proposes a different approach to the Form Machi ne.
Specifically, we describe a syntax-driven interpreter that operates
on a grammar which is an ordered set of replacenent rules. Follow ng
the interpreter description are sone "real -world" exanples of
required data reconfigurations that nust occur between RAND consol es
and the Renpte Job Systemon the UCLA 360/91. Lastly, we suggest
that the Protocol Manager nentioned in NWE RFC #80 can be sinplified
by using the Form Machi ne and two system forns (specified a priori in
t he code).

Caveat: The Form Machine is not intended to be a general purpose
progranm ng | anguage. Note the absence of declaration statenents,
etc.

THE FORM MACHI NE
I. Forns
A formis an ordered set of rules.
F={Rl, ...,R}

The first rule (Rl) is the rule of highest priority; the last rule
(Rn) is the rule of lowest priority.

The form nmachine gets as input: 1) a list of addresses and | engths
that delimt the input strean(s); 2) a list of addresses and | engths
that delinmt the output area(s); 3) a pointer to a list of form(s);
4) a pointer to the starting position of the input stream and 5) a
pointer to the starting position of the output area. The Form
Machi ne applies a formto the input string emtting an output string
in the output area. The formis applied in the follow ng manner:

Ander son, et. al. [Page 1]

RFC 83 Language Machi ne For Data 18 Decenber 1970

Step 1: Rl is nmade the current rule.
Step 2: The current rule is applied to the input data.

St ep3: a) If the rule fails, the rule of priority one lower is
made current.

b) If the rule succeeds, the rule of highest priority is
made current

c) When the rule of lowest priority fails, the formfails
and application of the formto the input data
term nates

Step 4: Continue at Step 2.

In addition, during Step 2, if the remainder of the input string is
insufficient to satisfy a rule, then that rule fails and parti al
results are not emtted. |If arule fills the output string,
application of the formis term nated.

Rul es
Arule is a replacenent operation of the form
| ef t - hand- si de -> right-hand-side

Both sides of a rule consists of a series of zero or nore _terns_
(see bel ow) separated by commas.

The | eft-hand-side of the rule is applied to the input string at the
current position as a pattern-match operation. |If it exactly
describes the input, 1) the current input position pointer is
advanced over the matched input, 2) the right-hand-side enmits data at
the current position in the output string, and 3) the current output
position pointer is advanced over the enitted data.

Terns

Atermis a variable that describes the input string to be matched or
the output string to be emtted. A termhas three formats.

Ander son, et. al. [Page 2]

RFC 83 Language Machi ne For Data 18 Decenber 1970
Term Format 1

|

| nane (data replication . val ue : I ength)
| type expr essi on expr essi on expr essi on
|
|

Any of the fields may be absent.

The name_ is a synbolic nane of the termin the usual progranm ng

| anguage sense. It is a single, |ower-case al phabetic that is unique
within a rule.

The _data type_ describes the kind of data that the termrepresents.
It is a menber of the set:

{b, O X, A E B}

Data types have the follow ng nmeanings and inplied unit |engths:

Char Meani ng Length
D deci mal nunber 1 bit
(@] octal nunber 3 bits
X hexadeci mal nunber 4 bits
A ASCI | character 8 bits
E EBCDI C char act er 8 bits
B bi nary nunber 1 bit

The _replication expression_is a multiplier of the value expression
A replication expression has the formats.

1) an arithnetic expression of the nenbers of the set:

{v(nanme), L(nanme) , nunerals, programm ng vari abl es}
The v(nanme) is a value operator that generates a numeric val ue of
the naned data type and L(nane) is a |length operator that
generates a nuneric value of the naned string | ength.
The programmi ng variable is described under termformat three.

Arithmetic operators are shown bel ow and have their usua
nmeani ngs.

Ander son, et. al. [Page 3]

RFC 83 Language Machi ne For Data 18 Decenber 1970

or 2) the ternminal '# which nmeans an arbitrary nultiple of the val ue
expr essi on.

The _value expression_is the unit value of a termexpressed in the
format indicated by the data type. The value expression is repeated
according to the replication expression. A value expression has the
fornmat:

1) sane as part 1) of the replication expression where again
v(name) produces a nuneric val ue

or 2) a single nenber of the set
{v(nanme), quoted literal}

where v(nane) produces a data type (E or A) value). (Note that
concatenation is acconplished through nultiple terns.)

The _length expression_is the length of the field containing the
val ue expression as nodified by the replication expression. It has
the sane formats as a replication expression

Thus, the term

X(E(7."F):L(x)) is nanmed x, is of type EBCDI C, has the val ue
" FFFFFFF and is of length 7.

The term

y(A: 8) on the left-hand-side of a rule would be assigned the next
64 bits of input as its value; on the right-hand-side it would
only cause the output pointer to be advanced 64 bit positions
because is has no val ue expression (contents) to generate data in
t he out put area.

Ander son, et. al. [Page 4]

RFC 83 Language Machi ne For Data 18 Decenber 1970

Term Format 2

o m o e m e oo +
The label is a synbolic reference to a previously nanmed termin the
rule. It has the sane value as the term by that nane.

The identity operation belowillustrates the use of the _|abel _
not ati on.

a(A:10) -> (a)

The (a) on the right-hand side causes the terma to be enitted in the
output area. It is equivalent to the rule bel ow

a(A 10) -> (Av(a):L(a))

Term Fornat 3

|

| nane (programing connective operand)
| vari abl e expressi on
|

A progranming variable_ is a user-controlled data itemthat does not
explicitly appear in the input/output streans. |Its value can be
conpared to input data, to constants, and used to generate output
data. Programmi ng variables are single, |ower case G eek synbols.

They are used: to generate indices, counters, etc. in the output

area; to conpare indices, counters, etc. in the input area, and; to
bi nd repl acenent rules where the data is context sensitive (explained
later).

A _connective_is a nenber of the set:
{<-, = 1= >= <= < >}

The left arrow denotes replacenment of the left part by the right
part; the other connectives are conparators.

Ander son, et. al. [Page 5]

RFC 83 Language Machi ne For Data 18 Decenber 1970

The _operand expression_is an arithnetic expression of nenbers of
t he set:

{programm ng variables, v(nane), |(nane), nuneral s}

For exanple, if the progranm ng variable [al pha] has the value 0 and
the rule

a(H al phal:1) -> (a), ([al pha]<-[al pha]l+1), (H alpha]:1)

is applied exhaustively to string of hexadecimal digits
012345

t he out put woul d be the hexadeci mal string
011223344556

Note: the above rule is equivalent to

a(B[al pha]l:4) -> (a), ([al pha]<-[alpha]l+1), (B[alpha]:4)

Restrictions and Interpretations of Term Functions
When a rul e succeeds output will be generated. 1In the rule
a(A#), (A :1)->(EBv(a):74),(E ?:1)

the input string is searched for an arbitrary nunber of ASClIs

followed by a termnal '/'. The ASClls (a) are converted to EBCDI C
ina 74-byte field followed by a ternminal "?'. This brings out three
i ssues:

1. Arbitrary length terns nust be separated by literals since the
data is not type-specific.

2. The # may only be used on the left-hand-side of a rule.

3. A truncation paddi ng schenme is needed.

Ander son, et. al. [Page 6]

RFC 83 Language Machi ne For Data 18 Decenber 1970

The truncation paddi ng schene is as foll ows:
a. Character to Character (types: A E)

Qutput is left-justified with truncation or padding (with
bl anks) on the right.

b. Character to Numeric (A, Eto DL O H B)
c. Numeric to Character (D, O H Bto A E)
d. Nuneric to Nuneric (D, O H, B)
Qutput is right-justified with padding or truncation on the
left. Padding is zeros if output is nuneric.
EXAMPLES OF SOME DATA RECONFI GURATI ONS

The followi ng are exanpl es of replacenent rule types for specifically
needed applications.

Literal Insertion

To insert a literal, separate the |eft-hand-side terns for its
insertion on the right.

a(A 10), b(A 70)->(a), (E LI T :3), (b)

The 80 ASCI|I characters are enmtted in the output area with the
EBCDIC literal LIT inserted after the first 10 ASCI| characters.

Del eti on

Terns on the left are separated so that the right side may omit
unwant ed terms.

(B:7),a(A 10)->(Ev(a):L(a))

Only the 10 ASCI| characters are enmitted (as EBCDIC) in the output
area, the 7 binary digits are discarded

Spacing in the Qutput Buffer
Where a pre-formatted output buffer exists (typically a display

buffer) spacing can be realized by onitting the replication and
val ue functions froma termon the right.

Ander son, et. al. [Page 7]

RFC 83 Language Machi ne For Data 18 Decenber 1970

a(A 74)->(E 6), (Ev(a): 74)
The (E:6) causes 48 bit positions to be skipped over in the output
area, then the 74 ASCI| characters are converted to EBCDI C and
emtted at the current output position

Arbitrary Lengths

Some devi ces/ prograns generate a vari abl e nunber of characters per
line and it is desirable to produce fixed-length records from
t hem

a(A#) -> (Bv(a):74)

The ASCI| characters are truncated or padded as required and
converted to EBCDIC in a 74 character field.

Transposition
Fields to be transposed should be isolated as terns on the |eft.
a(X 2),b(A#)->(Ev(b):L(b)), (a)
String Length Conputation

Some formats require the string length as part of the data stream
This can be acconplished by the | ength function

a(E: 10),b(X FF : 2)->(BL(a)+L(b)+8:8), (Av(a): L(a)), (b)
The length termis enitted first, in a 8 bit field. 1In this case
the length includes the length field as well as the ASC
character field.
Expansi on and Conpressi on of repeated Symnbols
The follow ng rul e packs repeated synbol s.
a(E: 1), b(E#*v(a):L(b)) -> (BL(b)+1:8), (a)

G ven the input string below, three successive applications of the
rule will enmt the output string shown.

I nput: XXXXYYZZZ2z27Z2Z

Qut put: 4X2Y7Z

Ander son, et. al. [Page 8]

RFC 83 Language Machi ne For Data 18 Decenber 1970

APPLI CATI ON OF THE FORM MACH NE TO PROGRAM PROTOCOLS

The Protocol Manager nentioned in NWH RFC #80 needs several
interesting features that are properties of the above Form Machi ne.

In certain instances during a protocol dialog it might be acceptable
to get either an accept on connection A or an allocation on connect
B, that is, the order is sonmetines uninportant. The defined
procedure for applying rules allows for order independence.

A |l ogger mght send us a socket nunber enbedded in a regul ar nessage
-- the socket nunmber is intended to be the first of a contiguous set
of sockets that we can use to establish connections with sone
program W wish to extract the socket nunber field fromthe regul ar
nmessage, perhaps convert it to another format, and add to it to get
the additional socket nanes. As a result of the regular nessage we
wish to emt several INT systemcalls that include the socket
nunbers that we have conputed. The value operator and the arithnetic
operators of the Form Machine can do this.

A third property of the Form Machine that is applicable to protocols
is inter- and intra-rule binding to resolve context sensitive
information. |In general we wish rules to be order independent but in
certain cases we wish to inpose an ordering. Using the logger in
NWE RFC #66 as an exanple, the close that is sent by the | ogger can
have two different neanings dependi ng upon its context. |If the close
is sent before the regular nmessage containing the socket nunber then
it means call refused. |If the regular nessage precedes the close
then the call is accepted. Since the close has contextual neaning,
we nust bind it to the regular nessage to avoid introducing |IF and
THEN i nto the Form Machi ne | anguage.

Assume for a monment that we can express systemcalls in Form Machi ne
notation. (The notation belowis for _illustration only_and is not
part of the Form Machi ne | anguage.) W have two ways to bind the
regul ar message to the close. By intra-rule binding we insist that
the cl ose be preceded by a regul ar nessage.

Reg. Msg , Close ->

Now assune for a nonment that the renote party nust have an echo after
each transm ssion. Since we nust emt an echo after receiving the
regul ar nmessage and before the close is sent, then we nust use
inter-rule binding. This can be acconplished with the programing
variable. It is assigned a value when the regul ar nessage is
received and the value is tested when the close is received.

Reg. Msg -> Echo , ([!anbda]+1)

Ander son, et. al. [Page 9]

RFC 83 Language Machi ne For Data 18 Decenber 1970

O ose, ([lanbda]l=1) ->

To illustrate inter-rule binding via the progranm ng vari able the
connection protocol in NWY RFC #66 coul d be represented by passing
the following formto a protocol manager. (The notation belowis for
_illustration only and is not part of the Form Machi ne | anguage).

1. ->INIT(paraneters) , ([alpha]<-0)
Send an | NI T(RTS).
2. INT(paraneters) -> ALLOCATE(paraneters)

Send an allocate in response to the connection conpletion (an STR
received).

3. Reg. Msg (paraneters) -> ([al pha] <-1)

When the nessages bearing link nunbers is received, set an
internal indicator. (The extraction of the Iink is not
illustrated.)

4. CLOSE(paraneters), ([al pha]=1) ->
I NI T(paraneters), | Nl T(par anet ers)

Wien the close is received following the regular nessage [2] is
checked to see that the regul ar nmessage was received before

est abl i shing the duplex connection. |If the close is received with
no regul ar nessage preceding it (call refused) the formwll fai
(since no rules is satisfied).

This protocol can be handled via a single form containing four
replacenent rules. W have exanmined sinilar representations for nore
conmpl ex protocol sequences. Such protocol sequences, stored by nane,
are an asset to the user; he can request a predefined sequence to be
executed autonatically.

Anderson, et. al. [Page 10]

RFC 83 Language Machi ne For Data 18 Decenber 1970

Two System Forns to Handl e Protocol Statenents

Assume that we have a Protocol Manager that manages protocol
sequences between consol es and the Network. The consol es generate
and accept EBCDI C character strings and the Network transmts binary
digits. The console user has a |language sinilar to systemcalls in
whi ch he can create and store protocol sequences via Protocol
Manager, and at the same time he can indicate which commands are
expected to be sent and which are to be received. Upon conmand the
Prot ocol Manager can execute this sequence with the Network,
generating commands and validating those received. Assune also that
the Protocol Manager displays the dialog for the console user as it
progr esses.

In order to translate between console and Network for generating,
conmparing, and displ ayi ng conmands, the Protocol Manager can use the
Form Machi ne. Two systemforns are needed, see Fig. 1. One is a
consol e-to-Network set of rules containing EBCDIC to binary for all

| egal commands; the other is a nmirror inmage for Network-to-console.

REQUEST

Since | anguage design is not our forte, we would Iike conments from
those with nore experience than we.

Anderson, et. al. [Page 11]

RFC 83 Language Machi ne For Data 18 Decenber 1970

System form

C->N
[T +
| one rule |
| for each |
| Iegal |
| command |
T [- - - - - | <----+
| L + |
Bi nary | | EBCDI C
+---- - - - - - + I I +---- - - - - - +
	<---+ Hoo---	
Network		Consol es
	----+ He-o - >	
[TS +		[TS +
Binary EBCDI C		
System form		
N->C		
oo o		
[>l- - - - -	----- +	
one rule		
for each		
Iegal		
response		
S +
Figure 1 -- Application of System Form for Protocol Managenent

Anderson, et. al. [Page 12]

RFC 83 Language Machi ne For Data 18 Decenber 1970

Distribution List

Al fred Cocanower - MERIT

CGerry Cole - SDC

Les Earnest - Stanford

Bill English - SR

Janmes Forgie - Lincoln Laboratory
Jenni ngs Conmputer Center - Case
Ni co Haberman - Carnegi e- Mel on
Robert Kahn - BB&N

Peggy Karp - M TRE

Benita Kirstel - UCLA

Tom Lawr ence - RADC/ I SIM

Janmes Madden - University of Illinois
CGeorge Mealy - Harvard

Thomas O Sul l'ivan - Rayt heon
Larry Roberts - ARPA

Ron Stoughton - UCSB

Al bert Vezza- MT

Barry Wessler - Utah

[The original docunent included non-ASCI| characters. The G eek
letters Al pha and Lanbda have been spelled out and enclosed in
square brackets "[]". A -curly "I" character

has been replaced by capital L. Left and right arrows have been
replaced by "<-" and "->" respectively. RFC Editor]

[This RFC was put into nachine readable formfor entry]
[into the online RFC archives by Lorrie Shiota, 10/01]

Anderson, et. al. [Page 13]

