
Internet Engineering Task Force (IETF) M. Welzl
Request for Comments: 8303 University of Oslo
Category: Informational M. Tuexen
ISSN: 2070-1721 Muenster Univ. of Appl. Sciences
 N. Khademi
 University of Oslo
 February 2018

 On the Usage of Transport Features
 Provided by IETF Transport Protocols

Abstract

 This document describes how the transport protocols Transmission
 Control Protocol (TCP), MultiPath TCP (MPTCP), Stream Control
 Transmission Protocol (SCTP), User Datagram Protocol (UDP), and
 Lightweight User Datagram Protocol (UDP-Lite) expose services to
 applications and how an application can configure and use the
 features that make up these services. It also discusses the service
 provided by the Low Extra Delay Background Transport (LEDBAT)
 congestion control mechanism. The description results in a set of
 transport abstractions that can be exported in a transport services
 (TAPS) API.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8303.

Welzl, et al. Informational [Page 1]

RFC 8303 Transport Services February 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Terminology ...5
 3. Pass 1 ..6
 3.1. Primitives Provided by TCP6
 3.1.1. Excluded Primitives or Parameters9
 3.2. Primitives Provided by MPTCP10
 3.3. Primitives Provided by SCTP11
 3.3.1. Excluded Primitives or Parameters18
 3.4. Primitives Provided by UDP and UDP-Lite18
 3.5. The Service of LEDBAT19
 4. Pass 2 ...20
 4.1. CONNECTION-Related Primitives21
 4.2. DATA-Transfer-Related Primitives38
 5. Pass 3 ...41
 5.1. CONNECTION-Related Transport Features41
 5.2. DATA-Transfer-Related Transport Features47
 5.2.1. Sending Data47
 5.2.2. Receiving Data48
 5.2.3. Errors ...49
 6. IANA Considerations ..49
 7. Security Considerations ..49
 8. References ...50
 8.1. Normative References50
 8.2. Informative References52
 Appendix A. Overview of RFCs Used as Input for Pass 154
 Appendix B. How This Document Was Developed54
 Acknowledgements ..56
 Authors’ Addresses ..56

Welzl, et al. Informational [Page 2]

RFC 8303 Transport Services February 2018

1. Introduction

 This specification describes how transport protocols offer transport
 services, such that applications using them are no longer directly
 tied to a specific protocol. Breaking this strict connection can
 reduce the effort for an application programmer, yet attain greater
 transport flexibility by pushing complexity into an underlying
 transport services (TAPS) system.

 This design process has started with a survey of the services
 provided by IETF transport protocols and congestion control
 mechanisms [RFC8095]. The present document and [RFC8304] complement
 this survey with an in-depth look at the defined interactions between
 applications and the following unicast transport protocols:
 Transmission Control Protocol (TCP), MultiPath TCP (MPTCP), Stream
 Control Transmission Protocol (SCTP), User Datagram Protocol (UDP),
 and Lightweight User Datagram Protocol (UDP-Lite). We also define a
 primitive to enable/disable and configure the Low Extra Delay
 Background Transport (LEDBAT) unicast congestion control mechanism.
 For UDP and UDP-Lite, the first step of the protocol analysis -- a
 discussion of relevant RFC text -- is documented in [RFC8304].

 This snapshot in time of the IETF transport protocols is published as
 an RFC to document the analysis by the authors and the TAPS Working
 Group; this generates a set of transport abstractions that can be
 exported in a TAPS API. It provides the basis for the minimal set of
 transport services that end systems supporting TAPS should implement
 [TAPS-MINSET].

 The list of primitives, events, and transport features in this
 document is strictly based on the parts of protocol specifications
 that describe what the protocol provides to an application using it
 and how the application interacts with it. Transport protocols
 provide communication between processes that operate on network
 endpoints, which means that they allow for multiplexing of
 communication between the same IP addresses, and this multiplexing is
 achieved using port numbers. Port multiplexing is therefore assumed
 to be always provided and not discussed in this document.

 Parts of a protocol that are explicitly stated as optional to
 implement are not covered. Interactions between the application and
 a transport protocol that are not directly related to the operation
 of the protocol are also not covered. For example, there are various
 ways for an application to use socket options to indicate its
 interest in receiving certain notifications [RFC6458]. However, for
 the purpose of identifying primitives, events, and transport
 features, the ability to enable or disable the reception of
 notifications is irrelevant. Similarly, "one-to-many style sockets"

Welzl, et al. Informational [Page 3]

RFC 8303 Transport Services February 2018

 [RFC6458] just affect the application programming style, not how the
 underlying protocol operates, and they are therefore not discussed
 here. The same is true for the ability to obtain the unchanged value
 of a parameter that an application has previously set (e.g., via
 "get" in get/set operations [RFC6458]).

 The document presents a three-pass process to arrive at a list of
 transport features. In the first pass (pass 1), the relevant RFC
 text is discussed per protocol. In the second pass (pass 2), this
 discussion is used to derive a list of primitives and events that are
 uniformly categorized across protocols. Here, an attempt is made to
 present or -- where text describing primitives or events does not yet
 exist -- construct primitives or events in a slightly generalized
 form to highlight similarities. This is, for example, achieved by
 renaming primitives or events of protocols or by avoiding a strict
 1:1 mapping between the primitives or events in the protocol
 specification and primitives or events in the list. Finally, the
 third pass (pass 3) presents transport features based on pass 2,
 identifying which protocols implement them.

 In the list resulting from the second pass, some transport features
 are missing because they are implicit in some protocols, and they
 only become explicit when we consider the superset of all transport
 features offered by all protocols. For example, TCP always carries
 out congestion control; we have to consider it together with a
 protocol like UDP (which does not have congestion control) before we
 can consider congestion control as a transport feature. The complete
 list of transport features across all protocols is therefore only
 available after pass 3.

 Some protocols are connection oriented. Connection-oriented
 protocols often use an initial call to a specific primitive to open a
 connection before communication can progress and require
 communication to be explicitly terminated by issuing another call to
 a primitive (usually called ’Close’). A "connection" is the common
 state that some transport primitives refer to, e.g., to adjust
 general configuration settings. Connection establishment,
 maintenance, and termination are therefore used to categorize
 transport primitives of connection-oriented transport protocols in
 pass 2 and pass 3. For this purpose, UDP is assumed to be used with
 "connected" sockets, i.e., sockets that are bound to a specific pair
 of addresses and ports [RFC8304].

Welzl, et al. Informational [Page 4]

RFC 8303 Transport Services February 2018

2. Terminology

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 Transport Service: a set of transport features, without an
 association to any given framing protocol, which provides a
 complete service to an application.

 Transport Protocol: an implementation that provides one or more
 transport services using a specific framing and header format on
 the wire.

 Transport Protocol Component: an implementation of a transport
 feature within a protocol.

 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implement a single transport service, e.g., a protocol stack (RTP
 over UDP).

 Application: an entity that uses the transport layer for end-to-end
 delivery of data across the network (this may also be an upper-
 layer protocol or tunnel encapsulation).

 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.

 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.

 Primitive: a function call that is used to locally communicate
 between an application and a transport endpoint. A primitive is
 related to one or more transport features.

 Event: a primitive that is invoked by a transport endpoint.

 Parameter: a value passed between an application and a transport
 protocol by a primitive.

 Socket: the combination of a destination IP address and a
 destination port number.

 Transport Address: the combination of an IP address, transport
 protocol, and the port number used by the transport protocol.

Welzl, et al. Informational [Page 5]

RFC 8303 Transport Services February 2018

3. Pass 1

 This first iteration summarizes the relevant text parts of the RFCs
 describing the protocols, focusing on what each transport protocol
 provides to the application and how it is used (abstract API
 descriptions, where they are available). When presenting primitives,
 events, and parameters, the use of lower- and upper-case characters
 is made uniform for the sake of readability.

3.1. Primitives Provided by TCP

 The initial TCP specification [RFC0793] states:

 The Transmission Control Protocol (TCP) is intended for use as a
 highly reliable host-to-host protocol between hosts in packet-
 switched computer communication networks, and in interconnected
 systems of such networks.

 Section 3.8 of [RFC0793] further specifies the interaction with the
 application by listing several transport primitives. It is also
 assumed that an Operating System provides a means for TCP to
 asynchronously signal the application; the primitives representing
 such signals are called ’events’ in this section. This section
 describes the relevant primitives.

 Open: This is either active or passive, to initiate a connection or
 listen for incoming connections. All other primitives are
 associated with a specific connection, which is assumed to first
 have been opened. An active open call contains a socket. A
 passive open call with a socket waits for a particular connection;
 alternatively, a passive open call can leave the socket
 unspecified to accept any incoming connection. A fully specified
 passive call can later be made active by calling ’Send’.
 Optionally, a timeout can be specified, after which TCP will abort
 the connection if data has not been successfully delivered to the
 destination (else a default timeout value is used). A procedure
 for aborting the connection is used to avoid excessive
 retransmissions, and an application is able to control the
 threshold used to determine the condition for aborting; this
 threshold may be measured in time units or as a count of
 retransmission [RFC1122]. This indicates that the timeout could
 also be specified as a count of retransmission.

 Also optional, for multihomed hosts, the local IP address can be
 provided [RFC1122]. If it is not provided, a default choice will
 be made in case of active open calls. A passive open call will
 await incoming connection requests to all local addresses and then
 maintain usage of the local IP address where the incoming

Welzl, et al. Informational [Page 6]

RFC 8303 Transport Services February 2018

 connection request has arrived. Finally, the ’options’ parameter
 allows the application to specify IP options such as Source Route,
 Record Route, or Timestamp [RFC1122]. It is not stated on which
 segments of a connection these options should be applied, but
 probably on all segments, as this is also stated in a
 specification given for the usage of the Source Route IP option
 (Section 4.2.3.8 of [RFC1122]). Source Route is the only non-
 optional IP option in this parameter, allowing an application to
 specify a source route when it actively opens a TCP connection.

 Master Key Tuples (MKTs) for authentication can optionally be
 configured when calling ’Open’ (Section 7.1 of [RFC5925]). When
 authentication is in use, complete TCP segments are authenticated,
 including the TCP IPv4 pseudoheader, TCP header, and TCP data.

 TCP Fast Open (TFO) [RFC7413] allows applications to immediately
 hand over a message from the active open to the passive open side
 of a TCP connection together with the first message establishment
 packet (the SYN). This can be useful for applications that are
 sensitive to TCP’s connection setup delay. [RFC7413] states that
 "TCP implementations MUST NOT use TFO by default, but only use TFO
 if requested explicitly by the application on a per-service-port
 basis." The size of the message sent with TFO cannot be more than
 TCP’s maximum segment size (minus options used in the SYN). For
 the active open side, it is recommended to change or replace the
 connect() call in order to support a user data buffer argument
 [RFC7413]. For the passive open side, the application needs to
 enable the reception of Fast Open requests, e.g., via a new
 TCP_FASTOPEN setsockopt() socket option before listen(). The
 receiving application must be prepared to accept duplicates of the
 TFO message, as the first data written to a socket can be
 delivered more than once to the application on the remote host.

 Send: This is the primitive that an application uses to give the
 local TCP transport endpoint a number of bytes that TCP should
 reliably send to the other side of the connection. The ’urgent’
 flag, if set, states that the data handed over by this send call
 is urgent and this urgency should be indicated to the receiving
 process in case the receiving application has not yet consumed all
 non-urgent data preceding it. An optional timeout parameter can
 be provided that updates the connection’s timeout (see ’Open’).
 Additionally, optional parameters allow the ability to indicate
 the preferred outgoing MKT (current_key) and/or the preferred
 incoming MKT (rnext_key) of a connection (Section 7.1 of
 [RFC5925]).

Welzl, et al. Informational [Page 7]

RFC 8303 Transport Services February 2018

 Receive: This primitive allocates a receiving buffer for a provided
 number of bytes. It returns the number of received bytes provided
 in the buffer when these bytes have been received and written into
 the buffer by TCP. The application is informed of urgent data via
 an ’urgent’ flag: if it is on, there is urgent data; if it is off,
 there is no urgent data or this call to ’Receive’ has returned all
 the urgent data. The application is also informed about the
 current_key and rnext_key information carried in a recently
 received segment via an optional parameter (Section 7.1 of
 [RFC5925]).

 Close: This primitive closes one side of a connection. It is
 semantically equivalent to "I have no more data to send" but does
 not mean "I will not receive any more", as the other side may
 still have data to send. This call reliably delivers any data
 that has already been given to TCP (and if that fails, ’Close’
 becomes ’abort’).

 Abort: This primitive causes all pending ’Send’ and ’Receive’ calls
 to be aborted. A TCP "RESET" message is sent to the TCP endpoint
 on the other side of the connection [RFC0793].

 Close Event: TCP uses this primitive to inform an application that
 the application on the other side has called the ’Close’
 primitive, so the local application can also issue a ’Close’ and
 terminate the connection gracefully. See [RFC0793], Section 3.5.

 Abort Event: When TCP aborts a connection upon receiving a "RESET"
 from the peer, it "advises the user and goes to the CLOSED state."
 See [RFC0793], Section 3.4.

 User Timeout Event: This event is executed when the user timeout
 (Section 3.9 of [RFC0793]) expires (see the definition of ’Open’
 in this section). All queues are flushed, and the application is
 informed that the connection had to be aborted due to user
 timeout.

 Error_Report event: This event informs the application of "soft
 errors" that can be safely ignored [RFC5461], including the
 arrival of an ICMP error message or excessive retransmissions
 (reaching a threshold below the threshold where the connection is
 aborted). See Section 4.2.4.1 of [RFC1122].

 Type-of-Service: Section 4.2.4.2 of the requirements for Internet
 hosts [RFC1122] states that "The application layer MUST be able to
 specify the Type-of-Service (TOS) for segments that are sent on a
 connection." The application should be able to change the TOS
 during the connection lifetime, and the TOS value should be passed

Welzl, et al. Informational [Page 8]

RFC 8303 Transport Services February 2018

 to the IP layer unchanged. Since then, the TOS field has been
 redefined. The Differentiated Services (Diffserv) model [RFC2475]
 [RFC3260] replaces this field in the IP header, assigning the six
 most significant bits to carry the Differentiated Services Code
 Point (DSCP) field [RFC2474].

 Nagle: The Nagle algorithm delays sending data for some time to
 increase the likelihood of sending a full-sized segment
 (Section 4.2.3.4 of [RFC1122]). An application can disable the
 Nagle algorithm for an individual connection.

 User Timeout Option: The User Timeout Option (UTO) [RFC5482] allows
 one end of a TCP connection to advertise its current user timeout
 value so that the other end of the TCP connection can adapt its
 own user timeout accordingly. In addition to the configurable
 value of the user timeout (see ’Send’), there are three per-
 connection state variables that an application can adjust to
 control the operation of the UTO: ’adv_uto’ is the value of the
 UTO advertised to the remote TCP peer (default: system-wide
 default user timeout); ’enabled’ (default false) is a boolean-type
 flag that controls whether the UTO option is enabled for a
 connection. This applies to both sending and receiving.
 ’changeable’ is a boolean-type flag (default true) that controls
 whether the user timeout may be changed based on a UTO option
 received from the other end of the connection. ’changeable’
 becomes false when an application explicitly sets the user timeout
 (see ’Send’).

 Set/Get Authentication Parameters: The preferred outgoing MKT
 (current_key) and/or the preferred incoming MKT (rnext_key) of a
 connection can be configured. Information about current_key and
 rnext_key carried in a recently received segment can be retrieved
 (Section 7.1 of [RFC5925]).

3.1.1. Excluded Primitives or Parameters

 The ’Open’ primitive can be handed optional precedence or security/
 compartment information [RFC0793], but this was not included here
 because it is mostly irrelevant today [RFC7414].

 The ’Status’ primitive was not included because the initial TCP
 specification describes this primitive as "implementation dependent"
 and states that it "could be excluded without adverse effect"
 [RFC0793]. Moreover, while a data block containing specific
 information is described, it is also stated that not all of this
 information may always be available. While [RFC5925] states that
 ’Status’ "SHOULD be augmented to allow the MKTs of a current or
 pending connection to be read (for confirmation)", the same

Welzl, et al. Informational [Page 9]

RFC 8303 Transport Services February 2018

 information is also available via ’Receive’, which, following
 [RFC5925], "MUST be augmented" with that functionality. The ’Send’
 primitive includes an optional ’push’ flag which, if set, requires
 data to be promptly transmitted to the receiver without delay
 [RFC0793]; the ’Receive’ primitive described in can (under some
 conditions) yield the status of the ’push’ flag. Because "push"
 functionality is optional to implement for both the ’Send’ and
 ’Receive’ primitives [RFC1122], this functionality is not included
 here. The requirements for Internet hosts [RFC1122] also introduce
 keep-alives to TCP, but these are optional to implement and hence not
 considered here. The same document also describes that "some TCP
 implementations have included a FLUSH call", indicating that this
 call is also optional to implement; therefore, it is not considered
 here.

3.2. Primitives Provided by MPTCP

 MPTCP is an extension to TCP that allows the use of multiple paths
 for a single data stream. It achieves this by creating different so-
 called TCP subflows for each of the interfaces and scheduling the
 traffic across these TCP subflows. The service provided by MPTCP is
 described as follows in [RFC6182]:

 Multipath TCP MUST follow the same service model as TCP [RFC0793]:
 in-order, reliable, and byte-oriented delivery. Furthermore, a
 Multipath TCP connection SHOULD provide the application with no
 worse throughput or resilience than it would expect from running a
 single TCP connection over any one of its available paths.

 Further, there are some constraints on the API exposed by MPTCP, as
 stated in [RFC6182]:

 A multipath-capable equivalent of TCP MUST retain some level of
 backward compatibility with existing TCP APIs, so that existing
 applications can use the newer transport merely by upgrading the
 operating systems of the end hosts.

 As such, the primitives provided by MPTCP are equivalent to the ones
 provided by TCP. Nevertheless, the MPTCP RFCs [RFC6824] and
 [RFC6897] clarify some parts of TCP’s primitives with respect to
 MPTCP and add some extensions for better control on MPTCP’s subflows.
 Hereafter is a list of the clarifications and extensions the above-
 cited RFCs provide to TCP’s primitives.

Welzl, et al. Informational [Page 10]

RFC 8303 Transport Services February 2018

 Open: "An application should be able to request to turn on or turn
 off the usage of MPTCP" [RFC6897]. This functionality can be
 provided through a socket option called ’tcp_multipath_enable’.
 Further, MPTCP must be disabled in case the application is binding
 to a specific address [RFC6897].

 Send/Receive: The sending and receiving of data does not require any
 changes to the application when MPTCP is being used [RFC6824].
 The MPTCP-layer will take one input data stream from an
 application, and split it into one or more subflows, with
 sufficient control information to allow it to be reassembled and
 delivered reliably and in order to the recipient application.

 The use of the Urgent Pointer is special in MPTCP [RFC6824], which
 states: "a TCP subflow MUST NOT use the Urgent Pointer to
 interrupt an existing mapping."

 Address and Subflow Management: MPTCP uses different addresses and
 allows a host to announce these addresses as part of the protocol.
 The MPTCP API Considerations RFC [RFC6897] says "An application
 should be able to restrict MPTCP to binding to a given set of
 addresses" and thus allows applications to limit the set of
 addresses that are being used by MPTCP. Further, "An application
 should be able to obtain information on the pairs of addresses
 used by the MPTCP subflows."

3.3. Primitives Provided by SCTP

 TCP has a number of limitations that SCTP removes (Section 1.1 of
 [RFC4960]). The following three removed limitations directly
 translate into transport features that are visible to an application
 using SCTP: 1) it allows for preservation of message delimiters; 2)
 it does not provide in-order or reliable delivery unless the
 application wants that; 3) multihoming is supported. In SCTP,
 connections are called "associations" and they can be between not
 only two (as in TCP) but multiple addresses at each endpoint.

 Section 10 of the SCTP base protocol specification [RFC4960]
 specifies the interaction with the application (which SCTP calls the
 "Upper-Layer Protocol (ULP)"). It is assumed that the Operating
 System provides a means for SCTP to asynchronously signal the
 application; the primitives representing such signals are called
 ’events’ in this section. Here, we describe the relevant primitives.
 In addition to the abstract API described in Section 10 of [RFC4960],
 an extension to the sockets API is described in [RFC6458]. This
 covers the functionality of the base protocol [RFC4960] and some of
 its extensions [RFC3758] [RFC4895] [RFC5061]. For other protocol
 extensions [RFC6525] [RFC6951] [RFC7053] [RFC7496] [RFC7829]

Welzl, et al. Informational [Page 11]

RFC 8303 Transport Services February 2018

 [RFC8260], the corresponding extensions of the sockets API are
 specified in these protocol specifications. The functionality
 exposed to the ULP through all these APIs is considered here.

 The abstract API contains a ’SetProtocolParameters’ primitive that
 allows elements of a parameter list [RFC4960] to be adjusted; it is
 stated that SCTP implementations "may allow ULP to customize some of
 these protocol parameters", indicating that none of the elements of
 this parameter list are mandatory to make ULP configurable. Thus, we
 only consider the parameters in the abstract API that are also
 covered in one of the other RFCs listed above, which leads us to
 exclude the parameters ’RTO.Alpha’, ’RTO.Beta’, and ’HB.Max.Burst’.
 For clarity, we also replace ’SetProtocolParameters’ itself with
 primitives that adjust parameters or groups of parameters that fit
 together.

 Initialize: Initialize creates a local SCTP instance that it binds
 to a set of local addresses (and, if provided, a local port
 number) [RFC4960]. Initialize needs to be called only once per
 set of local addresses. A number of per-association
 initialization parameters can be used when an association is
 created, but before it is connected (via the primitive ’Associate’
 below): the maximum number of inbound streams the application is
 prepared to support, the maximum number of attempts to be made
 when sending the INIT (the first message of association
 establishment), and the maximum retransmission timeout (RTO) value
 to use when attempting an INIT [RFC6458]. At this point, before
 connecting, an application can also enable UDP encapsulation by
 configuring the remote UDP encapsulation port number [RFC6951].

 Associate: This creates an association (the SCTP equivalent of a
 connection) that connects the local SCTP instance and a remote
 SCTP instance. To identify the remote endpoint, it can be given
 one or multiple (using "connectx") sockets (Section 9.9 of
 [RFC6458]). Most primitives are associated with a specific
 association, which is assumed to first have been created.
 Associate can return a list of destination transport addresses so
 that multiple paths can later be used. One of the returned
 sockets will be selected by the local endpoint as the default
 primary path for sending SCTP packets to this peer, but this
 choice can be changed by the application using the list of
 destination addresses. Associate is also given the number of
 outgoing streams to request and optionally returns the number of
 negotiated outgoing streams. An optional parameter of 32 bits,
 the adaptation layer indication, can be provided [RFC5061]. If
 authenticated chunks are used, the chunk types required to be sent
 authenticated by the peer can be provided [RFC4895]. An
 ’SCTP_Cant_Str_Assoc’ notification is used to inform the

Welzl, et al. Informational [Page 12]

RFC 8303 Transport Services February 2018

 application of a failure to create an association [RFC6458]. An
 application could use sendto() or sendmsg() to implicitly set up
 an association, thereby handing over a message that SCTP might
 send during the association setup phase [RFC6458]. Note that this
 mechanism is different from TCP’s TFO mechanism: the message would
 arrive only once, after at least one RTT, as it is sent together
 with the third message exchanged during association setup, the
 COOKIE-ECHO chunk).

 Send: This sends a message of a certain length in bytes over an
 association. A number can be provided to later refer to the
 correct message when reporting an error, and a stream id is
 provided to specify the stream to be used inside an association
 (we consider this as a mandatory parameter here for simplicity: if
 not provided, the stream id defaults to 0). A condition to
 abandon the message can be specified (for example limiting the
 number of retransmissions or the lifetime of the user message).
 This allows control of the partial reliability extension [RFC3758]
 [RFC7496]. An optional maximum lifetime can specify the time
 after which the message should be discarded rather than sent. A
 choice (advisory, i.e., not guaranteed) of the preferred path can
 be made by providing a socket, and the message can be delivered
 out-of-order if the ’unordered’ flag is set. An advisory flag
 indicates that the peer should not delay the acknowledgement of
 the user message provided [RFC7053]. Another advisory flag
 indicates whether the application prefers to avoid bundling user
 data with other outbound DATA chunks (i.e., in the same packet).
 A payload protocol-id can be provided to pass a value that
 indicates the type of payload protocol data to the peer. If
 authenticated chunks are used, the key identifier for
 authenticating DATA chunks can be provided [RFC4895].

 Receive: Messages are received from an association, and optionally a
 stream within the association, with their size returned. The
 application is notified of the availability of data via a ’Data
 Arrive’ notification. If the sender has included a payload
 protocol-id, this value is also returned. If the received message
 is only a partial delivery of a whole message, a ’partial’ flag
 will indicate so, in which case the stream id and a stream
 sequence number are provided to the application.

 Shutdown: This primitive gracefully closes an association, reliably
 delivering any data that has already been handed over to SCTP. A
 parameter lets the application control whether further receive or
 send operations or both are disabled when the call is issued. A
 return code informs about success or failure of this procedure.

Welzl, et al. Informational [Page 13]

RFC 8303 Transport Services February 2018

 Abort: This ungracefully closes an association, by discarding any
 locally queued data and informing the peer that the association
 was aborted. Optionally, an abort reason to be passed to the peer
 may be provided by the application. A return code informs about
 success or failure of this procedure.

 Change Heartbeat / Request Heartbeat: This allows the application to
 enable/disable heartbeats and optionally specify a heartbeat
 frequency as well as requesting a single heartbeat to be carried
 out upon a function call, with a notification about success or
 failure of transmitting the HEARTBEAT chunk to the destination.

 Configure Max. Retransmissions of an Association: The parameter
 ’Association.Max.Retrans’ [RFC4960] (called "sasoc_maxrxt" in the
 SCTP sockets API extensions [RFC6458]) allows the configuration of
 the number of unsuccessful retransmissions after which an entire
 association is considered as failed; this should invoke a
 ’Communication Lost’ notification.

 Set Primary: This allows the ability to set a new primary default
 path for an association by providing a socket. Optionally, a
 default source address to be used in IP datagrams can be provided.

 Change Local Address / Set Peer Primary: This allows an endpoint to
 add/remove local addresses to/from an association. In addition,
 the peer can be given a hint for which address to use as the
 primary address [RFC5061].

 Configure Path Switchover: The abstract API contains a primitive
 called ’Set Failure Threshold’ [RFC4960]. This configures the
 parameter ’Path.Max.Retrans’, which determines after how many
 retransmissions a particular transport address is considered as
 unreachable. If there are more transport addresses available in
 an association, reaching this limit will invoke a path switchover.
 An extension called "SCTP-PF" adds a concept of "Potentially
 Failed (PF)" paths to this method [RFC7829]. When a path is in PF
 state, SCTP will not entirely give up sending on that path, but it
 will preferably send data on other active paths if such paths are
 available. Entering the PF state is done upon exceeding a
 configured maximum number of retransmissions. Thus, for all paths
 where this mechanism is used, there are two configurable error
 thresholds: one to decide that a path is in PF state, and one to
 decide that the transport address is unreachable.

 Set/Get Authentication Parameters: This allows an endpoint to add/
 remove key material to/from an association. In addition, the
 chunk types being authenticated can be queried [RFC4895].

Welzl, et al. Informational [Page 14]

RFC 8303 Transport Services February 2018

 Add/Reset Streams, Reset Association: This allows an endpoint to add
 streams to an existing association or to reset them individually.
 Additionally, the association can be reset [RFC6525].

 Status: The ’Status’ primitive returns a data block with information
 about a specified association, containing: an association
 connection state; a destination transport address list;
 destination transport address reachability states; current local
 and peer receiver window sizes; current local congestion window
 sizes; number of unacknowledged DATA chunks; number of DATA chunks
 pending receipt; a primary path; the most recent Smoothed Round-
 Trip Time (SRTT) on a primary path; RTO on a primary path; SRTT
 and RTO on other destination addresses [RFC4960]; and an MTU per
 path [RFC6458].

 Enable/Disable Interleaving: This allows the negotiation of user
 message interleaving support for future associations to be enabled
 or disabled. For existing associations, it is possible to query
 whether user message interleaving support was negotiated or not on
 a particular association [RFC8260].

 Set Stream Scheduler: This allows the ability to select a stream
 scheduler per association, with a choice of: First-Come, First-
 Served; Round-Robin; Round-Robin per Packet; Priority-Based; Fair
 Bandwidth; and Weighted Fair Queuing [RFC8260].

 Configure Stream Scheduler: This allows the ability to change a
 parameter per stream for the schedulers: a priority value for the
 Priority-Based scheduler and a weight for the Weighted Fair
 Queuing scheduler.

 Enable/Disable NoDelay: This turns on/off any Nagle-like algorithm
 for an association [RFC6458].

 Configure Send Buffer Size: This controls the amount of data SCTP
 may have waiting in internal buffers to be sent or retransmitted
 [RFC6458].

 Configure Receive Buffer Size: This sets the receive buffer size in
 octets, thereby controlling the receiver window for an association
 [RFC6458].

 Configure Message Fragmentation: If a user message causes an SCTP
 packet to exceed the maximum fragmentation size (which can be
 provided by the application and is otherwise the Path MTU (PMTU)
 size), then the message will be fragmented by SCTP. Disabling
 message fragmentation will produce an error instead of fragmenting
 the message [RFC6458].

Welzl, et al. Informational [Page 15]

RFC 8303 Transport Services February 2018

 Configure Path MTU Discovery: Path MTU Discovery (PMTUD) can be
 enabled or disabled per peer address of an association
 (Section 8.1.12 of [RFC6458]). When it is enabled, the current
 Path MTU value can be obtained. When it is disabled, the Path MTU
 to be used can be controlled by the application.

 Configure Delayed SACK Timer: The time before sending a SACK can be
 adjusted; delaying SACKs can be disabled; and the number of
 packets that must be received before a SACK is sent without
 waiting for the delay timer to expire can be configured [RFC6458].

 Set Cookie Life Value: The cookie life value can be adjusted
 (Section 8.1.2 of [RFC6458]). ’Valid.Cookie.Life’ is also one of
 the parameters that is potentially adjustable with
 ’SetProtocolParameters’ [RFC4960].

 Set Maximum Burst: The maximum burst of packets that can be emitted
 by a particular association (default 4, and values above 4 are
 optional to implement) can be adjusted (Section 8.1.2 of
 [RFC6458]). ’Max.Burst’ is also one of the parameters that is
 potentially adjustable with ’SetProtocolParameters’ [RFC4960].

 Configure RTO Calculation: The abstract API contains the following
 adjustable parameters: ’RTO.Initial’; ’RTO.Min’; ’RTO.Max’;
 ’RTO.Alpha’; and ’RTO.Beta’. Only the initial, minimum and
 maximum RTOs are also described as configurable in the SCTP
 sockets API extensions [RFC6458].

 Set DSCP Value: The DSCP value can be set per peer address of an
 association (Section 8.1.12 of [RFC6458]).

 Set IPv6 Flow Label: The flow label field can be set per peer
 address of an association (Section 8.1.12 of [RFC6458]).

 Set Partial Delivery Point: This allows the ability to specify the
 size of a message where partial delivery will be invoked. Setting
 this to a lower value will cause partial deliveries to happen more
 often [RFC6458].

 Communication Up Notification: When a lost communication to an
 endpoint is restored or when SCTP becomes ready to send or receive
 user messages, this notification informs the application process
 about the affected association, the type of event that has
 occurred, the complete set of sockets of the peer, the maximum
 number of allowed streams, and the inbound stream count (the
 number of streams the peer endpoint has requested). If
 interleaving is supported by both endpoints, this information is
 also included in this notification.

Welzl, et al. Informational [Page 16]

RFC 8303 Transport Services February 2018

 Restart Notification: When SCTP has detected that the peer has
 restarted, this notification is passed to the upper layer
 [RFC6458].

 Data Arrive Notification: When a message is ready to be retrieved
 via the ’Receive’ primitive, the application is informed by this
 notification.

 Send Failure Notification / Receive Unsent Message / Receive
 Unacknowledged Message: When a message cannot be delivered via an
 association, the sender can be informed about it and learn whether
 the message has just not been acknowledged or (e.g., in case of
 lifetime expiry) if it has not even been sent. This can also
 inform the sender that a part of the message has been successfully
 delivered.

 Network Status Change Notification: This informs the application
 about a socket becoming active/inactive [RFC4960] or "Potentially
 Failed" [RFC7829].

 Communication Lost Notification: When SCTP loses communication to an
 endpoint (e.g., via heartbeats or excessive retransmission) or
 detects an abort, this notification informs the application
 process of the affected association and the type of event (failure
 OR termination in response to a shutdown or abort request).

 Shutdown Complete Notification: When SCTP completes the shutdown
 procedures, this notification is passed to the upper layer,
 informing it about the affected association.

 Authentication Notification: When SCTP wants to notify the upper
 layer regarding the key management related to authenticated chunks
 [RFC4895], this notification is passed to the upper layer.

 Adaptation Layer Indication Notification: When SCTP completes the
 association setup and the peer provided an adaptation layer
 indication, this is passed to the upper layer [RFC5061] [RFC6458].

 Stream Reset Notification: When SCTP completes the procedure for
 resetting streams [RFC6525], this notification is passed to the
 upper layer, informing it about the result.

 Association Reset Notification: When SCTP completes the association
 reset procedure [RFC6525], this notification is passed to the
 upper layer, informing it about the result.

Welzl, et al. Informational [Page 17]

RFC 8303 Transport Services February 2018

 Stream Change Notification: When SCTP completes the procedure used
 to increase the number of streams [RFC6525], this notification is
 passed to the upper layer, informing it about the result.

 Sender Dry Notification: When SCTP has no more user data to send or
 retransmit on a particular association, this notification is
 passed to the upper layer [RFC6458].

 Partial Delivery Aborted Notification: When a receiver has begun to
 receive parts of a user message but the delivery of this message
 is then aborted, this notification is passed to the upper layer
 (Section 6.1.7 of [RFC6458]).

3.3.1. Excluded Primitives or Parameters

 The ’Receive’ primitive can return certain additional information,
 but this is optional to implement and therefore not considered. With
 a ’Communication Lost’ notification, some more information may
 optionally be passed to the application (e.g., identification to
 retrieve unsent and unacknowledged data). SCTP "can invoke" a
 ’Communication Error’ notification and "may send" a ’Restart’
 notification, making these two notifications optional to implement.
 The list provided under ’Status’ includes "etc.", indicating that
 more information could be provided. The primitive ’Get SRTT Report’
 returns information that is included in the information that ’Status’
 provides and is therefore not discussed. The ’Destroy SCTP Instance’
 API function was excluded: it erases the SCTP instance that was
 created by ’Initialize’ but is not a primitive as defined in this
 document because it does not relate to a transport feature. The
 ’Shutdown’ event informs an application that the peer has sent a
 SHUTDOWN, and hence no further data should be sent on this socket
 (Section 6.1 of [RFC6458]). However, if an application would try to
 send data on the socket, it would get an error message anyway; thus,
 this event is classified as "just affecting the application
 programming style, not how the underlying protocol operates" and is
 not included here.

3.4. Primitives Provided by UDP and UDP-Lite

 The set of pass 1 primitives for UDP and UDP-Lite is documented in
 [RFC8304].

Welzl, et al. Informational [Page 18]

RFC 8303 Transport Services February 2018

3.5. The Service of LEDBAT

 The service of the LEDBAT congestion control mechanism is described
 as follows:

 LEDBAT is designed for use by background bulk-transfer
 applications to be no more aggressive than standard TCP congestion
 control (as specified in RFC 5681) and to yield in the presence of
 competing flows, thus limiting interference with the network
 performance of competing flows [RFC6817].

 LEDBAT does not have any primitives, as LEDBAT is not a transport
 protocol. According to its specification [RFC6817]:

 LEDBAT can be used as part of a transport protocol or as part of
 an application, as long as the data transmission mechanisms are
 capable of carrying timestamps and acknowledging data frequently.
 LEDBAT can be used with TCP, Stream Control Transmission Protocol
 (SCTP), and Datagram Congestion Control Protocol (DCCP), with
 appropriate extensions where necessary; and it can be used with
 proprietary application protocols, such as those built on top of
 UDP for peer-to-peer (P2P) applications.

 At the time of writing, the appropriate extensions for TCP, SCTP, or
 DCCP do not exist.

 A number of configurable parameters exist in the LEDBAT
 specification: TARGET, which is the queuing delay target at which
 LEDBAT tries to operate, must be set to 100 ms or less.
 ’allowed_increase’ (should be 1, must be greater than 0) limits the
 speed at which LEDBAT increases its rate. ’gain’, which according to
 [RFC6817] "MUST be set to 1 or less" to avoid a faster ramp-up than
 TCP Reno, determines how quickly the sender responds to changes in
 queueing delay. Implementations may divide ’gain’ into two
 parameters: one for increase and a possibly larger one for decrease.
 We call these parameters ’Gain_Inc’ and ’Gain_Dec’ here.
 ’Base_History’ is the size of the list of measured base delays, and,
 according to [RFC6817], "SHOULD be 10". This list can be filtered
 using a ’Filter’ function, which is not prescribed [RFC6817], that
 yields a list of size ’Current_Filter’. The initial and minimum
 congestion windows, ’Init_CWND’ and ’Min_CWND’, should both be 2.

 Regarding which of these parameters should be under control of an
 application, the possible range goes from exposing nothing on the one
 hand to considering everything that is not prescribed with a "MUST"
 in the specification as a parameter on the other hand. Function
 implementations are not provided as a parameter to any of the
 transport protocols discussed here; hence, we do not regard the

Welzl, et al. Informational [Page 19]

RFC 8303 Transport Services February 2018

 ’Filter’ function as a parameter. However, to avoid unnecessarily
 limiting future implementations, we consider all other parameters
 above as tunable parameters that should be exposed.

4. Pass 2

 This pass categorizes the primitives from pass 1 based on whether
 they relate to a connection or to data transmission. Primitives are
 presented following the nomenclature
 "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL". The CATEGORY can be
 CONNECTION or DATA. Within the CONNECTION category, ESTABLISHMENT,
 AVAILABILITY, MAINTENANCE, and TERMINATION subcategories can be
 considered. The DATA category does not have any SUBCATEGORY. The
 PROTOCOL name "UDP(-Lite)" is used when primitives are equivalent for
 UDP and UDP-Lite; the PROTOCOL name "TCP" refers to both TCP and
 MPTCP. We present "connection" as a general protocol-independent
 concept and use it to refer to, e.g., TCP connections (identifiable
 by a unique pair of IP addresses and TCP port numbers), SCTP
 associations (identifiable by multiple IP address and port number
 pairs), as well UDP and UDP-Lite connections (identifiable by a
 unique socket pair).

 Some minor details are omitted for the sake of generalization --
 e.g., SCTP’s ’Close’ [RFC4960] returns success or failure and lets
 the application control whether further receive or send operations,
 or both, are disabled [RFC6458]. This is not described in the same
 way for TCP [RFC0793], but these details play no significant role for
 the primitives provided by either TCP or SCTP (for the sake of being
 generic, it could be assumed that both receive and send operations
 are disabled in both cases).

 The TCP ’Send’ and ’Receive’ primitives include usage of an ’urgent’
 parameter. This parameter controls a mechanism that is required to
 implement the "synch signal" used by telnet [RFC0854], but [RFC6093]
 states that "new applications SHOULD NOT employ the TCP urgent
 mechanism." Because pass 2 is meant as a basis for the creation of
 future systems, the "urgent" mechanism is excluded. This also
 concerns the notification ’Urgent Pointer Advance’ in the
 ’Error_Report’ (Section 4.2.4.1 of [RFC1122]).

 Since LEDBAT is a congestion control mechanism and not a protocol, it
 is not currently defined when to enable/disable or configure the
 mechanism. For instance, it could be a one-time choice upon
 connection establishment or when listening for incoming connections,
 in which case it should be categorized under CONNECTION.ESTABLISHMENT
 or CONNECTION.AVAILABILITY, respectively. To avoid unnecessarily

Welzl, et al. Informational [Page 20]

RFC 8303 Transport Services February 2018

 limiting future implementations, it was decided to place it under
 CONNECTION.MAINTENANCE, with all parameters that are described in the
 specification [RFC6817] made configurable.

4.1. CONNECTION-Related Primitives

 ESTABLISHMENT:

 Active creation of a connection from one transport endpoint to one or
 more transport endpoints. Interfaces to UDP and UDP-Lite allow both
 connection-oriented and connection-less usage of the API [RFC8085].

 o CONNECT.TCP:

 Pass 1 primitive/event: ’Open’ (active) or ’Open’ (passive) with
 socket, followed by ’Send’

 Parameters: 1 local IP address (optional); 1 destination transport
 address (for active open; else the socket and the local IP address
 of the succeeding incoming connection request will be maintained);
 timeout (optional); options (optional); MKT configuration
 (optional); and user message (optional)

 Comments: if the local IP address is not provided, a default
 choice will automatically be made. The timeout can also be a
 retransmission count. The options are IP options to be used on
 all segments of the connection. At least the Source Route option
 is mandatory for TCP to provide. ’MKT configuration’ refers to
 the ability to configure MKTs for authentication. The user
 message may be transmitted to the peer application immediately
 upon reception of the TCP SYN packet. To benefit from the lower
 latency this provides as part of the experimental TFO mechanism,
 its length must be at most the TCP’s maximum segment size (minus
 TCP options used in the SYN). The message may also be delivered
 more than once to the application on the remote host.

 o CONNECT.SCTP:

 Pass 1 primitive/event: ’Initialize’, followed by ’Enable/Disable
 Interleaving’ (optional), followed by ’Associate’

 Parameters: list of local SCTP port number / IP address pairs
 (’Initialize’); one or several sockets (identifying the peer);
 outbound stream count; maximum allowed inbound stream count;
 adaptation layer indication (optional); chunk types required to be
 authenticated (optional); request interleaving on/off; maximum

Welzl, et al. Informational [Page 21]

RFC 8303 Transport Services February 2018

 number of INIT attempts (optional); maximum init. RTO for INIT
 (optional); user message (optional); and remote UDP port number
 (optional)

 Returns: socket list or failure

 Comments: ’Initialize’ needs to be called only once per list of
 local SCTP port number / IP address pairs. One socket will
 automatically be chosen; it can later be changed in MAINTENANCE.
 The user message may be transmitted to the peer application
 immediately upon reception of the packet containing the
 COOKIE-ECHO chunk. To benefit from the lower latency this
 provides, its length must be limited such that it fits into the
 packet containing the COOKIE-ECHO chunk. If a remote UDP port
 number is provided, SCTP packets will be encapsulated in UDP.

 o CONNECT.MPTCP:

 This is similar to CONNECT.TCP except for one additional boolean
 parameter that allows the ability to enable or disable MPTCP for a
 particular connection or socket (default: enabled).

 o CONNECT.UDP(-Lite):

 Pass 1 primitive/event: ’Connect’ followed by ’Send’

 Parameters: 1 local IP address (default (ANY) or specified); 1
 destination transport address; 1 local port (default (OS chooses)
 or specified); and 1 destination port (default (OS chooses) or
 specified).

 Comments: associates a transport address creating a UDP(-Lite)
 socket connection. This can be called again with a new transport
 address to create a new connection. The CONNECT function allows
 an application to receive errors from messages sent to a transport
 address.

 AVAILABILITY:

 Preparing to receive incoming connection requests.

 o LISTEN.TCP:

 Pass 1 primitive/event: ’Open’ (passive)

 Parameters: 1 local IP address (optional); 1 socket (optional);
 timeout (optional); buffer to receive a user message (optional);
 and MKT configuration (optional)

Welzl, et al. Informational [Page 22]

RFC 8303 Transport Services February 2018

 Comments: if the socket and/or local IP address is provided, this
 waits for incoming connections from only and/or to only the
 provided address. Else this waits for incoming connections
 without this/these constraint(s). ESTABLISHMENT can later be
 performed with ’Send’. If a buffer is provided to receive a user
 message, a user message can be received from a TFO-enabled sender
 before the TCP’s connection handshake is completed. This message
 may arrive multiple times. ’MKT configuration’ refers to the
 ability to configure MKTs for authentication.

 o LISTEN.SCTP:

 Pass 1 primitive/event: ’Initialize’, followed by the
 ’Communication Up’ or ’Restart’ notification and possibly the
 ’Adaptation Layer’ notification

 Parameters: list of local SCTP port number / IP address pairs
 (initialize)

 Returns: socket list; outbound stream count; inbound stream count;
 adaptation layer indication; chunks required to be authenticated;
 and interleaving supported on both sides yes/no

 Comments: ’Initialize’ needs to be called only once per list of
 local SCTP port number / IP address pairs. ’Communication Up’ can
 also follow a ’Communication Lost’ notification, indicating that
 the lost communication is restored. If the peer has provided an
 adaptation layer indication, an ’Adaptation Layer’ notification is
 issued.

 o LISTEN.MPTCP:

 This is similar to LISTEN.TCP except for one additional boolean
 parameter that allows the ability to enable or disable MPTCP for a
 particular connection or socket (default: enabled).

 o LISTEN.UDP(-Lite):

 Pass 1 primitive/event: ’Receive’

 Parameters: 1 local IP address (default (ANY) or specified); 1
 destination transport address; local port (default (OS chooses) or
 specified); and destination port (default (OS chooses) or
 specified)

 Comments: the ’Receive’ function registers the application to
 listen for incoming UDP(-Lite) datagrams at an endpoint.

Welzl, et al. Informational [Page 23]

RFC 8303 Transport Services February 2018

 MAINTENANCE:

 Adjustments made to an open connection, or notifications about it.
 These are out-of-band messages to the protocol that can be issued at
 any time, at least after a connection has been established and before
 it has been terminated (with one exception: CHANGE_TIMEOUT.TCP can
 only be issued for an open connection when DATA.SEND.TCP is called).
 In some cases, these primitives can also be immediately issued during
 ESTABLISHMENT or AVAILABILITY, without waiting for the connection to
 be opened (e.g., CHANGE_TIMEOUT.TCP can be done using TCP’s ’Open’
 primitive). For UDP and UDP-Lite, these functions may establish a
 setting per connection but may also be changed per datagram message.

 o CHANGE_TIMEOUT.TCP:

 Pass 1 primitive/event: ’Open’ or ’Send’ combined with unspecified
 control of per-connection state variables

 Parameters: timeout value (optional); adv_uto (optional); boolean
 uto_enabled (optional, default false); and boolean changeable
 (optional, default true)

 Comments: when sending data, an application can adjust the
 connection’s timeout value (the time after which the connection
 will be aborted if data could not be delivered). If ’uto_enabled’
 is true, the ’timeout value’ (or, if provided, the value
 ’adv_uto’) will be advertised for the TCP on the other side of the
 connection to adapt its own user timeout accordingly.
 ’uto_enabled’ controls whether the UTO option is enabled for a
 connection. This applies to both sending and receiving.
 ’changeable’ controls whether the user timeout may be changed
 based on a UTO option received from the other end of the
 connection; it becomes false when the ’timeout value’ is used.

 o CHANGE_TIMEOUT.SCTP:

 Pass 1 primitive/event: ’Change Heartbeat’ combined with
 ’Configure Max. Retransmissions of an Association’

 Parameters: ’Change Heartbeat’: heartbeat frequency and ’Configure
 Max. Retransmissions of an Association’: Association.Max.Retrans

 Comments: ’Change Heartbeat’ can enable/disable heartbeats in SCTP
 as well as change their frequency. The parameter
 ’Association.Max.Retrans’ defines after how many unsuccessful
 transmissions of any packets (including heartbeats) the

Welzl, et al. Informational [Page 24]

RFC 8303 Transport Services February 2018

 association will be terminated; thus, these two primitives/
 parameters together can yield a similar behavior for SCTP
 associations as CHANGE_TIMEOUT.TCP does for TCP connections.

 o DISABLE_NAGLE.TCP:

 Pass 1 primitive/event: not specified

 Parameters: one boolean value

 Comments: the Nagle algorithm delays data transmission to increase
 the chance of sending a full-sized segment. An application must
 be able to disable this algorithm for a connection.

 o DISABLE_NAGLE.SCTP:

 Pass 1 primitive/event: ’Enable/Disable NoDelay’

 Parameters: one boolean value

 Comments: Nagle-like algorithms delay data transmission to
 increase the chance of sending a full-sized packet.

 o REQUEST_HEARTBEAT.SCTP:

 Pass 1 primitive/event: ’Request Heartbeat’

 Parameters: socket

 Returns: success or failure

 Comments: requests an immediate heartbeat on a path, returning
 success or failure.

 o ADD_PATH.MPTCP:

 Pass 1 primitive/event: not specified

 Parameters: local IP address and optionally the local port number

 Comments: the application specifies the local IP address and port
 number that must be used for a new subflow.

Welzl, et al. Informational [Page 25]

RFC 8303 Transport Services February 2018

 o ADD_PATH.SCTP:

 Pass 1 primitive/event: ’Change Local Address / Set Peer Primary’

 Parameters: local IP address

 o REM_PATH.MPTCP:

 Pass 1 primitive/event: not specified

 Parameters: local IP address; local port number; remote IP
 address; and remote port number

 Comments: the application removes the subflow specified by the IP/
 port-pair. The MPTCP implementation must trigger a removal of the
 subflow that belongs to this IP/port-pair.

 o REM_PATH.SCTP:

 Pass 1 primitive/event: ’Change Local Address / Set Peer Primary’

 Parameters: local IP address

 o SET_PRIMARY.SCTP:

 Pass 1 primitive/event: ’Set Primary’

 Parameters: socket

 Returns: result of attempting this operation

 Comments: update the current primary address to be used, based on
 the set of available sockets of the association.

 o SET_PEER_PRIMARY.SCTP:

 Pass 1 primitive/event: ’Change Local Address / Set Peer Primary’

 Parameters: local IP address

 Comments: this is only advisory for the peer.

Welzl, et al. Informational [Page 26]

RFC 8303 Transport Services February 2018

 o CONFIG_SWITCHOVER.SCTP:

 Pass 1 primitive/event: ’Configure Path Switchover’

 Parameters: primary max retrans (number of retransmissions after
 which a path is considered inactive) and PF max retrans (number of
 retransmissions after which a path is considered to be
 "Potentially Failed", and others will be preferably used)
 (optional)

 o STATUS.SCTP:

 Pass 1 primitive/event: ’Status’, ’Enable/Disable Interleaving’,
 and ’Network Status Change’ notification

 Returns: data block with information about a specified
 association, containing: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window sizes; current
 local congestion window sizes; number of unacknowledged DATA
 chunks; number of DATA chunks pending receipt; primary path; most
 recent SRTT on primary path; RTO on primary path; SRTT and RTO on
 other destination addresses; MTU per path; and interleaving
 supported yes/no

 Comments: the ’Network Status Change’ notification informs the
 application about a socket becoming active/inactive; this only
 affects the programming style, as the same information is also
 available via ’Status’.

 o STATUS.MPTCP:

 Pass 1 primitive/event: not specified

 Returns: list of pairs of tuples of IP address and TCP port number
 of each subflow. The first of the pair is the local IP and port
 number, while the second is the remote IP and port number.

 o SET_DSCP.TCP:

 Pass 1 primitive/event: not specified

 Parameters: DSCP value

 Comments: this allows an application to change the DSCP value for
 outgoing segments.

Welzl, et al. Informational [Page 27]

RFC 8303 Transport Services February 2018

 o SET_DSCP.SCTP:

 Pass 1 primitive/event: ’Set DSCP value’

 Parameters: DSCP value

 Comments: this allows an application to change the DSCP value for
 outgoing packets on a path.

 o SET_DSCP.UDP(-Lite):

 Pass 1 primitive/event: ’Set_DSCP’

 Parameter: DSCP value

 Comments: this allows an application to change the DSCP value for
 outgoing UDP(-Lite) datagrams. [RFC7657] and [RFC8085] provide
 current guidance on using this value with UDP.

 o ERROR.TCP:

 Pass 1 primitive/event: ’Error_Report’

 Returns: reason (encoding not specified) and subreason (encoding
 not specified)

 Comments: soft errors that can be ignored without harm by many
 applications; an application should be able to disable these
 notifications. The reported conditions include at least: ICMP
 error message arrived and excessive retransmissions.

 o ERROR.UDP(-Lite):

 Pass 1 primitive/event: ’Error_Report’

 Returns: Error report

 Comments: this returns soft errors that may be ignored without
 harm by many applications; an application must connect to be able
 receive these notifications.

Welzl, et al. Informational [Page 28]

RFC 8303 Transport Services February 2018

 o SET_AUTH.TCP:

 Pass 1 primitive/event: not specified

 Parameters: current_key and rnext_key

 Comments: current_key and rnext_key are the preferred outgoing MKT
 and the preferred incoming MKT, respectively, for a segment that
 is sent on the connection.

 o SET_AUTH.SCTP:

 Pass 1 primitive/event: ’Set/Get Authentication Parameters’

 Parameters: key_id; key; and hmac_id

 o GET_AUTH.TCP:

 Pass 1 primitive/event: not specified

 Parameters: current_key and rnext_key

 Comments: current_key and rnext_key are the preferred outgoing MKT
 and the preferred incoming MKT, respectively, that were carried on
 a recently received segment.

 o GET_AUTH.SCTP:

 Pass 1 primitive/event: ’Set/Get Authentication Parameters’

 Parameters: key_id and chunk_list

 o RESET_STREAM.SCTP:

 Pass 1 primitive/event: ’Add/Reset Streams, Reset Association’

 Parameters: sid and direction

 o RESET_STREAM-EVENT.SCTP:

 Pass 1 primitive/event: ’Stream Reset’ notification

 Parameters: information about the result of RESET_STREAM.SCTP

 Comments: this is issued when the procedure for resetting streams
 has completed.

Welzl, et al. Informational [Page 29]

RFC 8303 Transport Services February 2018

 o RESET_ASSOC.SCTP:

 Pass 1 primitive/event: ’Add/Reset Streams, Reset Association’

 Parameters: information related to the extension, as defined in
 [RFC3260]

 o RESET_ASSOC-EVENT.SCTP:

 Pass 1 primitive/event: ’Association Reset’ notification

 Parameters: information about the result of RESET_ASSOC.SCTP

 Comments: this is issued when the procedure for resetting an
 association has completed.

 o ADD_STREAM.SCTP:

 Pass 1 primitive/event: ’Add/Reset Streams, Reset Association’

 Parameters: number of outgoing and incoming streams to be added

 o ADD_STREAM-EVENT.SCTP:

 Pass 1 primitive/event: ’Stream Change’ notification

 Parameters: information about the result of ADD_STREAM.SCTP

 Comments: this is issued when the procedure for adding a stream
 has completed.

 o SET_STREAM_SCHEDULER.SCTP:

 Pass 1 primitive/event: ’Set Stream Scheduler’

 Parameters: scheduler identifier

 Comments: choice of First-Come, First-Served; Round-Robin; Round-
 Robin per Packet; Priority-Based; Fair Bandwidth; and Weighted
 Fair Queuing.

Welzl, et al. Informational [Page 30]

RFC 8303 Transport Services February 2018

 o CONFIGURE_STREAM_SCHEDULER.SCTP:

 Pass 1 primitive/event: ’Configure Stream Scheduler’

 Parameters: priority

 Comments: the priority value only applies when Priority-Based or
 Weighted Fair Queuing scheduling is chosen with
 SET_STREAM_SCHEDULER.SCTP. The meaning of the parameter differs
 between these two schedulers, but in both cases, it realizes some
 form of prioritization regarding how bandwidth is divided among
 streams.

 o SET_FLOWLABEL.SCTP:

 Pass 1 primitive/event: ’Set IPv6 Flow Label’

 Parameters: flow label

 Comments: this allows an application to change the IPv6 header’s
 flow label field for outgoing packets on a path.

 o AUTHENTICATION_NOTIFICATION-EVENT.SCTP:

 Pass 1 primitive/event: ’Authentication’ notification

 Returns: information regarding key management

 o CONFIG_SEND_BUFFER.SCTP:

 Pass 1 primitive/event: ’Configure Send Buffer Size’

 Parameters: size value in octets

 o CONFIG_RECEIVE_BUFFER.SCTP:

 Pass 1 primitive/event: ’Configure Receive Buffer Size’

 Parameters: size value in octets

 Comments: this controls the receiver window.

Welzl, et al. Informational [Page 31]

RFC 8303 Transport Services February 2018

 o CONFIG_FRAGMENTATION.SCTP:

 Pass 1 primitive/event: ’Configure Message Fragmentation’

 Parameters: one boolean value (enable/disable) and maximum
 fragmentation size (optional; default: PMTU)

 Comments: if fragmentation is enabled, messages exceeding the
 maximum fragmentation size will be fragmented. If fragmentation
 is disabled, trying to send a message that exceeds the maximum
 fragmentation size will produce an error.

 o CONFIG_PMTUD.SCTP:

 Pass 1 primitive/event: ’Configure Path MTU Discovery’

 Parameters: one boolean value (PMTUD on/off) and PMTU value
 (optional)

 Returns: PMTU value

 Comments: this returns a meaningful PMTU value when PMTUD is
 enabled (the boolean is true), and the PMTU value can be set if
 PMTUD is disabled (the boolean is false).

 o CONFIG_DELAYED_SACK.SCTP:

 Pass 1 primitive/event: ’Configure Delayed SACK Timer’

 Parameters: one boolean value (delayed SACK on/off); timer value
 (optional); and number of packets to wait for (default 2)

 Comments: if delayed SACK is enabled, SCTP will send a SACK either
 upon receiving the provided number of packets or when the timer
 expires, whatever occurs first.

 o CONFIG_RTO.SCTP:

 Pass 1 primitive/event: ’Configure RTO Calculation’

 Parameters: init (optional); min (optional); and max (optional)

 Comments: this adjusts the initial, minimum, and maximum RTO
 values.

Welzl, et al. Informational [Page 32]

RFC 8303 Transport Services February 2018

 o SET_COOKIE_LIFE.SCTP:

 Pass 1 primitive/event: ’Set Cookie Life Value’

 Parameters: cookie life value

 o SET_MAX_BURST.SCTP:

 Pass 1 primitive/event: ’Set Maximum Burst’

 Parameters: max burst value

 Comments: not all implementations allow values above the default
 of 4.

 o SET_PARTIAL_DELIVERY_POINT.SCTP:

 Pass 1 primitive/event: ’Set Partial Delivery Point’

 Parameters: partial delivery point (integer)

 Comments: this parameter must be smaller or equal to the socket
 receive buffer size.

 o SET_CHECKSUM_ENABLED.UDP:

 Pass 1 primitive/event: ’Checksum_Enabled’

 Parameters: 0 when zero checksum is used at sender, 1 for checksum
 at sender (default)

 o SET_CHECKSUM_REQUIRED.UDP:

 Pass 1 primitive/event: ’Require_Checksum’

 Parameter: 0 to allow zero checksum, 1 when a non-zero checksum is
 required (default) at the receiver

 o SET_CHECKSUM_COVERAGE.UDP-Lite:

 Pass 1 primitive/event: ’Set_Checksum_Coverage’

 Parameters: coverage length at sender (default maximum coverage)

Welzl, et al. Informational [Page 33]

RFC 8303 Transport Services February 2018

 o SET_MIN_CHECKSUM_COVERAGE.UDP-Lite:

 Pass 1 primitive/event: ’Set_Min_Coverage’

 Parameter: coverage length at receiver (default minimum coverage)

 o SET_DF.UDP(-Lite):

 Pass 1 primitive event: ’Set_DF’

 Parameter: 0 when DF is not set (default) in the IPv4 header, 1
 when DF is set

 o GET_MMS_S.UDP(-Lite):

 Pass 1 primitive event: ’Get_MM_S’

 Comments: this retrieves the maximum transport-message size that
 may be sent using a non-fragmented IP packet from the configured
 interface.

 o GET_MMS_R.UDP(-Lite):

 Pass 1 primitive event: ’Get_MMS_R’

 Comments: this retrieves the maximum transport-message size that
 may be received from the configured interface.

 o SET_TTL.UDP(-Lite) (IPV6_UNICAST_HOPS):

 Pass 1 primitive/event: ’Set_TTL’ and ’Set_IPV6_Unicast_Hops’

 Parameters: IPv4 TTL value or IPv6 Hop Count value

 Comments: this allows an application to change the IPv4 TTL of
 IPv6 Hop Count value for outgoing UDP(-Lite) datagrams.

 o GET_TTL.UDP(-Lite) (IPV6_UNICAST_HOPS):

 Pass 1 primitive/event: ’Get_TTL’ and ’Get_IPV6_Unicast_Hops’

 Returns: IPv4 TTL value or IPv6 Hop Count value

 Comments: this allows an application to read the IPv4 TTL of the
 IPv6 Hop Count value from a received UDP(-Lite) datagram.

Welzl, et al. Informational [Page 34]

RFC 8303 Transport Services February 2018

 o SET_ECN.UDP(-Lite):

 Pass 1 primitive/event: ’Set_ECN’

 Parameters: ECN value

 Comments: this allows a UDP(-Lite) application to set the Explicit
 Congestion Notification (ECN) code point field for outgoing
 UDP(-Lite) datagrams. It defaults to sending ’00’.

 o GET_ECN.UDP(-Lite):

 Pass 1 primitive/event: ’Get_ECN’

 Parameters: ECN value

 Comments: this allows a UDP(-Lite) application to read the ECN
 code point field from a received UDP(-Lite) datagram.

 o SET_IP_OPTIONS.UDP(-Lite):

 Pass 1 primitive/event: ’Set_IP_Options’

 Parameters: options

 Comments: this allows a UDP(-Lite) application to set IP options
 for outgoing UDP(-Lite) datagrams. These options can at least be
 the Source Route, Record Route, and Timestamp option.

 o GET_IP_OPTIONS.UDP(-Lite):

 Pass 1 primitive/event: ’Get_IP_Options’

 Returns: options

 Comments: this allows a UDP(-Lite) application to receive any IP
 options that are contained in a received UDP(-Lite) datagram.

 o CONFIGURE.LEDBAT:

 Pass 1 primitive/event: N/A

 Parameters: enable (boolean); target; allowed_increase; gain_inc;
 gain_dec; base_history; current_filter; init_cwnd; and min_cwnd

 Comments: ’enable’ is a newly invented parameter that enables or
 disables the whole LEDBAT service.

Welzl, et al. Informational [Page 35]

RFC 8303 Transport Services February 2018

 TERMINATION:

 Gracefully or forcefully closing a connection or being informed about
 this event happening.

 o CLOSE.TCP:

 Pass 1 primitive/event: ’Close’

 Comments: this terminates the sending side of a connection after
 reliably delivering all remaining data.

 o CLOSE.SCTP:

 Pass 1 primitive/event: ’Shutdown’

 Comments: this terminates a connection after reliably delivering
 all remaining data.

 o ABORT.TCP:

 Pass 1 primitive/event: ’Abort’

 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o ABORT.SCTP:

 Pass 1 primitive/event: ’Abort’

 Parameters: abort reason to be given to the peer (optional)

 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o ABORT.UDP(-Lite):

 Pass 1 primitive event: ’Close’

 Comments: this terminates a connection without delivering
 remaining data. No further UDP(-Lite) datagrams are sent/received
 for this transport service instance.

Welzl, et al. Informational [Page 36]

RFC 8303 Transport Services February 2018

 o TIMEOUT.TCP:

 Pass 1 primitive/event: ’User Timeout’ event

 Comments: the application is informed that the connection is
 aborted. This event is executed on expiration of the timeout set
 in CONNECTION.ESTABLISHMENT.CONNECT.TCP (possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE_TIMEOUT.TCP).

 o TIMEOUT.SCTP:

 Pass 1 primitive/event: ’Communication Lost’ event

 Comments: the application is informed that the connection is
 aborted. This event is executed on expiration of the timeout that
 should be enabled by default (see the beginning of Section 8.3 in
 [RFC4960]) and was possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE_TIMEOOUT.SCTP.

 o ABORT-EVENT.TCP:

 Pass 1 primitive/event: not specified

 o ABORT-EVENT.SCTP:

 Pass 1 primitive/event: ’Communication Lost’ event

 Returns: abort reason from the peer (if available)

 Comments: the application is informed that the other side has
 aborted the connection using CONNECTION.TERMINATION.ABORT.SCTP.

 o CLOSE-EVENT.TCP:

 Pass 1 primitive/event: not specified

 o CLOSE-EVENT.SCTP:

 Pass 1 primitive/event: ’Shutdown Complete’ event

 Comments: the application is informed that
 CONNECTION.TERMINATION.CLOSE.SCTP was successfully completed.

Welzl, et al. Informational [Page 37]

RFC 8303 Transport Services February 2018

4.2. DATA-Transfer-Related Primitives

 All primitives in this section refer to an existing connection, i.e.,
 a connection that was either established or made available for
 receiving data (although this is optional for the primitives of
 UDP(-Lite)). In addition to the listed parameters, all sending
 primitives contain a reference to a data block, and all receiving
 primitives contain a reference to available buffer space for the
 data. Note that CONNECT.TCP and LISTEN.TCP in the ESTABLISHMENT and
 AVAILABILITY categories also allow to transfer data (an optional user
 message) before the connection is fully established.

 o SEND.TCP:

 Pass 1 primitive/event: ’Send’

 Parameters: timeout (optional); current_key (optional); and
 rnext_key (optional)

 Comments: this gives TCP a data block for reliable transmission to
 the TCP on the other side of the connection. The timeout can be
 configured with this call (see also
 CONNECTION.MAINTENANCE.CHANGE_TIMEOUT.TCP). ’current_key’ and
 ’rnext_key’ are authentication parameters that can be configured
 with this call (see also CONNECTION.MAINTENANCE.SET_AUTH.TCP).

 o SEND.SCTP:

 Pass 1 primitive/event: ’Send’

 Parameters: stream number; context (optional); socket (optional);
 unordered flag (optional); no-bundle flag (optional); payload
 protocol-id (optional); pr-policy (optional) pr-value (optional);
 sack-immediately flag (optional); and key-id (optional)

 Comments: this gives SCTP a data block for transmission to the
 SCTP on the other side of the connection (SCTP association). The
 ’stream number’ denotes the stream to be used. The ’context’
 number can later be used to refer to the correct message when an
 error is reported. The ’socket’ can be used to state which path
 should be preferred, if there are multiple paths available (see
 also CONNECTION.MAINTENANCE.SETPRIMARY.SCTP). The data block can
 be delivered out of order if the ’unordered’ flag is set. The
 ’no-bundle flag’ can be set to indicate a preference to avoid
 bundling. The ’payload protocol-id’ is a number that will, if
 provided, be handed over to the receiving application. Using
 pr-policy and pr-value, the level of reliability can be
 controlled. The ’sack-immediately’ flag can be used to indicate

Welzl, et al. Informational [Page 38]

RFC 8303 Transport Services February 2018

 that the peer should not delay the sending of a SACK corresponding
 to the provided user message. If specified, the provided key-id
 is used for authenticating the user message.

 o SEND.UDP(-Lite):

 Pass 1 primitive/event: ’Send’

 Parameters: IP address and port number of the destination endpoint
 (optional if connected)

 Comments: this provides a message for unreliable transmission
 using UDP(-Lite) to the specified transport address. The IP
 address and port number may be omitted for connected UDP(-Lite)
 sockets. All CONNECTION.MAINTENANCE.SET_*.UDP(-Lite) primitives
 apply per message sent.

 o RECEIVE.TCP:

 Pass 1 primitive/event: ’Receive’

 Parameters: current_key (optional) and rnext_key (optional)

 Comments: ’current_key’ and ’rnext_key’ are authentication
 parameters that can be read with this call (see also
 CONNECTION.MAINTENANCE.GET_AUTH.TCP).

 o RECEIVE.SCTP:

 Pass 1 primitive/event: ’Data Arrive’ notification, followed by
 ’Receive’

 Parameters: stream number (optional)

 Returns: stream sequence number (optional) and partial flag
 (optional)

 Comments: if the ’stream number’ is provided, the call to receive
 only receives data on one particular stream. If a partial message
 arrives, this is indicated by the ’partial flag’, and then the
 ’stream sequence number’ must be provided such that an application
 can restore the correct order of data blocks that comprise an
 entire message.

Welzl, et al. Informational [Page 39]

RFC 8303 Transport Services February 2018

 o RECEIVE.UDP(-Lite):

 Pass 1 primitive/event: ’Receive’

 Parameters: buffer for received datagram

 Comments: all CONNECTION.MAINTENANCE.GET_*.UDP(-Lite) primitives
 apply per message received.

 o SENDFAILURE-EVENT.SCTP:

 Pass 1 primitive/event: ’Send Failure’ notification, optionally
 followed by ’Receive Unsent Message’ or ’Receive Unacknowledged
 Message’

 Returns: cause code; context; and unsent or unacknowledged message
 (optional)

 Comments: ’cause code’ indicates the reason of the failure, and
 ’context’ is the context number if such a number has been provided
 in DATA.SEND.SCTP, for later use with ’Receive Unsent Message’ or
 ’Receive Unacknowledged Message’, respectively. These primitives
 can be used to retrieve the unsent or unacknowledged message (or
 part of the message, in case a part was delivered) if desired.

 o SEND_FAILURE.UDP(-Lite):

 Pass 1 primitive/event: ’Send’

 Comments: this may be used to probe for the effective PMTU when
 using in combination with the ’MAINTENANCE.SET_DF’ primitive.

 o SENDER_DRY-EVENT.SCTP:

 Pass 1 primitive/event: ’Sender Dry’ notification

 Comments: this informs the application that the stack has no more
 user data to send.

 o PARTIAL_DELIVERY_ABORTED-EVENT.SCTP:

 Pass 1 primitive/event: ’Partial Delivery Aborted’ notification

 Comments: this informs the receiver of a partial message that the
 further delivery of the message has been aborted.

Welzl, et al. Informational [Page 40]

RFC 8303 Transport Services February 2018

5. Pass 3

 This section presents the superset of all transport features in all
 protocols that were discussed in the preceding sections, based on the
 list of primitives in pass 2 but also on text in pass 1 to include
 transport features that can be configured in one protocol and are
 static properties in another (congestion control, for example).
 Again, some minor details are omitted for the sake of generalization
 -- e.g., TCP may provide various different IP options, but only
 source route is mandatory to implement, and this detail is not
 visible in the pass 3 transport feature "Specify IP options". As
 before, "UDP(-Lite)" represents both UDP and UDP-Lite, and "TCP"
 refers to both TCP and MPTCP.

5.1. CONNECTION-Related Transport Features

 ESTABLISHMENT:
 Active creation of a connection from one transport endpoint to one or
 more transport endpoints.

 o Connect
 Protocols: TCP, SCTP, and UDP(-Lite)

 o Specify which IP options must always be used
 Protocols: TCP and UDP(-Lite)

 o Request multiple streams
 Protocols: SCTP

 o Limit the number of inbound streams
 Protocols: SCTP

 o Specify number of attempts and/or timeout for the first
 establishment message
 Protocols: TCP and SCTP

 o Obtain multiple sockets
 Protocols: SCTP

 o Disable MPTCP
 Protocols: MPTCP

Welzl, et al. Informational [Page 41]

RFC 8303 Transport Services February 2018

 o Configure authentication
 Protocols: TCP and SCTP
 Comments: with TCP, this allows the configuration of MKTs. In
 SCTP, this allows the specification of which chunk types must
 always be authenticated. DATA, ACK, etc., are different ’chunks’
 in SCTP; one or more chunks may be included in a single packet.

 o Indicate an Adaptation Layer (via an adaptation code point)
 Protocols: SCTP

 o Request to negotiate interleaving of user messages
 Protocols: SCTP

 o Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment
 Protocols: TCP

 o Hand over a message to reliably transfer during connection
 establishment
 Protocols: SCTP

 o Enable UDP encapsulation with a specified remote UDP port number
 Protocols: SCTP

 AVAILABILITY:

 Preparing to receive incoming connection requests.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP, and UDP(-Lite)

 o Listen, N specified local interfaces
 Protocols: SCTP

 o Listen, all local interfaces
 Protocols: TCP, SCTP, and UDP(-Lite)

 o Obtain requested number of streams
 Protocols: SCTP

 o Limit the number of inbound streams
 Protocols: SCTP

 o Specify which IP options must always be used
 Protocols: TCP and UDP(-Lite)

Welzl, et al. Informational [Page 42]

RFC 8303 Transport Services February 2018

 o Disable MPTCP
 Protocols: MPTCP

 o Configure authentication
 Protocols: TCP and SCTP
 Comments: with TCP, this allows the configuration of MKTs. In
 SCTP, this allows the specification of which chunk types must
 always be authenticated. DATA, ACK, etc., are different ’chunks’
 in SCTP; one or more chunks may be included in a single packet.

 o Indicate an Adaptation Layer (via an adaptation code point)
 Protocols: SCTP

 MAINTENANCE:

 Adjustments made to an open connection, or notifications about it.

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP and SCTP

 o Suggest timeout to the peer
 Protocols: TCP

 o Disable Nagle algorithm
 Protocols: TCP and SCTP

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP

 o Notification of excessive retransmissions (early warning below
 abortion threshold)
 Protocols: TCP

 o Add path
 Protocols: MPTCP and SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP; and
 destination-Port
 SCTP Parameters: local IP address

 o Remove path
 Protocols: MPTCP and SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP; and
 destination-Port
 SCTP Parameters: local IP address

Welzl, et al. Informational [Page 43]

RFC 8303 Transport Services February 2018

 o Set primary path
 Protocols: SCTP

 o Suggest primary path to the peer
 Protocols: SCTP

 o Configure Path Switchover
 Protocols: SCTP

 o Obtain status (query or notification)
 Protocols: SCTP and MPTCP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window sizes; current
 local congestion window sizes; number of unacknowledged DATA
 chunks; number of DATA chunks pending receipt; primary path; most
 recent SRTT on primary path; RTO on primary path; SRTT and RTO on
 other destination addresses; MTU per path; and interleaving
 supported yes/no
 MPTCP parameters: subflow-list (identified by source-IP;
 source-Port; destination-IP; and destination-Port)

 o Specify DSCP field
 Protocols: TCP, SCTP, and UDP(-Lite)

 o Notification of ICMP error message arrival
 Protocols: TCP and UDP(-Lite)

 o Change authentication parameters
 Protocols: TCP and SCTP

 o Obtain authentication information
 Protocols: TCP and SCTP

 o Reset Stream
 Protocols: SCTP

 o Notification of Stream Reset
 Protocols: STCP

 o Reset Association
 Protocols: SCTP

 o Notification of Association Reset
 Protocols: STCP

 o Add Streams
 Protocols: SCTP

Welzl, et al. Informational [Page 44]

RFC 8303 Transport Services February 2018

 o Notification of Added Stream
 Protocols: STCP

 o Choose a scheduler to operate between streams of an association
 Protocols: SCTP

 o Configure priority or weight for a scheduler
 Protocols: SCTP

 o Specify IPv6 flow label field
 Protocols: SCTP

 o Configure send buffer size
 Protocols: SCTP

 o Configure receive buffer (and rwnd) size
 Protocols: SCTP

 o Configure message fragmentation
 Protocols: SCTP

 o Configure PMTUD
 Protocols: SCTP

 o Configure delayed SACK timer
 Protocols: SCTP

 o Set Cookie life value
 Protocols: SCTP

 o Set maximum burst
 Protocols: SCTP

 o Configure size where messages are broken up for partial delivery
 Protocols: SCTP

 o Disable checksum when sending
 Protocols: UDP

 o Disable checksum requirement when receiving
 Protocols: UDP

 o Specify checksum coverage used by the sender
 Protocols: UDP-Lite

 o Specify minimum checksum coverage required by receiver
 Protocols: UDP-Lite

Welzl, et al. Informational [Page 45]

RFC 8303 Transport Services February 2018

 o Specify DF field
 Protocols: UDP(-Lite)

 o Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 Protocols: UDP(-Lite)

 o Get max. transport-message size that may be received from the
 configured interface
 Protocols: UDP(-Lite)

 o Specify TTL/Hop Count field
 Protocols: UDP(-Lite)

 o Obtain TTL/Hop Count field
 Protocols: UDP(-Lite)

 o Specify ECN field
 Protocols: UDP(-Lite)

 o Obtain ECN field
 Protocols: UDP(-Lite)

 o Specify IP options
 Protocols: UDP(-Lite)

 o Obtain IP options
 Protocols: UDP(-Lite)

 o Enable and configure "Low Extra Delay Background Transfer"
 Protocols: A protocol implementing the LEDBAT congestion control
 mechanism

 TERMINATION:

 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP and SCTP
 Comments: a TCP endpoint locally only closes the connection for
 sending; it may still receive data afterwards.

 o Abort without delivering remaining data, causing an event that
 informs the application on the other side
 Protocols: TCP and SCTP

Welzl, et al. Informational [Page 46]

RFC 8303 Transport Services February 2018

 Comments: in SCTP, a reason can optionally be given by the
 application on the aborting side, which can then be received by
 the application on the other side.

 o Abort without delivering remaining data, not causing an event that
 informs the application on the other side
 Protocols: UDP(-Lite)

 o Timeout event when data could not be delivered for too long
 Protocols: TCP and SCTP
 Comments: the timeout is configured with CONNECTION.MAINTENANCE
 "Change timeout for aborting connection (using retransmit limit or
 time value)".

5.2. DATA-Transfer-Related Transport Features

 All transport features in this section refer to an existing
 connection, i.e., a connection that was either established or made
 available for receiving data. Note that TCP allows the transfer of
 data (a single optional user message, possibly arriving multiple
 times) before the connection is fully established. Reliable data
 transfer entails delay -- e.g., for the sender to wait until it can
 transmit data or due to retransmission in case of packet loss.

5.2.1. Sending Data

 All transport features in this section are provided by DATA.SEND from
 pass 2. DATA.SEND is given a data block from the application, which
 here we call a "message" if the beginning and end of the data block
 can be identified at the receiver, and "data" otherwise.

 o Reliably transfer data, with congestion control
 Protocols: TCP

 o Reliably transfer a message, with congestion control
 Protocols: SCTP

 o Unreliably transfer a message, with congestion control
 Protocols: SCTP

 o Unreliably transfer a message, without congestion control
 Protocols: UDP(-Lite)

 o Configurable Message Reliability
 Protocols: SCTP

Welzl, et al. Informational [Page 47]

RFC 8303 Transport Services February 2018

 o Choice of stream
 Protocols: SCTP

 o Choice of path (destination address)
 Protocols: SCTP

 o Ordered message delivery (potentially slower than unordered)
 Protocols: SCTP

 o Unordered message delivery (potentially faster than ordered)
 Protocols: SCTP and UDP(-Lite)

 o Request not to bundle messages
 Protocols: SCTP

 o Specifying a ’payload protocol-id’ (handed over as such by the
 receiver)
 Protocols: SCTP

 o Specifying a key identifier to be used to authenticate a message
 Protocols: SCTP

 o Request not to delay the acknowledgement (SACK) of a message
 Protocols: SCTP

5.2.2. Receiving Data

 All transport features in this section are provided by DATA.RECEIVE
 from pass 2. DATA.RECEIVE fills a buffer provided by the
 application, with what here we call a "message" if the beginning and
 end of the data block can be identified at the receiver, and "data"
 otherwise.

 o Receive data (with no message delimiting)
 Protocols: TCP

 o Receive a message
 Protocols: SCTP and UDP(-Lite)

 o Choice of stream to receive from
 Protocols: SCTP

 o Information about partial message arrival
 Protocols: SCTP
 Comments: in SCTP, partial messages are combined with a stream
 sequence number so that the application can restore the correct
 order of data blocks an entire message consists of.

Welzl, et al. Informational [Page 48]

RFC 8303 Transport Services February 2018

5.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to DATA.SEND from pass 2.

 o Notification of an unsent (part of a) message
 Protocols: SCTP and UDP(-Lite)

 o Notification of an unacknowledged (part of a) message
 Protocols: SCTP

 o Notification that the stack has no more user data to send
 Protocols: SCTP

 o Notification to a receiver that a partial message delivery has
 been aborted
 Protocols: SCTP

6. IANA Considerations

 This document does not require any IANA actions.

7. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features [RFC8095]. These transport
 features are generally provided by a protocol or layer on top of the
 transport protocol; none of the transport protocols considered in
 this document provides these transport features on its own.
 Therefore, these transport features are not considered in this
 document, with the exception of native authentication capabilities of
 TCP and SCTP for which the security considerations in [RFC5925] and
 [RFC4895] apply.

 Security considerations for the use of UDP and UDP-Lite are provided
 in the referenced RFCs. Security guidance for application usage is
 provided in the UDP Guidelines [RFC8085].

Welzl, et al. Informational [Page 49]

RFC 8303 Transport Services February 2018

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <https://www.rfc-editor.org/info/rfc3758>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <https://www.rfc-editor.org/info/rfc4895>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061,
 DOI 10.17487/RFC5061, September 2007,
 <https://www.rfc-editor.org/info/rfc5061>.

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
 RFC 5482, DOI 10.17487/RFC5482, March 2009,
 <https://www.rfc-editor.org/info/rfc5482>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <https://www.rfc-editor.org/info/rfc6182>.

Welzl, et al. Informational [Page 50]

RFC 8303 Transport Services February 2018

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458,
 DOI 10.17487/RFC6458, December 2011,
 <https://www.rfc-editor.org/info/rfc6458>.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",
 RFC 6525, DOI 10.17487/RFC6525, February 2012,
 <https://www.rfc-editor.org/info/rfc6525>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <https://www.rfc-editor.org/info/rfc6817>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <https://www.rfc-editor.org/info/rfc6897>.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951,
 DOI 10.17487/RFC6951, May 2013,
 <https://www.rfc-editor.org/info/rfc6951>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <https://www.rfc-editor.org/info/rfc7053>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496,
 DOI 10.17487/RFC7496, April 2015,
 <https://www.rfc-editor.org/info/rfc7496>.

Welzl, et al. Informational [Page 51]

RFC 8303 Transport Services February 2018

 [RFC7829] Nishida, Y., Natarajan, P., Caro, A., Amer, P., and K.
 Nielsen, "SCTP-PF: A Quick Failover Algorithm for the
 Stream Control Transmission Protocol", RFC 7829,
 DOI 10.17487/RFC7829, April 2016,
 <https://www.rfc-editor.org/info/rfc7829>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8304] Fairhurst, G. and T. Jones, "Transport Features of the
 User Datagram Protocol (UDP) and Lightweight UDP (UDP-
 Lite)", RFC 8304, DOI 10.17487/RFC8304, February 2018,
 <https://www.rfc-editor.org/info/rfc8304>.

8.2. Informative References

 [RFC0854] Postel, J. and J. Reynolds, "Telnet Protocol
 Specification", STD 8, RFC 854, DOI 10.17487/RFC0854, May
 1983, <https://www.rfc-editor.org/info/rfc854>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <https://www.rfc-editor.org/info/rfc3260>.

Welzl, et al. Informational [Page 52]

RFC 8303 Transport Services February 2018

 [RFC5461] Gont, F., "TCP’s Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,
 <https://www.rfc-editor.org/info/rfc5461>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <https://www.rfc-editor.org/info/rfc6093>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [TAPS-MINSET]
 Welzl, M. and S. Gjessing, "A Minimal Set of Transport
 Services for TAPS Systems", Work in Progress, draft-ietf-
 taps-minset-01, February 2018.

Welzl, et al. Informational [Page 53]

RFC 8303 Transport Services February 2018

Appendix A. Overview of RFCs Used as Input for Pass 1

 TCP: [RFC0793], [RFC1122], [RFC5482], [RFC5925], and
 [RFC7413].

 MPTCP: [RFC6182], [RFC6824], and [RFC6897].

 SCTP: RFCs without a sockets API specification:
 [RFC3758], [RFC4895], [RFC4960], and [RFC5061].

 RFCs that include a sockets API specification:
 [RFC6458], [RFC6525], [RFC6951], [RFC7053], [RFC7496],
 and [RFC7829].

 UDP(-Lite): See [RFC8304].

 LEDBAT: [RFC6817].

Appendix B. How This Document Was Developed

 This section gives an overview of the method that was used to develop
 this document. It was given to contributors for guidance, and it can
 be helpful for future updates or extensions.

 This document is only concerned with transport features that are
 explicitly exposed to applications via primitives. It also strictly
 follows RFC text: if a transport feature is truly relevant for an
 application, the RFCs should say so, and they should describe how to
 use and configure it. Thus, the approach followed for developing
 this document was to identify the right RFCs, then analyze and
 process their text.

 Primitives that "MAY" be implemented by a transport protocol were
 excluded. To be included, the minimum requirement level for a
 primitive to be implemented by a protocol was "SHOULD". Where style
 requirement levels as described in [RFC2119] are not used, primitives
 were excluded when they are described in conjunction with statements
 like, e.g., "some implementations also provide" or "an implementation
 may also". Excluded primitives or parameters were briefly described
 in a dedicated subsection.

 Pass 1: This began by identifying text that talks about primitives.
 An API specification, abstract or not, obviously describes primitives
 -- but we are not *only* interested in API specifications. The text
 describing the ’Send’ primitive in the API specified in [RFC0793],

Welzl, et al. Informational [Page 54]

RFC 8303 Transport Services February 2018

 for instance, does not say that data transfer is reliable. TCP’s
 reliability is clear, however, from this text in Section 1 of
 [RFC0793]:

 The Transmission Control Protocol (TCP) is intended for use as a
 highly reliable host-to-host protocol between hosts in packet-
 switched computer communication networks, and in interconnected
 systems of such networks.

 Some text for the pass 1 subsections was developed by copying and
 pasting all the relevant text parts from the relevant RFCs then
 adjusting the terminology to match that in Section 2 and shortening
 phrasing to match the general style of the document. An effort was
 made to formulate everything as a primitive description such that the
 primitive descriptions became as complete as possible (e.g., the
 ’SEND.TCP’ primitive in pass 2 is explicitly described as reliably
 transferring data); text that is relevant for the primitives
 presented in this pass but still does not fit directly under any
 primitive was used in a subsection’s introduction.

 Pass 2: The main goal of this pass is unification of primitives. As
 input, only text from pass 1 was used (no exterior sources). The
 list in pass 2 is not arranged by protocol (i.e., "first protocol X,
 here are all the primitives; then protocol Y, here are all the
 primitives, ...") but by primitive (i.e., "primitive A, implemented
 this way in protocol X, this way in protocol Y, ..."). It was a goal
 to obtain as many similar pass 2 primitives as possible. For
 instance, this was sometimes achieved by not always maintaining a 1:1
 mapping between pass 1 and pass 2 primitives, renaming primitives,
 etc. For every new primitive, the already-existing primitives were
 considered to try to make them as coherent as possible.

 For each primitive, the following style was used:

 o PRIMITIVENAME.PROTOCOL:
 Pass 1 primitive/event:
 Parameters:
 Returns:
 Comments:

 The entries "Parameters", "Returns", and "Comments" were skipped when
 a primitive had no parameters, no described return value, or no
 comments seemed necessary, respectively. Optional parameters are
 followed by "(optional)". When known, default values were provided.

 Pass 3: The main point of this pass is to identify transport features
 that are the result of static properties of protocols, for which all
 protocols have to be listed together; this is then the final list of

Welzl, et al. Informational [Page 55]

RFC 8303 Transport Services February 2018

 all available transport features. This list was primarily based on
 text from pass 2, with additional input from pass 1 (but no external
 sources).

Acknowledgements

 The authors would like to thank (in alphabetical order) Bob Briscoe,
 Spencer Dawkins, Aaron Falk, David Hayes, Karen Nielsen, Tommy Pauly,
 Joe Touch, and Brian Trammell for providing valuable feedback on this
 document. We especially thank Christoph Paasch for providing input
 related to Multipath TCP and Gorry Fairhurst and Tom Jones for
 providing input related to UDP(-Lite). This work has received
 funding from the European Union’s Horizon 2020 research and
 innovation programme under grant agreement No. 644334 (NEAT).

Authors’ Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: michawe@ifi.uio.no

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 Steinfurt 48565
 Germany

 Email: tuexen@fh-muenster.de

 Naeem Khademi
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: naeemk@ifi.uio.no

Welzl, et al. Informational [Page 56]

