
Internet Research Task Force (IRTF) A. Huelsing
Request for Comments: 8391 TU Eindhoven
Category: Informational D. Butin
ISSN: 2070-1721 TU Darmstadt
 S. Gazdag
 genua GmbH
 J. Rijneveld
 Radboud University
 A. Mohaisen
 University of Central Florida
 May 2018

 XMSS: eXtended Merkle Signature Scheme

Abstract

 This note describes the eXtended Merkle Signature Scheme (XMSS), a
 hash-based digital signature system that is based on existing
 descriptions in scientific literature. This note specifies
 Winternitz One-Time Signature Plus (WOTS+), a one-time signature
 scheme; XMSS, a single-tree scheme; and XMSS^MT, a multi-tree variant
 of XMSS. Both XMSS and XMSS^MT use WOTS+ as a main building block.
 XMSS provides cryptographic digital signatures without relying on the
 conjectured hardness of mathematical problems. Instead, it is proven
 that it only relies on the properties of cryptographic hash
 functions. XMSS provides strong security guarantees and is even
 secure when the collision resistance of the underlying hash function
 is broken. It is suitable for compact implementations, is relatively
 simple to implement, and naturally resists side-channel attacks.
 Unlike most other signature systems, hash-based signatures can so far
 withstand known attacks using quantum computers.

Huelsing, et al. Informational [Page 1]

RFC 8391 XMSS May 2018

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Research Task Force
 (IRTF). The IRTF publishes the results of Internet-related research
 and development activities. These results might not be suitable for
 deployment. This RFC represents the consensus of the Crypto Forum
 Research Group of the Internet Research Task Force (IRTF). Documents
 approved for publication by the IRSG are not candidates for any level
 of Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8391.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Huelsing, et al. Informational [Page 2]

RFC 8391 XMSS May 2018

Table of Contents

 1. Introduction ..5
 1.1. CFRG Note on Post-Quantum Cryptography6
 1.2. Conventions Used in This Document7
 2. Notation ..7
 2.1. Data Types ...7
 2.2. Functions ..7
 2.3. Operators ..8
 2.4. Integer-to-Byte Conversion9
 2.5. Hash Function Address Scheme9
 2.6. Strings of Base w Numbers12
 2.7. Member Functions ..13
 3. Primitives ...14
 3.1. WOTS+: One-Time Signatures14
 3.1.1. WOTS+ Parameters14
 3.1.1.1. WOTS+ Functions15
 3.1.2. WOTS+ Chaining Function15
 3.1.3. WOTS+ Private Key16
 3.1.4. WOTS+ Public Key17
 3.1.5. WOTS+ Signature Generation17
 3.1.6. WOTS+ Signature Verification19
 3.1.7. Pseudorandom Key Generation20
 4. Schemes ..20
 4.1. XMSS: eXtended Merkle Signature Scheme20
 4.1.1. XMSS Parameters21
 4.1.2. XMSS Hash Functions22
 4.1.3. XMSS Private Key22
 4.1.4. Randomized Tree Hashing23
 4.1.5. L-Trees ..23
 4.1.6. TreeHash ...24
 4.1.7. XMSS Key Generation25
 4.1.8. XMSS Signature27
 4.1.9. XMSS Signature Generation28
 4.1.10. XMSS Signature Verification30
 4.1.11. Pseudorandom Key Generation32
 4.1.12. Free Index Handling and Partial Private Keys33
 4.2. XMSS^MT: Multi-Tree XMSS33
 4.2.1. XMSS^MT Parameters33
 4.2.2. XMSS^MT Key Generation33
 4.2.3. XMSS^MT Signature36
 4.2.4. XMSS^MT Signature Generation37
 4.2.5. XMSS^MT Signature Verification39
 4.2.6. Pseudorandom Key Generation40
 4.2.7. Free Index Handling and Partial Private Keys40

Huelsing, et al. Informational [Page 3]

RFC 8391 XMSS May 2018

 5. Parameter Sets ...40
 5.1. Implementing the Functions41
 5.2. WOTS+ Parameters ..43
 5.3. XMSS Parameters ...43
 5.3.1. Parameter Guide44
 5.4. XMSS^MT Parameters ..45
 5.4.1. Parameter Guide47
 6. Rationale ..49
 7. Reference Code ...50
 8. IANA Considerations ..50
 9. Security Considerations ..54
 9.1. Security Proofs ...55
 9.2. Minimal Security Assumptions56
 9.3. Post-Quantum Security56
 10. References ..57
 10.1. Normative References57
 10.2. Informative References58
 Appendix A. WOTS+ XDR Formats60
 A.1. WOTS+ Parameter Sets60
 A.2. WOTS+ Signatures ..60
 A.3. WOTS+ Public Keys ...61
 Appendix B. XMSS XDR Formats61
 B.1. XMSS Parameter Sets61
 B.2. XMSS Signatures ...62
 B.3. XMSS Public Keys ..64
 Appendix C. XMSS^MT XDR Formats65
 C.1. XMSS^MT Parameter Sets65
 C.2. XMSS^MT Signatures ..67
 C.3. XMSS^MT Public Keys71
 Acknowledgements ..73
 Authors’ Addresses ..74

Huelsing, et al. Informational [Page 4]

RFC 8391 XMSS May 2018

1. Introduction

 A (cryptographic) digital signature scheme provides asymmetric
 message authentication. The key generation algorithm produces a key
 pair consisting of a private and a public key. A message is signed
 using a private key to produce a signature. A message/signature pair
 can be verified using a public key. A One-Time Signature (OTS)
 scheme allows using a key pair to sign exactly one message securely.
 A Many-Time Signature (MTS) system can be used to sign multiple
 messages.

 OTS schemes, and MTS schemes composed from them, were proposed by
 Merkle in 1979 [Merkle83]. They were well-studied in the 1990s and
 have regained interest from the mid 2000s onwards because of their
 resistance against quantum-computer-aided attacks. These kinds of
 signature schemes are called hash-based signature schemes as they are
 built out of a cryptographic hash function. Hash-based signature
 schemes generally feature small private and public keys as well as
 fast signature generation and verification; however, they also
 feature large signatures and relatively slow key generation. In
 addition, they are suitable for compact implementations that benefit
 various applications and are naturally resistant to most kinds of
 side-channel attacks.

 Some progress has already been made toward introducing and
 standardizing hash-based signatures. Buchmann, Dahmen, and Huelsing
 proposed the eXtended Merkle Signature Scheme (XMSS) [BDH11], which
 offers better efficiency than Merkle’s original scheme and a modern
 security proof in the standard model. McGrew, Curcio, and Fluhrer
 authored an Internet-Draft [MCF18] specifying the Leighton-Micali
 Signature (LMS) scheme, which builds on the seminal works by Lamport,
 Diffie, Winternitz, and Merkle, taking a different approach than XMSS
 and relying entirely on security arguments in the random oracle
 model. Very recently, the stateless hash-based signature scheme
 SPHINCS was introduced [BHH15], with the intent of being easier to
 deploy in current applications. A reasonable next step toward
 introducing hash-based signatures is to complete the specifications
 of the basic algorithms -- LMS, XMSS, SPHINCS, and/or variants.

 The eXtended Merkle Signature Scheme (XMSS) [BDH11] is the latest
 stateful hash-based signature scheme. It has the smallest signatures
 out of such schemes and comes with a multi-tree variant that solves
 the problem of slow key generation. Moreover, it can be shown that
 XMSS is secure, making only mild assumptions on the underlying hash
 function. In particular, it is not required that the cryptographic
 hash function is collision-resistant for the security of XMSS.
 Improvements upon XMSS, as described in [HRS16], are part of this
 note.

Huelsing, et al. Informational [Page 5]

RFC 8391 XMSS May 2018

 This document describes a single-tree and a multi-tree variant of
 XMSS. It also describes WOTS+, a variant of the Winternitz OTS
 scheme introduced in [Huelsing13] that is used by XMSS. The schemes
 are described with enough specificity to ensure interoperability
 between implementations.

 This document is structured as follows. Notation is introduced in
 Section 2. Section 3 describes the WOTS+ signature system. MTS
 schemes are defined in Section 4: the eXtended Merkle Signature
 Scheme (XMSS) in Section 4.1 and its multi-tree variant (XMSS^MT) in
 Section 4.2. Parameter sets are described in Section 5. Section 6
 describes the rationale behind choices in this note. Section 7 gives
 information about the reference code. The IANA registry for these
 signature systems is described in Section 8. Finally, security
 considerations are presented in Section 9.

1.1. CFRG Note on Post-Quantum Cryptography

 All post-quantum algorithms documented by the Crypto Forum Research
 Group (CFRG) are today considered ready for experimentation and
 further engineering development (e.g., to establish the impact of
 performance and sizes on IETF protocols). However, at the time of
 writing, we do not have significant deployment experience with such
 algorithms.

 Many of these algorithms come with specific restrictions, e.g.,
 change of classical interface or less cryptanalysis of proposed
 parameters than established schemes. CFRG has consensus that all
 documents describing post-quantum technologies include the above
 paragraph and a clear additional warning about any specific
 restrictions, especially as those might affect use or deployment of
 the specific scheme. That guidance may be changed over time via
 document updates.

 Additionally, for XMSS:

 CFRG consensus is that we are confident in the cryptographic security
 of the signature schemes described in this document against quantum
 computers, given the current state of the research community’s
 knowledge about quantum algorithms. Indeed, we are confident that
 the security of a significant part of the Internet could be made
 dependent on the signature schemes defined in this document, if
 developers take care of the following.

 In contrast to traditional signature schemes, the signature schemes
 described in this document are stateful, meaning the secret key
 changes over time. If a secret key state is used twice, no
 cryptographic security guarantees remain. In consequence, it becomes

Huelsing, et al. Informational [Page 6]

RFC 8391 XMSS May 2018

 feasible to forge a signature on a new message. This is a new
 property that most developers will not be familiar with and requires
 careful handling of secret keys. Developers should not use the
 schemes described here except in systems that prevent the reuse of
 secret key states.

 Note that the fact that the schemes described in this document are
 stateful also implies that classical APIs for digital signatures
 cannot be used without modification. The API MUST be able to handle
 a secret key state; in particular, this means that the API MUST allow
 to return an updated secret key state.

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Notation

2.1. Data Types

 Bytes and byte strings are the fundamental data types. A byte is a
 sequence of eight bits. A single byte is denoted as a pair of
 hexadecimal digits with a leading "0x". A byte string is an ordered
 sequence of zero or more bytes and is denoted as an ordered sequence
 of hexadecimal characters with a leading "0x". For example, 0xe534f0
 is a byte string of length 3. An array of byte strings is an
 ordered, indexed set starting with index 0 in which all byte strings
 have identical length. We assume big-endian representation for any
 data types or structures.

2.2. Functions

 If x is a non-negative real number, then we define the following
 functions:

 ceil(x): returns the smallest integer greater than or equal to x.

 floor(x): returns the largest integer less than or equal to x.

 lg(x): returns the logarithm to base 2 of x.

Huelsing, et al. Informational [Page 7]

RFC 8391 XMSS May 2018

2.3. Operators

 When a and b are integers, mathematical operators are defined as
 follows:

 ^ : a ^ b denotes the result of a raised to the power of b.

 * : a * b denotes the product of a and b. This operator is
 sometimes omitted in the absence of ambiguity, as in usual
 mathematical notation.

 / : a / b denotes the quotient of a by non-zero b.

 % : a % b denotes the non-negative remainder of the integer
 division of a by b.

 + : a + b denotes the sum of a and b.

 - : a - b denotes the difference of a and b.

 ++ : a++ denotes incrementing a by 1, i.e., a = a + 1.

 << : a << b denotes a logical left shift with b being non-
 negative, i.e., a * 2^b.

 >> : a >> b denotes a logical right shift with b being non-
 negative, i.e., floor(a / 2^b).

 The standard order of operations is used when evaluating arithmetic
 expressions.

 Arrays are used in the common way, where the i^th element of an array
 A is denoted A[i]. Byte strings are treated as arrays of bytes where
 necessary: if X is a byte string, then X[i] denotes its i^th byte,
 where X[0] is the leftmost byte.

 If A and B are byte strings of equal length, then:

 o A AND B denotes the bitwise logical conjunction operation.

 o A XOR B denotes the bitwise logical exclusive disjunction
 operation.

 When B is a byte and i is an integer, then B >> i denotes the logical
 right-shift operation.

Huelsing, et al. Informational [Page 8]

RFC 8391 XMSS May 2018

 If X is an x-byte string and Y a y-byte string, then X || Y denotes
 the concatenation of X and Y, with X || Y = X[0] ... X[x-1] Y[0] ...
 Y[y-1].

2.4. Integer-to-Byte Conversion

 If x and y are non-negative integers, we define Z = toByte(x, y) to
 be the y-byte string containing the binary representation of x in
 big-endian byte order.

2.5. Hash Function Address Scheme

 The schemes described in this document randomize each hash function
 call. This means that aside from the initial message digest, a
 different key and different bitmask is used for each hash function
 call. These values are pseudorandomly generated using a pseudorandom
 function that takes a key SEED and a 32-byte address ADRS as input
 and outputs an n-byte value, where n is the security parameter. Here
 we explain the structure of address ADRS and propose setter methods
 to manipulate the address. We explain the generation of the
 addresses in the following sections where they are used.

 The schemes in the next two sections use two kinds of hash functions
 parameterized by security parameter n. For the hash tree
 constructions, a hash function that maps an n-byte key and 2n-byte
 inputs to n-byte outputs is used. To randomize this function, 3n
 bytes are needed -- n bytes for the key and 2n bytes for a bitmask.
 For the OTS scheme constructions, a hash function that maps n-byte
 keys and n-byte inputs to n-byte outputs is used. To randomize this
 function, 2n bytes are needed -- n bytes for the key and n bytes for
 a bitmask. Consequently, three addresses are needed for the first
 function and two addresses for the second one.

 There are three different types of addresses for the different use
 cases. One type is used for the hashes in OTS schemes, one is used
 for hashes within the main Merkle tree construction, and one is used
 for hashes in the L-trees. The latter is used to compress one-time
 public keys. All these types share as much format as possible. In
 the remainder of this section, we describe these types in detail.

 The structure of an address complies with word borders, with a word
 being 32 bits long in this context. Only the tree address is too
 long to fit a single word, but it can fit a double word. An address
 is structured as follows. It always starts with a layer address of
 one word in the most significant bits, followed by a tree address of
 two words. Both addresses are needed for the multi-tree variant (see
 Section 4.2) and describe the position of a tree within a multi-tree.
 They are therefore set to zero in single-tree applications. For

Huelsing, et al. Informational [Page 9]

RFC 8391 XMSS May 2018

 multi-tree hash-based signatures, the layer address describes the
 height of a tree within the multi-tree, starting from height zero for
 trees at the bottom layer. The tree address describes the position
 of a tree within a layer of a multi-tree starting with index zero for
 the leftmost tree. The next word defines the type of the address.
 It is set to 0 for an OTS address, to 1 for an L-tree address, and to
 2 for a hash tree address. Whenever the type word of an address is
 changed, all following words should be initialized with 0 to prevent
 non-zero values in unused padding words.

 We first describe the OTS address case. In this case, the type word
 is followed by an OTS address word that encodes the index of the OTS
 key pair within the tree. The next word encodes the chain address
 followed by a word that encodes the address of the hash function call
 within the chain. The last word, called keyAndMask, is used to
 generate two different addresses for one hash function call. The
 word is set to zero to generate the key. To generate the n-byte
 bitmask, the word is set to one.

 +-------------------------+
 | layer address (32 bits)|
 +-------------------------+
 | tree address (64 bits)|
 +-------------------------+
 | type = 0 (32 bits)|
 +-------------------------+
 | OTS address (32 bits)|
 +-------------------------+
 | chain address (32 bits)|
 +-------------------------+
 | hash address (32 bits)|
 +-------------------------+
 | keyAndMask (32 bits)|
 +-------------------------+

 An OTS Hash Address

 We now discuss the L-tree case, which means that the type word is set
 to one. In that case, the type word is followed by an L-tree address
 word that encodes the index of the leaf computed with this L-tree.
 The next word encodes the height of the node being input for the next
 computation inside the L-tree. The following word encodes the index
 of the node at that height, inside the L-tree. This time, the last
 word, keyAndMask, is used to generate three different addresses for
 one function call. The word is set to zero to generate the key. To
 generate the most significant n bytes of the 2n-byte bitmask, the
 word is set to one. The least significant bytes are generated using
 the address with the word set to two.

Huelsing, et al. Informational [Page 10]

RFC 8391 XMSS May 2018

 +-------------------------+
 | layer address (32 bits)|
 +-------------------------+
 | tree address (64 bits)|
 +-------------------------+
 | type = 1 (32 bits)|
 +-------------------------+
 | L-tree address (32 bits)|
 +-------------------------+
 | tree height (32 bits)|
 +-------------------------+
 | tree index (32 bits)|
 +-------------------------+
 | keyAndMask (32 bits)|
 +-------------------------+

 An L-tree Address

 We now describe the remaining type for the main tree hash addresses.
 In this case, the type word is set to two, followed by a zero padding
 of one word. The next word encodes the height of the tree node being
 input for the next computation, followed by a word that encodes the
 index of this node at that height. As for the L-tree addresses, the
 last word, keyAndMask, is used to generate three different addresses
 for one function call. The word is set to zero to generate the key.
 To generate the most significant n bytes of the 2n-byte bitmask, the
 word is set to one. The least significant bytes are generated using
 the address with the word set to two.

 +-------------------------+
 | layer address (32 bits)|
 +-------------------------+
 | tree address (64 bits)|
 +-------------------------+
 | type = 2 (32 bits)|
 +-------------------------+
 | Padding = 0 (32 bits)|
 +-------------------------+
 | tree height (32 bits)|
 +-------------------------+
 | tree index (32 bits)|
 +-------------------------+
 | keyAndMask (32 bits)|
 +-------------------------+

 A Hash Tree Address

Huelsing, et al. Informational [Page 11]

RFC 8391 XMSS May 2018

 All fields within these addresses encode unsigned integers. When
 describing the generation of addresses we use setter methods that
 take positive integers and set the bits of a field to the binary
 representation of that integer of the length of the field. We
 furthermore assume that the setType() method sets the four words
 following the type word to zero.

2.6. Strings of Base w Numbers

 A byte string can be considered as a string of base w numbers, i.e.,
 integers in the set {0, ... , w - 1}. The correspondence is defined
 by the function base_w(X, w, out_len) (Algorithm 1) as follows. If X
 is a len_X-byte string, and w is a member of the set {4, 16}, then
 base_w(X, w, out_len) outputs an array of out_len integers between 0
 and w - 1. The length out_len is REQUIRED to be less than or equal
 to 8 * len_X / lg(w).

 Algorithm 1: base_w

 Input: len_X-byte string X, int w, output length out_len
 Output: out_len int array basew

 int in = 0;
 int out = 0;
 unsigned int total = 0;
 int bits = 0;
 int consumed;

 for (consumed = 0; consumed < out_len; consumed++) {
 if (bits == 0) {
 total = X[in];
 in++;
 bits += 8;
 }
 bits -= lg(w);
 basew[out] = (total >> bits) AND (w - 1);
 out++;
 }
 return basew;

 For example, if X is the (big-endian) byte string 0x1234, then
 base_w(X, 16, 4) returns the array a = {1, 2, 3, 4}.

Huelsing, et al. Informational [Page 12]

RFC 8391 XMSS May 2018

 X (represented as bits)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 X[0] | X[1]

 X (represented as base 16 numbers)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+

 base_w(X, 16, 4)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+
 a[0] a[1] a[2] a[3]

 base_w(X, 16, 3)
 +-----------+-----------+-----------+
 | 1 | 2 | 3 |
 +-----------+-----------+-----------+
 a[0] a[1] a[2]

 base_w(X, 16, 2)
 +-----------+-----------+
 | 1 | 2 |
 +-----------+-----------+
 a[0] a[1]

 Example

2.7. Member Functions

 To simplify algorithm descriptions, we assume the existence of member
 functions. If a complex data structure like a public key PK contains
 a value X, then getX(PK) returns the value of X for this public key.
 Accordingly, setX(PK, X, Y) sets value X in PK to the value held by
 Y. Since camelCase is used for member function names, a value z may
 be referred to as Z in the function name, e.g., getZ.

Huelsing, et al. Informational [Page 13]

RFC 8391 XMSS May 2018

3. Primitives

3.1. WOTS+: One-Time Signatures

 This section describes the WOTS+ system in a manner similar to that
 in [Huelsing13]. WOTS+ is an OTS scheme; while a private key can be
 used to sign any message, each private key MUST be used only once to
 sign a single message. In particular, if a private key is used to
 sign two different messages, the scheme becomes insecure.

 This section starts with an explanation of parameters. Afterwards,
 the so-called chaining function, which forms the main building block
 of the WOTS+ scheme, is explained. A description of the algorithms
 for key generation, signing, and verification follows. Finally,
 pseudorandom key generation is discussed.

3.1.1. WOTS+ Parameters

 WOTS+ uses the parameters n and w; they both take positive integer
 values. These parameters are summarized as follows:

 n: the message length as well as the length of a private key,
 public key, or signature element in bytes.

 w: the Winternitz parameter; it is a member of the set {4, 16}.

 The parameters are used to compute values len, len_1, and len_2:

 len: the number of n-byte string elements in a WOTS+ private key,
 public key, and signature. It is computed as len = len_1 + len_2,
 with len_1 = ceil(8n / lg(w)) and len_2 = floor(lg(len_1 *
 (w - 1)) / lg(w)) + 1.

 The value of n is determined by the cryptographic hash function used
 for WOTS+. The hash function is chosen to ensure an appropriate
 level of security. The value of n is the input length that can be
 processed by the signing algorithm. It is often the length of a
 message digest. The parameter w can be chosen from the set {4, 16}.
 A larger value of w results in shorter signatures but slower overall
 signing operations; it has little effect on security. Choices of w
 are limited to the values 4 and 16 since these values yield optimal
 trade-offs and easy implementation.

 WOTS+ parameters are implicitly included in algorithm inputs as
 needed.

Huelsing, et al. Informational [Page 14]

RFC 8391 XMSS May 2018

3.1.1.1. WOTS+ Functions

 The WOTS+ algorithm uses a keyed cryptographic hash function F. F
 accepts and returns byte strings of length n using keys of length n.
 More detail on specific instantiations can be found in Section 5.
 Security requirements on F are discussed in Section 9. In addition,
 WOTS+ uses a pseudorandom function PRF. PRF takes as input an n-byte
 key and a 32-byte index and generates pseudorandom outputs of length
 n. More detail on specific instantiations can be found in Section 5.
 Security requirements on PRF are discussed in Section 9.

3.1.2. WOTS+ Chaining Function

 The chaining function (Algorithm 2) computes an iteration of F on an
 n-byte input using outputs of PRF. It takes an OTS hash address as
 input. This address will have the first six 32-bit words set to
 encode the address of this chain. In each iteration, PRF is used to
 generate a key for F and a bitmask that is XORed to the intermediate
 result before it is processed by F. In the following, ADRS is a
 32-byte OTS hash address as specified in Section 2.5 and SEED is an
 n-byte string. To generate the keys and bitmasks, PRF is called with
 SEED as key and ADRS as input. The chaining function takes as input
 an n-byte string X, a start index i, a number of steps s, as well as
 ADRS and SEED. The chaining function returns as output the value
 obtained by iterating F for s times on input X, using the outputs of
 PRF.

Huelsing, et al. Informational [Page 15]

RFC 8391 XMSS May 2018

 Algorithm 2: chain - Chaining Function

 Input: Input string X, start index i, number of steps s,
 seed SEED, address ADRS
 Output: value of F iterated s times on X

 if (s == 0) {
 return X;
 }
 if ((i + s) > (w - 1)) {
 return NULL;
 }
 byte[n] tmp = chain(X, i, s - 1, SEED, ADRS);

 ADRS.setHashAddress(i + s - 1);
 ADRS.setKeyAndMask(0);
 KEY = PRF(SEED, ADRS);
 ADRS.setKeyAndMask(1);
 BM = PRF(SEED, ADRS);

 tmp = F(KEY, tmp XOR BM);
 return tmp;

3.1.3. WOTS+ Private Key

 The private key in WOTS+, denoted by sk (s for secret), is a length
 len array of n-byte strings. This private key MUST be only used to
 sign at most one message. Each n-byte string MUST either be selected
 randomly from the uniform distribution or be selected using a
 cryptographically secure pseudorandom procedure. In the latter case,
 the security of the used procedure MUST at least match that of the
 WOTS+ parameters used. For a further discussion on pseudorandom key
 generation, see Section 3.1.7. The following pseudocode (Algorithm
 3) describes an algorithm for generating sk.

 Algorithm 3: WOTS_genSK - Generating a WOTS+ Private Key

 Input: No input
 Output: WOTS+ private key sk

 for (i = 0; i < len; i++) {
 initialize sk[i] with a uniformly random n-byte string;
 }
 return sk;

Huelsing, et al. Informational [Page 16]

RFC 8391 XMSS May 2018

3.1.4. WOTS+ Public Key

 A WOTS+ key pair defines a virtual structure that consists of len
 hash chains of length w. The len n-byte strings in the private key
 each define the start node for one hash chain. The public key
 consists of the end nodes of these hash chains. Therefore, like the
 private key, the public key is also a length len array of n-byte
 strings. To compute the hash chain, the chaining function (Algorithm
 2) is used. An OTS hash address ADRS and a seed SEED have to be
 provided by the calling algorithm. This address will encode the
 address of the WOTS+ key pair within a greater structure. Hence, a
 WOTS+ algorithm MUST NOT manipulate any parts of ADRS except for the
 last three 32-bit words. Please note that the SEED used here is
 public information also available to a verifier. The following
 pseudocode (Algorithm 4) describes an algorithm for generating the
 public key pk, where sk is the private key.

 Algorithm 4: WOTS_genPK - Generating a WOTS+ Public Key From a
 Private Key

 Input: WOTS+ private key sk, address ADRS, seed SEED
 Output: WOTS+ public key pk

 for (i = 0; i < len; i++) {
 ADRS.setChainAddress(i);
 pk[i] = chain(sk[i], 0, w - 1, SEED, ADRS);
 }
 return pk;

3.1.5. WOTS+ Signature Generation

 A WOTS+ signature is a length len array of n-byte strings. The WOTS+
 signature is generated by mapping a message to len integers between 0
 and w - 1. To this end, the message is transformed into len_1 base w
 numbers using the base_w function defined in Section 2.6. Next, a
 checksum is computed and appended to the transformed message as len_2
 base w numbers using the base_w function. Note that the checksum may
 reach a maximum integer value of len_1 * (w - 1) * 2^8 and therefore
 depends on the parameters n and w. For the parameter sets given in
 Section 5, a 32-bit unsigned integer is sufficient to hold the
 checksum. If other parameter settings are used, the size of the
 variable holding the integer value of the checksum MUST be
 sufficiently large. Each of the base w integers is used to select a
 node from a different hash chain. The signature is formed by
 concatenating the selected nodes. An OTS hash address ADRS and a
 seed SEED have to be provided by the calling algorithm. This address
 will encode the address of the WOTS+ key pair within a greater
 structure. Hence, a WOTS+ algorithm MUST NOT manipulate any parts of

Huelsing, et al. Informational [Page 17]

RFC 8391 XMSS May 2018

 ADRS except for the last three 32-bit words. Please note that the
 SEED used here is public information also available to a verifier.
 The pseudocode for signature generation is shown below (Algorithm 5),
 where M is the message and sig is the resulting signature.

 Algorithm 5: WOTS_sign - Generating a signature from a private key
 and a message

 Input: Message M, WOTS+ private key sk, address ADRS, seed SEED
 Output: WOTS+ signature sig

 csum = 0;

 // Convert message to base w
 msg = base_w(M, w, len_1);

 // Compute checksum
 for (i = 0; i < len_1; i++) {
 csum = csum + w - 1 - msg[i];
 }

 // Convert csum to base w
 csum = csum << (8 - ((len_2 * lg(w)) % 8));
 len_2_bytes = ceil((len_2 * lg(w)) / 8);
 msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
 for (i = 0; i < len; i++) {
 ADRS.setChainAddress(i);
 sig[i] = chain(sk[i], 0, msg[i], SEED, ADRS);
 }
 return sig;

 The data format for a signature is given below.

 +---------------------------------+
 | |
 | sig_ots[0] | n bytes
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | sig_ots[len - 1] | n bytes
 | |
 +---------------------------------+

 WOTS+ Signature

Huelsing, et al. Informational [Page 18]

RFC 8391 XMSS May 2018

3.1.6. WOTS+ Signature Verification

 In order to verify a signature sig on a message M, the verifier
 computes a WOTS+ public key value from the signature. This can be
 done by "completing" the chain computations starting from the
 signature values, using the base w values of the message hash and its
 checksum. This step, called WOTS_pkFromSig, is described below in
 Algorithm 6. The result of WOTS_pkFromSig is then compared to the
 given public key. If the values are equal, the signature is
 accepted. Otherwise, the signature MUST be rejected. An OTS hash
 address ADRS and a seed SEED have to be provided by the calling
 algorithm. This address will encode the address of the WOTS+ key
 pair within a greater structure. Hence, a WOTS+ algorithm MUST NOT
 manipulate any parts of ADRS except for the last three 32-bit words.
 Please note that the SEED used here is public information also
 available to a verifier.

 Algorithm 6: WOTS_pkFromSig - Computing a WOTS+ public key from a
 message and its signature

 Input: Message M, WOTS+ signature sig, address ADRS, seed SEED
 Output: ’Temporary’ WOTS+ public key tmp_pk

 csum = 0;

 // Convert message to base w
 msg = base_w(M, w, len_1);

 // Compute checksum
 for (i = 0; i < len_1; i++) {
 csum = csum + w - 1 - msg[i];
 }

 // Convert csum to base w
 csum = csum << (8 - ((len_2 * lg(w)) % 8));
 len_2_bytes = ceil((len_2 * lg(w)) / 8);
 msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
 for (i = 0; i < len; i++) {
 ADRS.setChainAddress(i);
 tmp_pk[i] = chain(sig[i], msg[i], w - 1 - msg[i], SEED, ADRS);
 }
 return tmp_pk;

 Note: XMSS uses WOTS_pkFromSig to compute a public key value and
 delays the comparison to a later point.

Huelsing, et al. Informational [Page 19]

RFC 8391 XMSS May 2018

3.1.7. Pseudorandom Key Generation

 An implementation MAY use a cryptographically secure pseudorandom
 method to generate the private key from a single n-byte value. For
 example, the method suggested in [BDH11] and explained below MAY be
 used. Other methods MAY be used. The choice of a pseudorandom
 method does not affect interoperability, but the cryptographic
 strength MUST match that of the used WOTS+ parameters.

 The advantage of generating the private key elements from a random
 n-byte string is that only this n-byte string needs to be stored
 instead of the full private key. The key can be regenerated when
 needed. The suggested method from [BDH11] can be described using
 PRF. During key generation, a uniformly random n-byte string S is
 sampled from a secure source of randomness. This string S is stored
 as private key. The private key elements are computed as sk[i] =
 PRF(S, toByte(i, 32)) whenever needed. Please note that this seed S
 MUST be different from the seed SEED used to randomize the hash
 function calls. Also, this seed S MUST be kept secret. The seed S
 MUST NOT be a low entropy, human-memorable value since private key
 elements are derived from S deterministically and their
 confidentiality is security-critical.

4. Schemes

 In this section, the eXtended Merkle Signature Scheme (XMSS) is
 described using WOTS+. XMSS comes in two flavors: a single-tree
 variant (XMSS) and a multi-tree variant (XMSS^MT). Both allow
 combining a large number of WOTS+ key pairs under a single small
 public key. The main ingredient added is a binary hash tree
 construction. XMSS uses a single hash tree while XMSS^MT uses a tree
 of XMSS key pairs.

4.1. XMSS: eXtended Merkle Signature Scheme

 XMSS is a method for signing a potentially large but fixed number of
 messages. It is based on the Merkle signature scheme. XMSS uses
 four cryptographic components: WOTS+ as OTS method, two additional
 cryptographic hash functions H and H_msg, and a pseudorandom function
 PRF. One of the main advantages of XMSS with WOTS+ is that it does
 not rely on the collision resistance of the used hash functions but
 on weaker properties. Each XMSS public/private key pair is
 associated with a perfect binary tree, every node of which contains
 an n-byte value. Each tree leaf contains a special tree hash of a
 WOTS+ public key value. Each non-leaf tree node is computed by first
 concatenating the values of its child nodes, computing the XOR with a
 bitmask, and applying the keyed hash function H to the result. The
 bitmasks and the keys for the hash function H are generated from a

Huelsing, et al. Informational [Page 20]

RFC 8391 XMSS May 2018

 (public) seed that is part of the public key using the pseudorandom
 function PRF. The value corresponding to the root of the XMSS tree
 forms the XMSS public key together with the seed.

 To generate a key pair that can be used to sign 2^h messages, a tree
 of height h is used. XMSS is a stateful signature scheme, meaning
 that the private key changes with every signature generation. To
 prevent one-time private keys from being used twice, the WOTS+ key
 pairs are numbered from 0 to (2^h) - 1 according to the related leaf,
 starting from index 0 for the leftmost leaf. The private key
 contains an index that is updated with every signature generation,
 such that it contains the index of the next unused WOTS+ key pair.

 A signature consists of the index of the used WOTS+ key pair, the
 WOTS+ signature on the message, and the so-called authentication
 path. The latter is a vector of tree nodes that allow a verifier to
 compute a value for the root of the tree starting from a WOTS+
 signature. A verifier computes the root value and compares it to the
 respective value in the XMSS public key. If they match, the
 signature is declared valid. The XMSS private key consists of all
 WOTS+ private keys and the current index. To reduce storage, a
 pseudorandom key generation procedure, as described in [BDH11], MAY
 be used. The security of the used method MUST at least match the
 security of the XMSS instance.

4.1.1. XMSS Parameters

 XMSS has the following parameters:

 h: the height (number of levels - 1) of the tree

 n: the length in bytes of the message digest as well as each node

 w: the Winternitz parameter as defined for WOTS+ in Section 3.1

 There are 2^h leaves in the tree.

 For XMSS and XMSS^MT, private and public keys are denoted by SK (S
 for secret) and PK, respectively. For WOTS+, private and public keys
 are denoted by sk (s for secret) and pk, respectively. XMSS and
 XMSS^MT signatures are denoted by Sig. WOTS+ signatures are denoted
 by sig.

 XMSS and XMSS^MT parameters are implicitly included in algorithm
 inputs as needed.

Huelsing, et al. Informational [Page 21]

RFC 8391 XMSS May 2018

4.1.2. XMSS Hash Functions

 Besides the cryptographic hash function F and the pseudorandom
 function PRF required by WOTS+, XMSS uses two more functions:

 o A cryptographic hash function H. H accepts n-byte keys and byte
 strings of length 2n and returns an n-byte string.

 o A cryptographic hash function H_msg. H_msg accepts 3n-byte keys
 and byte strings of arbitrary length and returns an n-byte string.

 More detail on specific instantiations can be found in Section 5.
 Security requirements on H and H_msg are discussed in Section 9.

4.1.3. XMSS Private Key

 An XMSS private key SK contains 2^h WOTS+ private keys, the leaf
 index idx of the next WOTS+ private key that has not yet been used,
 SK_PRF (an n-byte key to generate pseudorandom values for randomized
 message hashing), the n-byte value root (which is the root node of
 the tree and SEED), and the n-byte public seed used to pseudorandomly
 generate bitmasks and hash function keys. Although root and SEED
 formally would be considered only part of the public key, they are
 needed (e.g., for signature generation) and hence are also required
 for functions that do not take the public key as input.

 The leaf index idx is initialized to zero when the XMSS private key
 is created. The key SK_PRF MUST be sampled from a secure source of
 randomness that follows the uniform distribution. The WOTS+ private
 keys MUST be generated as described in Section 3.1, or, to reduce the
 private key size, a cryptographic pseudorandom method MUST be used as
 discussed in Section 4.1.11. SEED is generated as a uniformly random
 n-byte string. Although SEED is public, it is critical for security
 that it is generated using a good entropy source. The root node is
 generated as described below in the section on key generation
 (Section 4.1.7). That section also contains an example algorithm for
 combined private and public key generation.

 For the following algorithm descriptions, the existence of a method
 getWOTS_SK(SK, i) is assumed. This method takes as input an XMSS
 private key SK and an integer i and outputs the i^th WOTS+ private
 key of SK.

Huelsing, et al. Informational [Page 22]

RFC 8391 XMSS May 2018

4.1.4. Randomized Tree Hashing

 To improve readability, we introduce a function RAND_HASH(LEFT,
 RIGHT, SEED, ADRS) (Algorithm 7) that does the randomized hashing in
 the tree. It takes as input two n-byte values LEFT and RIGHT that
 represent the left and the right halves of the hash function input,
 the seed SEED used as key for PRF, and the address ADRS of this hash
 function call. RAND_HASH first uses PRF with SEED and ADRS to
 generate a key KEY and n-byte bitmasks BM_0, BM_1. Then, it returns
 the randomized hash H(KEY, (LEFT XOR BM_0) || (RIGHT XOR BM_1)).

 Algorithm 7: RAND_HASH

 Input: n-byte value LEFT, n-byte value RIGHT, seed SEED,
 address ADRS
 Output: n-byte randomized hash

 ADRS.setKeyAndMask(0);
 KEY = PRF(SEED, ADRS);
 ADRS.setKeyAndMask(1);
 BM_0 = PRF(SEED, ADRS);
 ADRS.setKeyAndMask(2);
 BM_1 = PRF(SEED, ADRS);

 return H(KEY, (LEFT XOR BM_0) || (RIGHT XOR BM_1));

4.1.5. L-Trees

 To compute the leaves of the binary hash tree, a so-called L-tree is
 used. An L-tree is an unbalanced binary hash tree, distinct but
 similar to the main XMSS binary hash tree. The algorithm ltree
 (Algorithm 8) takes as input a WOTS+ public key pk and compresses it
 to a single n-byte value pk[0]. It also takes as input an L-tree
 address ADRS that encodes the address of the L-tree and the seed
 SEED.

Huelsing, et al. Informational [Page 23]

RFC 8391 XMSS May 2018

 Algorithm 8: ltree

 Input: WOTS+ public key pk, address ADRS, seed SEED
 Output: n-byte compressed public key value pk[0]

 unsigned int len’ = len;
 ADRS.setTreeHeight(0);
 while (len’ > 1) {
 for (i = 0; i < floor(len’ / 2); i++) {
 ADRS.setTreeIndex(i);
 pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
 }
 if (len’ % 2 == 1) {
 pk[floor(len’ / 2)] = pk[len’ - 1];
 }
 len’ = ceil(len’ / 2);
 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
 }
 return pk[0];

4.1.6. TreeHash

 For the computation of the internal n-byte nodes of a Merkle tree,
 the subroutine treeHash (Algorithm 9) accepts an XMSS private key SK
 (including seed SEED), an unsigned integer s (the start index), an
 unsigned integer t (the target node height), and an address ADRS that
 encodes the address of the containing tree. For the height of a node
 within a tree, counting starts with the leaves at height zero. The
 treeHash algorithm returns the root node of a tree of height t with
 the leftmost leaf being the hash of the WOTS+ pk with index s. It is
 REQUIRED that s % 2^t = 0, i.e., that the leaf at index s is a
 leftmost leaf of a sub-tree of height t. Otherwise, the hash-
 addressing scheme fails. The treeHash algorithm described here uses
 a stack holding up to (t - 1) nodes, with the usual stack functions
 push() and pop(). We furthermore assume that the height of a node
 (an unsigned integer) is stored alongside a node’s value (an n-byte
 string) on the stack.

Huelsing, et al. Informational [Page 24]

RFC 8391 XMSS May 2018

 Algorithm 9: treeHash

 Input: XMSS private key SK, start index s, target node height t,
 address ADRS
 Output: n-byte root node - top node on Stack

 if(s % (1 << t) != 0) return -1;
 for (i = 0; i < 2^t; i++) {
 SEED = getSEED(SK);
 ADRS.setType(0); // Type = OTS hash address
 ADRS.setOTSAddress(s + i);
 pk = WOTS_genPK (getWOTS_SK(SK, s + i), SEED, ADRS);
 ADRS.setType(1); // Type = L-tree address
 ADRS.setLTreeAddress(s + i);
 node = ltree(pk, SEED, ADRS);
 ADRS.setType(2); // Type = hash tree address
 ADRS.setTreeHeight(0);
 ADRS.setTreeIndex(i + s);
 while (Top node on Stack has same height t’ as node) {
 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
 node = RAND_HASH(Stack.pop(), node, SEED, ADRS);
 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
 }
 Stack.push(node);
 }
 return Stack.pop();

4.1.7. XMSS Key Generation

 The XMSS key pair is computed as described in XMSS_keyGen (Algorithm
 10). The XMSS public key PK consists of the root of the binary hash
 tree and the seed SEED, both also stored in SK. The root is computed
 using treeHash. For XMSS, there is only a single main tree. Hence,
 the used address is set to the all-zero string in the beginning.
 Note that we do not define any specific format or handling for the
 XMSS private key SK by introducing this algorithm. It relates to
 requirements described earlier and simply shows a basic but very
 inefficient example to initialize a private key.

Huelsing, et al. Informational [Page 25]

RFC 8391 XMSS May 2018

 Algorithm 10: XMSS_keyGen - Generate an XMSS key pair

 Input: No input
 Output: XMSS private key SK, XMSS public key PK

 // Example initialization for SK-specific contents
 idx = 0;
 for (i = 0; i < 2^h; i++) {
 wots_sk[i] = WOTS_genSK();
 }
 initialize SK_PRF with a uniformly random n-byte string;
 setSK_PRF(SK, SK_PRF);

 // Initialization for common contents
 initialize SEED with a uniformly random n-byte string;
 setSEED(SK, SEED);
 setWOTS_SK(SK, wots_sk));
 ADRS = toByte(0, 32);
 root = treeHash(SK, 0, h, ADRS);

 SK = idx || wots_sk || SK_PRF || root || SEED;
 PK = OID || root || SEED;
 return (SK || PK);

 The above is just an example algorithm. It is strongly RECOMMENDED
 to use pseudorandom key generation to reduce the private key size.
 Public and private key generation MAY be interleaved to save space.
 Particularly, when a pseudorandom method is used to generate the
 private key, generation MAY be done when the respective WOTS+ key
 pair is needed by treeHash.

 The format of an XMSS public key is given below.

 +---------------------------------+
 | algorithm OID |
 +---------------------------------+
 | |
 | root node | n bytes
 | |
 +---------------------------------+
 | |
 | SEED | n bytes
 | |
 +---------------------------------+

 XMSS Public Key

Huelsing, et al. Informational [Page 26]

RFC 8391 XMSS May 2018

4.1.8. XMSS Signature

 An XMSS signature is a (4 + n + (len + h) * n)-byte string consisting
 of:

 o the index idx_sig of the used WOTS+ key pair (4 bytes),

 o a byte string r used for randomized message hashing (n bytes),

 o a WOTS+ signature sig_ots (len * n bytes), and

 o the so-called authentication path ’auth’ for the leaf associated
 with the used WOTS+ key pair (h * n bytes).

 The authentication path is an array of h n-byte strings. It contains
 the siblings of the nodes on the path from the used leaf to the root.
 It does not contain the nodes on the path itself. A verifier needs
 these nodes to compute a root node for the tree from the WOTS+ public
 key. A node Node is addressed by its position in the tree. Node(x,
 y) denotes the y^th node on level x with y = 0 being the leftmost
 node on a level. The leaves are on level 0; the root is on level h.
 An authentication path contains exactly one node on every layer 0 <=
 x <= (h - 1). For the i^th WOTS+ key pair, counting from zero, the
 j^th authentication path node is:

 Node(j, floor(i / (2^j)) XOR 1)

 The computation of the authentication path is discussed in
 Section 4.1.9.

Huelsing, et al. Informational [Page 27]

RFC 8391 XMSS May 2018

 The data format for a signature is given below.

 +---------------------------------+
 | |
 | index idx_sig | 4 bytes
 | |
 +---------------------------------+
 | |
 | randomness r | n bytes
 | |
 +---------------------------------+
 | |
 | WOTS+ signature sig_ots | len * n bytes
 | |
 +---------------------------------+
 | |
 | auth[0] | n bytes
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | auth[h - 1] | n bytes
 | |
 +---------------------------------+

 XMSS Signature

4.1.9. XMSS Signature Generation

 To compute the XMSS signature of a message M with an XMSS private
 key, the signer first computes a randomized message digest using a
 random value r, idx_sig, the index of the WOTS+ key pair to be used,
 and the root value from the public key as key. Then, a WOTS+
 signature of the message digest is computed using the next unused
 WOTS+ private key. Next, the authentication path is computed.
 Finally, the private key is updated, i.e., idx is incremented. An
 implementation MUST NOT output the signature before the private key
 is updated.

 The node values of the authentication path MAY be computed in any
 way. This computation is assumed to be performed by the subroutine
 buildAuth for the function XMSS_sign (Algorithm 12). The fastest
 alternative is to store all tree nodes and set the array in the
 signature by copying the respective nodes. The least storage-
 intensive alternative is to recompute all nodes for each signature

Huelsing, et al. Informational [Page 28]

RFC 8391 XMSS May 2018

 online using the treeHash algorithm (Algorithm 9). Several
 algorithms exist in between, with different time/storage trade-offs.
 For an overview, see [BDS09]. A further approach can be found in
 [KMN14]. Note that the details of this procedure are not relevant to
 interoperability; it is not necessary to know any of these details in
 order to perform the signature verification operation. The following
 version of buildAuth is given for completeness. It is a simple
 example for understanding, but extremely inefficient. The use of one
 of the alternative algorithms is strongly RECOMMENDED.

 Given an XMSS private key SK, all nodes in a tree are determined.
 Their values are defined in terms of treeHash (Algorithm 9). Hence,
 one can compute the authentication path as follows:

 (Example) buildAuth - Compute the authentication path for the i^th
 WOTS+ key pair

 Input: XMSS private key SK, WOTS+ key pair index i, ADRS
 Output: Authentication path auth

 for (j = 0; j < h; j++) {
 k = floor(i / (2^j)) XOR 1;
 auth[j] = treeHash(SK, k * 2^j, j, ADRS);
 }

 We split the description of the signature generation into two main
 algorithms. The first one, treeSig (Algorithm 11), generates the
 main part of an XMSS signature and is also used by the multi-tree
 variant XMSS^MT. XMSS_sign (Algorithm 12) calls treeSig but handles
 message compression before and the private key update afterwards.

 The algorithm treeSig (Algorithm 11) described below calculates the
 WOTS+ signature on an n-byte message and the corresponding
 authentication path. treeSig takes as input an n-byte message M’, an
 XMSS private key SK, a signature index idx_sig, and an address ADRS.
 It returns the concatenation of the WOTS+ signature sig_ots and
 authentication path auth.

Huelsing, et al. Informational [Page 29]

RFC 8391 XMSS May 2018

 Algorithm 11: treeSig - Generate a WOTS+ signature on a message with
 corresponding authentication path

 Input: n-byte message M’, XMSS private key SK,
 signature index idx_sig, ADRS
 Output: Concatenation of WOTS+ signature sig_ots and
 authentication path auth

 auth = buildAuth(SK, idx_sig, ADRS);
 ADRS.setType(0); // Type = OTS hash address
 ADRS.setOTSAddress(idx_sig);
 sig_ots = WOTS_sign(getWOTS_SK(SK, idx_sig),
 M’, getSEED(SK), ADRS);
 Sig = sig_ots || auth;
 return Sig;

 The algorithm XMSS_sign (Algorithm 12) described below calculates an
 updated private key SK and a signature on a message M. XMSS_sign
 takes as input a message M of arbitrary length and an XMSS private
 key SK. It returns the byte string containing the concatenation of
 the updated private key SK and the signature Sig.

 Algorithm 12: XMSS_sign - Generate an XMSS signature and update the
 XMSS private key

 Input: Message M, XMSS private key SK
 Output: Updated SK, XMSS signature Sig

 idx_sig = getIdx(SK);
 setIdx(SK, idx_sig + 1);
 ADRS = toByte(0, 32);
 byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32));
 byte[n] M’ = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);
 Sig = idx_sig || r || treeSig(M’, SK, idx_sig, ADRS);
 return (SK || Sig);

4.1.10. XMSS Signature Verification

 An XMSS signature is verified by first computing the message digest
 using randomness r, index idx_sig, the root from PK and message M.
 Then the used WOTS+ public key pk_ots is computed from the WOTS+
 signature using WOTS_pkFromSig. The WOTS+ public key in turn is used
 to compute the corresponding leaf using an L-tree. The leaf,
 together with index idx_sig and authentication path auth is used to
 compute an alternative root value for the tree. The verification
 succeeds if and only if the computed root value matches the one in
 the XMSS public key. In any other case, it MUST return fail.

Huelsing, et al. Informational [Page 30]

RFC 8391 XMSS May 2018

 As for signature generation, we split verification into two parts to
 allow for reuse in the XMSS^MT description. The steps also needed
 for XMSS^MT are done by the function XMSS_rootFromSig (Algorithm 13).
 XMSS_verify (Algorithm 14) calls XMSS_rootFromSig as a subroutine and
 handles the XMSS-specific steps.

 The main part of XMSS signature verification is done by the function
 XMSS_rootFromSig (Algorithm 13) described below. XMSS_rootFromSig
 takes as input an index idx_sig, a WOTS+ signature sig_ots, an
 authentication path auth, an n-byte message M’, seed SEED, and
 address ADRS. XMSS_rootFromSig returns an n-byte string holding the
 value of the root of a tree defined by the input data.

 Algorithm 13: XMSS_rootFromSig - Compute a root node from a tree
 signature

 Input: index idx_sig, WOTS+ signature sig_ots, authentication path
 auth, n-byte message M’, seed SEED, address ADRS
 Output: n-byte root value node[0]

 ADRS.setType(0); // Type = OTS hash address
 ADRS.setOTSAddress(idx_sig);
 pk_ots = WOTS_pkFromSig(sig_ots, M’, SEED, ADRS);
 ADRS.setType(1); // Type = L-tree address
 ADRS.setLTreeAddress(idx_sig);
 byte[n][2] node;
 node[0] = ltree(pk_ots, SEED, ADRS);
 ADRS.setType(2); // Type = hash tree address
 ADRS.setTreeIndex(idx_sig);
 for (k = 0; k < h; k++) {
 ADRS.setTreeHeight(k);
 if ((floor(idx_sig / (2^k)) % 2) == 0) {
 ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
 node[1] = RAND_HASH(node[0], auth[k], SEED, ADRS);
 } else {
 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
 node[1] = RAND_HASH(auth[k], node[0], SEED, ADRS);
 }
 node[0] = node[1];
 }
 return node[0];

 The full XMSS signature verification is depicted below (Algorithm
 14). It handles message compression, delegates the root computation
 to XMSS_rootFromSig, and compares the result to the value in the
 public key. XMSS_verify takes as input an XMSS signature Sig, a

Huelsing, et al. Informational [Page 31]

RFC 8391 XMSS May 2018

 message M, and an XMSS public key PK. XMSS_verify returns true if
 and only if Sig is a valid signature on M under public key PK.
 Otherwise, it returns false.

 Algorithm 14: XMSS_verify - Verify an XMSS signature using the
 corresponding XMSS public key and a message

 Input: XMSS signature Sig, message M, XMSS public key PK
 Output: Boolean

 ADRS = toByte(0, 32);
 byte[n] M’ = H_msg(r || getRoot(PK) || (toByte(idx_sig, n)), M);

 byte[n] node = XMSS_rootFromSig(idx_sig, sig_ots, auth, M’,
 getSEED(PK), ADRS);
 if (node == getRoot(PK)) {
 return true;
 } else {
 return false;
 }

4.1.11. Pseudorandom Key Generation

 An implementation MAY use a cryptographically secure pseudorandom
 method to generate the XMSS private key from a single n-byte value.
 For example, the method suggested in [BDH11] and explained below MAY
 be used. Other methods, such as the one in [HRS16], MAY be used.
 The choice of a pseudorandom method does not affect interoperability,
 but the cryptographic strength MUST match that of the used XMSS
 parameters.

 For XMSS, a method similar to that for WOTS+ can be used. The
 suggested method from [BDH11] can be described using PRF. During key
 generation, a uniformly random n-byte string S is sampled from a
 secure source of randomness. This seed S MUST NOT be confused with
 the public seed SEED. The seed S MUST be independent of SEED, and
 because it is the main secret, it MUST be kept secret. This seed S
 is used to generate an n-byte value S_ots for each WOTS+ key pair.
 The n-byte value S_ots can then be used to compute the respective
 WOTS+ private key using the method described in Section 3.1.7. The
 seeds for the WOTS+ key pairs are computed as S_ots[i] = PRF(S,
 toByte(i, 32)) where i is the index of the WOTS+ key pair. An
 advantage of this method is that a WOTS+ key can be computed using
 only len + 1 evaluations of PRF when S is given.

Huelsing, et al. Informational [Page 32]

RFC 8391 XMSS May 2018

4.1.12. Free Index Handling and Partial Private Keys

 Some applications might require working with partial private keys or
 copies of private keys. Examples include load balancing and
 delegation of signing rights or proxy signatures. Such applications
 MAY use their own key format and MAY use a signing algorithm
 different from the one described above. The index in partial private
 keys or copies of a private key MAY be manipulated as required by the
 applications. However, applications MUST establish means that
 guarantee that each index, and thereby each WOTS+ key pair, is used
 to sign only a single message.

4.2. XMSS^MT: Multi-Tree XMSS

 XMSS^MT is a method for signing a large but fixed number of messages.
 It was first described in [HRB13]. It builds on XMSS. XMSS^MT uses
 a tree of several layers of XMSS trees, a so-called hypertree. The
 trees on top and intermediate layers are used to sign the root nodes
 of the trees on the respective layer below. Trees on the lowest
 layer are used to sign the actual messages. All XMSS trees have
 equal height.

 Consider an XMSS^MT tree of total height h that has d layers of XMSS
 trees of height h / d. Then, layer d - 1 contains one XMSS tree,
 layer d - 2 contains 2^(h / d) XMSS trees, and so on. Finally, layer
 0 contains 2^(h - h / d) XMSS trees.

4.2.1. XMSS^MT Parameters

 In addition to all XMSS parameters, an XMSS^MT system requires the
 number of tree layers d, specified as an integer value that divides h
 without remainder. The same tree height h / d and the same
 Winternitz parameter w are used for all tree layers.

 All the trees on higher layers sign root nodes of other trees, with
 the root nodes being n-byte strings. Hence, no message compression
 is needed, and WOTS+ is used to sign the root nodes themselves
 instead of their hash values.

4.2.2. XMSS^MT Key Generation

 An XMSS^MT private key SK_MT (S for secret) consists of one reduced
 XMSS private key for each XMSS tree. These reduced XMSS private keys
 just contain the WOTS+ private keys corresponding to that XMSS key
 pair; they do not contain a pseudorandom function key, index, public
 seed, or root node. Instead, SK_MT contains a single n-byte
 pseudorandom function key SK_PRF, a single (ceil(h / 8))-byte index
 idx_MT, a single n-byte seed SEED, and a single root value root

Huelsing, et al. Informational [Page 33]

RFC 8391 XMSS May 2018

 (which is the root of the single tree on the top layer). The index
 is a global index over all WOTS+ key pairs of all XMSS trees on layer
 0. It is initialized with 0. It stores the index of the last used
 WOTS+ key pair on the bottom layer, i.e., a number between 0 and 2^h
 - 1.

 The reduced XMSS private keys MUST either be generated as described
 in Section 4.1.3 or be generated using a cryptographic pseudorandom
 method as discussed in Section 4.2.6. As for XMSS, the PRF key
 SK_PRF MUST be sampled from a secure source of randomness that
 follows the uniform distribution. SEED is generated as a uniformly
 random n-byte string. Although SEED is public, it is critical for
 security that it is generated using a good entropy source. The root
 is the root node of the single XMSS tree on the top layer. Its
 computation is explained below. As for XMSS, root and SEED are
 public information and would classically be considered part of the
 public key. However, as both are needed for signing, which only
 takes the private key, they are also part of SK_MT.

 This document does not define any specific format for the XMSS^MT
 private key SK_MT as it is not required for interoperability.
 Algorithms 15 and 16 use a function getXMSS_SK(SK, x, y) that outputs
 the reduced private key of the x^th XMSS tree on the y^th layer.

 The XMSS^MT public key PK_MT contains the root of the single XMSS
 tree on layer d - 1 and the seed SEED. These are the same values as
 in the private key SK_MT. The pseudorandom function PRF keyed with
 SEED is used to generate the bitmasks and keys for all XMSS trees.
 XMSSMT_keyGen (Algorithm 15) shows example pseudocode to generate
 SK_MT and PK_MT. The n-byte root node of the top-layer tree is
 computed using treeHash. The algorithm XMSSMT_keyGen outputs an
 XMSS^MT private key SK_MT and an XMSS^MT public key PK_MT. The
 algorithm below gives an example of how the reduced XMSS private keys
 can be generated. However, any of the above mentioned ways is
 acceptable as long as the cryptographic strength of the used method
 matches or supersedes that of the used XMSS^MT parameter set.

Huelsing, et al. Informational [Page 34]

RFC 8391 XMSS May 2018

 Algorithm 15: XMSSMT_keyGen - Generate an XMSS^MT key pair

 Input: No input
 Output: XMSS^MT private key SK_MT, XMSS^MT public key PK_MT

 // Example initialization
 idx_MT = 0;
 setIdx(SK_MT, idx_MT);
 initialize SK_PRF with a uniformly random n-byte string;
 setSK_PRF(SK_MT, SK_PRF);
 initialize SEED with a uniformly random n-byte string;
 setSEED(SK_MT, SEED);

 // Generate reduced XMSS private keys
 ADRS = toByte(0, 32);
 for (layer = 0; layer < d; layer++) {
 ADRS.setLayerAddress(layer);
 for (tree = 0; tree <
 (1 << ((d - 1 - layer) * (h / d)));
 tree++) {
 ADRS.setTreeAddress(tree);
 for (i = 0; i < 2^(h / d); i++) {
 wots_sk[i] = WOTS_genSK();
 }
 setXMSS_SK(SK_MT, wots_sk, tree, layer);
 }
 }

 SK = getXMSS_SK(SK_MT, 0, d - 1);
 setSEED(SK, SEED);
 root = treeHash(SK, 0, h / d, ADRS);
 setRoot(SK_MT, root);

 PK_MT = OID || root || SEED;
 return (SK_MT || PK_MT);

 The above is just an example algorithm. It is strongly RECOMMENDED
 to use pseudorandom key generation to reduce the private key size.
 Public and private key generation MAY be interleaved to save space.
 In particular, when a pseudorandom method is used to generate the
 private key, generation MAY be delayed to the point that the
 respective WOTS+ key pair is needed by another algorithm.

Huelsing, et al. Informational [Page 35]

RFC 8391 XMSS May 2018

 The format of an XMSS^MT public key is given below.

 +---------------------------------+
 | algorithm OID |
 +---------------------------------+
 | |
 | root node | n bytes
 | |
 +---------------------------------+
 | |
 | SEED | n bytes
 | |
 +---------------------------------+

 XMSS^MT Public Key

4.2.3. XMSS^MT Signature

 An XMSS^MT signature Sig_MT is a byte string of length (ceil(h / 8) +
 n + (h + d * len) * n). It consists of:

 o the index idx_sig of the used WOTS+ key pair on the bottom layer
 (ceil(h / 8) bytes),

 o a byte string r used for randomized message hashing (n bytes), and

 o d reduced XMSS signatures ((h / d + len) * n bytes each).

 The reduced XMSS signatures only contain a WOTS+ signature sig_ots
 and an authentication path auth. They contain no index idx and no
 byte string r.

Huelsing, et al. Informational [Page 36]

RFC 8391 XMSS May 2018

 The data format for a signature is given below.

 +---------------------------------+
 | |
 | index idx_sig | ceil(h / 8) bytes
 | |
 +---------------------------------+
 | |
 | randomness r | n bytes
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h / d + len) * n bytes
 | (bottom layer 0) |
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h / d + len) * n bytes
 | (layer 1) |
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h / d + len) * n bytes
 | (layer d - 1) |
 | |
 +---------------------------------+

 XMSS^MT Signature

4.2.4. XMSS^MT Signature Generation

 To compute the XMSS^MT signature Sig_MT of a message M using an
 XMSS^MT private key SK_MT, XMSSMT_sign (Algorithm 16) described below
 uses treeSig as defined in Section 4.1.9. First, the signature index
 is set to idx_sig. Next, PRF is used to compute a pseudorandom
 n-byte string r. This n-byte string, idx_sig, and the root node from
 PK_MT are then used to compute a randomized message digest of length
 n. The message digest is signed using the WOTS+ key pair on the
 bottom layer with absolute index idx. The authentication path for
 the WOTS+ key pair and the root of the containing XMSS tree are
 computed. The root is signed by the parent XMSS tree. This is
 repeated until the top tree is reached.

Huelsing, et al. Informational [Page 37]

RFC 8391 XMSS May 2018

 Algorithm 16: XMSSMT_sign - Generate an XMSS^MT signature and update
 the XMSS^MT private key

 Input: Message M, XMSS^MT private key SK_MT
 Output: Updated SK_MT, signature Sig_MT

 // Init
 ADRS = toByte(0, 32);
 SEED = getSEED(SK_MT);
 SK_PRF = getSK_PRF(SK_MT);
 idx_sig = getIdx(SK_MT);

 // Update SK_MT
 setIdx(SK_MT, idx_sig + 1);

 // Message compression
 byte[n] r = PRF(SK_PRF, toByte(idx_sig, 32));
 byte[n] M’ = H_msg(r || getRoot(SK_MT) || (toByte(idx_sig, n)), M);

 // Sign
 Sig_MT = idx_sig;
 unsigned int idx_tree
 = (h - h / d) most significant bits of idx_sig;
 unsigned int idx_leaf = (h / d) least significant bits of idx_sig;
 SK = idx_leaf || getXMSS_SK(SK_MT, idx_tree, 0) || SK_PRF
 || toByte(0, n) || SEED;
 ADRS.setLayerAddress(0);
 ADRS.setTreeAddress(idx_tree);
 Sig_tmp = treeSig(M’, SK, idx_leaf, ADRS);
 Sig_MT = Sig_MT || r || Sig_tmp;
 for (j = 1; j < d; j++) {
 root = treeHash(SK, 0, h / d, ADRS);
 idx_leaf = (h / d) least significant bits of idx_tree;
 idx_tree = (h - j * (h / d)) most significant bits of idx_tree;
 SK = idx_leaf || getXMSS_SK(SK_MT, idx_tree, j) || SK_PRF
 || toByte(0, n) || SEED;
 ADRS.setLayerAddress(j);
 ADRS.setTreeAddress(idx_tree);
 Sig_tmp = treeSig(root, SK, idx_leaf, ADRS);
 Sig_MT = Sig_MT || Sig_tmp;
 }
 return SK_MT || Sig_MT;

Huelsing, et al. Informational [Page 38]

RFC 8391 XMSS May 2018

 Algorithm 16 is only one method to compute XMSS^MT signatures. Time-
 memory trade-offs exist that allow reduction of the signing time to
 less than the signing time of an XMSS scheme with tree height h / d.
 These trade-offs 1) prevent certain values from being recomputed
 several times by keeping a state and 2) distribute all computations
 over all signature generations. Details can be found in
 [Huelsing13a].

4.2.5. XMSS^MT Signature Verification

 XMSS^MT signature verification (Algorithm 17) can be summarized as d
 XMSS signature verifications with small changes. First, the message
 is hashed. The XMSS signatures are then all on n-byte values.
 Second, instead of comparing the computed root node to a given value,
 a signature on this root node is verified. Only the root node of the
 top tree is compared to the value in the XMSS^MT public key.
 XMSSMT_verify uses XMSS_rootFromSig. The function
 getXMSSSignature(Sig_MT, i) returns the ith reduced XMSS signature
 from the XMSS^MT signature Sig_MT. XMSSMT_verify takes as input an
 XMSS^MT signature Sig_MT, a message M, and a public key PK_MT.
 XMSSMT_verify returns true if and only if Sig_MT is a valid signature
 on M under public key PK_MT. Otherwise, it returns false.

 Algorithm 17: XMSSMT_verify - Verify an XMSS^MT signature Sig_MT on a
 message M using an XMSS^MT public key PK_MT

 Input: XMSS^MT signature Sig_MT, message M,
 XMSS^MT public key PK_MT
 Output: Boolean

 idx_sig = getIdx(Sig_MT);
 SEED = getSEED(PK_MT);
 ADRS = toByte(0, 32);

 byte[n] M’ = H_msg(getR(Sig_MT) || getRoot(PK_MT)
 || (toByte(idx_sig, n)), M);

 unsigned int idx_leaf
 = (h / d) least significant bits of idx_sig;
 unsigned int idx_tree
 = (h - h / d) most significant bits of idx_sig;
 Sig’ = getXMSSSignature(Sig_MT, 0);
 ADRS.setLayerAddress(0);
 ADRS.setTreeAddress(idx_tree);
 byte[n] node = XMSS_rootFromSig(idx_leaf, getSig_ots(Sig’),
 getAuth(Sig’), M’, SEED, ADRS);

Huelsing, et al. Informational [Page 39]

RFC 8391 XMSS May 2018

 for (j = 1; j < d; j++) {
 idx_leaf = (h / d) least significant bits of idx_tree;
 idx_tree = (h - j * h / d) most significant bits of idx_tree;
 Sig’ = getXMSSSignature(Sig_MT, j);
 ADRS.setLayerAddress(j);
 ADRS.setTreeAddress(idx_tree);
 node = XMSS_rootFromSig(idx_leaf, getSig_ots(Sig’),
 getAuth(Sig’), node, SEED, ADRS);
 }
 if (node == getRoot(PK_MT)) {
 return true;
 } else {
 return false;
 }

4.2.6. Pseudorandom Key Generation

 Like for XMSS, an implementation MAY use a cryptographically secure
 pseudorandom method to generate the XMSS^MT private key from a single
 n-byte value. For example, the method explained below MAY be used.
 Other methods, such as the one in [HRS16], MAY be used. The choice
 of a pseudorandom method does not affect interoperability, but the
 cryptographic strength MUST match that of the used XMSS^MT
 parameters.

 For XMSS^MT, a method similar to that for XMSS and WOTS+ can be used.
 The method uses PRF. During key generation, a uniformly random
 n-byte string S_MT is sampled from a secure source of randomness.
 This seed S_MT is used to generate one n-byte value S for each XMSS
 key pair. This n-byte value can be used to compute the respective
 XMSS private key using the method described in Section 4.1.11. Let
 S[x][y] be the seed for the x^th XMSS private key on layer y. The
 seeds are computed as S[x][y] = PRF(PRF(S, toByte(y, 32)), toByte(x,
 32)).

4.2.7. Free Index Handling and Partial Private Keys

 The content of Section 4.1.12 also applies to XMSS^MT.

5. Parameter Sets

 This section provides basic parameter sets that are assumed to cover
 most relevant applications. Parameter sets for two classical
 security levels are defined. Parameters with n = 32 provide a
 classical security level of 256 bits. Parameters with n = 64 provide
 a classical security level of 512 bits. Considering quantum-
 computer-aided attacks, these output sizes yield post-quantum
 security of 128 and 256 bits, respectively.

Huelsing, et al. Informational [Page 40]

RFC 8391 XMSS May 2018

 While this document specifies several parameter sets, an
 implementation is only REQUIRED to provide support for verification
 of all REQUIRED parameter sets. The REQUIRED parameter sets all use
 SHA2-256 to instantiate all functions. The REQUIRED parameter sets
 are only distinguished by the tree height parameter h (which
 determines the number of signatures that can be done with a single
 key pair) and the number of layers d (which defines a trade-off
 between speed and signature size). An implementation MAY provide
 support for signature generation using any of the proposed parameter
 sets. For convenience, this document defines a default option for
 XMSS (XMSS_SHA2_20_256) and XMSS^MT (XMSSMT-SHA2_60/3_256). These
 are supposed to match the most generic requirements.

5.1. Implementing the Functions

 For the n = 32 setting, we give parameters that use SHA2-256 as
 defined in [FIPS180] and other parameters that use the SHA3/Keccak-
 based extendable-output function SHAKE-128 as defined in [FIPS202].
 For the n = 64 setting, we give parameters that use SHA2-512 as
 defined in [FIPS180] and other parameters that use the SHA3/Keccak-
 based extendable-output functions SHAKE-256 as defined in [FIPS202].
 The parameter sets using SHA2-256 are mandatory for deployment and
 therefore MUST be provided by any implementation. The remaining
 parameter sets specified in this document are OPTIONAL.

 SHA2 does not provide a keyed-mode itself. To implement the keyed
 hash functions, the following is used for SHA2 with n = 32:

 F: SHA2-256(toByte(0, 32) || KEY || M),

 H: SHA2-256(toByte(1, 32) || KEY || M),

 H_msg: SHA2-256(toByte(2, 32) || KEY || M), and

 PRF: SHA2-256(toByte(3, 32) || KEY || M).

 Accordingly, for SHA2 with n = 64 we use:

 F: SHA2-512(toByte(0, 64) || KEY || M),

 H: SHA2-512(toByte(1, 64) || KEY || M),

 H_msg: SHA2-512(toByte(2, 64) || KEY || M), and

 PRF: SHA2-512(toByte(3, 64) || KEY || M).

Huelsing, et al. Informational [Page 41]

RFC 8391 XMSS May 2018

 The n-byte padding is used for two reasons. First, it is necessary
 that the internal compression function takes 2n-byte blocks, but keys
 are n and 3n bytes long. Second, the padding is used to achieve
 independence of the different function families. Finally, for the
 PRF, no full-fledged Hash-Based Message Authentication Code (HMAC) is
 needed as the message length is fixed, meaning that standard length
 extension attacks are not a concern here. For that reason, the
 simpler construction above suffices.

 Similar constructions are used with SHA3. To implement the keyed
 hash functions, the following is used for SHA3 with n = 32:

 F: SHAKE128(toByte(0, 32) || KEY || M, 256),

 H: SHAKE128(toByte(1, 32) || KEY || M, 256),

 H_msg: SHAKE128(toByte(2, 32) || KEY || M, 256),

 PRF: SHAKE128(toByte(3, 32) || KEY || M, 256).

 Accordingly, for SHA3 with n = 64, we use:

 F: SHAKE256(toByte(0, 64) || KEY || M, 512),

 H: SHAKE256(toByte(1, 64) || KEY || M, 512),

 H_msg: SHAKE256(toByte(2, 64) || KEY || M, 512),

 PRF: SHAKE256(toByte(3, 64) || KEY || M, 512).

 As for SHA2, an initial n-byte identifier is used to achieve
 independence of the different function families. While a shorter
 identifier could be used in case of SHA3, we use n bytes for
 consistency with the SHA2 implementations.

Huelsing, et al. Informational [Page 42]

RFC 8391 XMSS May 2018

5.2. WOTS+ Parameters

 To fully describe a WOTS+ signature method, the parameters n and w,
 as well as the functions F and PRF, MUST be specified. The following
 table defines several WOTS+ signature systems, each of which is
 identified by a name. Naming follows this convention:
 WOTSP-[Hashfamily]_[n in bits]. Naming does not include w as all
 parameter sets in this document use w=16. Values for len are
 provided for convenience.

 +-----------------+----------+----+----+-----+
 | Name | F / PRF | n | w | len |
 +-----------------+----------+----+----+-----+
 | REQUIRED: | | | | |
 | | | | | |
 | WOTSP-SHA2_256 | SHA2-256 | 32 | 16 | 67 |
 | | | | | |
 | OPTIONAL: | | | | |
 | | | | | |
 | WOTSP-SHA2_512 | SHA2-512 | 64 | 16 | 131 |
 | | | | | |
 | WOTSP-SHAKE_256 | SHAKE128 | 32 | 16 | 67 |
 | | | | | |
 | WOTSP-SHAKE_512 | SHAKE256 | 64 | 16 | 131 |
 +-----------------+----------+----+----+-----+

 Table 1

 The implementation of the single functions is done as described
 above. External Data Representation (XDR) formats for WOTS+ are
 listed in Appendix A.

5.3. XMSS Parameters

 To fully describe an XMSS signature method, the parameters n, w, and
 h, as well as the functions F, H, H_msg, and PRF, MUST be specified.
 The following table defines different XMSS signature systems, each of
 which is identified by a name. Naming follows this convention:
 XMSS-[Hashfamily]_[h]_[n in bits]. Naming does not include w as all
 parameter sets in this document use w=16.

Huelsing, et al. Informational [Page 43]

RFC 8391 XMSS May 2018

 +-------------------+-----------+----+----+-----+----+
 | Name | Functions | n | w | len | h |
 +-------------------+-----------+----+----+-----+----+
 | REQUIRED: | | | | | |
 | | | | | | |
 | XMSS-SHA2_10_256 | SHA2-256 | 32 | 16 | 67 | 10 |
 | | | | | | |
 | XMSS-SHA2_16_256 | SHA2-256 | 32 | 16 | 67 | 16 |
 | | | | | | |
 | XMSS-SHA2_20_256 | SHA2-256 | 32 | 16 | 67 | 20 |
 | | | | | | |
 | OPTIONAL: | | | | | |
 | | | | | | |
 | XMSS-SHA2_10_512 | SHA2-512 | 64 | 16 | 131 | 10 |
 | | | | | | |
 | XMSS-SHA2_16_512 | SHA2-512 | 64 | 16 | 131 | 16 |
 | | | | | | |
 | XMSS-SHA2_20_512 | SHA2-512 | 64 | 16 | 131 | 20 |
 | | | | | | |
 | XMSS-SHAKE_10_256 | SHAKE128 | 32 | 16 | 67 | 10 |
 | | | | | | |
 | XMSS-SHAKE_16_256 | SHAKE128 | 32 | 16 | 67 | 16 |
 | | | | | | |
 | XMSS-SHAKE_20_256 | SHAKE128 | 32 | 16 | 67 | 20 |
 | | | | | | |
 | XMSS-SHAKE_10_512 | SHAKE256 | 64 | 16 | 131 | 10 |
 | | | | | | |
 | XMSS-SHAKE_16_512 | SHAKE256 | 64 | 16 | 131 | 16 |
 | | | | | | |
 | XMSS-SHAKE_20_512 | SHAKE256 | 64 | 16 | 131 | 20 |
 +-------------------+-----------+----+----+-----+----+

 Table 2

 The XDR formats for XMSS are listed in Appendix B.

5.3.1. Parameter Guide

 In contrast to traditional signature schemes like RSA or Digital
 Signature Algorithm (DSA), XMSS has a tree height parameter h that
 determines the number of messages that can be signed with one key
 pair. Increasing the height allows using a key pair for more
 signatures, but it also increases the signature size and slows down
 key generation, signing, and verification. To demonstrate the impact
 of different values of h, the following table shows signature size
 and runtimes. Runtimes are given as the number of calls to F and H
 when the BDS algorithm is used to compute authentication paths for

Huelsing, et al. Informational [Page 44]

RFC 8391 XMSS May 2018

 the worst case. The last column shows the number of messages that
 can be signed with one key pair. The numbers are the same for the
 XMSS-SHAKE instances with same parameters h and n.

 +------------------+-------+------------+--------+--------+-------+
 | Name | |Sig| | KeyGen | Sign | Verify | #Sigs |
 +------------------+-------+------------+--------+--------+-------+
 | REQUIRED: | | | | | |
 | | | | | | |
 | XMSS-SHA2_10_256 | 2,500 | 1,238,016 | 5,725 | 1,149 | 2^10 |
 | | | | | | |
 | XMSS-SHA2_16_256 | 2,692 | 79*10^6 | 9,163 | 1,155 | 2^16 |
 | | | | | | |
 | XMSS-SHA2_20_256 | 2,820 | 1,268*10^6 | 11,455 | 1,159 | 2^20 |
 | | | | | | |
 | OPTIONAL: | | | | | |
 | | | | | | |
 | XMSS-SHA2_10_512 | 9,092 | 2,417,664 | 11,165 | 2,237 | 2^10 |
 | | | | | | |
 | XMSS-SHA2_16_512 | 9,476 | 155*10^6 | 17,867 | 2,243 | 2^16 |
 | | | | | | |
 | XMSS-SHA2_20_512 | 9,732 | 2,476*10^6 | 22,335 | 2,247 | 2^20 |
 +------------------+-------+------------+--------+--------+-------+

 Table 3

 As a default, users without special requirements should use option
 XMSS-SHA2_20_256, which allows signing of 2^20 messages with one key
 pair and provides reasonable speed and signature size. Users that
 require more signatures per key pair or faster key generation should
 consider XMSS^MT.

5.4. XMSS^MT Parameters

 To fully describe an XMSS^MT signature method, the parameters n, w,
 h, and d, as well as the functions F, H, H_msg, and PRF, MUST be
 specified. The following table defines different XMSS^MT signature
 systems, each of which is identified by a name. Naming follows this
 convention: XMSSMT-[Hashfamily]_[h]/[d]_[n in bits]. Naming does not
 include w as all parameter sets in this document use w=16.

Huelsing, et al. Informational [Page 45]

RFC 8391 XMSS May 2018

 +------------------------+-----------+----+----+-----+----+----+
 | Name | Functions | n | w | len | h | d |
 +------------------------+-----------+----+----+-----+----+----+
 | REQUIRED: | | | | | | |
 | | | | | | | |
 | XMSSMT-SHA2_20/2_256 | SHA2-256 | 32 | 16 | 67 | 20 | 2 |
 | | | | | | | |
 | XMSSMT-SHA2_20/4_256 | SHA2-256 | 32 | 16 | 67 | 20 | 4 |
 | | | | | | | |
 | XMSSMT-SHA2_40/2_256 | SHA2-256 | 32 | 16 | 67 | 40 | 2 |
 | | | | | | | |
 | XMSSMT-SHA2_40/4_256 | SHA2-256 | 32 | 16 | 67 | 40 | 4 |
 | | | | | | | |
 | XMSSMT-SHA2_40/8_256 | SHA2-256 | 32 | 16 | 67 | 40 | 8 |
 | | | | | | | |
 | XMSSMT-SHA2_60/3_256 | SHA2-256 | 32 | 16 | 67 | 60 | 3 |
 | | | | | | | |
 | XMSSMT-SHA2_60/6_256 | SHA2-256 | 32 | 16 | 67 | 60 | 6 |
 | | | | | | | |
 | XMSSMT-SHA2_60/12_256 | SHA2-256 | 32 | 16 | 67 | 60 | 12 |
 | | | | | | | |
 | OPTIONAL: | | | | | | |
 | | | | | | | |
 | XMSSMT-SHA2_20/2_512 | SHA2-512 | 64 | 16 | 131 | 20 | 2 |
 | | | | | | | |
 | XMSSMT-SHA2_20/4_512 | SHA2-512 | 64 | 16 | 131 | 20 | 4 |
 | | | | | | | |
 | XMSSMT-SHA2_40/2_512 | SHA2-512 | 64 | 16 | 131 | 40 | 2 |
 | | | | | | | |
 | XMSSMT-SHA2_40/4_512 | SHA2-512 | 64 | 16 | 131 | 40 | 4 |
 | | | | | | | |
 | XMSSMT-SHA2_40/8_512 | SHA2-512 | 64 | 16 | 131 | 40 | 8 |
 | | | | | | | |
 | XMSSMT-SHA2_60/3_512 | SHA2-512 | 64 | 16 | 131 | 60 | 3 |
 | | | | | | | |
 | XMSSMT-SHA2_60/6_512 | SHA2-512 | 64 | 16 | 131 | 60 | 6 |
 | | | | | | | |
 | XMSSMT-SHA2_60/12_512 | SHA2-512 | 64 | 16 | 131 | 60 | 12 |
 | | | | | | | |
 | XMSSMT-SHAKE_20/2_256 | SHAKE128 | 32 | 16 | 67 | 20 | 2 |
 | | | | | | | |
 | XMSSMT-SHAKE_20/4_256 | SHAKE128 | 32 | 16 | 67 | 20 | 4 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/2_256 | SHAKE128 | 32 | 16 | 67 | 40 | 2 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/4_256 | SHAKE128 | 32 | 16 | 67 | 40 | 4 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/8_256 | SHAKE128 | 32 | 16 | 67 | 40 | 8 |

Huelsing, et al. Informational [Page 46]

RFC 8391 XMSS May 2018

 | | | | | | | |
 | XMSSMT-SHAKE_60/3_256 | SHAKE128 | 32 | 16 | 67 | 60 | 3 |
 | | | | | | | |
 | XMSSMT-SHAKE_60/6_256 | SHAKE128 | 32 | 16 | 67 | 60 | 6 |
 | | | | | | | |
 | XMSSMT-SHAKE_60/12_256 | SHAKE128 | 32 | 16 | 67 | 60 | 12 |
 | | | | | | | |
 | XMSSMT-SHAKE_20/2_512 | SHAKE256 | 64 | 16 | 131 | 20 | 2 |
 | | | | | | | |
 | XMSSMT-SHAKE_20/4_512 | SHAKE256 | 64 | 16 | 131 | 20 | 4 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/2_512 | SHAKE256 | 64 | 16 | 131 | 40 | 2 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/4_512 | SHAKE256 | 64 | 16 | 131 | 40 | 4 |
 | | | | | | | |
 | XMSSMT-SHAKE_40/8_512 | SHAKE256 | 64 | 16 | 131 | 40 | 8 |
 | | | | | | | |
 | XMSSMT-SHAKE_60/3_512 | SHAKE256 | 64 | 16 | 131 | 60 | 3 |
 | | | | | | | |
 | XMSSMT-SHAKE_60/6_512 | SHAKE256 | 64 | 16 | 131 | 60 | 6 |
 | | | | | | | |
 | XMSSMT-SHAKE_60/12_512 | SHAKE256 | 64 | 16 | 131 | 60 | 12 |
 +------------------------+-----------+----+----+-----+----+----+

 Table 4

 XDR formats for XMSS^MT are listed in Appendix C.

5.4.1. Parameter Guide

 In addition to the tree height parameter already used for XMSS,
 XMSS^MT has the parameter d that determines the number of tree
 layers. XMSS can be understood as XMSS^MT with a single layer, i.e.,
 d=1. Hence, the choice of h has the same effect as for XMSS. The
 number of tree layers provides a trade-off between signature size on
 the one side and key generation and signing speed on the other side.
 Increasing the number of layers reduces key generation time
 exponentially and signing time linearly at the cost of increasing the
 signature size linearly. Essentially, an XMSS^MT signature contains
 one WOTSP signature per layer. Speed roughly corresponds to d-times
 the speed for XMSS with trees of height h/d.

 To demonstrate the impact of different values of h and d, the
 following table shows signature size and runtimes. Runtimes are
 given as the number of calls to F and H when the BDS algorithm and
 distributed signature generation are used. Timings are worst-case
 times. The last column shows the number of messages that can be
 signed with one key pair. The numbers are the same for the XMSS-

Huelsing, et al. Informational [Page 47]

RFC 8391 XMSS May 2018

 SHAKE instances with same parameters h and n. Due to formatting
 limitations, only the parameter part of the parameter set names are
 given, omitting the name "XMSSMT".

 +----------------+---------+------------+--------+--------+-------+
 | Name | |Sig| | KeyGen | Sign | Verify | #Sigs |
 +----------------+---------+------------+--------+--------+-------+
 | REQUIRED: | | | | | |
 | | | | | | |
 | SHA2_20/2_256 | 4,963 | 2,476,032 | 7,227 | 2,298 | 2^20 |
 | | | | | | |
 | SHA2_20/4_256 | 9,251 | 154,752 | 4,170 | 4,576 | 2^20 |
 | | | | | | |
 | SHA2_40/2_256 | 5,605 | 2,535*10^6 | 13,417 | 2,318 | 2^40 |
 | | | | | | |
 | SHA2_40/4_256 | 9,893 | 4,952,064 | 7,227 | 4,596 | 2^40 |
 | | | | | | |
 | SHA2_40/8_256 | 18,469 | 309,504 | 4,170 | 9,152 | 2^40 |
 | | | | | | |
 | SHA2_60/3_256 | 8,392 | 3,803*10^6 | 13,417 | 3,477 | 2^60 |
 | | | | | | |
 | SHA2_60/6_256 | 14,824 | 7,428,096 | 7,227 | 6,894 | 2^60 |
 | | | | | | |
 | SHA2_60/12_256 | 27,688 | 464,256 | 4,170 | 13,728 | 2^60 |
 | | | | | | |
 | OPTIONAL: | | | | | |
 | | | | | | |
 | SHA2_20/2_512 | 18,115 | 4,835,328 | 14,075 | 4,474 | 2^20 |
 | | | | | | |
 | SHA2_20/4_512 | 34,883 | 302,208 | 8,138 | 8,928 | 2^20 |
 | | | | | | |
 | SHA2_40/2_512 | 19,397 | 4,951*10^6 | 26,025 | 4,494 | 2^40 |
 | | | | | | |
 | SHA2_40/4_512 | 36,165 | 9,670,656 | 14,075 | 8,948 | 2^40 |
 | | | | | | |
 | SHA2_40/8_512 | 69,701 | 604,416 | 8,138 | 17,856 | 2^40 |
 | | | | | | |
 | SHA2_60/3_512 | 29,064 | 7,427*10^6 | 26,025 | 6,741 | 2^60 |
 | | | | | | |
 | SHA2_60/6_512 | 54,216 | 14,505,984 | 14,075 | 13,422 | 2^60 |
 | | | | | | |
 | SHA2_60/12_512 | 104,520 | 906,624 | 8,138 | 26,784 | 2^60 |
 +----------------+---------+------------+--------+--------+-------+

 Table 5

Huelsing, et al. Informational [Page 48]

RFC 8391 XMSS May 2018

 As a default, users without special requirements should use option
 XMSSMT-SHA2_60/3_256, which allows signing of 2^60 messages with one
 key pair (this is a virtually unbounded number of signatures). At
 the same time, signature size and speed are well balanced.

6. Rationale

 The goal of this note is to describe the WOTS+, XMSS, and XMSS^MT
 algorithms based on the scientific literature. The description is
 done in a modular way that allows basing a description of stateless
 hash-based signature algorithms like SPHINCS [BHH15] on it.

 This note slightly deviates from the scientific literature by using a
 tweak that prevents multi-user and multi-target attacks against
 H_msg. To this end, the public key as well as the index of the used
 one-time key pair become part of the hash function key. Thereby, we
 achieve a domain separation that forces an attacker to decide which
 hash value to attack.

 For the generation of the randomness used for randomized message
 hashing, we apply a PRF, keyed with a secret value, to the index of
 the used one-time key pair instead of the message. The reason is
 that this requires processing the message only once instead of twice.
 For long messages, this improves speed and simplifies implementations
 on resource-constrained devices that cannot hold the entire message
 in storage.

 We give one mandatory set of parameters using SHA2-256. The reasons
 are twofold. On the one hand, SHA2-256 is part of most cryptographic
 libraries. On the other hand, a 256-bit hash function leads to
 parameters that provide 128 bits of security even against quantum-
 computer-aided attacks. A post-quantum security level of 256 bits
 seems overly conservative. However, to prepare for possible
 cryptanalytic breakthroughs, we also provide OPTIONAL parameter sets
 using the less widely supported SHA2-512, SHAKE-256, and SHAKE-512
 functions.

 We suggest the value w = 16 for the Winternitz parameter. No bigger
 values are included since the decrease in signature size then becomes
 less significant. Furthermore, the value w = 16 considerably
 simplifies the implementations of some of the algorithms. Please
 note that we do allow w = 4 but limit the specified parameter sets to
 w = 16 for efficiency reasons.

Huelsing, et al. Informational [Page 49]

RFC 8391 XMSS May 2018

 The signature and public key formats are designed so that they are
 easy to parse. Each format starts with a 32-bit enumeration value
 that indicates all of the details of the signature algorithm and
 hence defines all of the information that is needed in order to parse
 the format.

7. Reference Code

 For testing purposes, a reference implementation in C is available.
 The code contains a basic implementation that closely follows the
 pseudocode in this document and an optimized implementation that uses
 the BDS algorithm [BDS08] to compute authentication paths and
 distributed signature generation as described in [HRB13] for XMSS^MT.

 The code is permanently available at
 <https://github.com/joostrijneveld/xmss-reference>.

8. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) has created three
 registries: one for WOTS+ signatures (as defined in Section 3), one
 for XMSS signatures (as defined in Section 4), and one for XMSS^MT
 signatures (as defined in Section 4). For the sake of clarity and
 convenience, the first collection of WOTS+, XMSS, and XMSS^MT
 parameter sets is defined in Section 5. Additions to these
 registries require that a specification be documented in an RFC or
 another permanent and readily available reference in sufficient
 detail as defined by the "Specification Required" policy described in
 [RFC8126] to make interoperability between independent
 implementations possible. Each entry in these registries contains
 the following elements:

 o a short name, such as "XMSS_SHA2_20_256",

 o a positive number, and

 o a reference to a specification that completely defines the
 signature method test cases or provides a reference implementation
 that can be used to verify the correctness of an implementation
 (or a reference to such an implementation).

 Requests to add an entry to these registries MUST include the name
 and the reference. The number is assigned by IANA. These number
 assignments SHOULD use the smallest available positive number.
 Submitters MUST have their requests reviewed and approved.
 Designated Experts for this task as requested by the "Specification
 Required" policy defined by [RFC8126] will be assigned by the

Huelsing, et al. Informational [Page 50]

RFC 8391 XMSS May 2018

 Internet Engineering Steering Group (IESG). The IESG can be
 contacted at iesg@ietf.org. Interested applicants that are
 unfamiliar with IANA processes should visit <http://www.iana.org>.

 The number 0x00000000 (decimal 0) is Reserved. The numbers between
 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF (decimal
 4,294,967,295) inclusive will not be assigned by IANA and are
 Reserved for Private Use; no attempt will be made to prevent multiple
 sites from using the same value in different (and incompatible) ways
 [RFC8126].

 The "WOTS+ Signatures" registry is as follows.

 +--------------------+-----------------+-------------+
 | Numeric Identifier | Name | Reference |
 +--------------------+-----------------+-------------+
 | 0x00000000 | Reserved | this RFC |
 | | | |
 | 0x00000001 | WOTSP-SHA2_256 | Section 5.2 |
 | | | |
 | 0x00000002 | WOTSP-SHA2_512 | Section 5.2 |
 | | | |
 | 0x00000003 | WOTSP-SHAKE_256 | Section 5.2 |
 | | | |
 | 0x00000004 | WOTSP-SHAKE_512 | Section 5.2 |
 +--------------------+-----------------+-------------+

 Table 6

Huelsing, et al. Informational [Page 51]

RFC 8391 XMSS May 2018

 The "XMSS Signatures" registry is as follows.

 +--------------------+-------------------+-------------+
 | Numeric Identifier | Name | Reference |
 +--------------------+-------------------+-------------+
 | 0x00000000 | Reserved | this RFC |
 | | | |
 | 0x00000001 | XMSS-SHA2_10_256 | Section 5.3 |
 | | | |
 | 0x00000002 | XMSS-SHA2_16_256 | Section 5.3 |
 | | | |
 | 0x00000003 | XMSS-SHA2_20_256 | Section 5.3 |
 | | | |
 | 0x00000004 | XMSS-SHA2_10_512 | Section 5.3 |
 | | | |
 | 0x00000005 | XMSS-SHA2_16_512 | Section 5.3 |
 | | | |
 | 0x00000006 | XMSS-SHA2_20_512 | Section 5.3 |
 | | | |
 | 0x00000007 | XMSS-SHAKE_10_256 | Section 5.3 |
 | | | |
 | 0x00000008 | XMSS-SHAKE_16_256 | Section 5.3 |
 | | | |
 | 0x00000009 | XMSS-SHAKE_20_256 | Section 5.3 |
 | | | |
 | 0x0000000A | XMSS-SHAKE_10_512 | Section 5.3 |
 | | | |
 | 0x0000000B | XMSS-SHAKE_16_512 | Section 5.3 |
 | | | |
 | 0x0000000C | XMSS-SHAKE_20_512 | Section 5.3 |
 +--------------------+-------------------+-------------+

 Table 7

Huelsing, et al. Informational [Page 52]

RFC 8391 XMSS May 2018

 The "XMSS^MT Signatures" registry is as follows.

 +--------------------+------------------------+-------------+
 | Numeric Identifier | Name | Reference |
 +--------------------+------------------------+-------------+
 | 0x00000000 | Reserved | this RFC |
 | | | |
 | 0x00000001 | XMSSMT-SHA2_20/2_256 | Section 5.4 |
 | | | |
 | 0x00000002 | XMSSMT-SHA2_20/4_256 | Section 5.4 |
 | | | |
 | 0x00000003 | XMSSMT-SHA2_40/2_256 | Section 5.4 |
 | | | |
 | 0x00000004 | XMSSMT-SHA2_40/4_256 | Section 5.4 |
 | | | |
 | 0x00000005 | XMSSMT-SHA2_40/8_256 | Section 5.4 |
 | | | |
 | 0x00000006 | XMSSMT-SHA2_60/3_256 | Section 5.4 |
 | | | |
 | 0x00000007 | XMSSMT-SHA2_60/6_256 | Section 5.4 |
 | | | |
 | 0x00000008 | XMSSMT-SHA2_60/12_256 | Section 5.4 |
 | | | |
 | 0x00000009 | XMSSMT-SHA2_20/2_512 | Section 5.4 |
 | | | |
 | 0x0000000A | XMSSMT-SHA2_20/4_512 | Section 5.4 |
 | | | |
 | 0x0000000B | XMSSMT-SHA2_40/2_512 | Section 5.4 |
 | | | |
 | 0x0000000C | XMSSMT-SHA2_40/4_512 | Section 5.4 |
 | | | |
 | 0x0000000D | XMSSMT-SHA2_40/8_512 | Section 5.4 |
 | | | |
 | 0x0000000E | XMSSMT-SHA2_60/3_512 | Section 5.4 |
 | | | |
 | 0x0000000F | XMSSMT-SHA2_60/6_512 | Section 5.4 |
 | | | |
 | 0x00000010 | XMSSMT-SHA2_60/12_512 | Section 5.4 |
 | | | |
 | 0x00000011 | XMSSMT-SHAKE_20/2_256 | Section 5.4 |
 | | | |
 | 0x00000012 | XMSSMT-SHAKE_20/4_256 | Section 5.4 |
 | | | |
 | 0x00000013 | XMSSMT-SHAKE_40/2_256 | Section 5.4 |
 | | | |
 | 0x00000014 | XMSSMT-SHAKE_40/4_256 | Section 5.4 |
 | | | |
 | 0x00000015 | XMSSMT-SHAKE_40/8_256 | Section 5.4 |

Huelsing, et al. Informational [Page 53]

RFC 8391 XMSS May 2018

 | | | |
 | 0x00000016 | XMSSMT-SHAKE_60/3_256 | Section 5.4 |
 | | | |
 | 0x00000017 | XMSSMT-SHAKE_60/6_256 | Section 5.4 |
 | | | |
 | 0x00000018 | XMSSMT-SHAKE_60/12_256 | Section 5.4 |
 | | | |
 | 0x00000019 | XMSSMT-SHAKE_20/2_512 | Section 5.4 |
 | | | |
 | 0x0000001A | XMSSMT-SHAKE_20/4_512 | Section 5.4 |
 | | | |
 | 0x0000001B | XMSSMT-SHAKE_40/2_512 | Section 5.4 |
 | | | |
 | 0x0000001C | XMSSMT-SHAKE_40/4_512 | Section 5.4 |
 | | | |
 | 0x0000001D | XMSSMT-SHAKE_40/8_512 | Section 5.4 |
 | | | |
 | 0x0000001E | XMSSMT-SHAKE_60/3_512 | Section 5.4 |
 | | | |
 | 0x0000001F | XMSSMT-SHAKE_60/6_512 | Section 5.4 |
 | | | |
 | 0x00000020 | XMSSMT-SHAKE_60/12_512 | Section 5.4 |
 +--------------------+------------------------+-------------+

 Table 8

 An IANA registration of a signature system does not constitute an
 endorsement of that system or its security.

9. Security Considerations

 A signature system is considered secure if it prevents an attacker
 from forging a valid signature. More specifically, consider a
 setting in which an attacker gets a public key and can learn
 signatures on arbitrary messages of its choice. A signature system
 is secure if, even in this setting, the attacker cannot produce a new
 message/signature pair of his choosing such that the verification
 algorithm accepts.

 Preventing an attacker from mounting an attack means that the attack
 is computationally too expensive to be carried out. There are
 various estimates for when a computation is too expensive to be done.
 For that reason, this note only describes how expensive it is for an
 attacker to generate a forgery. Parameters are accompanied by a bit
 security value. The meaning of bit security is as follows. A
 parameter set grants b bits of security if the best attack takes at
 least 2^(b - 1) bit operations to achieve a success probability of

Huelsing, et al. Informational [Page 54]

RFC 8391 XMSS May 2018

 1/2. Hence, to mount a successful attack, an attacker needs to
 perform 2^b bit operations on average. The given values for bit
 security were estimated according to [HRS16].

9.1. Security Proofs

 A full security proof for all schemes described in this document can
 be found in [HRS16]. This proof shows that an attacker has to break
 at least one out of certain security properties of the used hash
 functions and PRFs to forge a signature in any of the described
 schemes. The proof in [HRS16] considers an initial message
 compression different from the randomized hashing used here. We
 comment on this below. For the original schemes, these proofs show
 that an attacker has to break certain minimal security properties.
 In particular, it is not sufficient to break the collision resistance
 of the hash functions to generate a forgery.

 More specifically, the requirements on the used functions are that F
 and H are post-quantum multi-function multi-target second-preimage
 resistant keyed functions, F fulfills an additional statistical
 requirement that roughly says that most images have at least two
 preimages, PRF is a post-quantum pseudorandom function, and H_msg is
 a post-quantum multi-target extended target collision-resistant keyed
 hash function. For detailed definitions of these properties see
 [HRS16]. To give some intuition: multi-function multi-target second-
 preimage resistance is an extension of second-preimage resistance to
 keyed hash functions, covering the case where an adversary succeeds
 if it finds a second preimage for one out of many values. The same
 holds for multi-target extended target collision resistance, which
 just lacks the multi-function identifier as target collision
 resistance already considers keyed hash functions. The proof in
 [HRS16] splits PRF into two functions. When PRF is used for
 pseudorandom key generation or generation of randomness for
 randomized message hashing, it is still considered a pseudorandom
 function. Whenever PRF is used to generate bitmasks and hash
 function keys, it is modeled as a random oracle. This is due to
 technical reasons in the proof, and an implementation using a
 pseudorandom function is secure.

 The proof in [HRS16] considers classical randomized hashing for the
 initial message compression, i.e., H(r, M) instead of H(r ||
 getRoot(PK) || index, M). This classical randomized hashing allows
 getting a security reduction from extended target collision
 resistance [HRS16], a property that is conjectured to be strictly
 weaker than collision resistance. However, it turns out that in this
 case, an attacker could still launch a multi-target attack even
 against multiple users at the same time. The reason is that the
 adversary attacking u users at the same time learns u * 2^h

Huelsing, et al. Informational [Page 55]

RFC 8391 XMSS May 2018

 randomized hashes H(r_i_j || M_i_j) with signature index i in [0, 2^h
 - 1] and user index j in [0, u]. It suffices to find a single pair
 (r*, M*) such that H(r* || M*) = H(r_i_u || M_i_u) for one out of the
 u * 2^h learned hashes. Hence, an attacker can do a brute-force
 search in time 2^n / u * 2^h instead of 2^n.

 The indexed randomized hashing H(r || getRoot(PK) || toByte(idx, n),
 M) used in this work makes the hash function calls position- and
 user-dependent. This thwarts the above attack because each hash
 function evaluation during an attack can only target one of the
 learned randomized hash values. More specifically, an attacker now
 has to decide which index idx and which root value to use for each
 query. If one assumes that the used hash function is a random
 function, it can be shown that a multi-user existential forgery
 attack that targets this message compression has a complexity of 2^n
 hash function calls.

 The given bit security values were estimated based on the complexity
 of the best-known generic attacks against the required security
 properties of the used hash and pseudorandom functions, assuming
 conventional and quantum adversaries. At the time of writing,
 generic attacks are the best-known attacks for the parameters
 suggested in the classical setting. Also, in the quantum setting,
 there are no dedicated attacks known that perform better than generic
 attacks. Nevertheless, the topic of quantum cryptanalysis of hash
 functions is not as well understood as in the classical setting.

9.2. Minimal Security Assumptions

 The assumptions one has to make to prove security of the described
 schemes are minimal in the following sense. Any signature algorithm
 that allows arbitrary size messages relies on the security of a
 cryptographic hash function, either on collision resistance or on
 extended target collision resistance if randomized hashing is used
 for message compression. For the schemes described here, this is
 already sufficient to be secure. In contrast, common signature
 schemes like RSA, DSA, and Elliptic Curve Digital Signature Algorithm
 (ECDSA) additionally rely on the conjectured hardness of certain
 mathematical problems.

9.3. Post-Quantum Security

 A post-quantum cryptosystem is a system that is secure against
 attackers with access to a reasonably sized quantum computer. At the
 time of writing this note, whether or not it is feasible to build
 such a machine is an open conjecture. However, significant progress
 was made over the last few years in this regard. Hence, we consider
 it a matter of risk assessment to prepare for this case.

Huelsing, et al. Informational [Page 56]

RFC 8391 XMSS May 2018

 In contrast to RSA, DSA, and ECDSA, the described signature systems
 are post-quantum-secure if they are used with an appropriate
 cryptographic hash function. In particular, for post-quantum
 security, the size of n must be twice the size required for classical
 security. This is in order to protect against quantum square-root
 attacks due to Grover’s algorithm. [HRS16] shows that variants of
 Grover’s algorithm are the optimal generic attacks against the
 security properties of hash functions required for the described
 schemes.

 As stated above, we only consider generic attacks here, as
 cryptographic hash functions should be deprecated as soon as
 dedicated attacks that perform significantly better exist. This also
 applies to the quantum setting. As soon as dedicated quantum attacks
 against the used hash function that can perform significantly better
 than the described generic attacks exist, these hash functions should
 not be used anymore for the described schemes, or the computation of
 the security level has to be redone.

10. References

10.1. Normative References

 [FIPS180] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4,
 DOI 10.6028/NIST.FIPS.180-4, August 2015.

 [FIPS202] National Institute of Standards and Technology, "SHA-3
 Standard: Permutation-Based Hash and Extendable-Output
 Functions", FIPS PUB 202, DOI 10.6028/NIST.FIPS.202,
 August 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Huelsing, et al. Informational [Page 57]

RFC 8391 XMSS May 2018

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [BDH11] Buchmann, J., Dahmen, E., and A. Huelsing, "XMSS - A
 Practical Forward Secure Signature Scheme Based on Minimal
 Security Assumptions", Lecture Notes in Computer Science,
 Volume 7071, Post-Quantum Cryptography,
 DOI 10.1007/978-3-642-25405-5_8, 2011.

 [BDS08] Buchmann, J., Dahmen, E., and M. Schneider, "Merkle Tree
 Traversal Revisited", Lecture Notes in Computer Science,
 Volume 5299, Post-Quantum Cryptography,
 DOI 10.1007/978-3-540-88403-3_5, 2008.

 [BDS09] Buchmann, J., Dahmen, E., and M. Szydlo, "Hash-based
 Digital Signature Schemes", Book chapter, Post-Quantum
 Cryptography, DOI 10.1007/978-3-540-88702-7_3, 2009.

 [BHH15] Bernstein, D., Hopwood, D., Huelsing, A., Lange, T.,
 Niederhagen, R., Papachristodoulou, L., Schneider, M.,
 Schwabe, P., and Z. Wilcox-O’Hearn, "SPHINCS: Practical
 Stateless Hash-Based Signatures", Lecture Notes in
 Computer Science, Volume 9056, Advances in Cryptology -
 EUROCRYPT, DOI 10.1007/978-3-662-46800-5_15, 2015.

 [HRB13] Huelsing, A., Rausch, L., and J. Buchmann, "Optimal
 Parameters for XMSS^MT", Lecture Notes in Computer
 Science, Volume 8128, CD-ARES,
 DOI 10.1007/978-3-642-40588-4_14, 2013.

 [HRS16] Huelsing, A., Rijneveld, J., and F. Song, "Mitigating
 Multi-Target Attacks in Hash-based Signatures", Lecture
 Notes in Computer Science, Volume 9614, Public-Key
 Cryptography - PKC, DOI 10.1007/978-3-662-49384-7_15,
 2016.

 [Huelsing13]
 Huelsing, A., "W-OTS+ - Shorter Signatures for Hash-Based
 Signature Schemes", Lecture Notes in Computer Science,
 Volume 7918, Progress in Cryptology - AFRICACRYPT,
 DOI 10.1007/978-3-642-38553-7_10, 2013.

Huelsing, et al. Informational [Page 58]

RFC 8391 XMSS May 2018

 [Huelsing13a]
 Huelsing, A., "Practical Forward Secure Signatures using
 Minimal Security Assumptions", PhD thesis TU Darmstadt,
 2013,
 <http://tuprints.ulb.tu-darmstadt.de/3651/1/Thesis.pdf>.

 [KMN14] Knecht, M., Meier, W., and C. Nicola, "A space- and time-
 efficient Implementation of the Merkle Tree Traversal
 Algorithm", Computing Research Repository
 (CoRR), arXiv:1409.4081, 2014.

 [MCF18] McGrew, D., Curcio, M., and S. Fluhrer, "Hash-Based
 Signatures", Work in Progress, draft-mcgrew-hash-sigs-11,
 April 2018.

 [Merkle83] Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Computer Science Series, UMI Research Press,
 ISBN: 9780835713849, 1983.

Huelsing, et al. Informational [Page 59]

RFC 8391 XMSS May 2018

Appendix A. WOTS+ XDR Formats

 The WOTS+ signature and public key formats are formally defined using
 XDR [RFC4506] in order to provide an unambiguous, machine readable
 definition. Though XDR is used, these formats are simple and easy to
 parse without any special tools. Note that this representation
 includes all optional parameter sets. The same applies for the XMSS
 and XMSS^MT formats below.

A.1. WOTS+ Parameter Sets

 WOTS+ parameter sets are defined using XDR syntax as follows:

 /* ots_algorithm_type identifies a particular
 signature algorithm */

 enum ots_algorithm_type {
 wotsp_reserved = 0x00000000,
 wotsp-sha2_256 = 0x00000001,
 wotsp-sha2_512 = 0x00000002,
 wotsp-shake_256 = 0x00000003,
 wotsp-shake_512 = 0x00000004,
 };

A.2. WOTS+ Signatures

 WOTS+ signatures are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring32[32];
 typedef opaque bytestring64[64];

 union ots_signature switch (ots_algorithm_type type) {
 case wotsp-sha2_256:
 case wotsp-shake_256:
 bytestring32 ots_sig_n32_len67[67];

 case wotsp-sha2_512:
 case wotsp-shake_512:
 bytestring64 ots_sig_n64_len18[131];

 default:
 void; /* error condition */
 };

Huelsing, et al. Informational [Page 60]

RFC 8391 XMSS May 2018

A.3. WOTS+ Public Keys

 WOTS+ public keys are defined using XDR syntax as follows:

 union ots_pubkey switch (ots_algorithm_type type) {
 case wotsp-sha2_256:
 case wotsp-shake_256:
 bytestring32 ots_pubk_n32_len67[67];

 case wotsp-sha2_512:
 case wotsp-shake_512:
 bytestring64 ots_pubk_n64_len18[131];

 default:
 void; /* error condition */
 };

Appendix B. XMSS XDR Formats

B.1. XMSS Parameter Sets

 XMSS parameter sets are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring4[4];

 /* Definition of parameter sets */

 enum xmss_algorithm_type {
 xmss_reserved = 0x00000000,

 /* 256 bit classical security, 128 bit post-quantum security */

 xmss-sha2_10_256 = 0x00000001,
 xmss-sha2_16_256 = 0x00000002,
 xmss-sha2_20_256 = 0x00000003,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmss-sha2_10_512 = 0x00000004,
 xmss-sha2_16_512 = 0x00000005,
 xmss-sha2_20_512 = 0x00000006,

Huelsing, et al. Informational [Page 61]

RFC 8391 XMSS May 2018

 /* 256 bit classical security, 128 bit post-quantum security */

 xmss-shake_10_256 = 0x00000007,
 xmss-shake_16_256 = 0x00000008,
 xmss-shake_20_256 = 0x00000009,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmss-shake_10_512 = 0x0000000A,
 xmss-shake_16_512 = 0x0000000B,
 xmss-shake_20_512 = 0x0000000C,
 };

B.2. XMSS Signatures

 XMSS signatures are defined using XDR syntax as follows:

 /* Authentication path types */

 union xmss_path switch (xmss_algorithm_type type) {
 case xmss-sha2_10_256:
 case xmss-shake_10_256:
 bytestring32 path_n32_t10[10];

 case xmss-sha2_16_256:
 case xmss-shake_16_256:
 bytestring32 path_n32_t16[16];

 case xmss-sha2_20_256:
 case xmss-shake_20_256:
 bytestring32 path_n32_t20[20];

 case xmss-sha2_10_512:
 case xmss-shake_10_512:
 bytestring64 path_n64_t10[10];

 case xmss-sha2_16_512:
 case xmss-shake_16_512:
 bytestring64 path_n64_t16[16];

 case xmss-sha2_20_512:
 case xmss-shake_20_512:
 bytestring64 path_n64_t20[20];

 default:
 void; /* error condition */
 };

Huelsing, et al. Informational [Page 62]

RFC 8391 XMSS May 2018

 /* Types for XMSS random strings */

 union random_string_xmss switch (xmss_algorithm_type type) {
 case xmss-sha2_10_256:
 case xmss-sha2_16_256:
 case xmss-sha2_20_256:
 case xmss-shake_10_256:
 case xmss-shake_16_256:
 case xmss-shake_20_256:
 bytestring32 rand_n32;

 case xmss-sha2_10_512:
 case xmss-sha2_16_512:
 case xmss-sha2_20_512:
 case xmss-shake_10_512:
 case xmss-shake_16_512:
 case xmss-shake_20_512:
 bytestring64 rand_n64;

 default:
 void; /* error condition */
 };

 /* Corresponding WOTS+ type for given XMSS type */

 union xmss_ots_signature switch (xmss_algorithm_type type) {
 case xmss-sha2_10_256:
 case xmss-sha2_16_256:
 case xmss-sha2_20_256:
 wotsp-sha2_256;

 case xmss-sha2_10_512:
 case xmss-sha2_16_512:
 case xmss-sha2_20_512:
 wotsp-sha2_512;

 case xmss-shake_10_256:
 case xmss-shake_16_256:
 case xmss-shake_20_256:
 wotsp-shake_256;

 case xmss-shake_10_512:
 case xmss-shake_16_512:
 case xmss-shake_20_512:
 wotsp-shake_512;

Huelsing, et al. Informational [Page 63]

RFC 8391 XMSS May 2018

 default:
 void; /* error condition */
 };

 /* XMSS signature structure */

 struct xmss_signature {
 /* WOTS+ key pair index */
 bytestring4 idx_sig;
 /* Random string for randomized hashing */
 random_string_xmss rand_string;
 /* WOTS+ signature */
 xmss_ots_signature sig_ots;
 /* authentication path */
 xmss_path nodes;
 };

B.3. XMSS Public Keys

 XMSS public keys are defined using XDR syntax as follows:

 /* Types for bitmask seed */

 union seed switch (xmss_algorithm_type type) {
 case xmss-sha2_10_256:
 case xmss-sha2_16_256:
 case xmss-sha2_20_256:
 case xmss-shake_10_256:
 case xmss-shake_16_256:
 case xmss-shake_20_256:
 bytestring32 seed_n32;

 case xmss-sha2_10_512:
 case xmss-sha2_16_512:
 case xmss-sha2_20_512:
 case xmss-shake_10_512:
 case xmss-shake_16_512:
 case xmss-shake_20_512:
 bytestring64 seed_n64;

 default:
 void; /* error condition */
 };

Huelsing, et al. Informational [Page 64]

RFC 8391 XMSS May 2018

 /* Types for XMSS root node */

 union xmss_root switch (xmss_algorithm_type type) {
 case xmss-sha2_10_256:
 case xmss-sha2_16_256:
 case xmss-sha2_20_256:
 case xmss-shake_10_256:
 case xmss-shake_16_256:
 case xmss-shake_20_256:
 bytestring32 root_n32;

 case xmss-sha2_10_512:
 case xmss-sha2_16_512:
 case xmss-sha2_20_512:
 case xmss-shake_10_512:
 case xmss-shake_16_512:
 case xmss-shake_20_512:
 bytestring64 root_n64;

 default:
 void; /* error condition */
 };

 /* XMSS public key structure */

 struct xmss_public_key {
 xmss_root root; /* Root node */
 seed SEED; /* Seed for bitmasks */
 };

Appendix C. XMSS^MT XDR Formats

C.1. XMSS^MT Parameter Sets

 XMSS^MT parameter sets are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring3[3];
 typedef opaque bytestring5[5];
 typedef opaque bytestring8[8];

 /* Definition of parameter sets */

 enum xmssmt_algorithm_type {
 xmssmt_reserved = 0x00000000,

Huelsing, et al. Informational [Page 65]

RFC 8391 XMSS May 2018

 /* 256 bit classical security, 128 bit post-quantum security */

 xmssmt-sha2_20/2_256 = 0x00000001,
 xmssmt-sha2_20/4_256 = 0x00000002,
 xmssmt-sha2_40/2_256 = 0x00000003,
 xmssmt-sha2_40/4_256 = 0x00000004,
 xmssmt-sha2_40/8_256 = 0x00000005,
 xmssmt-sha2_60/3_256 = 0x00000006,
 xmssmt-sha2_60/6_256 = 0x00000007,
 xmssmt-sha2_60/12_256 = 0x00000008,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmssmt-sha2_20/2_512 = 0x00000009,
 xmssmt-sha2_20/4_512 = 0x0000000A,
 xmssmt-sha2_40/2_512 = 0x0000000B,
 xmssmt-sha2_40/4_512 = 0x0000000C,
 xmssmt-sha2_40/8_512 = 0x0000000D,
 xmssmt-sha2_60/3_512 = 0x0000000E,
 xmssmt-sha2_60/6_512 = 0x0000000F,
 xmssmt-sha2_60/12_512 = 0x00000010,

 /* 256 bit classical security, 128 bit post-quantum security */

 xmssmt-shake_20/2_256 = 0x00000011,
 xmssmt-shake_20/4_256 = 0x00000012,
 xmssmt-shake_40/2_256 = 0x00000013,
 xmssmt-shake_40/4_256 = 0x00000014,
 xmssmt-shake_40/8_256 = 0x00000015,
 xmssmt-shake_60/3_256 = 0x00000016,
 xmssmt-shake_60/6_256 = 0x00000017,
 xmssmt-shake_60/12_256 = 0x00000018,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmssmt-shake_20/2_512 = 0x00000019,
 xmssmt-shake_20/4_512 = 0x0000001A,
 xmssmt-shake_40/2_512 = 0x0000001B,
 xmssmt-shake_40/4_512 = 0x0000001C,
 xmssmt-shake_40/8_512 = 0x0000001D,
 xmssmt-shake_60/3_512 = 0x0000001E,
 xmssmt-shake_60/6_512 = 0x0000001F,
 xmssmt-shake_60/12_512 = 0x00000020,
 };

Huelsing, et al. Informational [Page 66]

RFC 8391 XMSS May 2018

C.2. XMSS^MT Signatures

 XMSS^MT signatures are defined using XDR syntax as follows:

 /* Type for XMSS^MT key pair index */
 /* Depends solely on h */

 union idx_sig_xmssmt switch (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_20/4_512:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_20/4_512:
 bytestring3 idx3;

 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_40/2_512:
 case xmssmt-sha2_40/4_512:
 case xmssmt-sha2_40/8_512:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_40/2_512:
 case xmssmt-shake_40/4_512:
 case xmssmt-shake_40/8_512:
 bytestring5 idx5;

 case xmssmt-sha2_60/3_256:
 case xmssmt-sha2_60/6_256:
 case xmssmt-sha2_60/12_256:
 case xmssmt-sha2_60/3_512:
 case xmssmt-sha2_60/6_512:
 case xmssmt-sha2_60/12_512:
 case xmssmt-shake_60/3_256:
 case xmssmt-shake_60/6_256:
 case xmssmt-shake_60/12_256:
 case xmssmt-shake_60/3_512:
 case xmssmt-shake_60/6_512:
 case xmssmt-shake_60/12_512:
 bytestring8 idx8;

Huelsing, et al. Informational [Page 67]

RFC 8391 XMSS May 2018

 default:
 void; /* error condition */
 };

 union random_string_xmssmt switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_60/3_256:
 case xmssmt-sha2_60/6_256:
 case xmssmt-sha2_60/12_256:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_60/3_256:
 case xmssmt-shake_60/6_256:
 case xmssmt-shake_60/12_256:
 bytestring32 rand_n32;

 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_20/4_512:
 case xmssmt-sha2_40/2_512:
 case xmssmt-sha2_40/4_512:
 case xmssmt-sha2_40/8_512:
 case xmssmt-sha2_60/3_512:
 case xmssmt-sha2_60/6_512:
 case xmssmt-sha2_60/12_512:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_20/4_512:
 case xmssmt-shake_40/2_512:
 case xmssmt-shake_40/4_512:
 case xmssmt-shake_40/8_512:
 case xmssmt-shake_60/3_512:
 case xmssmt-shake_60/6_512:
 case xmssmt-shake_60/12_512:
 bytestring64 rand_n64;

 default:
 void; /* error condition */
 };

 /* Type for reduced XMSS signatures */

Huelsing, et al. Informational [Page 68]

RFC 8391 XMSS May 2018

 union xmss_reduced (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_60/6_256:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_60/6_256:
 bytestring32 xmss_reduced_n32_t77[77];

 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_60/12_256:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_60/12_256:
 bytestring32 xmss_reduced_n32_t72[72];

 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_60/3_256:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_60/3_256:
 bytestring32 xmss_reduced_n32_t87[87];

 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_40/4_512:
 case xmssmt-sha2_60/6_512:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_40/4_512:
 case xmssmt-shake_60/6_512:
 bytestring64 xmss_reduced_n32_t141[141];

 case xmssmt-sha2_20/4_512:
 case xmssmt-sha2_40/8_512:
 case xmssmt-sha2_60/12_512:
 case xmssmt-shake_20/4_512:
 case xmssmt-shake_40/8_512:
 case xmssmt-shake_60/12_512:
 bytestring64 xmss_reduced_n32_t136[136];

 case xmssmt-sha2_40/2_512:
 case xmssmt-sha2_60/3_512:
 case xmssmt-shake_40/2_512:
 case xmssmt-shake_60/3_512:
 bytestring64 xmss_reduced_n32_t151[151];

Huelsing, et al. Informational [Page 69]

RFC 8391 XMSS May 2018

 default:
 void; /* error condition */
 };

 /* xmss_reduced_array depends on d */

 union xmss_reduced_array (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_40/2_512:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_40/2_512:
 xmss_reduced xmss_red_arr_d2[2];

 case xmssmt-sha2_60/3_256:
 case xmssmt-sha2_60/3_512:
 case xmssmt-shake_60/3_256:
 case xmssmt-shake_60/3_512:
 xmss_reduced xmss_red_arr_d3[3];

 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_20/4_512:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_40/4_512:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_20/4_512:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_40/4_512:
 xmss_reduced xmss_red_arr_d4[4];

 case xmssmt-sha2_60/6_256:
 case xmssmt-sha2_60/6_512:
 case xmssmt-shake_60/6_256:
 case xmssmt-shake_60/6_512:
 xmss_reduced xmss_red_arr_d6[6];

 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_40/8_512:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_40/8_512:
 xmss_reduced xmss_red_arr_d8[8];

Huelsing, et al. Informational [Page 70]

RFC 8391 XMSS May 2018

 case xmssmt-sha2_60/12_256:
 case xmssmt-sha2_60/12_512:
 case xmssmt-shake_60/12_256:
 case xmssmt-shake_60/12_512:
 xmss_reduced xmss_red_arr_d12[12];

 default:
 void; /* error condition */
 };

 /* XMSS^MT signature structure */

 struct xmssmt_signature {
 /* WOTS+ key pair index */
 idx_sig_xmssmt idx_sig;
 /* Random string for randomized hashing */
 random_string_xmssmt randomness;
 /* Array of d reduced XMSS signatures */
 xmss_reduced_array;
 };

C.3. XMSS^MT Public Keys

 XMSS^MT public keys are defined using XDR syntax as follows:

 /* Types for bitmask seed */

 union seed switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_60/6_256:
 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_60/12_256:
 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_60/3_256:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_60/6_256:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_60/12_256:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_60/3_256:
 bytestring32 seed_n32;

Huelsing, et al. Informational [Page 71]

RFC 8391 XMSS May 2018

 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_40/4_512:
 case xmssmt-sha2_60/6_512:
 case xmssmt-sha2_20/4_512:
 case xmssmt-sha2_40/8_512:
 case xmssmt-sha2_60/12_512:
 case xmssmt-sha2_40/2_512:
 case xmssmt-sha2_60/3_512:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_40/4_512:
 case xmssmt-shake_60/6_512:
 case xmssmt-shake_20/4_512:
 case xmssmt-shake_40/8_512:
 case xmssmt-shake_60/12_512:
 case xmssmt-shake_40/2_512:
 case xmssmt-shake_60/3_512:
 bytestring64 seed_n64;

 default:
 void; /* error condition */
 };

 /* Types for XMSS^MT root node */

 union xmssmt_root switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_256:
 case xmssmt-sha2_20/4_256:
 case xmssmt-sha2_40/2_256:
 case xmssmt-sha2_40/4_256:
 case xmssmt-sha2_40/8_256:
 case xmssmt-sha2_60/3_256:
 case xmssmt-sha2_60/6_256:
 case xmssmt-sha2_60/12_256:
 case xmssmt-shake_20/2_256:
 case xmssmt-shake_20/4_256:
 case xmssmt-shake_40/2_256:
 case xmssmt-shake_40/4_256:
 case xmssmt-shake_40/8_256:
 case xmssmt-shake_60/3_256:
 case xmssmt-shake_60/6_256:
 case xmssmt-shake_60/12_256:
 bytestring32 root_n32;

 case xmssmt-sha2_20/2_512:
 case xmssmt-sha2_20/4_512:
 case xmssmt-sha2_40/2_512:
 case xmssmt-sha2_40/4_512:
 case xmssmt-sha2_40/8_512:

Huelsing, et al. Informational [Page 72]

RFC 8391 XMSS May 2018

 case xmssmt-sha2_60/3_512:
 case xmssmt-sha2_60/6_512:
 case xmssmt-sha2_60/12_512:
 case xmssmt-shake_20/2_512:
 case xmssmt-shake_20/4_512:
 case xmssmt-shake_40/2_512:
 case xmssmt-shake_40/4_512:
 case xmssmt-shake_40/8_512:
 case xmssmt-shake_60/3_512:
 case xmssmt-shake_60/6_512:
 case xmssmt-shake_60/12_512:
 bytestring64 root_n64;

 default:
 void; /* error condition */
 };

 /* XMSS^MT public key structure */

 struct xmssmt_public_key {
 xmssmt_root root; /* Root node */
 seed SEED; /* Seed for bitmasks */
 };

Acknowledgements

 We would like to thank Johannes Braun, Peter Campbell, Florian
 Caullery, Stephen Farrell, Scott Fluhrer, Burt Kaliski, Adam Langley,
 Marcos Manzano, David McGrew, Rafael Misoczki, Sean Parkinson,
 Sebastian Roland, and the Keccak team for their help and comments.

Huelsing, et al. Informational [Page 73]

RFC 8391 XMSS May 2018

Authors’ Addresses

 Andreas Huelsing
 TU Eindhoven
 P.O. Box 513
 Eindhoven 5600 MB
 The Netherlands

 Email: ietf@huelsing.net

 Denis Butin
 TU Darmstadt
 Hochschulstrasse 10
 Darmstadt 64289
 Germany

 Email: dbutin@cdc.informatik.tu-darmstadt.de

 Stefan-Lukas Gazdag
 genua GmbH
 Domagkstrasse 7
 Kirchheim bei Muenchen 85551
 Germany

 Email: ietf@gazdag.de

 Joost Rijneveld
 Radboud University
 Toernooiveld 212
 Nijmegen 6525 EC
 The Netherlands

 Email: ietf@joostrijneveld.nl

 Aziz Mohaisen
 University of Central Florida
 4000 Central Florida Blvd
 Orlando, FL 32816
 United States of America

 Phone: +1 407 823-1294
 Email: mohaisen@ieee.org

Huelsing, et al. Informational [Page 74]

