
Internet Engineering Task Force (IETF) D. Bider
Request for Comments: 8308 Bitvise Limited
Updates: 4251, 4252, 4253, 4254 March 2018
Category: Standards Track
ISSN: 2070-1721

 Extension Negotiation in the Secure Shell (SSH) Protocol

Abstract

 This memo updates RFCs 4251, 4252, 4253, and 4254 by defining a
 mechanism for Secure Shell (SSH) clients and servers to exchange
 information about supported protocol extensions confidentially after
 SSH key exchange.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8308.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bider Standards Track [Page 1]

RFC 8308 Extension Negotiation in SSH March 2018

Table of Contents

 1. Overview and Rationale ..3
 1.1. Requirements Terminology3
 1.2. Wire Encoding Terminology3
 2. Extension Negotiation Mechanism3
 2.1. Signaling of Extension Negotiation in SSH_MSG_KEXINIT3
 2.2. Enabling Criteria ..4
 2.3. SSH_MSG_EXT_INFO Message4
 2.4. Message Order ..5
 2.5. Interpretation of Extension Names and Values6
 3. Initially Defined Extensions6
 3.1. "server-sig-algs" ..6
 3.2. "delay-compression" ..7
 3.2.1. Awkwardly Timed Key Re-Exchange9
 3.2.2. Subsequent Re-Exchange9
 3.2.3. Compatibility Note: OpenSSH up to Version 7.59
 3.3. "no-flow-control" ...10
 3.3.1. Prior "No Flow Control" Practice10
 3.4. "elevation" ...11
 4. IANA Considerations ..12
 4.1. Additions to Existing Registries12
 4.2. New Registry: Extension Names12
 4.2.1. Future Assignments to Extension Names Registry12
 5. Security Considerations ..12
 6. References ...13
 6.1. Normative References13
 6.2. Informative References13
 Acknowledgments ...14
 Author’s Address ..14

Bider Standards Track [Page 2]

RFC 8308 Extension Negotiation in SSH March 2018

1. Overview and Rationale

 Secure Shell (SSH) is a common protocol for secure communication on
 the Internet. The original design of the SSH transport layer
 [RFC4253] lacks proper extension negotiation. Meanwhile, diverse
 implementations take steps to ensure that known message types contain
 no unrecognized information. This makes it difficult for
 implementations to signal capabilities and negotiate extensions
 without risking disconnection. This obstacle has been recognized in
 the process of updating SSH to support RSA signatures using SHA-256
 and SHA-512 [RFC8332]. To avoid trial and error as well as
 authentication penalties, a client must be able to discover public
 key algorithms a server accepts. This extension mechanism permits
 this discovery.

 This memo updates RFCs 4251, 4252, 4253, and 4254.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Wire Encoding Terminology

 The wire encoding types in this document -- "byte", "uint32",
 "string", "boolean", "name-list" -- have meanings as described in
 [RFC4251].

2. Extension Negotiation Mechanism

2.1. Signaling of Extension Negotiation in SSH_MSG_KEXINIT

 Applications implementing this mechanism MUST add one of the
 following indicator names to the field kex_algorithms in the
 SSH_MSG_KEXINIT message sent by the application in the first key
 exchange:

 o When acting as server: "ext-info-s"

 o When acting as client: "ext-info-c"

 The indicator name is added without quotes and MAY be added at any
 position in the name-list, subject to proper separation from other
 names as per name-list conventions.

Bider Standards Track [Page 3]

RFC 8308 Extension Negotiation in SSH March 2018

 The names are added to the kex_algorithms field because this is one
 of two name-list fields in SSH_MSG_KEXINIT that do not have a
 separate copy for each data direction.

 The indicator names inserted by the client and server are different
 to ensure these names will not produce a match and therefore not
 affect the algorithm chosen in key exchange algorithm negotiation.

 The inclusion of textual indicator names is intended to provide a
 clue for implementers to discover this mechanism.

2.2. Enabling Criteria

 If a client or server offers "ext-info-c" or "ext-info-s"
 respectively, it MUST be prepared to accept an SSH_MSG_EXT_INFO
 message from the peer.

 A server only needs to send "ext-info-s" if it intends to process
 SSH_MSG_EXT_INFO from the client. A client only needs to send
 "ext-info-c" if it plans to process SSH_MSG_EXT_INFO from the server.

 If a server receives an "ext-info-c", or a client receives an
 "ext-info-s", it MAY send an SSH_MSG_EXT_INFO message but is not
 required to do so.

 Neither party needs to wait for the other’s SSH_MSG_KEXINIT in order
 to decide whether to send the appropriate indicator in its own
 SSH_MSG_KEXINIT.

 Implementations MUST NOT send an incorrect indicator name for their
 role. Implementations MAY disconnect if the counterparty sends an
 incorrect indicator. If "ext-info-c" or "ext-info-s" ends up being
 negotiated as a key exchange method, the parties MUST disconnect.

2.3. SSH_MSG_EXT_INFO Message

 A party that received the "ext-info-c" or "ext-info-s" indicator MAY
 send the following message:

 byte SSH_MSG_EXT_INFO (value 7)
 uint32 nr-extensions
 repeat the following 2 fields "nr-extensions" times:
 string extension-name
 string extension-value (binary)

Bider Standards Track [Page 4]

RFC 8308 Extension Negotiation in SSH March 2018

 Implementers should pay careful attention to Section 2.5, in
 particular to the requirement to tolerate any sequence of bytes
 (including null bytes at any position) in an unknown extension’s
 extension-value.

2.4. Message Order

 If a client sends SSH_MSG_EXT_INFO, it MUST send it as the next
 packet following the client’s first SSH_MSG_NEWKEYS message to the
 server.

 If a server sends SSH_MSG_EXT_INFO, it MAY send it at zero, one, or
 both of the following opportunities:

 o As the next packet following the server’s first SSH_MSG_NEWKEYS.

 Where clients need information in the server’s SSH_MSG_EXT_INFO to
 authenticate, it is helpful if the server sends its
 SSH_MSG_EXT_INFO not only as the next packet after
 SSH_MSG_NEWKEYS, but without delay.

 Clients cannot rely on this because the server is not required to
 send the message at this time; if sent, it may be delayed by the
 network. However, if a timely SSH_MSG_EXT_INFO is received, a
 client can pipeline an authentication request after its
 SSH_MSG_SERVICE_REQUEST, even when it needs extension information.

 o Immediately preceding the server’s SSH_MSG_USERAUTH_SUCCESS, as
 defined in [RFC4252].

 The server MAY send SSH_MSG_EXT_INFO at this second opportunity,
 whether or not it sent it at the first. A client that sent
 "ext-info-c" MUST accept a server’s SSH_MSG_EXT_INFO at both
 opportunities but MUST NOT require it.

 This allows a server to reveal support for additional extensions
 that it was unwilling to reveal to an unauthenticated client. If
 a server sends a second SSH_MSG_EXT_INFO, this replaces any
 initial one, and both the client and the server re-evaluate
 extensions in effect. The server’s second SSH_MSG_EXT_INFO is
 matched against the client’s original.

 The timing of the second opportunity is chosen for the following
 reasons. If the message was sent earlier, it would not allow the
 server to withhold information until the client has authenticated.
 If it was sent later, a client that needs information from the
 second SSH_MSG_EXT_INFO immediately after it authenticates would
 have no way to reliably know whether to expect the message.

Bider Standards Track [Page 5]

RFC 8308 Extension Negotiation in SSH March 2018

2.5. Interpretation of Extension Names and Values

 Each extension is identified by its extension-name and defines the
 conditions under which the extension is considered to be in effect.
 Applications MUST ignore unrecognized extension-names.

 When it is specified, an extension MAY dictate that, in order to take
 effect, both parties must include it in their SSH_MSG_EXT_INFO or
 that it is sufficient for only one party to include it. However,
 other rules MAY be specified. The relative order in which extensions
 appear in an SSH_MSG_EXT_INFO message MUST be ignored.

 Extension-value fields are interpreted as defined by their respective
 extension. This field MAY be empty if permitted by the extension.
 Applications that do not implement or recognize an extension MUST
 ignore its extension-value, regardless of its size or content.
 Applications MUST tolerate any sequence of bytes -- including null
 bytes at any position -- in an unknown extension’s extension-value.

 The cumulative size of an SSH_MSG_EXT_INFO message is limited only by
 the maximum packet length that an implementation may apply in
 accordance with [RFC4253]. Implementations MUST accept well-formed
 SSH_MSG_EXT_INFO messages up to the maximum packet length they
 accept.

3. Initially Defined Extensions

3.1. "server-sig-algs"

 This extension is sent with the following extension name and value:

 string "server-sig-algs"
 name-list public-key-algorithms-accepted

 The name-list type is a strict subset of the string type and is thus
 permissible as an extension-value. See [RFC4251] for more
 information.

 This extension is sent by the server and contains a list of public
 key algorithms that the server is able to process as part of a
 "publickey" authentication request. If a client sends this
 extension, the server MAY ignore it and MAY disconnect.

 In this extension, a server MUST enumerate all public key algorithms
 it might accept during user authentication. However, early server
 implementations that do not enumerate all accepted algorithms do

Bider Standards Track [Page 6]

RFC 8308 Extension Negotiation in SSH March 2018

 exist. For this reason, a client MAY send a user authentication
 request using a public key algorithm not included in "server-sig-
 algs".

 A client that wishes to proceed with public key authentication MAY
 wait for the server’s SSH_MSG_EXT_INFO so it can send a "publickey"
 authentication request with an appropriate public key algorithm,
 rather than resorting to trial and error.

 Servers that implement public key authentication SHOULD implement
 this extension.

 If a server does not send this extension, a client MUST NOT make any
 assumptions about the server’s public key algorithm support, and MAY
 proceed with authentication requests using trial and error. Note
 that implementations are known to exist that apply authentication
 penalties if the client attempts to use an unexpected public key
 algorithm.

 Authentication penalties are applied by servers to deter brute-force
 password guessing, username enumeration, and other types of behavior
 deemed suspicious by server administrators or implementers.
 Penalties may include automatic IP address throttling or blocking,
 and they may trigger email alerts or auditing.

3.2. "delay-compression"

 This extension MAY be sent by both parties as follows:

 string "delay-compression"
 string:
 name-list compression_algorithms_client_to_server
 name-list compression_algorithms_server_to_client

 The extension-value is a string that encodes two name-lists. The
 name-lists themselves have the encoding of strings. For example, to
 indicate a preference for algorithms "foo,bar" in the client-to-
 server direction and "bar,baz" in the server-to-client direction, a
 sender encodes the extension-value as follows (including its length):

 00000016 00000007 666f6f2c626172 00000007 6261722c62617a

 This same encoding could be sent by either party -- client or server.

 This extension allows the server and client to renegotiate
 compression algorithm support without having to conduct a key
 re-exchange, which puts new algorithms into effect immediately upon
 successful authentication.

Bider Standards Track [Page 7]

RFC 8308 Extension Negotiation in SSH March 2018

 This extension takes effect only if both parties send it. Name-lists
 MAY include any compression algorithm that could have been negotiated
 in SSH_MSG_KEXINIT, except algorithms that define their own delayed
 compression semantics. This means "zlib,none" is a valid algorithm
 list in this context, but "zlib@openssh.com" is not.

 If both parties send this extension, but the name-lists do not
 contain a common algorithm in either direction, the parties MUST
 disconnect in the same way as if negotiation failed as part of
 SSH_MSG_KEXINIT.

 If this extension takes effect, the renegotiated compression
 algorithm is activated for the very next SSH message after the
 trigger message:

 o Sent by the server, the trigger message is
 SSH_MSG_USERAUTH_SUCCESS.

 o Sent by the client, the trigger message is SSH_MSG_NEWCOMPRESS.

 If this extension takes effect, the client MUST send the following
 message within a reasonable number of outgoing SSH messages after
 receiving SSH_MSG_USERAUTH_SUCCESS, but not necessarily as the first
 such outgoing message:

 byte SSH_MSG_NEWCOMPRESS (value 8)

 The purpose of SSH_MSG_NEWCOMPRESS is to avoid a race condition where
 the server cannot reliably know whether a message sent by the client
 was sent before or after receiving the server’s
 SSH_MSG_USERAUTH_SUCCESS. For example, clients may send keep-alive
 messages during logon processing.

 As is the case for all extensions unless otherwise noted, the server
 MAY delay including this extension until its secondary
 SSH_MSG_EXT_INFO, sent before SSH_MSG_USERAUTH_SUCCESS. This allows
 the server to avoid advertising compression until the client has
 authenticated.

 If the parties renegotiate compression using this extension in a
 session where compression is already enabled and the renegotiated
 algorithm is the same in one or both directions, then the internal
 compression state MUST be reset for each direction at the time the
 renegotiated algorithm takes effect.

Bider Standards Track [Page 8]

RFC 8308 Extension Negotiation in SSH March 2018

3.2.1. Awkwardly Timed Key Re-Exchange

 A party that has signaled, or intends to signal, support for this
 extension in an SSH session MUST NOT initiate key re-exchange in that
 session until either of the following occurs:

 o This extension was negotiated, and the party that’s about to start
 key re-exchange already sent its trigger message for compression.

 o The party has sent (if server) or received (if client) the message
 SSH_MSG_USERAUTH_SUCCESS, and this extension was not negotiated.

 If a party violates this rule, the other party MAY disconnect.

 In general, parties SHOULD NOT start key re-exchange before
 successful user authentication but MAY tolerate it if not using this
 extension.

3.2.2. Subsequent Re-Exchange

 In subsequent key re-exchanges that unambiguously begin after the
 compression trigger messages, the compression algorithms negotiated
 in re-exchange override the algorithms negotiated with this
 extension.

3.2.3. Compatibility Note: OpenSSH up to Version 7.5

 This extension uses a binary extension-value encoding. OpenSSH
 clients up to and including version 7.5 advertise support to receive
 SSH_MSG_EXT_INFO but disconnect on receipt of an extension-value
 containing null bytes. This is an error fixed in OpenSSH
 version 7.6.

 Implementations that wish to interoperate with OpenSSH 7.5 and
 earlier are advised to check the remote party’s SSH version string
 and omit this extension if an affected version is detected. Affected
 versions do not implement this extension, so there is no harm in
 omitting it. The extension SHOULD NOT be omitted if the detected
 OpenSSH version is 7.6 or higher. This would make it harder for the
 OpenSSH project to implement this extension in a higher version.

Bider Standards Track [Page 9]

RFC 8308 Extension Negotiation in SSH March 2018

3.3. "no-flow-control"

 This extension is sent with the following extension name and value:

 string "no-flow-control"
 string choice of: "p" for preferred | "s" for supported

 A party SHOULD send "s" if it supports "no-flow-control" but does not
 prefer to enable it. A party SHOULD send "p" if it prefers to enable
 the extension if the other party supports it. Parties MAY disconnect
 if they receive a different extension value.

 For this extension to take effect, the following must occur:

 o This extension MUST be sent by both parties.

 o At least one party MUST have sent the value "p" (preferred).

 If this extension takes effect, the "initial window size" fields in
 SSH_MSG_CHANNEL_OPEN and SSH_MSG_CHANNEL_OPEN_CONFIRMATION, as
 defined in [RFC4254], become meaningless. The values of these fields
 MUST be ignored, and a channel behaves as if all window sizes are
 infinite. Neither side is required to send any
 SSH_MSG_CHANNEL_WINDOW_ADJUST messages, and if received, such
 messages MUST be ignored.

 This extension is intended for, but not limited to, use by file
 transfer applications that are only going to use one channel and for
 which the flow control provided by SSH is an impediment, rather than
 a feature.

 Implementations MUST refuse to open more than one simultaneous
 channel when this extension is in effect. Nevertheless, server
 implementations SHOULD support clients opening more than one
 non-simultaneous channel.

3.3.1. Prior "No Flow Control" Practice

 Before this extension, some applications would simply not implement
 SSH flow control, sending an initial channel window size of 2^32 - 1.
 Applications SHOULD NOT do this for the following reasons:

 o It is plausible to transfer more than 2^32 bytes over a channel.
 Such a channel will hang if the other party implements SSH flow
 control according to [RFC4254].

Bider Standards Track [Page 10]

RFC 8308 Extension Negotiation in SSH March 2018

 o Implementations that cannot handle large channel window sizes
 exist, and they can exhibit non-graceful behaviors, including
 disconnect.

3.4. "elevation"

 The terms "elevation" and "elevated" refer to an operating system
 mechanism where an administrator’s logon session is associated with
 two security contexts: one limited and one with administrative
 rights. To "elevate" such a session is to activate the security
 context with full administrative rights. For more information about
 this mechanism on Windows, see [WINADMIN] and [WINTOKEN].

 This extension MAY be sent by the client as follows:

 string "elevation"
 string choice of: "y" | "n" | "d"

 A client sends "y" to indicate its preference that the session should
 be elevated; "n" to not be elevated; and "d" for the server to use
 its default behavior. The server MAY disconnect if it receives a
 different extension value. If a client does not send the "elevation"
 extension, the server SHOULD act as if "d" was sent.

 If a client has included this extension, then after authentication, a
 server that supports this extension SHOULD indicate to the client
 whether elevation was done by sending the following global request:

 byte SSH_MSG_GLOBAL_REQUEST
 string "elevation"
 boolean want reply = false
 boolean elevation performed

 Clients that implement this extension help reduce attack surface for
 Windows servers that handle administrative logins. Where clients do
 not support this extension, servers must elevate sessions to allow
 full access by administrative users always. Where clients support
 this extension, sessions can be created without elevation unless
 requested.

Bider Standards Track [Page 11]

RFC 8308 Extension Negotiation in SSH March 2018

4. IANA Considerations

4.1. Additions to Existing Registries

 IANA has added the following entries to the "Message Numbers"
 registry [IANA-M] under the "Secure Shell (SSH) Protocol Parameters"
 registry [RFC4250]:

 Value Message ID Reference

 7 SSH_MSG_EXT_INFO RFC 8308
 8 SSH_MSG_NEWCOMPRESS RFC 8308

 IANA has also added the following entries to the "Key Exchange Method
 Names" registry [IANA-KE]:

 Method Name Reference Note
 --
 ext-info-s RFC 8308 Section 2
 ext-info-c RFC 8308 Section 2

4.2. New Registry: Extension Names

 Also under the "Secure Shell (SSH) Protocol Parameters" registry,
 IANA has created a new "Extension Names" registry, with the following
 initial content:

 Extension Name Reference Note
 --
 server-sig-algs RFC 8308 Section 3.1
 delay-compression RFC 8308 Section 3.2
 no-flow-control RFC 8308 Section 3.3
 elevation RFC 8308 Section 3.4

4.2.1. Future Assignments to Extension Names Registry

 Names in the "Extension Names" registry MUST follow the conventions
 for names defined in [RFC4250], Section 4.6.1.

 Requests for assignments of new non-local names in the "Extension
 Names" registry (i.e., names not including the ’@’ character) MUST be
 done using the IETF Review policy, as described in [RFC8126].

5. Security Considerations

 Security considerations are discussed throughout this document. This
 document updates the SSH protocol as defined in [RFC4251] and related
 documents. The security considerations of [RFC4251] apply.

Bider Standards Track [Page 12]

RFC 8308 Extension Negotiation in SSH March 2018

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4250] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250,
 DOI 10.17487/RFC4250, January 2006,
 <https://www.rfc-editor.org/info/rfc4250>.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <https://www.rfc-editor.org/info/rfc4251>.

 [RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <https://www.rfc-editor.org/info/rfc4252>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4254] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <https://www.rfc-editor.org/info/rfc4254>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [IANA-KE] IANA, "Key Exchange Method Names",
 <https://www.iana.org/assignments/ssh-parameters/>.

 [IANA-M] IANA, "Message Numbers",
 <https://www.iana.org/assignments/ssh-parameters/>.

Bider Standards Track [Page 13]

RFC 8308 Extension Negotiation in SSH March 2018

 [RFC8332] Bider, D., "Use of RSA Keys with SHA-256 and SHA-512 in
 the Secure Shell (SSH) Protocol", RFC 8332,
 DOI 10.17487/RFC8332, March 2018,
 <https://www.rfc-editor.org/info/rfc8332>.

 [WINADMIN] Microsoft, "How to launch a process as a Full
 Administrator when UAC is enabled?", March 2013,
 <https://blogs.msdn.microsoft.com/winsdk/2013/03/22/
 how-to-launch-a-process-as-a-full-administrator-when-
 uac-is-enabled/>.

 [WINTOKEN] Microsoft, "TOKEN_ELEVATION_TYPE enumeration",
 <https://msdn.microsoft.com/en-us/library/windows/desktop/
 bb530718.aspx>.

Acknowledgments

 Thanks to Markus Friedl and Damien Miller for comments and initial
 implementation. Thanks to Peter Gutmann, Roumen Petrov, Mark D.
 Baushke, Daniel Migault, Eric Rescorla, Matthew A. Miller, Mirja
 Kuehlewind, Adam Roach, Spencer Dawkins, Alexey Melnikov, and Ben
 Campbell for reviews and feedback.

Author’s Address

 Denis Bider
 Bitvise Limited
 4105 Lombardy Court
 Colleyville, TX 76034
 United States of America

 Email: ietf-ssh3@denisbider.com
 URI: https://www.bitvise.com/

Bider Standards Track [Page 14]

